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ABSTRACT

We connect a large class of Deep Generative Networks (DGNs) with spline oper-
ators in order to analyze their properties and limitations and suggest new opportu-
nities. By characterizing the latent space partition and per-region affine mappings
of a DGN, we relate the manifold dimension and approximation error to the sam-
ple size, provide a theoretically motivated “elbow method” to infer the intrinsic
dimensionality of the manifold being approximated, study the (not always) ben-
eficial impact of dropout/dropconnect, and demonstrate how a DGN’s piecewise
affine generated manifold can be “smoothed” to facilitate latent space optimiza-
tion as in inverse problems. The per-region affine subspace defines a local coor-
dinate basis; we provide necessary and sufficient conditions relating those basis
vectors with disentanglement and demonstrate how to interpret the DGN’s learned
parameters. We also derive the output probability density that is mapped onto the
generated manifold in terms of the latent space density, which enables the com-
putation of key statistics such as its Shannon entropy. This finding enables us to
highlight the source of training instabilities when the target density is multimodal:
as the modes move further apart and/or are more concentrated, the singular values
of the approximant DGN per-region mappings increase, leading to overly large
layer weights and causing training instabilities.

1 INTRODUCTION

Deep Generative Networks (DGNs), which map a low-dimensional latent variable z to a higher-
dimensional generated sample x, have made enormous leaps in capabilities in recent years. Popular
DGNs include Generative Adversarial Networks (GANs) Goodfellow et al. (2014) and their variants
Dziugaite et al. (2015); Zhao et al. (2016); Durugkar et al. (2016); Arjovsky et al. (2017); Mao et al.
(2017); Yang et al. (2019); Variational Autoencoders Kingma & Welling (2013) and their variants
Fabius & van Amersfoort (2014); van den Oord et al. (2017); Higgins et al. (2017); Tomczak &
Welling (2017); Davidson et al. (2018); and flow-based models such as NICE Dinh et al. (2014),
Normalizing Flow Rezende & Mohamed (2015) and their variants Dinh et al. (2016); Grathwohl
et al. (2018); Kingma & Dhariwal (2018).
While DGNs are easy to describe and analyze locally in terms of simple affine operators and scalar
nonlinearities, a general framework for their global structure has remained elusive. In this paper,
we take a step in the direction of a better theoretical understanding of DGNs constructed using con-
tinuous, piecewise affine nonlinearities by leveraging recent progress on max-affine spline operators
(MASOs) Balestriero & Baraniuk (2018b). Our main contributions are as follows:

[C1] We characterize the piecewise-affine manifold structure of a DGN’s generated samples
(Sec. 3.1), including its intrinsic dimension, which sheds new light on the impact of techniques
like dropout (Sec. 3.2) and provides practitioners with sensible design principles for constructing a
desired manifold (Sec. 3.3).

[C2] We characterize the local coordinates of a DGN’s generated manifold and the inverse mapping
from the generated data points x back to the latent variables z. This sheds new insights on the DGN
architectures and suggests a novel discrete optimization problem for DGN inversion and inverse
problem applications (Sec. 4.1). Armed with this result, we derive necessary conditions on the
DGN per-region affine mappings for disentanglement, to interpret the disentangled mappings, and
to draw new links between DGNs and adaptive basis methods (Sec. 4.2). We also demonstrate
how to smooth a DGN’s generated continuous piecewise affine manifold in a principled way, which
enables new approaches for (smooth) manifold approximation (Sec. 4.3).
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[C3] We provide an input-output formula for a DGN that enables us to derive the analytical prob-
ability density on the generated manifold that is induced by the latent space (Section 5.1). We use
this result to derive the analytical form of this density for several interesting settings and demon-
strate that there exists a crucial link between the DGN partition, the singular values of the per-region
affine mappings, and the Shannon entropy of the output density. This provides a new lens through
which to study the difficulty of generating multidimensional, low-entropy distributions using DGNs
(Section 5.2).

Reproducible code for the various experiments and figures will be provided on Github upon com-
pletion of the review process. Proofs of our results are provided in Appendix F.

2 BACKGROUND

Deep Generative Networks. A deep generative network (DGN) is an operatorGΘ with parameters
Θ mapping a latent input z ∈ RS to an observation x ∈ RD by composing L intermediate layer
mappings g`, ` = 1, . . . , L. We precisely define a layer g` as comprising a single nonlinear operator
composed with any (if any) preceding linear operators that lie between it and the preceding nonlinear
operator. Examples of linear operators are the fully connected operator (affine transformation with
weight matrixW ` and bias vector b`), or the convolution operator (circulentW ` matrix); examples
of nonlinear operators are the activation operator (applying a scalar nonlinearity such as the ubiqui-
tous ReLU), or the pooling operator (dimensionality reduction given a maximum operator). Precise
definitions of these operators can be found in Goodfellow et al. (2016). We will omit Θ from the fΘ

operator for conciseness unless needed.
Each layer g` transforms its input feature map v`−1 ∈ RD`−1

into an output feature map v` ∈ RD`

with in particular v0 := z, D0 = S, and vL := x, DL = D. In this paper, we focus on DGNs,
where in general S ≤ D and in some cases S � D. In such framework z is interpreted as a latent
representation, and x is the generated/observed data, e.g, a time-serie or image. The feature maps v`
can be viewed equivalently as signals, flattened column vectors, or tensors depending on the context.

Max-Affine Spline Deep Networks. A max-affine spline operator (MASO) concatenates indepen-
dent max-affine spline (MAS) functions, with each MAS formed from the point-wise maximum ofR
affine mappings Magnani & Boyd (2009); Hannah & Dunson (2013). For our purpose each MASO
will express a DN layer and is thus an operator producing a D` dimensional vector from a D`−1

dimensional vector and is formally given by

MASO(v; {Ar, br}Rr=1) = max
r=1,...,R

Arv + br, (1)

where Ar ∈ RD`×D`−1

are the slopes and br ∈ RD`

are the offset/bias parameters and the max-
imum is taken coordinate-wise. For example, a layer comprising a fully connected operator with
weightsW ` and biases b` followed by a ReLU activation operator corresponds to a (single) MASO
with R = 2,A1 = W `,A2 = 0, b1 = b`, b2 = 0. Note that a MASO is a continuous piecewise-
affine (CPA) operator Wang & Sun (2005).

The key background result for this paper is that the layers of DNs constructed from piecewise affine
operators (e.g., convolution, ReLU, and max-pooling) are MASOs Balestriero & Baraniuk (2018b;a):

∃R ∈ N∗,∃{Ar, br}Rr=1 s.t. MASO(v; {Ar, br}Rr=1) = f`(v),∀v ∈ RD
`−1

, (2)

making the entire DGN a composition of MASOs.
The CPA spline interpretation enabled from a MASO formulation of DGNs provides a powerful
global geometric interpretation of the network mapping f based on a partition of its input space RS
into polyhedral regions and a per-region affine transformation producing the network output. The
partition regions are built up over the layers via a subdivision process and are closely related to
Voronoi and power diagrams Balestriero et al. (2019). We now propose to greatly extend such CPA
spline driven insights to carefully characterize and understand DGNs as well as providing theoretical
justifications to various observed behaviors such as mode collapse.

3 IMPORTANCE OF THE DEEP GENERATIVE NETWORK DIMENSION

In this section we study the properties of the mapping GΘ : RS → RD of a DGN comprising L
piecewise-affine MASO layers.
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Figure 1: Visual depiction of Thm. 1 with a (random)
generator G : R2 7→ R3. Left: generator input space
partition Ω made of polytopal regions. Right: gener-
ator image Im(G) which is a continuous piecewise
affine surface composed of the polytopes obtained
by affinely transforming the polytopes from the in-
put space partition (left) the colors are per-region and
correspond between left and right plots. This input-
space-partition / generator-image / per-region-affine-
mapping relation holds for any architecture employing
piecewise affine activation functions. Understanding
each of the three brings insights into the others, as we
demonstrate in this paper.

3.1 INPUT-OUTPUT SPACE PARTITION AND PER-REGION MAPPING

As was hint in the previous section, the MASO formulation of a DGN allows to express the (entire)
DGN mappingG (a composition of L MASOs) as a per-region affine mapping

G(z) =
∑
ω∈Ω

(Aωz + bω)1z∈ω, z ∈ RS , (3)

with ∪ω∈Ωω = RS and ∀(ω, ω′) ∈ Ω2, ω 6= ω′, ω◦ ∩ ω′◦ = ∅, with (·)◦ the interior opera-
tor Munkres (2014), and Aω ∈ RD×S , bω ∈ RD the per-region affine parameters. The above
comes naturally from the composition of linear operators interleaved with continuous piecewise
affine which are current activation functions (ReLU Glorot et al. (2011), leaky-ReLU Maas et al.
(2013), absolute value Bruna & Mallat (2013), parametric ReLU He et al. (2015) and the likes)
and/or max-pooling. For a dedicated study of the partition Ω we refer the reader to Zhang et al.
(2018); Balestriero et al. (2019).

In order to study and characterize the DGN mapping (3), we make explicit the formation of the
per-region slope and bias parameters. The affine parameters Aω, bω can be obtained efficiently by
using an input z ∈ ω and the Jacobian (J) operator, leading to

Aω =(JzG)(z)=

(
L−1∏
i=0

diag
(
σ̇L−i(ω)

)
WL−i

)
= diag

(
σ̇L(z)

)
WL. . . diag

(
σ̇1(z)

)
W 1, (4)

where σ̇`(z) is the pointwise derivative of the activation function of layer ` based on its input
W `z`−1 + b`, which we note as a function of z directly. The diag operator simply puts the given
vector into a diagonal square matrix. For convolutional layers (or else) one can simply replace the
correspondingW ` with the correct slope matrix parametrization as discussed in Sec. 2. Notice that
since the employed activation functions σ`,∀` ∈ {1, . . . , L} are piecewise affine, their derivative
is piecewise constant, in particular with values [σ̇`(z)]k ∈ {α, 1} with α = 0 for ReLU, α = −1
for absolute value, and in general with α > 0 for Leaky-ReLU for k ∈ {1, . . . , D`}. We denote
the collection of all the per-layer activation derivatives [σ̇1(z), . . . , σ̇L(z)] as the activation pattern
of the generator. Based on the above, if one already knows the associated activation pattern of a
region ω, then the matrix Aω can be formed directly by using them without having access to an
input z ∈ ω. In this case, we will slightly abuse notation and denote those known activation patterns
as σ̇`(ω) , σ̇`(z), z ∈ ω with ω being the considered region. In a similar way, the bias vector is
obtained as

bω = G(z)−Aωz = bL+

L−1∑
`=1

[(
L−`−1∏
i=0

diag
(
σ̇L−i(ω)

)
WL−i

)
diag

(
σ̇`(ω)

)
b`

]
.

The bω vector can be obtained either from a sample z ∈ ω using the left part of the above equation
or based on the known region activation pattern using the right hand side of the equation.

Theorem 1. The image of a generator G employing MASO layers is made of connected polytopes
corresponding to the polytopes of the input space partition Ω, each being affinely transformed by
the per-region affine parameters as in

Im(G) , {G(z) : z ∈ RS} =
⋃
ω∈Ω

Aff(ω;Aω, bω) (5)
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Figure 2: Impact of dropout and dropconnect on the intrinsic dimension of the noise induced generators for
two “drop” probabilities 0.1 and 0.3 and for a generator G with S = 6, D = 10, L = 3 with varying
width D1 = D2 ranging from 6 to 48 (x-axis). The boxplot represents the distribution of the per-region
intrinsic dimensions over 2000 sampled regions and 2000 different noise realizations. Recall that the intrinsic
dimension is upper bounded by S = 6 in this case. Two key observations: first dropconnect tends to producing
DGN with intrisic dimension preserving the latent dimension (S = 6) even for narrow models (D1, D2 ≈ S),
as opposed to dropout which tends to produce DGNs with much smaller intrinsic dimension than S. As a
result, if the DGN is much wider than S, both techniques can be used, while in narrow models, either none or
dropconnect should be preferred.

with Aff(ω;A, b) = {Az + b : z ∈ ω}; we will denote for concisenessG(ω) , Aff(ω;Aω, bω).
The above result is pivotal in bridging the understanding of the input space partition Ω, the per-
region affine mappings Aω, bω , and the generator mapping. We visualize Thm. 1 in Fig. 1 to make
it clear that characterizing Aω alone already provides tremendous information about the generator,
as we demonstrate in the next section.
3.2 GENERATED MANIFOLD INTRINSIC DIMENSION

We now turn into the intrinsic dimension of the per-region affine subspacesG(ω) that are the pieces
forming the generated manifold. In fact, as per (5), its dimension depends not only on the latent
dimension S but also on the per-layer parameters.

Proposition 1. The intrinsic dimension of the affine subspace G(ω)) (recall (5)) has the following

upper bound: dim(G(ω)) ≤ min
(
S,min`=1,...,L

(
rank

(
diag(σ̇`(ω))W `

) ))
.

Figure 3: DGN with
dropout trained (GAN)
on a circle dataset (blue
dots); dropout turns a
DGN into an ensemble
of DGNs (each dropout
realization is drawn in a
different color).

We make two observations. First, we see that the choice of the nonlinearity
(i.e., the choice of α) and/or the choice of the per-layer dimensions are the
key elements controlling the upper bound of dim(G). For example, in the
case of ReLU (α = 0) then dim(G(ω)) is directly impacted by the number
of 0s in σ̇`(ω) of each layer in addition of the rank of W `; this sensitivity
does not occur when using other nonlinearities (α 6= 0). Second, “bottle-
neck layers” (layers with width D` smaller than other layers) impact di-
rectly the dimension of the subspace and thus should be carefully employed
based on the a priori knowledge of the target manifold intrinsic dimension.
In particular, if α 6= 0 and the weights are random (such as at initialization)
then one has almost surely dim(G(ω)) ≤ min(S,min`=1,...,LD

`).

Application: Effect of Dropout/Dropconnect. Noise techniques, such as
dropout Wager et al. (2013) and dropconnect Wan et al. (2013); Isola et al. (2017), alter the per-
region affine mapping in a very particular way impact the per-region affine mapping. Those tech-
niques perform an Hadamard product of iid Bernoulli random variables against the feature maps
(dropout) or against the layer weights (dropconnect); we denote a DGN equipped with such tech-
nique and given a noise realization by Gε where ε includes the noise realization of all layers; note
that Gε now has its own input space partition Ωε. We provide explicit formula of the piecewise
affine deep generative network in Appendix J. In a classification setting, those techniques have been
thoroughly studied and it was shown that adding dropout/dropconnect to a DN classifier turned
the network into an ensemble of classifiers Warde-Farley et al. (2013); Baldi & Sadowski (2013);
Bachman et al. (2014); Hara et al. (2016).

Proposition 2. Adding dropout/dropconnect to a deep generative network G produces a (finite)
ensemble of generators Gε, each with per-region intrinsic dimension 0 ≤ dim(Gε(ωε)) ≤
maxω∈Ω dim(G(ω)) for ωε ∈ Ωε, those bounds are tight.
We visualize this result in Fig. 2, where we observe how different noise realizations produce slightly
different generators possibly with different per-region dimension. By leveraging the above and
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Figure 4: Left: final training negative ELBO (smaller is better) for a MLP DGN (S = 100 in red) on MNIST
with varying width (y-axis) and dropout rates (x-axis) of the DGN (decoder); we observe that the impact of
dropout on performances depends on the layer widths (CIFAR10 results can be seen in Fig. 9). Right:Minimal
approximation error (E∗) for a target linear manifold (S∗ = 5, in red), with increasing dataset size from 100
to 1000 (blue to green) and different latent space dimensions S (x-axis), the E∗ = 0 line is depicted in black.
This demonstrates (per Thm. 2) that whenever S̃ < S∗, the training error E∗ increases with the dataset size N .

Thm. 1 we can highlight a potential limitation of those techniques for narrow models (D` ≈ S)
for which the noise induced generators will tend to be have a per-region intrinsic dimension smaller
than S hurting the modeling capacity of those generators. On the other hand, when used with wide
DGNs (D` � S), noise induced generators will maintain an intrinsic dimension closer to the one
of the original generator. We empirically demonstrate the impact of dropout into the dimension
of the DGN surface in Fig. 3; and reinforce the possibly detrimental impact of employing large
dropout rates in narrow DNs in Fig. 4. Those observations should open the door to novel technique
theoretically establishing the relation between dropout rate, layer widths, and dimensionality of the
desired (target) surface to produce.

From the above analysis we see that one should carefully consider the use of dropout/dropconnect
based on the type of generator architecture that is used and the desired generator intrinsic dimension.

3.3 INTRINSIC DIMENSION AND THE ELBOW METHOD FOR DEEP GENERATIVE NETWORKS

We now emphasize how the DGN dimension S̃ , maxω dim(G(ω)) impacts the training error
loss and training sample recovery. We answer the following question: Can a generator generate N
training samples from a continuous S∗ dimensional manifold if S̃ < S∗? Denote the empirical error
measuring the ability to generate the data samples by E∗N = minΘ

∑N
n=1 minz ‖GΘ(z) − xn‖, a

standard measure used for example in Bojanowski et al. (2017). We now demonstrate that if S̃ < S∗

then E∗N increases with N for any data manifold.

Theorem 2. Given the intrinsic dimension of a target manifold S∗, then for any finite DGN with
smaller intrinsic dimension (S̃ < S∗), there exists a N ′ ∈ N+ such that for any dataset size N2 >
N1 ≥ N ′ ≥ N of random samples from the target manifold one has E∗N = 0 and E∗N2

> E∗N1
.

From the above result, we see that, even when fitting a linear manifold, whenever there is a bottle-
neck layer (very narrow width) collapsing the DGN intrinsic dimension below the target manifold
dimension S∗, then as the dataset size exceeds a threshold, as the training error will increase. For
illustration, consider a dataset formed by a few samples from a S∗ dimensional affine manifold. If
the number of samples is small, even a DGN with intrinsic dimension of 1 (thus producing a 1D
continuous piecewise affine curve in RD) can fit the dataset. However, as the dataset size grows, as it
will become impossible for such a low dimension (even though nonlinear) manifold to go through all
the samples. We empirically observe this result in Fig. 4 (the experimental details are given in Ap-
pendix I). This should open the door to developing new techniques a la “Elbow method” Thorndike
(1953); Ketchen & Shook (1996) to estimate intrinsic dimensions of manifolds based on studying
the approximation error of DGNs.

The above results are key to understanding the challenges and importance of the design of DGN
starting with the width of the hidden layers and latent dimensions in conjunction with the choice of
nonlinearities and constraints onW ` of all layers.
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4 PER-REGION AFFINE MAPPING INTERPRETABILITY, MANIFOLD
SMOOTHING, AND INVERSE PROBLEMS

We now turn to the study of the local coordinates of the affine mappings comprising a DGN’s
generated manifold.
4.1 DEEP GENERATIVE NETWORK INVERSION

We now consider the task of inverting the DGN mapping to retrieve z0 from x = G(z0). Note that
we use the term “inversion” only in this way, since, in general, Im(G) is a continuous piecewise
affine surface in RD, and thus not all x ∈ RD can be mapped to a latent vector that would generate
x exactly.

First, we obtain the following condition relating the per-region dimension to the bijectivity of the
mapping. Bijectivity is an important property that is often needed in generators to allow uniqueness
of the generated sample given a latent vector as well as ensuring that a generated sample has a
unique latent representation vector. That is, following the above example, we would prefer that only
a unique z0 produces x. Such uniqueness condition is crucial in inverse problem applications Lucas
et al. (2018); Puthawala et al. (2020).

Proposition 3. A DGN employing leaky-ReLU activation functions is bijective between its domain
RS and its image Im(G) iff dim(Aff(ω,Aω, bω)) = S,∀ω ∈ Ω, or equivalently, iff rank(Aω) =
S, ∀ω ∈ Ω.
Prior leveraging this result for latent space characterization, we derive an inverse of the genera-
tor G that maps any point from the generated manifold to the latent space. This inverse is well-
defined as long as the generator is injective, preventing that ∃z1 6= z2 s.t. G(z1) = G(z2).
Assuming injectivity, the inverse of G on a region G(ω) in the output space is obtained by
G−1
ω (x) =

(
AT
ωAω

)−1
AT
ω (x− bω),∀x ∈ G(ω) leading to G−1

ω (G(ω)) = ω,∀ω ∈ Ω. Note that
the inverse

(
AT
ωAω

)−1
is well defined asAω is full column rank since we only consider a generator

with S̃ = S. We can then simply combine the region-conditioned inverses to obtain the overall gen-
erator inverse; which is also a CPA operator and is given byG−1(x) =

∑
ω∈ΩG

−1
ω (x)1{x∈G(ω)}.

In particular, we obtain the following result offer new perspective of latent space optimization and
inversion of DGNs.

Proposition 4. Given a sample x = G(z0), inverting x can be done via minz ‖x − G(z)‖22
(standard technique, see ), but can also be done via minω∈Ω ‖x − G(G−1

ω (x))‖22, offering new
solutions from discrete combinatorial optimization to invert DGNs.
Recalling that there is a relation between the per-layer region activation r from Eq. 2 and the induced
input space partition, we can see how the search through ω ∈ Ω as given in the above result can
further be cast as an integer programming problem Schrijver (1998). For additional details on this
integer programming formulation of DN regions, see Tjeng et al. (2017); Balestriero et al. (2019)
and Appendix G.

We leveraged Aω as the basis of Aff(ω;Aω, bω) in order to derive the inverse DGN mapping,
we now extend this analysis by linking Aω to local coordinates and adaptive basis to gain further
insights and interpretability.
4.2 PER-REGION MAPPING AS LOCAL COORDINATE SYSTEM AND DISENTANGLEMENT

Recall from (5) that a DGN is a CPA operator. Inside region ω ∈ Ω, points are mapped to the
output space affine subspace which is itself governed by a coordinate system or basis (Aω) which
we assume to be full rank for any ω ∈ Ω through this section.

The affine mapping is performed locally for each region ω, in a manner similar to an “adaptive
basis” Donoho et al. (1994). In this context, we aim to characterize the subspace basis in term of
disentanglement, i.e., the alignment of the basis vectors with respect to each other. While there is
no unique definition for disentanglement, a general consensus is that a disentangled basis should
provide a “compact” and interpretable latent representation z for the associated x = G(z). In
particular, it should ensure that a small perturbation of the dth dimension (d = 1, . . . , S) of z
implies a transformation independent from a small perturbation of d′ 6= d Schmidhuber (1992);
Bengio et al. (2013). That is, 〈G(z) − G(z + εδd),G(z) − G(z + εδd′)〉 ≈ 0 with δd a one-
hot vector at position d and length S Kim & Mnih (2018). A disentangled representation is thus
considered to be most informative as each latent dimension imply a transformation that leaves the
others unchanged Bryant & Yarnold (1995).
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FC GAN CONV GAN FC VAE CONV VAE Figure 5: Visualization of a single basis vectors [Aω].,k before and
after learning obtained from a region ω containing the digits 7, 5, 9,
and 0 respectively, for GAN and VAE models made of fully con-
nected or convolutional layer (see Appendix E for details). We ob-
serve how those basis vectors encodes: right rotation, cedilla exten-
sion, left rotation, and upward translation respectively allowing in-
terpretability into the learn DGN affine parameters.

G
en

er
at

ed
su

rf
ac

e

β = 0.999 β = 0.9 β = 0.5

C
N

N

MNIST

β

CIFAR10

β

Figure 6: Left: Depiction of the DGN image Im(G) for different values of smoothing β; clearly the smooth-
ing preserves the overall form of the generated surface while smoothing the (originally) non-differentiable
parts. No other change is applied on G. Right: Negative ELBO (lower is better, avg. and std. over 10 runs) for
different DGNs (VAE trained) with CNN architecture with varying smoothing parameters β. Regardless of the
dataset, the trend seems to be that smoother/less-smooth models produce better performance in CNNs.

Proposition 5. A necessary condition for disentanglement is to have “near orthogonal” columns,
i.e., 〈[Aω].,i, [Aω].,j〉 ≈ 0,∀i, 6= j,∀ω ∈ Ω.
We provide in Table 1 in Appendix H the value of ‖Qω − I‖2 with Qω ∈ [0, 1]S×S the matrix
of cosine angles between basis vector of Aω for 10,000 regions sampled randomly and where we
report the average over the regions and the maximum. Finally, this process is performed over 8
runs, the mean and standard deviation are reported in the table. We observe that there does not
seem to be a difference in the degree of disentanglement different GAN and VAE; however, the
topology, fully connected vs. convolution, plays an important part, favoring the former. Additionally,
Fig. 5 visualizes one of the basis vectors of four different DGNs trained on the MNIST dataset with
S = 10. Interpretability of the transformation encoded by the dimension of the basis vector can be
done as well as model comparison such as blurriness of VAE samples that is empirically observed
across datasets Zhao et al. (2017); Huang et al. (2018). To visually control the quality of the DGN,
randomly generated digits are given in Fig. 14 in the Appendix; we also provide more background
on disentanglement in Appendix H.
4.3 MANIFOLD SMOOTHING

We conclude this section by demonstrating how to smooth, in a principled way, the generated CPA
manifold from G. Manifold smoothing has great advantages for example for denoising Park et al.
(2004); Yin et al. (2008) and has been extensively study in univariate tasks with smoothing splines
De Boor et al. (1978); Green & Silverman (1993); Wang (2011); Gu (2013) where a (smooth) spline
is fit to (noisy) data while having the norm of its second (or higher order) derivative penalized. Re-
cently, Balestriero & Baraniuk (2018c) demonstrated that one could smooth, in a principled way, the
MASO layers through a probabilistic region assignment of the layer input. For example, a ReLU
max(u, 0) is turned into sigmoid(uβ/(1 − β))u with β ∈ [0, 1] controlling the amount of smooth-
ness. In the limit β = 0 makes the entire DGN a globally affine mapping, while β → 1 brings back
the CPA surface. We propose a simple visualization of the impact of β onto the generated manifold
as well as VAE training experiments in Fig. 6 demonstrating that introducing some smoothness in-
deed provides better manifold fitting performances. While we only highlighted here the ability to
smooth a DGN manifold and highlighted the potential improvement in performances, we believe
that such control in the DGN smoothing opens the door to many avenues such as better denoising,
or simpler optimization in inverse problem settings Wakin et al. (2005).

5 DENSITY ON THE GENERATED MANIFOLD

The study of DGNs would not be complete without considering that the latent space is equipped
with a density distribution pz from which z are sampled in turn leading to sampling of G(z); we
now study this density and its properties.
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Figure 7: Distribution of the per-region log-
determinants (bottom row) for DGN trained on
a bimodal distribution with varying per mode
variance (first row), demonstrating how the data
multimodality and concentration pushes the per-
region determinant of Aω to greatly increase in
turn leading to large amplitude layer weights and
impacting the stability of the DGN learning (also
recall Lemma 1). Additional experiments are
given in Fig. 15 in Appendix D.6.

5.1 ANALYTICAL OUTPUT DENSITY

Given a distribution pz over the latent space, we can explicitly compute the output distribution after
the application ofG, which lead to an intuitive result exploiting the piecewise affine property of the
generator; denote by σi(Aω) the ith singular value ofAω .

Lemma 1. Then, the volume of a region ω ∈ Ω denoted by µ(ω) is related to the volume of G(ω)

by µ(G(ω)) =
√

det(AT
ωAω)µ(ω) =

∏
i:σi(Aω)>0 σi(Aω)µ(ω).

Theorem 3. The generator probability density pG(x) given pz and a injective generator G with

per-region inverseG−1
ω from Thm. 4 is given by pG(x) =

∑
ω∈Ω

pz(G−1
ω (x))√

det(AT
ωAω)

1{x∈G(ω)}.

That is, the distribution obtained in the output space naturally corresponds to a piecewise affine
transformation of the original latent space distribution, weighted by the change in volume of the
per-region mappings. We derive the analytical form for the case of Gaussian and Uniform latent
distribution in Appendix B. From the analytical derivation of the generator density distribution, we
obtain its differential entropy.

Corollary 1. The differential Shannon entropy of the output distribution pG of the DGN is given by
E(pG) = E(pz) +

∑
ω∈Ω P (z ∈ ω) log(

√
det(AT

ωAω)).

As the result, the differential entropy of the output distribution pG corresponds to the differential
entropy of the latent distribution pz plus a convex combination of the per-region volume change.
It is thus possible to optimize the latent distribution pz to better fit the target distribution entropy
as in Ben-Yosef & Weinshall (2018) and whenever the prior distribution is fixed, any gap between
the latent and output distribution entropy imply the need for high change in volumes between ω
and G(ω). The use of the above results to obtain the analytical form of the density covering the
generative manifold in the Gaussian and Uniform prior cases is done in Appendix B, where we
relate DGN to Kernel Density Estimation (KDE) Rosenblatt (1956) and in particular adaptive KDE
Breiman et al. (1977). We also carefully link DGNs and normalizing flows in Appendix C.

5.2 ON THE DIFFICULTY OF GENERATING LOW ENTROPY/MULTIMODAL DISTRIBUTIONS

We conclude this study by hinting at the possible main cause of instabilities encountered when
training DGNs on multimodal densities or other atypical cases.

We demonstrated in Thm. 3 and Cor. 1 that the product of the nonzero singular values of Aω plays
the central role to concentrate or disperse the density onG(ω). Even when considering the a simple
mixture of Gaussians case, it is clear that the standard deviation of the modes and the inter-mode
distances will put constraints on the singular values of the slope matrix Aω , in turn stressing the
parameters W ` as they compose the slope matrix (see Fig. 10 in the Appendix for details on this
relationship). This problem emerges from the continuous property of DGNs which have to somehow
connect in the output space the different modes. We highlight this in Fig. 7, where we trained a GAN
DGN on two Gaussians for different scaling

In conclusion, the continuity property is a source of the training instabilities while playing a key role
into the DGN interpolation and generalization capacity. Understanding the relationships between the
per-layer parameters, standard regularization techniques, such as Tikhonov, and the multimodality of
the target distribution will thus enable practitioners to find the best compromise to stabilize training
of a continuous DGN that provides sufficient data approximation.
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SUPPLEMENTARY MATERIAL

The following appendices support the main paper and are organized as follows: Appendix A pro-
vides additional insights that can be gained in the generated surface G by studying its angularity,
that is, how adjacent affine subspaces are aligned with each other. This brings new ways to cap-
ture and probe the “curvature” of the generated surface. Appendix B provides additional details on
the probability distribution leaving on the generated surface while Appendix C provides a careful
bridge between DGNs and Normalizing Flows leveraging the proposed CPA formulation. Lastly,
Appendices D and E provide additional figures and training details for all the experiments that were
studied in the main text, and Appendix F provides the proofs of all the theoretical results.

A GENERATED MANIFOLD ANGULARITY

We now study the curvature or angularity of the generated mapping. That is, whenever S̃ < D, the
per-region affine subspace of adjacent region are continuous, and joint at the region boundaries with
a certain angle that we now characterize.

Definition 1. Two regions ω, ω′ are adjacent whenever they share part of their boundary as in
ω ∩ ω′ 6= ∅.
The angle between adjacent affine subspace is characterized by means of the greatest principal angle
Afriat (1957); Bjorck & Golub (1973) and denote θ. Denote the per-region projection matrix of the
DGN by P (Aω) = Aω(AT

ωAω)−1AT
ω where AT

ωAω ∈ RS×S and P (Aω) ∈ RD×D. We now
assume that dim(G) = Z ensuring thatAT

ωAω is invertible.1

Theorem 4. The angle between adjacent (recall Def. 1) region mappings θ(G(ω),G(ω′)) is given
by sin

(
θ(G(ω),G(ω′))

)
= ‖P (Aω)− P (Aω′)‖2, ∀ω ∈ Ω, ω′ ∈ adj(ω).

Notice that in the special case of S = 1, the angle is given by the cosine similarity between the
vectors Aω and Aω′ of adjacent regions, and when S = D − 1 the angle is given by the cosine
similarity between the normal vectors of the D − 1 subspace spanned byAω andAω′ respectively.
We illustrate the angles in a simple case D = 2 and Z = 1 in Fig. 3. It can be seen how a DGN
with few parameters produces angles mainly at the points of curvature of the manifold. We also
provide many additional figures with different training settings in Fig. 11 in the Appendix as well as
repetitions of the same experiment with different random seeds.

We can use the above result to study the distribution of angles of different DGNs with random
weights and study the impact of depth, width, as well Z and D, the latent and output dimensions
respectively. Figure 8 summarizes the distribution of angles for several different settings from which
we observe two key trends. First, as codes of adjacent regions q(ω), q(ω′) share a large number of
their values (see Appendix G for details) the affine parameters Aω and Aω′ of adjacent regions
also benefit from this weight sharing constraining the angles between those regions to be much
smaller than if they were random and independent which favors aggressively large angles. Second,
the distribution moments depend on the ratio S/D rather that those values taken independently. In
particular, as this ratio gets smaller, as the angle distribution becomes bi-modal with an emergence
of high angles making the manifold “flatter” overall except in some parts of the space where high
angularity is present.

The above experiment demonstrates the impact of width and latent space dimension into the angu-
larity of the DGN output manifold and how to pick its architecture based on a priori knowledge of
the target manifold. Under the often-made assumptions that the weights of overparametrized DGN
do not move far from their initialization during training Li & Liang (2018), these results also hint at
the distribution of angles after training.

B DISTRIBUTIONS

Gaussian Case. We now demonstrate the use of the above derivation by considering practical
examples for which we are able to gain ingights into the DGN data modeling and generation. First,

1The derivation also applies if dim(G) < Z by replacing Aω with A′ω .
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Figure 8: Histograms of the DGN adjacent region angles for DGNs with
two hidden layers, S = 16 and D = 17, D = 32 respectively and vary-
ing width D` on the y-axis. Three trends to observe: increasing the width
increases the bimodality of the distribution while favoring near 0 angles; in-
creasing the output space dimension increases in the number of angles near
orthogonal; the amount of weight sharing between the parameters Aω and
Aω′ of adjacent regions ω and ω′ makes those distributions much more con-
centrated near 0 than with no weight sharing (depicted in blue), leading to an
overall well behave manifold. Additional figures are available in Fig. 11.

consider that the latent distribution is set as z ∼ N(0, 1) we obtain the following result directly from
Thm. 3.

Corollary 2. The generator density distribution pG(x) given z ∼ N(0, I) is

pG(x) =
∑
ω∈Ω

e−
1
2 (x−bω)T (A+

ω )TA+
ω (x−bω)√

(2π)S det(AT
ωAω)

1{x∈G(ω)}.

Proof. First, by applying the above results on the general density formula and setting pz a standard
Normal distribution we obtain that

pG(x ∈ w) =
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)pz(G−1(x)) det(AT
ωAω)−

1
2 dx

=
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)
1

(2π)S/2
√

det(AT
ωAω)

e−
1
2‖G

−1(x)‖22dx

=
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)
1

(2π)S/2
√

det(AT
ωAω)

e−
1
2 ((A+

ω (x−bω))T ((A+(x−bω))dx

=
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)
1

(2π)S/2
√

det(AT
ωAω)

e−
1
2 (x−bω)T (A+

ω )TA+
ω (x−bω)dx

giving the desired result.

The above formula is reminiscent of Kernel Density Estimation (KDE) Rosenblatt (1956) and in par-
ticular adaptive KDE Breiman et al. (1977), where a partitioning of the data manifold is performed
on each cell (ω in our case) different kernel parameters are used.

Uniform Case. We now turn into the uniform latent distribution case on a bounded domain U in the
DGN input space. By employing the given formula one can directly obtain that the output density is
given by

pG(x) =

∑
ω∈Ω 1x∈ω det(AT

ωAω)−
1
2

V ol(U)
(6)

We can also consider the following question: Suppose we start from a uniform distribution z ∼
U(0, 1) on the hypercube in RS , will the samples be uniformly distributed on the manifold ofG?

Proposition 6. Given a uniform latent distribution v ∼ U(0, 1), the sampling of the manifold
G(supp(pz)) will be uniform iff det(AT

ωAω) = c,∀ω : ω ∩ supp(pz) 6= ∅, c > 0.

C NORMALIZING FLOWS AND DGNS

Note from Thm. 3 that we obtain an explicit density distribution. One possibility for learning thus
corresponds to minimizing the negative log-likelihood (NLL) between the generator output distribu-

tion and the data. Recall from Thm. 3 that
√

det ((A+
ω )TA+

ω ) = (
√

det (AT
ωAω))−1; thus we can

write the log density from over a sample xn as L(xn) = log(pz(G−1(xn)))+log(
√

det(J(xn))),
where J(xn) = JG−1(xn)TJG−1(xn), J the Jacobian operator. Learning the weights of the DGN
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by minimization of the NLL given by −
∑N
n=1 L(xn), corresponds to the normalizing flow model.

The practical difference between this formulation and most NF models comes from having either a
mapping from x 7→ z (NF) or from z 7→ x (DGN case). This change only impacts the speed to
either sample points or to compute the probability of observations. In fact, the forward pass of a
DGN is easily obtained as opposed to its inverse requiring a search over the codes q itself requiring
some optimization. Thus, the DGN formulation will have inefficient training (slow to compute the
likelihood) but fast sampling while NMFs will have efficient training but inefficient sampling.

D EXTRA FIGURES

D.1 DROPOUT AND DGNS

Figure 9: Reprise of Fig. 4

D.2 EXAMPLE OF DETERMINANTS

σ1 = 0, σ2 ∈ {1, 2, 3} σ1 = 1, σ2 ∈ {1, 2, 3} σ1 = 2, σ2 ∈ {1, 2, 3}

Figure 10: Distribution of log(
√

det(AT
ωAω)) for 2000 regions ω with a DGN with L = 3, S = 6, D = 10 and

weights initialized with Xavier; then, half of the weights’ coefficients (picked randomly) are rescaled by σ1 and
the other half by σ2. We observe that greater variance of the weights increase the spread of the log-determinants
and increase the mean of the distribution.
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D.3 ANGLES HISTOGRAM

S=2, D=3

S=8, D=9

S=2, D=4

S=8, D=16

S=2, D=8

S=8, D=32

S=4, D=5

S=16, D=17

S=4, D=8

S=16, D=32

S=4, D=16

S=16, D=64

Figure 11: Reproduction of Fig. 8. Histograms of the largest principal angles for DGNs with one
hidden layer (first two rows) and two hidden layers (last two rows). In each case the latent space
dimension and width of the hidden layers is in the top of the column. The observations reinforce the
claims on the role of width and S versus D dimensions.
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D.4 ANGLES MANIFOLD

Figure 12: The columns represent different widths D` ∈ {6, 8, 16, 32} and the rows correspond to
repetition of the learning for different random initializations of the GDNs for consecutive seeds.
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D.5 MORE ON MNIST DISENTANGLEMENT

Figure 13: Randomly generated digits from the trained GAN (top) and trained VAE(bottom) models
for the experiment from Fig. 5. Each row represents a model that was training on a different random
initialization (8 runs in total) which produced the result in Table 1.
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Figure 14: Randomly generated digits from the trained CONV GAN (top) and trained CONV
VAE(bottom) models for the experiment from Fig. 5. Each row represents a model that was training
on a different random initialization (8 runs in total) which produced the result in Table 1.
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D.6 MORE ON DETERMINANT FIGURES

Figure 15: Reproduction of Fig. 7 for multiple standard deviations and multiple random
seeds. Each column represent a different standard deviation of the two Gaussians σ ∈
{0.002, 0.01, 0.05, 0.1, 0.3, 1, 2} and each row is a run with a different seed. As can be seen in
all cases (except when lack of convergence) the distribution of the determinants support the claim
and relate with the Entropy of the true distribution (blue points).
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E ARCHITECTURE DETAILS

We describe the used models below. The Dense(T) represents a fully connected layer with T units
(activation function not included). The Conv2D(I, J, K) represent I filters of spatial shape (J,K)
and the input dilation and padding follow the standard definition. For the VAE models the encoder
is given below and for the GAN models the discriminator is given below as well. FC GAN model
means that the FC generator is used in conjonction with the discriminator, the CONV GAN means
that the CONV generator is used in conjonction with the discriminator and similarly for the VAE
case.

FC generator CONV generator Encoder Discriminator
Dense(256) Dense(256) Dense(512) Dense(1024)
leaky ReLU leaky ReLU Dropout(0.3) Dropout(0.3)
Dense(512) Dense(8 * 6 * 6) leaky ReLU leaky ReLU
leaky ReLU leaky ReLU Dense(256) Dense(512)
Dense(1024) Reshape(8, 6, 6) leaky ReLU Dropout(0.3)
leaky ReLU Conv2D(8, 3, 3, inputdilation=2, pad=same) Dense(2*S) leaky ReLU
Dense(28*28) leaky ReLU Dense(256)

Conv2D(8, 4, 4, inputdilation=3, pad=valid) Dropout(0.3)
Reshape(28*28) leaky ReLU

Dense(2)

all the training procedures employ the Adam optimizer with a learning of 0.0001 which stays con-
stant until training completion. In all cases trainig is done on 300 epochs, an epoch consisting of
viewing the entire image training set once.

F PROOFS

F.1 PROOF OF THM 1
Proof. The result is a direct application of Corollary 3 in Balestriero et al. (2019) adapted to GDNs
(and not classification based DNs). The input regions are proven to be convex polytopes. Then by
linearity of the per region mapping, conexity is preserved and with form given by (5).

F.2 PROOF OF PROPOSITION 1
Proof. First recall the standard result that

rank(AB) ≤ min(rank(A), rank(B)),

for any matrix A ∈ RN×K and B ∈ RK×D (see for example Banerjee & Roy (2014) chapter
5). Now, noticing that min(min(a, b),min(c, d)) = min(a, b, c, d) leads to the desired result by
unrolling the product of matrices that make up theAω matrix to obtain the desired result.

F.3 PROOF OF PROPOSITION 2
Proof. The first bound is obtained by taking the realization of the noise where r = 0, in that case
the input space partition is the entire space as any input is mapped to the same VQ code. As such,
the mapping associated to this trivial partition has 0 slope (matrix filled with zeros) and a possibly
nonzeros bias; as such the mapping is zero-dimensional (any points is mapped to the same point).
This gives the lower bound stating that in the mixture of GDNs, one will have dimension 0. For the
other case, simply take the trivial case of r = 1 which gives the result.

F.4 PROOF OF PROPOSITION 3
Proof. First notice that there can only be two major cases. First for the dimension of the affinely
mapped region G(ω) to be S or to be smaller than S. Let first consider the bijective case. For the
GDN to be bijective on the region we need a one-to-one mapping from ω toG(ω). If the dimension
of the subsapce G(ω) is S, then it means that the matrix Aω is full-rank, with rank S. In turn, this
means that the columns of the matrix are linearly independent. This implies bijectivity on the region
as each point in ω is mapped to an unique point in G(ω) and vice-versa. The surjectivity is direct
as if the dimension is smaller than S, then the matrix Aω is not full-rank and all the points in the
region ω that leave in the kernel of the matrix (lifted with the bias bω) will be mapped to the same
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output points. This means that there exists different points in ω s.t. they are mapped to the same
point inG(ω) which gives surjectivity.

For global bijectivity, we need an additional condition. In fact, to ensure that the entire GDN pre-
serves a one-to-one mapping, we need per region bijectivity coupled with the fact that the mapping
for different region do not intersect. In fact, we know look at bijectivity between supp(pz) and
G(supp(pz)). Thus if the regions do not intersection after affine projections then there does not
exist different latent vectors z and z′ that would be mapped to the same output point. Yet because
we have bijectivity on between ω and G(ω),∀ω it means that each point in supp(pz) is mapped to
an unique point inG(supp(pz)) which gives global bijectivity.

F.5 PROOF OF LEMMA 4
Proof. First, as we impose injectivity, we can not have multiple regions of the input space, say ω
and ω′ such thatG(ω)∩G(ω′) 6= ∅. Second, a region of the input space is mapped to another region
in the output space by means of the affine transformation, thus even though the ambiant space D
might be of greater dimension that dim(G), the injectivity implies that points in ω are mapped to at
most one point in G(ω). They are affinely mapped meaning that the inverse is given by removing
the bias and inverting the linear mapping which is given by the pseudo inverse. Recalling the above
result on surjectivity, we see that for the GDN to be injective the per region dimension msut be S
showing existence of the pseudo inverse.

F.6 PROOF OF PROPOSITION 5
Proof. The proof is straightforward from the used definition of disentenglement. In fact, recall that
we aim to have 〈G(z)−G(z + εδd),G(z)−G(z + εδd′)〉 ≈ 0. In our case, consider only small
transformation such that z + εδd and z + εδd′ remain the in the same region ω in which was z.
Then it is clear that for any positive constant ε fulfilling this condition, the above disentangelement
definition translates into

〈G(z)−G(z + εδd),G(z)−G(z + εδd′)〉 ≈ 0 ⇐⇒ 〈[Aω].,d, [Aω].,d′〉 ≈ 0,

This gives a necessary condition which is not sufficient as this alone does not guarantee that each
dimension of the latent space only impacts a single transformation of the output. But a disentangled
representation must have near orthogonal columns for the slope matricesAω .

F.7 PROOF OF THEOREM 4
Proof. First, notice that P (Aω) = Aω(AT

ωAω)−1AT
ω defines a projection matrix. In fact, we have

that

P (Aω)2 = Aω(AT
ωAω)−1AT

ωAω(AT
ωAω)−1AT

ω

= Aω(AT
ωAω)−1AT

ω

= P (Aω)

and we have that (AT
ωAω)−1 is well defined as we assume injectivity (rank(Aω) = S) making the

S × S matrix AT
ωAω full rank. Now it is clear that this projection matrix maps an arbitrary point

x ∈ RD to the affine subspace G(ω) up to the bias shift. As we are interested in the angle between
two adjacent subspaces G(ω) and G(ω′) it is also clear that the biases (which do not change the
angle) can be omited. Hence the task simplifies to finding the angle between P (Aω) and P (Aω′).
This can be done by means of the greatest principal angle (proof can be found in Stewart (1973))
with the result being sin

(
θ(G(ω),G(ω′))

)
= ‖P (Aω)− P (Aω′)‖2 as desired.

F.8 PROOF OF LEMMA 1
Proof. In the special case of an affine transform of the coordinate given by the matrix A ∈ RD×D
the well known result from demonstrates that the change of volume is given by |det(A)| (see The-
orem 7.26 in Rudin (2006)). However in our case the mapping is a rectangular matrix as we span
an affine subspace in the ambiant space RD making |det(A)| not defined. However by applying
Sard’s theorem Spivak (2018) we obtain that the change of volume from the region ω to the affine
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subspace G(ω) is given by
√

det(ATA) which can also be written as follows with USV T the
svd-decomposition of the matrix A:√

det(ATA) =
√

det((USV T )T (USV T )) =
√

det((V STUT )(USV T ))

=
√

det(V STSV T )

=
√

det(STS)

=
∏
i:σi 6=0

σi(A)

F.9 PROOF OF THEOREM 3
Proof. We will be doing the change of variables z = (AT

ωAω)−1AT
ω (x − bω) = A+

ω (x − bω),
also notice that JG−1(x) = A+. First, we know that PG(z)(x ∈ w) = Pz(z ∈ G−1(w)) =∫
G−1(w)

pz(z)dz which is well defined based on our full rank assumptions. We then proceed by

PG(x ∈ w) =
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))
√

det(JG−1(x)TJG−1(x))dx

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))

√
det((A+

ω )TA+
ω )dx

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))(
∏

i:σi(A
+
ω )>0

σi(A
+
ω ))dx

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))(
∏

i:σi(Aω)>0

σi(Aω))−1dx Etape 1

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))
1√

det(AT
ωAω)

dx

Let now prove the Etape 1 step by proving that σi(A+) = (σi(A))−1 where we lighten notations as
A := Aω and USV T is the svd-decomposition of A:

A+ = (ATA)−1AT =((USV T )T (USV T ))−1(USV T )T

=(V STUTUSV T )−1(USV T )T

=(V STSV T )−1V STUT

=V (STS)−1STUT

=⇒ σi(A
+) = (σi(A))−1

with the above it is direct to see that
√

det((A+
ω )TA+

ω ) = 1√
det(AT

ωAω)
as follows√

det((A+
ω )TA+

ω ) =
∏
i:σi 6=0

σi(A
+
ω ) =

∏
i:σi 6=0

σi(Aω)−1

=

 ∏
i:σi 6=0

σi(Aω)

−1

=
1√

det(AT
ωAω)

which gives the desired result.
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F.10 PROOF OF COR. 1
Proof. The derivation of the Entropy will consist in rewritting the Entropy w.r.t the distribution in
the output space of the GDN and performing the change of coordinates leveragign the abvoe result
to finally obtain the desired result as follows:

E(pG) =−
∑
ω∈Ω

∫
G(ω)

pG(x) log(pG(x))dx

=−
∑
ω∈Ω

∫
G(ω)

pz(G−1(x)) det(AT
ωAω)−

1
2 log

(
pz(G−1(x)) det(AT

ωAω)−
1
2

)
=−

∑
ω∈Ω

∫
G(ω)

pz(G−1(x)) det(AT
ωAω)−

1
2

(
log
(
pz(G−1(x))

)
+ log

(
det(AT

ωAω)−
1
2

))
=−

∑
ω∈Ω

∫
G(ω)

det(AT
ωAω)−

1
2 pz(G−1(x)) log

(
pz(G−1(x))

)
−
∑
ω∈Ω

∫
G(ω)

det(AT
ωAω)−

1
2 pz(G−1(x)) log

(
det(AT

ωAω)−
1
2

)
=E(pz) (apply the change of coordinate z = G(x))

−
∑
ω∈Ω

∫
G(ω)

pz(G−1(x)) det(AT
ωAω)−

1
2 log

(
det(AT

ωAω)−
1
2

)
=E(pz) +

1

2

∑
ω∈Ω

P (z ∈ ω) log
(
det(AT

ωAω)
)

(apply the change of coordinate z = G(x))

which gives the desired result. For a complete review of integrals on manifold please see Cover &
Thomas (2012).

F.11 PROOF OF THEOREM 2
Proof. Suppose the target manifold is of intrinsic dimension S∗. Samples from it are obtain by
random sampling (it does not need to be uniform however the support of the distribution need to
cover the entire manifold which simply means that each part of the target manifold must have a
nonzero probability to produce a sample). We have:

1. A DGN with intrinsic dimension S̃ < S∗ can only perfectly approximate S̃+ 1 samples on
each region of its piecewise affine generated manifold: almost surely no more than S̃ + 1
target manifold samples lie on the same affine subspace of dimension S̃.

2. Each region has a unique set of affine parameters: almost surely, one can not group N
target manifold random samples into groups of S̃ + 1 samples such that affine subpsace
span by each group of samples has same parameters than any other group.

Combining 1. and 2. it is clear that one can directly obtain a tight bound on the number of regionsR∗
in the approximant partition needed to fit the samples. Given N samples from the target manifold,
any continuous piecewise affine approximant of intrinsic dimension S̃ must have at least N

S̃+1
pieces

(and thus regions) to perfectly fit the target manifold.

Small dataset size case. Now given a DGN it is clear that if the number of samples lead to N
S̃+1

being smaller than the number of regions in the DGN, the approximation error E∗N will be 0 and this
with N increasing from 1 to the bound limit. This proves that E∗N = 0 for N ≤ R(S̃ + 1) with R
the number of regions of the considered CPA approximant.

Increasing dataset size case. When N further increases it implies that more than S̃ + 1 will be
approximated by the same local affine subspace of the approximant. Let first assume that we do
not enforce continuity and that we simply add a single point of the given dataset. That is, only
the piecewise affine approximation of one region (which is now with an additional point) needs to
be adapted. From OLS (which is now done on this region specifically) we see that adding a new
sample will strictly increase the training set approximation error (the marginal increase decays as
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Table 1: Depiction of the cosine similarity summed over pairwise different columns of Aω (0 means orthog-
onal basis vectors, improving disentanglement from Prop. 5)), the maximum (first row) and average (second
column) are presented, computed over 10000 sampled regions ω. We see that training increases disentangle-
ment, and fully connected models offer increased disentanglement as compared to convolutional models.

FC GAN CONV GAN FC VAE CONV VAE

in
it. 8.84 ± 0.07 3.2 ± 0.33 5.23 ± 0.29 3.5 ± 0.27

4.41 ± 0.26 1.84 ± 0.08 2.25 ± 0.08 1.74 ± 0.06

le
ar

n 1.36 ± .08 1.72 ± 0.07 1.32 ± 0.07 1.77 ± 0.11
0.9 ± 0.03 1.12 ± 0.03 0.89 ± 0.03 1.15 ± 0.03

the number of samples already present in a region grows, in the limit going to 0). Now if continuity
is enforced, it only implies that the increase in the training error will further increase as (i) the
region OLS is now constrained by the continuity constraints and (ii) the adjacent regions must also
move from their previous optimum to fulfill that constraint with the adapted region; so not only the
considered region error will further increase than in the discontinuous but also the adjacent regions
approximation will increase. This proves that E∗N2

> E∗N1
for any N2 > N1 as long as N1 > N ′

with N ′ given by N
S̃+1

.

G CODES OF NEIGHBOUR REGIONS

Each code is equivalent to a system of inequalities that define the regions. In fact, a code depends
on the signs of the feature map pre activation. This defines a polytope in the input space and also in
the output space. Now, when traveling from a point z to another point z′ of a neighbouring region
(recall Def. 1), we ask the question on how many indices of the code will change. That is, what is the
Hamming distance between q(z) and q(z′). As a neighbouring region is defined as a region which
shares some of its boundary with another (their interior is disjoint) we can see that the degree of
the face that is shared between the two regions define the amount of changes in their corresponding
codes. If two regions share a S − 1 dimensional face, then only 1 value of the code changes. If they
share in general a S − r dimensional face, then the code will change by r values. As most adjacent
regions will share a high dimensional face, we see that r tends to be small and thus codes are similar.
For details and analytical study of the above please see Lautensack & Zuyev (2008).

H MORE ON DISENTANGLED LATENT REPRESENTATIONS

It has been coined that providing interpretable and practical generators lies in the ability to learn
a disentangled representation of an input x = G(z) Schmidhuber (1992); Bengio et al. (2013).
The code z should contain all the information present in x in a compact and interpretable struc-
ture where distinct, informative factors of variations are encoded by different dimensions. Such
motivations orginitated from the (non-)linear independent component analysis focusing on recover-
ing independent factors from observed data Comon (1994); Hyvarinen & Morioka (2016). In fact,
even in recent GAN/VAE based models, disentengled representations are associated to independent
transformations of the input such as pose, hair color, eye color and so on which should behave in-
dependently form each other Yim et al. (2015); Tran et al. (2017). For a more in-depth review of
learning disentangled representation, see Locatello et al. (2018).

I DETAILS ON TRAINING PROCEDURE

The experiment aims at depicting the training error being E∗ on the training set for varying latent
dimensions S in the simple case of a linear true data manifold approximation. In order to prevent
any optimization unlucky degeneracy we repeat the training procedure 30 times and compute for
each poch the error E∗ and report the minimum over the 30 trials and training epochs. We also set
a very large number of epochs: 2000. Due to the large number of trials and epochs the reported
results are not due to some random initialization settings and convey the point of the result which is
that even for such a simple data model (linear manifold) if S < S∗ then the training error E∗ will
increase with N . Finally, the minimization over z is replacer by an autoencoder with a very wide
encoder s.t. it has the capacity for each training point to memorize the optimum z that minimizes E.
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That is, when minimizing

min
Θ

min
Θ′
‖GΘ(EΘ′(x))− x‖ ≈ min

Θ
min
z
‖GΘ(z)− x‖,

got a large enough encoder network E. In our case given that we used S∗ = 6 we used an encoder
with D` = 256 units and L = 3.

J MORE ON EFFECT OF DROPOUT/DROPCONNECT

Thus, the noisy generator actually combines all the above mappings for each noise realization via
G̃(supp(pz)) =

⋃
ε∈supp(pε)

G(supp(pz)|ε). Denote by G̃ the generatorG equipped with dropout/-

dropconnect and by G̃(z|ε) the case where the noise realization is given a priori. For dropout and
by leveraging Eq. 1 we have

G(z|ε) =

(
1∏

`=L

diag(q`(ω)� ε`)W`

)
z +

L∑
`=1

(
`+1∏
`′=L

diag(q`′(ω)� ε`′)W`′

)
b`, (7)

where � is the Hadamard product and z ∈ ω. As opposed to the Dropout case which applies the
binary noise ont the feature maps v`, Dropconnect Wan et al. (2013) applies this binary noise onto
the slope matricesW` making the mapping noise become

G(z) =

(
1∏

`=L

diag(q`)(W` �R`)

)
z +

L∑
`=1

(
`+1∏
`′=L

diag(q`′)(W`′ �R`′)

)
b`,

where the binary noise matrices are denoted by R`. Despite this change of nosei application, the
exact same result applies and Prop. 2 also holds. That is the dropconnect equipped GDN becomes
a mixture of GDNs with varying dimensions and parameters. Notice however that dropconnect will
be less likely to reduce the ablated generator dimension as opposed to dropout due to its application
on each entry of the weight matrix as opposed to an entire row at a time as depicted in Fig. 2. You
may include other additional sections here.
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