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ABSTRACT

Understanding objects in videos in terms of fine-grained localization masks and
detailed semantic properties is a fundamental task in video understanding. In this
paper, we propose VoCap, a flexible video model that consumes a video and a
prompt of various modalities (text, box or mask), and produces a spatio-temporal
masklet with a corresponding object-centric caption. As such our model addresses
simultaneously the tasks of promptable video object segmentation, referring ex-
pression segmentation, and object captioning. Since obtaining data for this task is
tedious and expensive, we propose to annotate an existing large-scale segmentation
dataset (SAV) with pseudo object captions. We do so by preprocessing videos with
their ground-truth masks to highlight the object of interest and feed this to a large
Vision Language Model (VLM). For an unbiased evaluation, we collect manual
annotations on the validation set. We call the resulting dataset SAV-Caption. We
train our VoCap model at scale on a SAV-Caption together with a mix of other
image and video datasets. Our model establishes a benchmark for video object
captioning and yields state-of-the-art results on referring expression video object
segmentation. Our dataset will be made available.

1 INTRODUCTION

Understanding objects in videos, including both their fine-grained locations (represented as segmenta-
tion masks) as well as their detailed semantic properties, is a fundamental task in video understanding.
It serves as a basic block for various applications, including video generation and editing (Chai et al.,
2023; Hu et al., 2024; Wang et al., 2024b), wildlife conservation (Beery et al., 2020; Sun et al.,
2024), and self-driving cars (Caesar et al., 2020; Sun et al., 2020). While it is trivial for a human to
point to an object in a video and describe it in detail, there is yet no existing computer vision system
that is capable of both spatio-temporal localization via segmentation masks, as well as a semantic
understanding of objects via natural language.

In this paper, we propose a model and data for fine-grained video object understanding with flexible
inputs and outputs modalities. Our model consumes a video and an input prompt, where the prompt
can be a mask and box, but also natural language (i.e. referring expression). Our model then produces
both a spatio-temporal mask (i.e., a ‘masklet’) and a free-form natural language caption describing
the object. Because the output caption is a free-form sentence, it can describe the attributes of the
object as well as how they change over time. Our model can be used for a variety of tasks bridging
localization and language, for example referring object segmentation (Yu et al., 2016; Seo et al.,
2020) or location-conditioned captioning (Krishna et al., 2017b), which we extend to video.

Several previous works attempt to bridge this gap between visual localization and language under-
standing: in segmentation via free-form referring expressions (Cuttano et al., 2025; Khoreva et al.,
2018; Seo et al., 2020; Wu et al., 2022) the goal is to produce a segmentation mask for an object
given a short description which refers to a single object. The task of dense video object captioning
(DenseVOC) (Zhou et al., 2023) aims to produce bounding boxes and captions for all classes within
a certain vocabulary in a video. While localization with referring expressions (Cuttano et al., 2025;
Khoreva et al., 2018; Seo et al., 2020; Wu et al., 2022) typically only takes in a minimal-required
text to identify an object in the input, our model can also produce detailed captions given a location
prompt. Unlike DenseVOC (Zhou et al., 2023) – which is non-promptable, is trained on a fixed set of
objects, and which is limited to producing boxes only – our model works with flexible input prompts
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Figure 1: Overview of our VoCap architecture. Our model processes videos frame-by-frame, with access to
an updating memory for each object. Each frame goes through the image encoder, cross attends to the memory.
The memory-aggregated image features and the object-specific prompt embeddings are fed into the mask decoder
to obtain the mask predictions. The memory module is updated with the per-frame mask predictions and image
features. In addition, our model also takes text prompts, and we use a novel text feature extractor and text
decoder to produce captions for the object. The text encoder and text decoder share the architecture and weights.

and produces dense masklets as output in addition to captions. Our model is inspired by both existing
captioning Vision-language models (VLMs) such as BLIP2 (Li et al., 2023), PaliGemma2 Steiner
et al. (2024), and Qwen-VL Bai et al. (2023), as well as promptable segmentation models such
as SAM2 (Ravi et al., 2024), and brings a number of related video segmentation and captioning
tasks together while enabling cross-task synergies. Specifically, we augment the general SAM2
design (Ravi et al., 2024) by adding caption tokens, a text feature extractor and a text decoder to
enable captioning in the spirit of QFormer (Li et al., 2023), and by adding a text encoder to the input
prompt. Our design enables sharing weights between the text encoder and decoder to unlock synergies
between referring expression inputs and captioning output. This results in a unified promptable
model for Video Object Captioning and Segmentation from Any Prompt (VoCap) that takes as input
a prompt (text, mask, or box) and outputs segmentation masks and a caption jointly (See Fig. 1).

Obtaining data to train our VoCap model is a significant challenge – annotating video with segmen-
tation masklets and captions is tedious and expensive, and not easily scalable to large volumes of
data. Hence we propose a pseudo-labeling pipeline starting with the SAV Manual dataset (Ravi et al.,
2024), which contains accurate segmentation masks. We then automatically generate object-centric
captions using a large-scale VLM (Gemini 1.5 Pro Vision (Gemini Team, 2024)). By pre-processing
the videos to highlight each object mask and blur the background, we steer the VLM to describe
each object and what happens to it with satisfying accuracy and details. This enables us to generate a
large-scale training set with masks and object-centric captions without additional human labor. We
then combine this dataset with existing datasets (Krishna et al., 2017b; Seo et al., 2020; Yu et al.,
2016; Chen et al., 2022) to co-train our model. We note that each of these datasets cover only a subset
of our input and output modalities.

For evaluation, we ran a human annotation campaign on the SAV-val dataset (Ravi et al., 2024) where
each object is captioned by three different annotators. Furthermore, we evaluate our model on existing
referring expression video object segmentation datasets and image captioning. To summarize, we
make the following contributions:

• We present VoCap, a unified promptable model that can produce both spatio-temporal
masklets and captions for objects in video. Our model is flexible in both the input and the
output, taking as input a prompt (text, mask, or box) and outputting masklets and captions.
Our model is the first to support all these input and output modalities. We demonstrate
synergies between the modalities; e.g. training the model for captioning (language at output)
improves its referring expression comprehension (language at input).

• We collect manually annotated object captions on SAV-val and create pseudo-captions by
leveraging existing mask annotations on SAV-train using Gemini Pro 1.5. We will make
both the manual and pseudo-annotations publicly available By showing good performance
on the manually annotated object captions, we demonstrate that these pseudo-labels are
effective for training our captioning model.

• We establish a benchmark for video object captioning and set a new state-of-the art for
Referring Expression Video Object Segmentation.
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2 RELATED WORK

Segmentation and Captioning Models. A variety of models are dedicated to video segmentation
and expect an initial input mask (Yang et al., 2021; 2024; Yang & Yang, 2022; Cheng & Schwing,
2022; Cheng et al., 2024; Guo et al., 2024; Deng et al., 2024; Ravi et al., 2024; Yang et al., 2023c),
a referring expression (Seo et al., 2020; Lan et al., 2023; Wu et al., 2022), or both (Cheng et al.,
2023b; Cuttano et al., 2025; Wu et al., 2023). CLIPSeg (Lüddecke & Ecker, 2022) can also consume
a query image. SAM2 (Ravi et al., 2024) can do segmentation without any inputs as is done in
DEVA (Cheng et al., 2023b) by starting from the original SAM (Kirillov et al., 2023) with a point
grid prompts. However, none of these models can generate descriptions. In captioning, there are
works on global video captioning which describe the whole video (Kanani et al., 2021; Iashin &
Rahtu, 2020; Yang et al., 2023a; Yao et al., 2015; Wang et al., 2021a), or on dense image captioning
which provide object-centric captions and their locations in images (Johnson et al., 2016; Li et al.,
2019; Shao et al., 2022; Zhang et al., 2023; Yuan et al., 2024; Peng et al., 2023; Xu et al., 2024).
Only few works do dense video captioning (Choudhuri et al., 2024; Zhou et al., 2023) for objects.
DenseVOC Zhou et al. (2023) predicts bounding boxes with captions but does not predict masks and
only detects a predefined set of object classes. The OW-VISCapTor model (Choudhuri et al., 2024)
predicts segments with captions, but cannot handle textual or mask input prompts. Furthermore,
OW-VISCapTor is based on an image-first tracking-by-detection paradigm that can be suboptimal
in long videos with occlusions, while we build on top of strong memory-based trackers (Ravi et al.,
2024; Cheng & Schwing, 2022) and can handle long and challenging videos (Ding et al., 2023b).

Datasets. While numerous datasets exist for video object segmentation and captioning separately, very
few combine both on the same set. Video segmentation datasets include various input forms, including
a mask given on the first frame (semi-supervised video object segmentation, or SS-VOS) (Perazzi
et al., 2016; Caelles et al., 2019; Ding et al., 2023b; Qi et al., 2022; Wang et al., 2021b), a target object
class (semantic object segmentation) (Kim et al., 2020; Real et al., 2017; Russakovsky et al., 2015) or
a referring expression (Ding et al., 2023a; Khoreva et al., 2018; Seo et al., 2020; Wu et al., 2022)
(Referring Video Object Segmentation, or RefVOS). While referring expression datasets have masks
and referring text, this text tends to be mainly focused on identifying the object in the video, not
describing it. To link captions better to the visual domain, several datasets focus on having grounded
captions in both the image domain (Krishna et al., 2017b; Lin et al., 2024; Plummer et al., 2015;
Peng et al., 2023; Pont-Tuset et al., 2020; Wang et al., 2023b; 2024a; Xue et al., 2024) and video
domain (Voigtlaender et al., 2023; Zhang et al., 2020; Zhou et al., 2018a; 2019). In particular, in
the video domain, bounding box annotations are added in (Zhou et al., 2018a) to YouCook2 (Zhou
et al., 2018b), and in (Zhou et al., 2019) to ActivityNet (Krishna et al., 2017a). In (Zhang et al., 2020)
the relations of VidOR (Shang et al., 2019) are converted into captions while grounding is provided
by the existing bounding boxes. BenSMOT (Li et al., 2024) provides a human-focused dataset with
boxes, their object-centric captions, and interactions. Video Localized Narratives (Voigtlaender et al.,
2023) introduced an object-centric protocol in which captions are grounded by a mouse trace. In
contrast, in this paper we provide a stronger form of grounding by linking captions to segmentation
masks. Our pseudo-labeled dataset is also an order of magnitude larger than these datasets (Tab 1).

Pseudo labels. With increasing model capabilities and increasing data requirements for training
large models, it is increasingly common to use automatically generated labels in the pre-training
stage. SAM2 (Ravi et al., 2024) provides automatically generated masks on their SAV dataset,
enabling distillation. BLIP3 (Xue et al., 2024), OWLv2 (Minderer et al., 2023), and Kosmos-2 (Peng
et al., 2023) go beyond distillation for bounding box generation by exploiting existing captions:
they extract noun phrases from the captions, feed them to an open-world detector, and only keep
high-scored boxes. MVDP (Lin et al., 2024) draws existing object classes and location annotations
in an image using set-of-masks (Yang et al., 2023b) and feeds this to GPT-4V (OpenAI, 2023,) to
generate object-centric captions, relationships, and Q&A pairs. In this paper, we augment videos
with ground-truth segmentation masks and prompt vision-language models to create high-quality
pseudo captions.

3 THE SAV-CAPTION DATASET

We want to have a large-scale training set with spatio-temporal segmentation masks and their
captions. Therefore we start from SAV (Ravi et al., 2024), the largest and most diverse video dataset
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Table 1: Video datasets with masks and captions. Our SAV-Caption is an order of magnitude larger.

dataset # videos # objects captioned # words per caption

RefVOS-DAVIS (Khoreva et al., 2018) 150 436 6.4
MeVIS (Ding et al., 2023a) 2.0k 8.1k 7.3
RefVOS-YTVOS (Seo et al., 2020) 4.0k 7.5k 9.7

SAV-Caption val (manual) 155 290 13.5
SAV-Caption train (automatic) 50k 170k 11.8

with segmentation masks. We use the ‘Manual’ part which was annotated by combining SAM2
predictions (Ravi et al., 2024) with human annotator corrections to ensure high-quality masklets. Next
we detail how we add captions to the existing SAV segmentation dataset using automatic annotations
and human annotations. In both cases we want to have captions with the object class, its visual
properties (which aligns the captions with visual referring expressions), and what it does (which
captures the temporal semantics). Such captions are aligned with previous dense video captioning
datasets (e.g. Voigtlaender et al. (2023); Zhang et al. (2020)).

Automatically Annotated Training Data We use Gemini 1.5 Pro Vision (Gemini Team, 2024) to
automatically generate captions on this dataset. This model is a long-context vision language model
and is therefore suited to consume relatively large video clips (≈ 1000 frames). To create accurate
captions, we draw inspiration from works which augment images with visual prompts to focus the
attention of the visual models to what matters, thereby simplifying the task (Nasiriany et al., 2024;
Yang et al., 2023b; Zheng et al., 2024; Wu et al., 2024c; Shtedritski et al., 2023). In particular, we
adopt two visual prompting techniques: 1) We highlight the target segment by drawing a clear red
contour around it (Contour); 2) upon finding that Gemini would still sometimes focus on objects in
the background, we blurred the background using a Gaussian filter (Blur). Both modifications are
explicitly mentioned in the textual prompt. An example of the video frame we fed to Gemini can be
seen in the Appendix in Fig. 3.

For the textual part of the prompt, we carefully iterated to increase the quality of the generated
caption. In this process, we found it helpful to structure the prompt: we ask to describe first the
object, then its visual properties, and then what it does, and finally we ask it to give the caption while
keeping earlier mentioned elements consistent. Statistics of SAV-Caption train are given in Tab. 1,
and example captions are shown in Fig. 4 of the Appendix. A quantitative analysis of the quality of
the generated captions together with the exact prompt used is given in Appendix A.

Human Annotated Validation Data Our evaluation should be free of any potential biases of any
Visual Language Model. Therefore we collect our evaluation set fully manually with three captions
per object. In particular, we start from SAV-val and instruct the raters to provide a single free-form
caption of the object highlighted in the video. Like in Sec. 3 we highlight the object with a red border
but we do not blur the background. We have explicit instructions for the annotators to include in
their caption the object class, its visual properties, and what it does. We also ask them to not mention
irrelevant objects in the background. The statistics of SAV-Caption val are given in Tab. 1. The
annotation instructions and the UI can be found as a separate file in the supplementary material.

Comparison with Other Datasets There only exist few video datasets where objects are annotated
with both spatio-temporal masklets and captions (Ding et al., 2023a; Khoreva et al., 2018; Seo
et al., 2020). These existing datasets were all made for referring expression segmentation but can be
repurposed for the captioning task. However, referring expressions were made with the intention for
objects to be uniquely identifiable, not for semantic understanding. Furthermore, our training set is at
least one order of magnitude bigger.

4 VOCAP MODEL

Given an image or video V ∈ RT×H×W×3 (for images, T = 1) and a prompt, where the prompt can
be a bounding box or a mask in the first frame, or a textual description, our VoCap model produces a
binary masklet M ∈ RT×H×W and a caption string s for the corresponding object.
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4.1 MODEL ARCHITECTURE

As illustrated in Fig. 1, our model is composed of segmentation modules inspired by (Ravi et al.,
2024), including an image encoder, a memory encoder, a memory attention module, a location prompt
encoder, and a mask decoder. We add new language modules: a text encoder, a text feature extractor,
and a text decoder. As a result, our model can take both texts or masks as inputs or as outputs.

The image encoder takes a single frame Vt as input and produces down-sampled image features
ft ∈ RH′×W ′×d. This can be any visual backbone, and we use EVA02-L Fang et al. (2023) given
its dedicated pretraining for both language (Radford et al., 2021) and localization tasks (He et al.,
2022). Following ViTDet (Li et al., 2022), we use simple convolutional upsampling layers (Ron-
neberger et al., 2015; Zheng et al., 2021) to produce multi-scale features as additional inputs for the
mask decoder (Ravi et al., 2024). Note that each frame is processed separately without temporal
communication.

The memory encoder and memory attention together augment the per-frame image feature ft
with temporal information. Specifically, at each timestamp, the memory encoder fuses the input
image and output mask into a memory feature, which is stored in a memory bank that keeps a
history of d′-dimensional spatio-temporal appearance features (memory dimension d′ can be different
from feature dimension d). Following SAM2 (Ravi et al., 2024) we use a fixed-sized memory
bank with a first-in-first-out memory queue. There are several cross attention layers between the
current image feature and the memory bank which makes the output image features f̄t ∈ RH′×W ′×d

temporally-aware.

The location prompt encoder projects location inputs to embeddings. Specifically, box prompts are
encoded as sparse embeddings p ∈ Rn×d, where n is the number of points (n = 2 for 2 box-corners)
and d is the feature dimension. Mask prompts are encoded as dense embeddings m ∈ RH′×W ′×d

with the same shape as the image feature.

The text encoder takes text strings as inputs and projects them to embeddings. It can be any language
model (Devlin et al., 2019; Team et al., 2024a;b; Raffel et al., 2020; Touvron et al., 2023) that encodes
the integer vocabulary indexes to embeddings. Specifically, we feed text prompts as the text prefix to
the language model with full attention, and extract the features before the vocabulary classification
layer. We use an additional dimension-matching layer to project from the language model embedding
space to the prompt embedding space. We reuse our sparse embedding notation p ∈ Rn×d for text
prompts. Here n is the number of tokenized words in the text query. Because the text prompt provides
conditioning for the entire video and because the target object does not always appear in the early
frames of the video, we feed the text prompt embedding to all frames of the video.

The mask decoder takes the temporal-aware image feature f̄t and the prompt features p or m as
inputs, and outputs the mask at the current frame Mt ∈ RH×W . In SAM, the mask decoder uses
cross attention to communicate the image and prompt features:

f̃t, [p̃, õ] = CAseg(f̄t +m, [p,o]) (1)

mt = D(f̃t, õ) (2)

where o ∈ R1×d is a learned mask token and is concatenated with the sparse prompt p, and CA is the
cross-attention operation. D is a mask decoding function with upsampling convolutions and a final
dot-product (Cheng et al., 2021). The output of the cross-attention, õ ∈ RH×W , can be considered
as the object feature conditioned on the prompt. Besides the mask, the mask decoder also predicts
for each frame a binary object appearance indicator at ∈ {0, 1} to handle occlusion or out-of-view
movement, and an IoU prediction iout which estimates the quality of the mask.

Text feature extractor. Similar to how the object features are extracted in the mask decoder in Eq. 1,
we use learned caption tokens c ∈ Rl×d and cross attention to extract caption features for each object:

f̂ , [p̂, ĉ] = CAcap(f̄t +m, [p, c]) (3)

where we only use output ĉ and discard f̂ and p̂. This formulation is analogous to popular vision-
feature extractors in vision-language models (Jaegle et al., 2021; Alayrac et al., 2022; Ryoo et al.,
2021; Li et al., 2023), while we additionally condition on the prompt embeddings m or p. Following
BLIP2 (Li et al., 2023), we use l = 32 tokens for the caption tokens.
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Text decoder. Following popular vision-language model design (Li et al., 2023; Wang et al., 2022;
Liu et al., 2023) we feed the object-aware caption feature ĉ as prefix to an auto-regressive language
model L to produce object caption s:

si = L(ĉ, s1:i−1) (4)

Again, the text decoder can be any language model (Devlin et al., 2019; Team et al., 2024a;b; Raffel
et al., 2020; Touvron et al., 2023) with a causal attention mask. We note that both the architecture
and the weights of the text encoder and text decoder can be shared even though the text decoder uses
causal attention, and the text encoder uses bidirectional attention. Therefore, during training, the
language model is updated for both text encoding and decoding regardless of whether we use text as
an input prompt or as a target output caption. We follow the standard transformer decoder (Vaswani
et al., 2017) as it is simple and effective (Wang et al., 2022; Wu et al., 2024a; Zhou et al., 2023).

For some more implementation details we refer the reader to Appendix B.

4.2 TRAINING

Given our flexibility on inputs and outputs, our model can leverage a variety types of annotations
from different datasets: For SAV-Caption our model consumes a mask prompt and calculates the
loss on both the predicted masklet and the predicted caption. On VisualGenome (Krishna et al.,
2017a) our model consumes a box prompt and calculates the loss on the caption. For SS-VOS we
have a first frame mask input prompt and a loss on the masklet. For RefVOS we have a text input
prompt and a loss on the masklet. Following other joint models for image and video, we treat images
as a single-frame video (Ravi et al., 2024; Villegas et al., 2022; Bain et al., 2021). Concretely, we
do not use the memory module (specifically, for t = 0, f̄0 ≡ f0) for the first frame or images. To
leverage all available data, we first pre-train our language and vision components separately, then
perform multi-task training with joint mask- and caption-annotations. Finally, for achieving the best
performance, we finetune on specific datasets. See more details in Appendix B and D.

4.3 INFERENCE

Our model runs on images or videos of arbitrary lengths. Like in training, for an image or the first
frame of the video, the visual features are not modified by the memory attention since there are
no memories (again, f̄0 ≡ f0). For the following frames of the video, our model runs in an online
manner: in each frame the model produces both mask and caption outputs, and updates the memory.
For the final caption prediction we take the one from the last frame; through the memory this caption
is conditioned on the previous frames and therefore captures the temporal aspect of the video.

5 EXPERIMENTS

5.1 CAPTIONING

The localized captioning task is defined as producing a text caption given a location prompt (e.g. box
or mask). We are the first to propose this task for video, where we aim to produce both a caption and
a spatiotemporal segmentation given a mask annotation for the first video frame. Since our method
also works on images, we evaluate on image captioning on Visual Genome given a location prompt in
the form of a box around the object. This enables us to compare to state-of-the-art object captioning
methods on images. For both captioning tasks we measure standard CIDEr (Vedantam et al., 2015).

Video Object Captioning Baselines. Since our VoCap model is the first model which can do
simultaneous object segmentation and captioning given a first-frame input mask, there are no existing
methods to compare to. Instead we present results for a few strong baselines. First, we run a semi-
supervised VOS method to obtain segments, and feed these into existing off-the-shelf captioning
models. In particular, we run our re-implementated and retrained SAM2 model (Ravi et al., 2024) as
the SS-VOS method and apply the popular captioning models BLIP2 (Li et al., 2023) (which predicts
captions from single images without any additional prompt) and PixelLLM (Xu et al., 2024) (which
predicts captions from bounding-box location prompts in single images). For BLIP2 (Li et al., 2023),
we follow CaptionAnything (Wang et al., 2023a) to use the SAM2 mask to crop and mask-out the
background. For PixelLLM (Xu et al., 2024), we extract the bounding box as the prompt from the
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Table 2: Video Object Captioning Results. We significantly
outperform strong baselines in video object captioning.
† The SAM2 numbers are from our retrained model as de-
tailed in Appendix C.

SAV-Caption-val (manual)
method captioning segmentation

CIDEr J&F

SAM2 † ✗ 75.8
SAM2 † → BLIP2 (Li et al., 2023) 21.9 75.8
SAM2 † → PixelLLM (Xu et al., 2024) 35.5 75.8
SAM2 † → Gemini pseudo-labeling 40.5 75.8
UniRef++ → Gemini pseudo-labeling 34.3 46.9

VoCap (ours) 47.8 75.5

Table 3: Results on Localized Image
Captioning. The input is a box, the
output a caption. We outperform all
existing works.

Visual Genome
method captioning - CIDEr

GRiT (Wu et al., 2024a) 142
PixelLLM (Xu et al., 2024) 149
SCA (Huang et al., 2024) 150

VoCap (ours) 163

GT: A mobile phone, held in the hand of the person
who is dancing.
SAM2+Gemini: A hand is holding something.
VoCap: A small, rectangular, dark phone is being
held.

GT: A black cow is walking on the road near a
house.
SAM2+Gemini: A small black dog is walking
on the street.
VoCap: A black cow is walking.

Figure 2: Qualitative examples which illustrate where VoCap succeeds where SAM2+Gemini pseudo
labeling does not. This typically happens in cases with small objects (both examples) and when an
actor is nearby (the phone is held by a human hand).

SAM2 mask. These image baselines produce a caption in each frame, and we take a single video-level
caption by taking the most common captions for the image caption sequence.

In addition, we create two baselines which closely follow our annotation pipeline: We use SAM2 (Ravi
et al., 2024) and UniRef++ (Wu et al., 2023) to generate segmentation masks based on a first frame
input mask. We feed these generated segments to our pseudo-annotation pipeline (Sec. 3).

Video Object Captioning Results. We finetune VoCap jointly on SAV-Caption-train and Visu-
alGenome (Krishna et al., 2017b). Tab. 2 presents results on the SAV-Caption-val which was
manually annotated (Sec. 3). VoCap significantly outperforms all baselines in captioning at only a
minor decrease in segmentation performance compared to SAM2. In particular, BLIP2 (Li et al.,
2023) and PixelLLM (Xu et al., 2024) yield suboptimal performance, likely since these image-based
models do not capture motion. More importantly, our results (47.8 CIDEr) surpass applying SAM2
plus Gemini pseudo-labeling (40.5 CIDEr) despite being significantly more efficient (Gemini is much
larger than VoCap). To understand how our model could outperform this strong baseline, we visually
inspected the results. We observed that Gemini typically makes mistakes in small objects (Fig. 2,
presumably due to resolution) and that it has an ‘actor bias’: it sometimes describes a human (hand)
or animal which is near the highlighted object (Fig. 2, left). In contrast, since our model actively
tracks an object, it always describes the object which it is tracking and not any object close by. From
a more general learning perspective, by training on large amounts of data our model can correct or
smooth out some of the noise of the pseudo-labels, which is a commonly observed phenomenon
(e.g. Jia et al. (2021); Lee (2013); Radford et al. (2021)).
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Table 4: State-of-the-art comparison on Referring Video Object Segmentation (RefVOS). We
report official J&F metrics on each dataset. ‘-‘ means the paper does not report results. VoCap
outperforms the state-of-the-art on all datasets.

Dataset RefVOS-DAVIS RefVOS-YTVOS MeViS UVO-VLN
Point-VOS (Zulfikar et al., 2024) - - - 52.8
ReferFormer (Wu et al., 2022) 61.1 64.9 - 46.4
SOC (Luo et al., 2024) 67.2 67.3 - -
DsHmp (He & Ding, 2024) 64.9 67.1 46.4 -
FindTrack (Cho et al., 2025) 74.2 70.3 48.2 -
UniRef++ (Wu et al., 2023) 67.2 67.4 - -
GLEE (Wu et al., 2024b) - 70.6 - -
SAMWISE (Cuttano et al., 2025) 70.6 69.2 49.5 -

VoCap (ours) 75.1 70.3 51.9 62.2
VoCap + FindTrack (ours) 74.7 71.2 53.0 62.7

Image Object Captioning. There are several works on localized image captioning, where the input
is an image and a bounding box around an object, and the output is the caption describing the object.
Since our model can also consume box prompts, and since images can be interpreted as single-frame
videos, we can directly compare to these works. We evalate the same VoCap model as before
(finetuned jointly on SAV-Caption-train and VisualGenome) and evaluate it on the 5k validation
images of VisualGenome (Krishna et al., 2017b) which has human-annotated object captions. Again,
we report the standard captioning metric, CIDEr Vedantam et al. (2015). Results in Tab. 3 show that
our method outperforms the state-of-the-art on this task: 150 CIDEr for SCA (Huang et al., 2024) vs
163 CIDEr for our VoCap model.

5.2 REFERRING EXPRESSION VIDEO OBJECT SEGMENTATION

For Referring Expression Video Object Segmentation (RefVOS) the input is a video and a textual
referring expression of the target object. The output is a spatio-temporal masklet throughout the
whole video which segments the object in every single frame.

Datasets. We evaluate on the popular video referring segmentation datasets RefVOS-YTVOS (Seo
et al., 2020), RefVOS-DAVIS Khoreva et al. (2018), MeVis (Ding et al., 2023a) and UVO-VLN (Voigt-
laender et al., 2023). For RefVOS-DAVIS (Khoreva et al., 2018) we follow UniRef++ (Wu et al.,
2023) to only use its validation set of 30 videos as a zero-shot evaluation (on average 2 objects
per video and with 4 text queries per object). The UVO-VLN Video Narrative Grounding (VNG)
benchmark provides image descriptions and segmentation masks of labeled noun phrases. To turn
a description into a referring expression (which should unambiguously refer to a single object) we
simply mark the target noun with brackets (e.g. ‘the dog catches the [frisbee]’).

FindTrack. Now one problem with referring expressions is that the first frame may not have the
clearest view of the object, it could be ambiguous (e.g. for ‘the bird flying away’ there could be
three birds where one of them flies away only at the end), or not even visible at the first frame. Such
cases can pose problems to our model since memory-based, online streaming segmentation models
have been observed to be biased to keep tracking the object predicted in the first frame (Cho et al.,
2025; Cuttano et al., 2025). To overcome this we also implemented the test-time inference method
of FindTrack (Cho et al., 2025): We apply VoCap to each frame t independently to produce masks
with IoU predictions iout. We start from the mask and frame with the highest IoU prediction and
from there we go both forward and backward in the video to produce a full masklet. Note that with
appropriate caching this only requires re-running the mask-decoders twice for each frame, which is
less than 10% extra overhead. On all RefVOS datasets we report J&F scores (Perazzi et al., 2016)
(mean of IoU and contour accuracy) averaged on all text queries. Results on RefVOS-YTVOS and
MeViS were obtained using the official test servers.

Results. Results are presented in Tab. 4. Our vanilla VoCap model (without FindTrack) outperforms
the state-of-the-art on the challenging MeViS dataset by 2.4%, on RefVOS-DAVIS by +0.9%, and on
UVO-VLN by 9.4%. On RefVOS-YTVOS, GLEE (Wu et al., 2024b) is slightly better by 0.3%. Now
GLEE does tracking by detection, which requires making predictions for all frames before it runs an
algorithm to merge these per-frame predictions into masklets; it is an offline algorithm which needs
to analyze the whole video first. In contrast, our model runs in streaming fashion which makes it
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Table 5: Effectiveness of the SAV-Caption training data. We show results for both video object
captioning (mask-to-text) and referring object segmentation (text-to-masklet). Our SAV-Caption
training set improves both tasks.

SAV-Caption-val (manual) RefVOS-YTVOS
Captioning SS-VOS RefVOS

CIDEr J&F J&F

Full training (Sec. B) 47.8 75.5 70.3
↪→ using 50% captions of SAV-Caption-train 42.1 75.3 70.0
↪→ using 0% captions of SAV-Caption-train 27.4 75.6 66.6

more applicable in practice but this is a harder task. To overcome this, we can use FindTrack (Cho
et al., 2025) at inference time which also turns VoCap into an offline model. This yields significant
boosts on RefVOS-YTVOS (+0.9%) and MeViS (+1.1%) and sets a new state-of-the-art on these
datasets. Hence we conclude that we outperform the state-of-the-art on RefVOS for all datasets.

We believe there are two main reasons why our model outperforms the state-of-the-art. First of
all, we will demonstrate in Sec. 5.3 that we obtain synergies by sharing the text module between
captioning and referring expressions. This means that the referring expression capabilities benefit
from training captioning on the huge number of captions we provide through our SAV-Caption
train dataset. Second, we are the only end-to-end trained model that performs referring expression
segmentation through temporal propagation: DsHmp (He & Ding, 2024), UniRef++ (Wu et al., 2023),
SOC (Luo et al., 2024), and GLEE Wu et al. (2024b) perform tracking by detection in which per-frame
predictions are stitched together to form a masklet. But the memory-based, temporal propagation
method of SAM2 (Ravi et al., 2024) was shown to outperform the SOTA tracking by detection method
DEVA (Cheng et al., 2023a) on semi-supervised visual object detection, demonstrating the strength
of such approach. FindTrack (Cho et al., 2025) and SAMWISE (Cuttano et al., 2025) are temporal
propagation methods based on SAM2 (Ravi et al., 2024) but are not trained end-to-end.

5.3 ABLATION ON THE EFFECTIVENESS OF SAV-CAPTION-TRAIN

To better understand the importance of our automatically annotated dataset (Sec. 3), we ablate its
effectiveness. In particular, we compare our full training scheme with results where we use 50% and
0% of the captions in SAV-Caption-train, where not using any captions simply means we train on
the original SAV dataset (Ravi et al., 2024). However, since SAV-Caption is our only video object
captioning source, when not using any SAV-Caption data we instead invert RefVOS to become a
captioning dataset (following (Zhou et al., 2023)): we consider the query text prompt, which is
normally an input, as the output caption for the object. Tab. 5 shows the results.

On the SAV-Caption-val set, the CIDEr score goes down significantly when using only half the
captions, and almost completely collapses without any SAV-Caption-train captions. This demonstrates
that our automatic annotation is essential to obtaining good captioning performance on SAV-Caption
val. Instead, as expected the lack of captions hardly impacts the SAV SS-VOS performance as this
task does not use language at either the inputs or outputs.

Interestingly, on the RefVOS-YTVOS dataset we observe a significant increase from 66.6% to 70.3%
J&F when training on the captioning task using SAV-Caption-train. This validates our design choice
to share the weights of our language module for both the input text prompts and the captioning task:
our model is able to exploit the synergies between referring expression segmentation and object
captioning, and allows the referring expression task to benefit from training captioning on the huge
amount of captions which we generated Sec. 3.

6 CONCLUSION

We proposed a video object segmentation and captioning model that takes either a box, mask or text
prompt as input. We manually collected evaluation data for this task, and proposed an automatic
annotation pipeline to curate training data. VoCap trained on our SAV-Caption dataset together with
diverse existing datasets establishes a benchmark for video object captioning and outperforms the
state-of-the-art on referring expression video object segmentation. We hope our model and datasets
provide a foundation for fine-grained spatio-temporal video understanding, and encourages more
work in this direction.
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A DETAILS ON DATASET

A.1 QUALITY OF SAV-CAPTION-TRAIN

We performed a quantitative evaluation on the quality of the SAV-Caption-train set by having the
authors examine captions of 50 randomly selected objects from 50 different videos. They verified
separately whether each of the elements used from our structured prompt was correct or not: the
object category, its properties, and what the object does (e.g. motion or action). Furthermore, we
counted how many properties and actions were obvious yet not generated in the caption. Results are
in Tab. 6.

Table 6: Quantitative analysis of the quality of SAV-Caption-train on 50 objects in 50 different videos.
# evaluated means the number of respectively categories, properties, and motion/actions we evaluated.

correct incorrect (hallucinations) # evaluated # missing aspects

object category 88.0% 12.0% 50 -
object properties 87.6% 12.4% 105 7
object motion / action 85.5% 15.5% 62 5

The object category was correct in 88.0% of the cases. When an object was incorrect it was either
subtle (e.g. sock instead of shoe) or it was a piece of clothing worn by a human and the human was
captioned instead. Properties are also correct in 87.6% of the cases. Many mistakes were subtle color
differences due to lighting conditions. When the human was described instead of their clothing worn,
we counted these properties as incorrect (even if they were correct for the human). There were a
few properties noticeably absent, mostly because of the context of other mentioned properties. For
example, one caption mentioning a white striped sweater, whereas the sweater was blue-white striped,
which conveys a quite different appearance of the sweater. The object’s motion/action was correct in
85.5% of the cases. Most mistakes were subtle differences between standing still or driving / walking
slowly. Similarly as before, when the motion/action was of the wrong category (person instead of
sweater), we counted this as incorrect. In 7 instances we found an action to be clearly missing. This
was usually when the object did multiple things sequentially (e.g. a person is first standing, then
walking away) where one of them was missing. In another there was a parrot which was correctly
identified to be laying on the floor, but they did this to scratch their head on the floor; a crucial aspect
to understand its behavior.

To conclude, while there is some noise in the automatically generated data we consider it to be of
decent quality. Moreover, in our main paper we clearly demonstrate the usefulness of this data for
training captioning models.

A.2 TEXT PROMPT TO GENERATE SAV-CAPTION-TRAIN

We use the following prompt together with our vision prompts to generate the pseudo-labels of our
training set.

Describe the subject in the red contour in the following video. If
the subject is a part of an object, please describe this part instead
of the whole object. Please DO NOT DESCRIBE anything in the blurred
background outside the red contour. First determine the subject’s
category (CATEGORY), properties (PROPERTIES), action (ACTION), and then
give a description in ONE sentence (DESCRIPTION) including category,
properties, and action, etc.. Please use this FORMAT: ’The video shows a
CATEGORY. The subject’s properties are PROPERTIES. The subject’s action
is ACTION. DESCRIPTION.’. The DESCRIPTION starts with ’A/ An CATEGORY’
or ’A/ An PROPERTIES CATEGORY’ if it is grammarly more proper to put the
properties before the category. The category, properties, motion and
the descriptions should be consistent. PROPERTIES should be about the
objects appearance (color, texture, size, material, shape), what it is
wearing or a functional property (e.g. fast, sharp). Please always
include interesting or unexpected properties. If there are multiple
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Figure 3: Illustration of our visual
prompting. Top: the original frame; Bot-
tom: our processed input to the Gemini
annotator. We apply a red contour to high-
light the target object and blur the back-
ground avoid distractions.

A woman wearing a black puffer coat with fur trim on the hood and a polka 
dot dress is walking

A barefoot person wearing a gray t-shirt and dark pants gets up from 
kneeling, picks up a cricket bat, and then stands

A brown and white dog wearing a yellow shirt is standing, then bending down 
to smell an orange, then standing again

Figure 4: Examples of our VLM pseudo-labeled SAV-Caption
training set. We show the target object in red contour, and show
the output captions below. The captions capture object classes,
appearance properties, and multiple actions connected by “then”.

actions happening sequentially, connect them with ’then’, but do not
include more than 3 actions. For static objects or parts, just say the
ACTION is ’static’ and it is OK to not include ACTION in DESCRIPTION.
Please DO NOT mention the red contour in the description. If the subject
is a person, please avoid describing the person’s skin color and describe
the person’s clothes color instead. You only need to describe the
details that you are certain about. If you cannot perform the task or
you are very uncertain, please say ‘I cannot perform the task for this
video.’.

B IMPLEMENTATION DETAILS

Our image encoder is EVA02-L Fang et al. (2023), a 24-layer ViT model Dosovitskiy (2021) with
MAE He et al. (2022) and CLIP Radford et al. (2021) pretraining. We chose this encoder as it is
more suitable for language tasks, compared to the MAE-pretrained ViT used in SAM (Kirillov et al.,
2023; Ravi et al., 2024). Our shared language encoder and decoder is a 6-layer BERT model (Devlin
et al., 2019) with random initialization, shown to be effective and efficient for object captioning
(e.g. Wu et al. (2024a); Zhou et al. (2023); Wang et al. (2022)). The text feature extractor contains
2 cross-attention layers with the same architecture as the mask decoder. Other modules follow
SAM2 (Ravi et al., 2024) and are randomly initialized. Appendix C shows that our re-implementation
of SAM2 is comparable to the original, and that EVA02-L is a strong alternative backbone.

Since we use an EVA02-L backbone, we cannot use existing SAM2 checkpoints. Instead, we pre-train
our visual components on SAV Ravi et al. (2024), YTVOS Xu et al. (2018), and DAVIS Perazzi
et al. (2016), following the SAM2 data mixture ratio (49.5: 9.2: 1.3). We train for 300k iterations,
using a batch size 64 at 512× 512 resolution. We verified that this training recipe produces results
close to the official SAM2 model which is trained on proprietary datasets and uses a larger resolution
(see Appendix C for more details). For the text encoder and decoder we use existing model weights
trained for image captioning on WebLI Chen et al. (2022). After pre-training we train jointly on
SAV-Caption-train (captioning and SS-VOS task), RefCOCO Yu et al. (2016), RefVOS-YTVOS Seo
et al. (2020), and Visual Genome Krishna et al. (2017b) (captioning task), with a mixture ratio of
4:2:2:1, for 240k iterations with batch size 32. We finish with a small fine-tuning stage per dataset.
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C SAM2 BASELINE DETAILS

The original SAM2 (Ravi et al., 2024) was trained on private datasets in addition to the publicly-
released SAV training and validation set. The publicly-released SAM2 training code1 includes
finetuning pipeline on MOSE dataset (Ding et al., 2023b), but does not include the main training loop.
Therefore, before adapting SAM2 in our use case, we attempt to reproduce SAM2 training in our
framework in Jax (Bradbury et al., 2018; Dehghani et al., 2022). We also repleace the MAE-pretrained
backbone Hiera (Ryali et al., 2023) with a more vision-language native backbone Eva02 (Fang et al.,
2023). When using Eva02, we reduce the input resolution from the original 1024 to 512 to fit our
hardware, and verified minimal performance drop compare to the official SAM2 with Hiera-T and
1024 input size. We do not use the SA1B dataset (Kirillov et al., 2023) for pretraining as we did not
find it helpful in our target datasets. We adapt the training hyper-parameters in Table 12 (b) of the
SAM2 paper, which we summarize in Tab. 8.

Table 7: Results of our reproduced SAM2. We use a vision-language native backbone Eva02 (Fang
et al., 2023) with a smaller input size (512 vs. 1024), and show the performance matches the original
SAM2.

backbone resolution MOSE-dev SAV-val

Official SAM2 Hiera-L 1024 77.9 77.9
Official SAM2 Hiera-T 512 75.3 75.2
Our reproduction Hiera-T 512 76.9 74.8
Our reproduction EVA02-L 512 75.7 75.8

As a result, our reproduced SAM2 with Eva02 (Fang et al., 2023) and a smaller input size trained on
public data closely matches the official released model, as shown Tab. 7.

D TRAINING HYPER-PARAMETERS

We include the full hyper-parameters used during training in Tab. 9

1https://github.com/facebookresearch/sam2
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Table 8: Hyperparameters of our reproduce of SAM2 as our pre-training. We follow SAM2 (Ravi
et al., 2024) for most hyperparameters.

config value
data SA-V, YTVOS, DAVIS

data-ratio 49.5: 9.4: 1.3
steps 300k

backbone Hiera-T / Eva02
resolution 896 (Hiera-T) / 512 (Eva02)
optimizer AdamW

optimizer momentum β1, β2=0.9, 0.999
gradient clipping type: ℓ2, max: 0.1

weight decay 0.05
learning rate (lr) img. enc.: 4e-5, other: 4.0e-4

lr schedule cosine
warmup linear, 1k iters

layer-wise decay 0.8
augmentation hflip, crop and square resize to 512

batch size 64
drop path 0.1 (Hiera-T) / 0.4 (Eva02)

mask losses (weight) focal (20), dice (1)
IoU loss (weight) ℓ1 (1)

occlusion loss (weight) cross-entropy (1)
num frames 8

max. masks per frame. 2

config value

data SAV-Caption, RefVOS-YTVOS,
RefCOCO, VisualGenome

data-ratio 2: 1: 1: 0.5
steps 240k

backbone Eva02
resolution 512
optimizer AdamW

optimizer momentum β1, β2=0.9, 0.999
gradient clipping type: ℓ2, max: 0.1

weight decay 0.05
learning rate (lr) 5e-5

lr schedule cosine
warmup linear, 1k iters

layer-wise decay 0.8
augmentation crop and square resize to 512

batch size 32
drop path 0.4

mask losses (weight) focal (20), dice (1)
IoU loss (weight) ℓ1 (1)

occlusion loss (weight) cross-entropy (1)
caption loss (weight) cross-entropy (1)

caption loss label smooth 0.1
num frames 8

max. masks per frame. image: 32, video: 2

Table 9: Hyperparameters of next stage of VoCap training. We continue train on datasets with
both text and mask annotations on both images and videos, with a cross-entropy caption-loss.
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