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Abstract
We study the problem of no-regret learning algorithms for general monotone and smooth games
and their last-iterate convergence properties. Specifically, we investigate the problem under bandit
feedback and strongly uncoupled dynamics, which allows modular development of the multi-player
system that applies to a wide range of real applications. We propose a mirror-descent-based algo-
rithm, which converges in O(T−1/4) and is also no-regret. The result is achieved by a dedicated
use of two regularizations and the analysis of the fixed point thereof. The convergence rate is fur-
ther improved to O(T−1/2) in the case of strongly monotone games. Motivated by practical tasks
where the game evolves over time, the algorithm is extended to time-varying monotone games. We
provide the first non-asymptotic result in converging monotone games and give improved results
for equilibrium tracking games.

1. Introduction

We consider multi-player online learning in games. In this problem, the cost function for each player
is unknown to the player, and they need to learn to play the game through repeated interaction with
other players. We focus on a class of monotone and smooth games, which was first introduced
by [26]. This encapsulates a wide array of common games, such as two-player zero-sum games,
convex-concave games, and zero-sum polymatrix games [6]. Our goal is to find algorithms that
solve the problem under bandit feedback and strongly uncoupled dynamics. Within this context,
each player can only access information regarding the cost function associated with their chosen
actions without prior insight into their counterparts. This allows modular development of the multi-
player system in real applications and leverages existing single-agent learning algorithms for reuse.

Many works have focused on the time-average convergence to Nash equilibrium on learning in
monotone games [16, 17, 29]. However, these works only guarantee the convergence of the time
average of the joint action profile. Such convergence properties are less appealing, because while
the trajectories of the players converge in the time-average sense, it may still exhibit cycling [24].
This jeopardizes the practical use of such algorithms.

Popular no-regret algorithms such as mirror descent have demonstrated convergence in the last
iterate within specific scenarios, such as two-player zero-sum games [7] and strongly monotone
games [5, 14, 23]. Yet convergence to Nash equilibrium in monotone and smooth games is not
available unless one assumes exact gradient feedback and coordination of players [8, 9]. It remains
open as to whether a no-regret algorithm can efficiently converge to a Nash equilibrium in monotone
games with bandit feedback and strongly uncoupled dynamics. In this paper, we investigate the
pivotal question:
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How fast can no-regret algorithms converge (in the last iterate) to a Nash equilibrium in general
monotone and smooth games with bandit feedback and strongly uncoupled dynamics?

In this work, we present a mirror-descent-based algorithm designed to converge to the Nash
equilibrium in static monotone and smooth games. Our algorithm is uncoupled and convergent
and is applicable to the general monotone and smooth game setting. Motivated by real applications,
where many games are also time-varying, we extend our study to encompass time-varying monotone
games. This allows the algorithm to be deployed in both stationary and non-stationary tasks. We
achieve state-of-the-art results in both monotone games and time-varying monotone games.

2. Related Works

Monotone games The convergence of monotone games has been studied in a significant line
of research. For a strongly monotone game under exact gradient feedback, the linear last-iterate
convergence rate is known [22, 31, 33]. Under noisy gradient feedback, [19] showed a last-iterate
convergence rate of O(T−1). Under bandit feedback, [4] proposed an algorithm that asymptotically
converges to the equilibrium if it is unique. [5] subsequently introduced an algorithm with a last-
iterate convergence rate of O(T−1/3), while also ensuring the no-regret property. Later works [23]
further improved the last-iterate convergence rate to O(T−1/2) under bandit feedback using the self-
concordant barrier function. [19] gave a result of the same rate, but with the additional assumption
that the Jacobian of each player’s gradient is Lipschitz continuous. In the case of bandit but noisy
feedback (with a zero-mean noise), [23] showed that the convergence rate is still O(T−1/2).

For monotone but not strongly monotone games, [25] leveraged the dual averaging algorithm
to demonstrate an asymptotic convergence rate under noisy gradient feedback. With access to the
exact gradient information, [9] gave a last-iterate convergence rate of O(T−1). In the context of
bandit feedback, [30] proposed an algorithm that asymptotically converges to the Nash equilibrium.

Time-varying monotone games Motivated by real-world applications such as Cournot competi-
tion, where multiple firms supply goods to the market and pricing is subject to fluctuations due to
factors like weather, holidays, and politics. [15] studied the strongly monotone game under a time-
varying cost function. When the game converges to a static state, they propose an algorithm that
achieves asymptotic convergence under bandit feedback. Assuming the cost function varies O(T ϕ)
across a horizon T , [15] provided an algorithm that attains a convergence rate of O(T ϕ/5−1/5) under
bandit feedback. Subsequent work of [32] further improved this rate to O(T ϕ/3−2/3) under exact
gradient feedback.

3. Preliminaries

We consider a multi-player game with n players, with the set of players denoted as N . Each
player i takes action on a compact and convex set Xi ⊆ Rd of d dimensions, and has cost function
ci(xi, x−i), where xi ∈ Xi is the action of the i-th player and x−i ∈

∏
j∈[n],j ̸=iXj is the action of

all other players. We assume the radius of Xi is bounded, i.e., ∥x− x′∥ ≤ B, ∀x, x′ ∈ Xi. Without
loss of generality, we further assume ci(x) ∈ [0, 1].

In this work, We study a class of monotone continuous games, where the gradient of the cost
functions is monotone and the cost functions continuous (Assumption 3.1). Games that satisfy this
assumption include convex-concave games, convex potential games, extensive form games, Cournot
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competition, and splittable routing games. A discussion of these games is available in Section B.
Note that the class of monotone continuous games is commonly studied in the literature [17, 23].

Assumption 3.1 For all player i ∈ N , the cost function ci(xi, x−i) is continuous, differentiable,
convex, and ℓi-smooth in xi. Further, ci has bounded gradient |∇ici(x)| ≤ G and the gradient
F (x) = [∇ici(x)]i∈N is a monotone operator, i.e., (F (x)− F (y))⊤(x− y) ≥ 0, ∀x, y.

For notational convenience, we denote L =
∑

i∈N ℓi.
A common solution concept in the game is Nash equilibrium, which is a state of dynamic

where no player can reduce its cost by unilaterally changing its action. Our aim is to learn a Nash
equilibrium x∗ ∈

∏
iXi of the game. Formally, the Nash equilibrium is defined as follows.

Definition 3.1 (Nash equilibrium) An action x∗ ∈
∏

iXi is a Nash equilibrium if ci(x∗) ≤ ci(xi, x
∗
−i),

∀xi ∈ Xi, xi ̸= x∗i , i ∈ N .

When the game satisfies Assumption 3.1, and is with a compact action set, it is known that it
must admit at least one Nash equilibrium [13]. A wide range of monotone games are captured by
Assumption 3.1, and we include some examples of these games in the appendix.

3.1. Bandit Feedback and Strongly Uncoupled Dynamic

In this work, we focus on learning under bandit feedback and strongly uncoupled dynamics. The
bandit feedback setting restricts each player to only observe the cost function ci(xi, x−i) with re-
spect to the action taken xi. The strongly uncoupled learning dynamic [12] means players do not
have prior knowledge of cost function or the action space of other players and can only keep track
of a constant amount of historical information. As the bandit feedback and strongly uncoupled
dynamic only require each player to access information of its own, this allows for modular devel-
opment of the multi-player system, by reusing existing single-agent learning algorithms.

4. Algorithm

Our algorithm builds upon the renowned mirror-descent algorithm. The efficacy of online mirror-
descent in solving Nash equilibrium has been demonstrated under full information, and in both
linear or strongly monotone games, with extensive investigations into its last-iterate convergence
investigated in [7, 10, 15, 23].

Our algorithm differs from classic online mirror descent approaches by making use of two reg-
ularizers: A self-concordant barrier regularizer h to build an efficient Ellipsoidal gradient estimator
and contest the bandit feedback; and a regularizer p to accommodate monotone (and not strongly
monotone) games. Similar use of two regularizers has also been investigated [23]. However, their
method used the Euclidean norm regularization, which cannot be extended to our setting.

Regularizers Let h be a ν-self-concordant barrier function (Definition 4.1), p be a convex function
with µI ⪯ ∇2p(x) ⪯ ζI , ζ > 0, µ ≥ 0. Let Dp denote the Bregman divergence induced by
p. We choose p such that for any xi, x

′
i ∈ Xi, Dp(xi, x

′
i) ≤ Cp < ∞, and for some κ > 0,

ci(xi, x−i)− κp(xi) to be convex. Notice that when ci is convex but not linear, we can always find
such p when the action set is bounded. Intuitively, this is to interpolate a function p that possesses
less curvature than all ci. We will discuss the modification to the algorithm needed when ci is linear
in the appendix.
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Definition 4.1 A function h : int(X ) 7→ R is a ν-self concordant barrier for a closed convex
set X ⊆ Rn, where int(X ) is an interior of X , if 1) h is three times continuously differentiable;
2) h(x) → ∞ if x → ∂X , where ∂X is a boundary of X ; 3) for ∀x ∈ int(X ) and ∀λ ∈ Rn,
we have

∣∣∇3h(x)[λ, λ, λ]
∣∣ ≤ 2

(
λ⊤∇2h(x)λ

)3/2 and
∣∣∇h(x)⊤λ

∣∣ ≤ √
ν
(
λ⊤∇2h(x)λ

)1/2 where

∇3h(x) [λ1, λ2, λ3] =
∂3

∂t1∂t2∂t3
h (x+ t1λ1 + t2λ2 + t3λ3)

∣∣∣
t1=t2=t3=0

.

1. h is three times continuously differentiable;

2. h(x) → ∞ if x → ∂X , where ∂X is a boundary of X ;

3. for ∀x ∈ int(X ) and ∀λ ∈ Rn, we have
∣∣∇3h(x)[λ, λ, λ]

∣∣ ≤ 2
(
λ⊤∇2h(x)λ

)3/2 and∣∣∇h(x)⊤λ
∣∣ ≤ √

ν
(
λ⊤∇2h(x)λ

)1/2 where

∇3h(x) [λ1, λ2, λ3] =
∂3

∂t1∂t2∂t3
h (x+ t1λ1 + t2λ2 + t3λ3)

∣∣∣∣
t1=t2=t3=0

.

It is shown that any closed convex domain of Rd has a self-concordant barrier [21].

Ellipsoidal gradient estimator As our algorithm operates under bandit feedback and strongly
uncoupled dynamics, we would need to design a gradient estimator while only using costs for the
individual player.

Let Sd, Bd be the d-dimensional unit sphere and the d-dimensional unit ball, respectively. Our
algorithm estimates the gradient using the following ellipsoidal estimator:

ĝti =
d

δt
ci(x̂

t)(At
i)
−1zti , At

i = (∇2h(xti) + ηt(t+ 1)∇2p(xti))
−1/2 , x̂ti = xti + δtA

t
iz

t
i ,

where zti is uniformly independently sampled from Sd and δt, ηt ∈ [0, 1] are tunable parameters.
One can show that ĝti is an unbiased estimate of the gradient of a smoothed cost function

ĉi(x
t) = Ewt

i∼BdEzt−i∼Πj ̸=iSd
[
ci
(
xti +At

iw
t
i , x̂

t
−i

)]
. When p is strongly convex, one can upper

bound ∥∇iĉi(x)−∇ici(x)∥ by the maximum eigenvalue of At
i and it suffices to take δt = 1, which

recovers the results in [23]. However, when p is convex and not strongly convex, one would need
to carefully tune δt to control the bias from estimating the smoothed cost function. This ellipsoidal
gradient estimator was first introduced by [1] for the case of ci being linear, and was then extended
by [18] to the case of strongly convex costs. In learning for games, the ellipsoidal estimator was
used in the case of strongly monotone games [5, 23].

Based on the ellipsoidal gradient estimator, we present our uncoupled and convergent algorithm
for monotone games under bandit feedback.

Implementation Notice that solving Equation (1) is equivalent to solving a convex but potentially
non-smooth optimization problem. Certain sets X ⊆ Rd, including the cases when X is the strat-
egy space of a normal-form game or an extensive-form game, can be solved by proximal Newton
algorithm provably in O(log2(1/ϵ)) iterations [17]. When such guarantees are not required, one
could accommodate other optimization methods in solving (1). Our experiment section provides
more details.

The choice of p and h is game-dependent. For example, when ci(x) = x2 and the action set is
on the positive half line, we can use the negative log function as our self-concordant barrier function
h and take p = x.
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Algorithm 1: Algorithm

Input: Learning rate ηt, parameter δt, regularizer h(·), p(·), constant κ;
x1i = argminxi∈Xi h(xi);
for t = 1, . . . , T do

Set At
i = (∇2h(xti) + ηt(t+ 1)∇2p(xti))

−1/2;
Play x̂ti = xti + δtA

t
iz

t
i , receive bandit feedback ci(x̂i, x̂−i), sample zti ∼ Sd;

Update gradient estimator ĝti =
d
δt
ci(x̂

t)(At
i)
−1zti ;

Update the strategy

xt+1
i = argmin

xi∈Xi

{
ηt
〈
xi, ĝ

t
i

〉
+ ηtκ(t+ 1)Dp(xi, x

t
i) +Dh(xi, x

t
i)
}

(1)

end

5. No-regret Convergence to Nash Equilibrium

In this section, we present our main results on the last-iterate convergence to the Nash equilibrium.
We show that Algorithm 1 converges to the Nash equilibrium in monotone, strongly monotone, and
linear games. Such convergence is no-regret, meaning that the individual regret of each player is
sublinear.

For notational simplicity, we present the results in a perfect bandit feedback model, where player
i observes exactly ci(x

t). The discussion of noisy bandit feedback, where player i observes ci(xt)+
ϵti, with ϵti be a zero-mean noise, is deferred to the appendix (Theorem E.1).

5.1. Perfect Bandit Feedback

The following theorem describes the last-iterate convergence rate (in expectation) for convex and
strongly convex loss under perfect bandit feedback.

Theorem 5.1 Take ηt =

{
1

2dt3/4
µ = 0

1
2dt1/2

µ > 0 ,
, δt =

{
1

t1/4
µ = 0

1 µ > 0 .
. With Algorithm 1, we have

E

[∑
i∈N

Dp

(
x∗i , x

T+1
i

)]

≤

O
(
ndν log(T )

κT 1/4 + nζdB
T 3/4 + nBL

κ
√
T
+

ndCp

T 1/4 + nd log(T )

κT 1/4 +
√
nB2L log(T )

κT 1/4

)
µ = 0

O
(
ndν log(T )

κ
√
T

+ ndζB
T + nBL

κ
√
T
+

ndCp√
T

+ nd log(T )

κ
√
T

+ BL log(T )

µκ
√
T

)
µ > 0 ,

.

In the case of the monotone games, [5] showed an asymptotic convergence to Nash equilibrium.
To the best of our knowledge, Theorem 5.1 is the first result on the last-iterate convergence rate for
monotone games. For strongly monotone games, [5] first gave a O(T−1/3) last-iterate convergence
rate, which was later improved to O(T−1/2) by [23].

5.2. Individual Low Regret

Beyond the fast convergence to Nash equilibrium, our algorithm also ensures each player with a
sublinear regret when playing against other players. The sublinear regret convergence is a desirable
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property as the players could be self-interested in general, and want to ensure their return even when
other players are not adhering to the protocol. The low regret property remains true for players that
are potentially adversarial, despite the convergence to Nash equilibrium no longer holds in that case.

For player i, and a sequence of actions {x̂ti}Tt=1, define the individual regret as the cumulative
expected difference between the costs received and the cost of playing the hindsight optimal action.
That is,

∑T
t=1 E

[
ci
(
x̂ti, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
, where {xt−i}Tt=1 is a fixed sequence of actions of

other players. The following theorem shows a guarantee of the individual regret of each player.

Theorem 5.2 Take ηt =

{
1

2dt3/4
µ = 0

1
2dt1/2

µ > 0 ,
, δt =

{
1

t1/4
µ = 0

1 µ > 0 ,
. For a fixed ωi ∈ Xi, a fixed

sequence of {xt−i}Tt=1, and with Algorithm 1, we have

T∑
t=1

E
[
ci
(
x̂ti, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
=

O
(
νdT 3/4 log(T ) +G

√
T + ℓi

√
nBT 3/4

)
µ = 0

O
(
νd

√
T log(T ) +G

√
T + nBℓi

√
T

µ

)
µ > 0

.

Our result matches the
√
T regret bound for strongly monotone games [23], but applies to

monotone games as well.

Implication on social welfare By designing the algorithm to be no-regret, we can also show that
the social welfare attained by the algorithm also converges to the optimal value.

The social welfare for a joint action x is defined as SW(x) =
∑

i∈N ci(x). We let OPT =
minx SW(x) to denote the optimal social welfare.

Definition 5.1 ((author?) 27, 29) A game is (C1, C2)-smooth, C1 > 0, C2 < 1, if there exists a
strategy x′, such that for any x ∈ N ,

∑
i∈N ci(x

′
i, x−i) ≤ C1OPT+ C2SW(x).

We have the following proposition which shows that the social welfare converges to optimal
welfare on average.

Proposition 5.1 With ηt = 1
2dt3/4

, δt = 1
t1/4

, and suppose every player employ Algorithm 1, we

have 1
T

∑T
t=1 E [SW(x̂)] = O

(
C1OPT
(1−C2)

+ nνd log(T )

(1−C2)T 1/4 +
√
nB

∑
i∈N ℓi

(1−C2)T 1/4

)
.

6. Application to Time-varying Game

In this section, we further apply Algorithm 1 to games that evolve over time. A time-varying game
Gt is a game where the cost function cti(·), i ∈ N depends on t. The game Gt is not revealed to the
players before choosing their actions xt. We assume that Gt satisfies Assumption 3.1 for every t.

Such evolving games have applications in Kelly’s auction and power control, where the cost
function may change as time-dependent values change, such as channel gains. While the changes
of Gt can be random, we discuss two cases here, 1) when Gt converges to a static game G in o(T )
time, and 2) when the variation path of the Nash equilibrium,

∑T
t=1 ∥x

t+1,∗
i − xt,∗i ∥ is bounded in

o(T ).
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Converging monotone game Let Gt denote the game formed by the costs {cti(·)}i∈N , and G be
the game formed by the costs {ci(·)}i∈N . Suppose Gt converges to G, and let x∗ be the set of Nash
equilibrium of the game G. The cost function cti converges to some cost function ci in o(T ) time.
The following theorem shows the last iterate convergence to x∗.

Theorem 6.1 With
∑T

t=1

∑
i∈N maxx ∥∇ici(x) − ∇ic

t
i(x)∥2 = Tα, take ηt =

1
2dt3/4

, δt = 1
t1/4

,

and under Algorithm 1, we have E
[∑

i∈N Dp

(
x∗i , x

T+1
i

)]
≤ O

(
ndν log(T )

κT 1/4 + nζdB
T 3/4 + nBL

κ
√
T
+

ndCp

T 1/4

+nd log(T )

κT 1/4 +
√
nB2L log(T )

κT 1/4 + B
T 1/4−α

)
.

For monotone games, [15] showed an asymptotic last-iterate convergence rate. To the best of
our knowledge, Theorem 6.1 is the first last-iterate convergence rate for the class of converging
monotone game.

Evolving game and equilibrium tracking We now discuss the case where Gt does not necessarily
converge to a game G, but the cumulative changes of the equilibrium are bounded. We use the
variation path Vi(T ) =

∑
t∈[T ]

∥∥∥xt+1,∗
i − xt,∗i

∥∥∥ to track the cumulative changes of equilibrium. In
this case, the last-iterate convergence is meaningless, and the convergence is measured in terms
of the average gap. Because of this, the algorithm is slightly modified and updates with xt+1

i =
argminxi∈Xi

{
ηt
〈
xi, ĝ

t
i

〉
+Dh(xi, x

t
i)
}

.

Theorem 6.2 Assume Vi(T ) ≤ Tφ, φ ∈ [0, 1]. Take ηt = 1

2dt
(1−φ)

3

, δt = 1
t1/2

, and under Algorithm

1, we have 1
T

∑T
t=1

∑
i∈N

〈
∇ic

t
i

(
x̂ti, x̂

t
−i

)
, x̂ti − xt,∗i

〉
= Õ

(
nνd+Ln3/2B2+nG

T
2(1−φ)

3

+ n

T
9
8− (4φ+5)2

72

)
.

In the case of a strongly monotone game, [15] gave a result of Tφ/5−1/5 and [32] gave a result
of Tφ/3−2/3. In comparison, Theorem 6.2 extends the study to monotone games, and improves the
result to O

(
max

{
T 2φ/3−2/3, T (4φ+5)2/72−9/8

})
.

7. Conclusion

In this work, we present a mirror-descent-based algorithm that converges in O(T−1/4) in general
monotone and smooth games under bandit feedback and strongly uncoupled dynamics. Our algo-
rithm is no-regret, and the result can be improved to O(T−1/2) in the case of strongly-monotone
games. To our best knowledge, this is the first uncoupled and convergent algorithm in general
monotone games under bandit feedback. We then extend our results to time-varying monotone
games and present the first result of O(T−1/4) for converging games and the improved result of
O
(
max{T 2φ/3−2/3, T (4φ+5)2/72−9/8}

)
for equilibrium tracking. We further verify the effective-

ness of our algorithm with empirical evaluations.
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Appendix B. Examples of Monotone Continuous Games

Example 1 (convex-concave game) Consider a two-player convex-concave game, where the ob-
jective function is c1(x1, x2) = f(x1, x2), c2(x1, x2) = −f(x1, x2). It is immediate that if f is
continuous, differentiable, smooth, convex in x1, concave in x2, then the game satisfies Assumption
3.1. Examples are rock paper scissors and chicken games.

Example 2 (Cournot competition) In the Cournot oligopoly model, there is a finite set of N firms,
where firm i supplies the market with a quantity xi ∈ [0, Ci] of some good and Ci is the firm’s
production capacity. The good is priced as a decreasing function P (xtot) = a − bxtot, where
xtot =

∑N
i=1 xi is the total number of goods supplied to the market, and a, b > 0 are positive

constants. The cost of firm i is then given by ci(xi, x−i) = dixi − xiP (xtot), where di is the cost
of producing one unit of good. This is the associated production cost minus the total revenue from
producing xi units of goods. It is clear that ci is continuous and differentiable, and [5] showed ci
has positive definite and bounded hessian (is convex and smooth).

Example 3 (Splittable routing game) In a splittable routing game, each player directs a flow, de-
noted as fi, from a source to a destination within an undirected graph G = (V,E). Each edge
e ∈ E is linked to a latency function, represented as ℓe(f), which denotes the latency cost of the
flow passing through the edge. The strategies available to player i are the various ways of dividing
or ”splitting” the flow fi into distinct paths connecting the source and the destination. With some
restrictions on the latency function, the game satisfies Assumption 3.1 [28].

Example 4 (Extensive form game (EFG)) EFGs are games on a directed tree. At terminal nodes
denoted as z ∈ Z , each player i ∈ N incurs a cost ci(z) based on a function ci : Z → R.
The action set of each player, Xi, is represented through a sequence-form polytope known as Xi

[20]. Considering the probability p(z) of reaching a terminal node z ∈ Z , the cost for player i
is expressed as ci(x) :=

∑
z∈Z p(z)ci(z)

∏
j∈N xj [σj,z]. Here, x = (x1, . . . , xn) ∈

∏
j∈N Xj

signifies the joint strategy profile, and xj [σj, z] denotes the probability mass assigned to the last
sequence σj,z encountered by player j before reaching z. The smoothness and concavity of utilities
directly arise from multilinearity.

Example 5 (convex potential game) A game is called a potential game if there exists a potential
function Φ : X → R, such that, ci(xi, x−i)− ci(x

′
i, x−i) = Φ(xi, x−i)−Φ(x′i, x−i), for all i ∈ N .

If Φ is continuous, differentiable, smooth, and convex in xi, then the game satisfies Assumption 3.1.
For example, a non-atomic congestion game satisfies Assumption 3.1, as shown in Proposition 1
and 2 of [11].
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Appendix C. Proof of Theorem 5.1

Theorem 5.1 Take ηt =

{
1

2dt3/4
µ = 0

1
2dt1/2

µ > 0 ,
, δt =

{
1

t1/4
µ = 0

1 µ > 0 .
. With Algorithm 1, we have

E

[∑
i∈N

Dp

(
x∗i , x

T+1
i

)]

≤

O
(
ndν log(T )

κT 1/4 + nζdB
T 3/4 + nBL

κ
√
T
+

ndCp

T 1/4 + nd log(T )

κT 1/4 +
√
nB2L log(T )

κT 1/4

)
µ = 0

O
(
ndν log(T )

κ
√
T

+ ndζB
T + nBL

κ
√
T
+

ndCp√
T

+ nd log(T )

κ
√
T

+ BL log(T )

µκ
√
T

)
µ > 0 ,

.

Proof
We now upper bound the terms in Lemma K.1.
When µ = 0, taking expectation conditioned on xt, we have E

[∥∥At
iĝ

t
i

∥∥2 | xt] = d2

δ2t
E
[
ci(x̂

t)2∥zti∥2 | xt
]
≤

d2

δ2t
. By Lemma K.2, and the choice ηt =

1
2d

√
t
, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

η2t
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑
t=1

η2t
δ2t

.

By the definition of ĉi,

∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
| xt
]

=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉi(x

t)−∇ici
(
xt
)
, ωi − xti

〉
| xt
]

=
∑
i∈N

T∑
t=1

ηtE
[
Ewi∼BdEz−i∼Πj ̸=iSd

〈
∇ici

(
xti + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
xt
)
, ωi − xti

〉
| xt
]

≤ B
∑
i∈N

T∑
t=1

ηtE
[
Ewi∼BdEz−i∼Πj ̸=iSd

∥∥∇ici
(
xti + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
xt
)∥∥ | xt

]
By the smoothness of ci,

Ewi∼BdEz−i∼Πj ̸=iSd
[∥∥∇ici

(
xti + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
xt
)∥∥]

≤ ℓiEwi∼BdEz−i∼Πj ̸=iSd

√δ2t ∥Aiwi∥2 + δ2t
∑
j ̸=i

∥Ajzj∥2
 .

Since p is convex, ∇2p(x) is positive semi-definite, and At
i ⪯ (∇2h(xi))

−1/2. For x̄ti = xti+At
iw

t
i .

Define ∥v∥x =
√
v⊤∇2h(x)v, we have ∥x̄ti−xti∥xi ≤ ∥ωt

i∥ ≤ 1, and x̄ti ∈ W (xti), where W (xi) =
{x′i ∈ Rd, ∥x′i−xi∥xi ≤ 1} is the Dikin ellipsoid. Since W (xi) ⊆ Xi,∀xi ∈ int(Xi), we can upper
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bound ∥Aiwi∥2 by B2, the diameter of the set Xi. Hence ∥∇iĉi(x
t)−∇ici

(
xt
)
∥ ≤ ℓiδt

√
nB. By

Lemma K.5∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
| xt
]
=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉi

(
xt
)
−∇ici

(
xt
)
, ωi − xti

〉
| xt
]

≤
∑
i∈N

T∑
t=1

ηtE
[∥∥∇iĉi

(
xt
)
−∇ici

(
xt
)∥∥ ∥∥ωi − xti

∥∥ | xt
]

≤
√
nB2

∑
i∈N

ℓi

T∑
t=1

ηtδt .

When µ > 0, we set δ = 1. Then, taking expectation conditioned on xt, we have E
[∥∥At

iĝ
t
i

∥∥2 | xt] =
d2E

[
ci(x̂

t)2∥zti∥2 | xt
]
≤ d2. By Lemma K.2, and the choice ηt =

1
2d

√
t
, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

η2t
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑
t=1

η2t .

By Lemma K.5, for any ωi ∈ Xi, we have∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
| xt
]
=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉi(x

t)−∇ici
(
xt
)
, ωi − xti

〉
| xt
]

≤
∑
i∈N

Bℓi

T∑
t=1

ηtE

∑
j∈N

(
σmax

(
At

j

)2) | xt


≤
∑
i∈N

Bℓi

T∑
t=1

1

µ(t+ 1)

≤
B
∑

i∈N ℓi

µ

T∑
t=1

1

(t+ 1)
.

where the third inequality is by ∇2h(x) being positive definite, and ∇2p(x) ≥ µI .
Let L =

∑
i∈N ℓi. When µ = 0, combing and rearranging the terms, we have

E

[∑
i∈N

Dp

(
x∗i , x

T+1
i

)]

≤ O

(
nν log(T )

κηTT
+

nζB

ηTT 3/2
+

nBL

κ
√
T

+
n

κ
√
T

+
nCp

ηTT
+

nd2

κηTT

T∑
t=1

η2t
δ2t

+

√
nB2L

∑T
t=1 ηtδt

κηTT

)
.

Take ηt = 1
2dt3/4

, δt = 1
t1/4

, then
∑T

t=1
η2t
δ2t

= O
(∑T

t=1
1
t

)
= O(log(T )), and

∑T
t=1 ηtδt =

O
(∑T

t=1
1
t

)
= O(log(T )). Hence, we have

E

[∑
i∈N

Dp

(
x∗i , x

T+1
i

)]
≤ O

(
ndν log(T )

κT 1/4
+

nζdB

T 3/4
+

nBL

κ
√
T

+
ndCp

T 1/4
+

nd log(T )

κT 1/4
+

√
nB2L log(T )

κT 1/4

)
.
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When µ > 0, combing and rearranging the terms, we have

E

[∑
i∈N

Dp

(
x∗i , x

T+1
i

)]

≤ O

(
nν log(T )

κηTT
+

nζB

ηTT 3/2
+

nBL

κ
√
T

+
n√
T

+
nCp

ηTT
+

nd2

κηTT

T∑
t=1

η2t +
BL log(T )

µκηTT

)
.

Take ηt =
1

2dt1/2
, we have

E

[∑
i∈N

Dp

(
x∗i , x

T+1
i

)]
≤ O

(
ndν log(T )

κ
√
T

+
ndζB

T
+

nBL

κ
√
T

+
ndCp√

T
+

nd log(T )

κ
√
T

+
BL log(T )

µκ
√
T

)
.
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Appendix D. Proof of Theorem 5.2

Theorem 5.2 Take ηt =

{
1

2dt3/4
µ = 0

1
2dt1/2

µ > 0 ,
, δt =

{
1

t1/4
µ = 0

1 µ > 0 ,
. For a fixed ωi ∈ Xi, a fixed

sequence of {xt−i}Tt=1, and with Algorithm 1, we have

T∑
t=1

E
[
ci
(
x̂ti, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
=

O
(
νdT 3/4 log(T ) +G

√
T + ℓi

√
nBT 3/4

)
µ = 0

O
(
νd

√
T log(T ) +G

√
T + nBℓi

√
T

µ

)
µ > 0

.

Proof Define the smoothed version of ci as ĉi(x) = Ewi∼Bd [ci (xi + δAiwi, x−i)]. Then, we
decompose as

T∑
t=1

ci
(
x̂ti, x

t
−i

)
− ci

(
ωi, x

t
−i

)
=

T∑
t=1

(
ĉi
(
xti, x

t
−i

)
− ĉi

(
ωi, x

t
−i

))
+

T∑
t=1

(
ci
(
xti, x

t
−i

)
− ĉi

(
xti, x

t
−i

))
+

T∑
t=1

(
ĉi
(
ωi, x

t
−i

)
− ci

(
ωi, x

t
−i

))
+

T∑
t=1

(
ci
(
x̂ti, x

t
−i

)
− ci

(
xti, x

t
−i

))
.

For the first term, recall that by the update rule, we have,

Dh

(
ωi, x

t+1
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t+1
i

)
= Dh

(
ωi, x

t
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t
i

)
+ ηt

〈
∇ĉi

(
xt
)
, ωi − xti

〉
+ ηt

〈
ĝti −∇ĉi

(
xt
)
, ωi − xti

〉
+ ηt

〈
ĝti , x

t
i − xt+1

i

〉
= Dh

(
ωi, x

t
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t
i

)
+ ηt

〈
∇ĉi

(
xt
)
− κ∇p(xti), ωi − xti

〉
+ ηt

〈
ĝti −∇ĉi

(
xt
)
+ κ∇p(xti), ωi − xti

〉
+ ηt

〈
ĝti , x

t
i − xt+1

i

〉
.

By Lemma K.5, for any ωi ∈ Xi, we have

E
[〈
ĝti −∇ĉi

(
xt
)
+ κ∇p(xti), ωi − xti

〉
| xt
]
= E

[〈
∇iĉi(x

t)−∇iĉi
(
xt
)
+ κ∇p(xti), ωi − xti

〉
| xt
]

= E
[
κ
〈
∇p(xti), ωi − xti

〉
| xt
]

= E
[
κp(ωi)− κp(xti)− κDp(ωi, x

t
i) | xt

]
,

where the last equality follows from the definition of Bregman divergence.
Therefore,

E
[
Dh

(
ωi, x

t+1
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t+1
i

)]
= E

[
Dh

(
ωi, x

t
i

)
+ ηtκtDp

(
ωi, x

t
i

)
+ ηt

〈
∇ĉi

(
xt
)
− κ∇p(xti), ωi − xti

〉]
+ ηtE

[
κp(ωi)− κp(xti)

]
+ E

[
ηt
〈
ĝti , x

t
i − xt+1

i

〉]
.

By the monotoneity of ĉi
(
xt
)
− κp(xti), we have〈

∇ĉi
(
xt
)
− κ∇p(xti), ωi − xti

〉
≤
(
ĉi
(
ωi, x

t
−i

)
− κp(ωi)

)
−
(
ĉi
(
xti, x

t
−i

)
− κp(xti)

)
.

Hence

E
[
ĉi
(
xti, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)]
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≤ E

[(
Dh

(
ωi, x

t
i

)
−Dh

(
ωi, x

t+1
i

))
ηt

+ κ
(
tDp

(
ωi, x

t
i

)
− (t+ 1)Dp

(
ωi, x

t+1
i

))
+
〈
ĝti , x

t
i − xt+1

i

〉]
.

When µ = 0, by Lemma K.2, we have E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤ ηtE

[∥∥At
iĝ

t
i

∥∥2]. Taking expecta-

tion conditioned on xt, we have E
[∥∥At

iĝ
t
i

∥∥2 | xt] = d2

δ2t
E
[
c̃i(x̂

t)2∥zti∥2 | xt
]
≤ d2

δ2t
, and therefore

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤ ηtd2

δ2t
.

Taking summation over T , and take ηt =
1

2dt3/4
, δt = 1

t1/4
we have

T∑
t=1

E
[
ĉi
(
xti, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)]
≤ dT 3/4E

[
Dh

(
ωi, x

1
i

)]
+ κE

[
Dp

(
ωi, x

1
i

)]
+

T∑
t=1

ηtd
2

δ2

≤ O
(
dT 3/4E

[
Dh

(
ωi, x

1
i

)]
+ κCp + T 3/4

)
,

as we assumed Dp(xi, x
′
i) is bounded for any xi, x

′
i.

When µ > 0, taking expectation conditioned on xt, we have E
[∥∥At

iĝ
t
i

∥∥2 | xt] = d2E
[
ci(x̂

t)2∥zti∥2 | xt
]
≤

d2. By Lemma K.2, and the choice ηt =
1

2d
√
t
, we have

T∑
t=1

∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

ηt
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑
t=1

ηt = nd2
√
T .

Taking summation over T , and take ηt =
1

2dt1/2
, we have

T∑
t=1

E
[
ĉi
(
xti, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)]
≤ dT 1/2E

[
Dh

(
ωi, x

1
i

)]
+ κE

[
Dp

(
ωi, x

1
i

)]
+ nd2

√
T ,

as we assumed Dp(xi, x
′
i) is bounded for any xi, x

′
i.

Define πx(y) = inf
{
t ≥ 0 : x+ 1

t (y − x) ∈ Xi

}
. Notice that x1i (x) = argminxi∈Xi

h(xi), so
Dh(ωi, x

1
i ) = h(ωi)− h(x1i ).

• If πx1
i
(ωi) ≤ 1− 1√

T
, then by Lemma K.6, Dh(ωi, x

1
i ) = ν log(T ), and

∑T
t=1 E

[
ĉi
(
xti, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)]
=

O
(
νdT 3/4 log(T )

)
.

• Otherwise, we find a point ω′
i such that ∥ω′

i−ωi∥ = O(1/
√
T ) and πx1

i
(ω′

i) ≤ 1− 1√
T

. Then
Dh(ω

′
i, x

1
i ) = ν log(T ),

ĉi
(
ω′
i, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)
≤
〈
∇iĉi

(
ω′
i, x

t
−i

)
, ω′

i − ωi

〉
≤ ∥∇iĉi

(
ω′
i, x

t
−i

)
∥∥ω′

i − ωi∥ ≤ maxx ∥∇ici (x) ∥√
T

.

Therefore,
∑T

t=1 E
[
ĉi
(
xti, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)]
= O

(
νdT 3/4 log(T ) + maxx ∥∇ici (x) ∥

√
T
)

.

For the second term, by Jensen’s inequality, we have

ĉi
(
xti, x

t
−i

)
Ewt

i∼Bd

[
ci
(
xti + δtA

t
iw

t
i , x

t
−i

)]
≥ ci

(
Ewt

i∼Bdxti + δtA
t
iw

t
i , x

t
−i

)
= ci

(
xti, x

t
−i

)
.
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Therefore, we have
∑T

t=1

(
ci
(
xti, x

t
−i

)
− ĉi

(
xti, x

t
−i

))
= 0.

When µ = 0, by the definition of ĉi and the smoothness of ci,

∥∇iĉi(x
t)−∇ici

(
xt
)
∥ =

∥∥∥Ewi∼BdEz−i∼Πj ̸=iSd
[
∇ici

(
xti + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
xt
)]∥∥∥

≤ ℓi

√√√√√Ewi∼BdEz−i∼Πj ̸=iSd

δ2t ∥δtAiwi∥2 + δ2t
∑
j ̸=i

∥Ajzj∥2
 .

Since p is convex, ∇2p(x) is positive semi-definite, and At
i ⪯ (∇2h(xi))

−1/2. For x̄ti = xti+At
iw

t
i .

Define ∥v∥x =
√
v⊤∇2h(x)v, we have ∥x̄ti −xti∥xi ≤ ∥ωt

i∥ ≤ 1, and x̄ti ∈ W (xti), where W (x) =
{x′i ∈ Rd, ∥x′i−xi∥xi ≤ 1} is the Dikin ellipsoid. Since W (xi) ⊆ Xi,∀xi ∈ int(Xi), we can upper
bound ∥Aiwi∥2 by B2, the diameter of the set Xi. Hence ∥∇iĉi(x

t)−∇ici
(
xt
)
∥ ≤ ℓiδt

√
nB.

Therefore, for the third term, we have

T∑
t=1

E
[
ĉi
(
ωi, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
≤ O

(
T∑
t=1

ℓiδt
√
nB

)
.

Similarly, for the fourth term, we have
∑T

t=1 E
[
ci
(
x̂ti, x

t
−i

)
− ci

(
xti, x

t
−i

)]
≤ O

(∑T
t=1 ℓiδt

√
nB
)

.
When µ > 0, by Lemma K.5, for any ωi ∈ Xi, we have

∥∥∇iĉi(x
t)−∇ici

(
xt
)∥∥ ≤ ℓi

√√√√∑
j∈N

(
σmax

(
At

j

)2)
≤ nℓi√

µ(t+ 1)
.

where the second inequality is by ∇2h(x) being positive definite, and ∇2p(x) ≥ µI .
Therefore, for the third term, we have

T∑
t=1

E
[
ĉi
(
ωi, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
≤ O

(
nBℓi

√
T

µ

)
.

Similarly, for the fourth term, we have
∑T

t=1 E
[
ci
(
x̂ti, x

t
−i

)
− ci

(
xti, x

t
−i

)]
≤ O

(
nBℓi

√
T

µ

)
.

When µ = 0, with δt =
1

t1/4
, we have the regret as

T∑
t=1

E
[
ci
(
x̂ti, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
= O

(
νdT 3/4 log(T ) + max

x
∥∇ici (x) ∥

√
T + ℓi

√
nBT 3/4

)
.

When µ > 0, we have the regret as

T∑
t=1

E
[
ci
(
x̂ti, x

t
−i

)
− ci

(
ωi, x

t
−i

)]
= O

(
νdT 1/2 log(T ) + max

x
∥∇ici (x) ∥

√
T +

nBℓi
√
T

µ

)
.

Combining the terms yields the final result.
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Appendix E. Proof of Theorem E.1

We now consider the case where every player receive c̃i(x
t) = ci(x

t) + ϵti, where E[ϵti | x̂t] = 0,
and ∥ϵti∥2 ≤ σ. The following theorem describes the last-iterate convergence rate (in expectation)
for monotone and strongly monotone games under noisy bandit feedback.

Theorem E.1
With ηt =

1
4d2(1+σ)t3/4

, δt = 1
t1/4∑

i∈N
Dp

(
x∗i , x

T+1
i

)
≤ O

(
nνd2(1 + σ) log(T )

κT 1/4
+

nζd2(1 + σ)B

T 3/4
+

nd2(1 + σ)Cp

T 1/4

+

√
nB2L log(T )

κT 1/4
+

nd log(T )

κ(1 + σ)2T 1/4

)
.

Proof Similar to Theorem 5.1, with Lemma K.1, we have

∑
i∈N

Dp

(
x∗i , x

T+1
i

)
≤ O

(
nν log(T )

κηTT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)

+

√
nB2L

∑T
t=1 ηtδt

ηTκ(T + 1)
+

1

ηTκ(T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
.

Taking expectation conditioned on xt, we have E
[∥∥At

iĝ
t
i

∥∥2 | xt] = d2

δ2t
E
[
c̃i(x̂

t)2∥zti∥2 | xt
]
≤

d2

δ2t
(2 + 2σ). By Lemma K.2, and the choice ηt =

1
4d2(1+σ)t3/4

, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

η2t
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑
t=1

η2t
δ2t

=
n log(T )

16(1 + σ)2
.

Combining everything, we have∑
i∈N

Dp

(
x∗i , x

T+1
i

)
≤ O

(
nνd2(1 + σ) log(T )

κT 1/4
+

nζd2(1 + σ)B

T 3/4
+

nd2(1 + σ)Cp

T 1/4
+

√
nB2L log(T )

κT 1/4
+

nd log(T )

κ(1 + σ)2T 1/4

)
.
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Appendix F. Proof of Theorem F.1

Theorem F.1 With a probability of at least 1− log(T )δ, δ ≤ e−1, and with Algorithm 1, we have∑
i∈N Dp

(
x∗i , x

T+1
i

)
≤ O

(
ndν log(T )√

T
+ ndζB

T + nBL√
T

+
ndCp√

T
+ nd log(T )√

T
+ dBL log(T )

µ
√
T

+ nBd2 log2(1/δ) log(T )

min{√µ,µ}
√
T

)
.

Proof Lemma K.1, we have∑
i∈N

Dp

(
x∗i , x

T+1
i

)
≤ O

(
nν log(T )

κηTT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

κηT (T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑
i∈N

〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
.

By Lemma K.2, we have

T∑
t=1

ηt
∑
i∈N

〈
ĝti , x

t
i − xt+1

i

〉
≤

T∑
t=1

η2t
∑
i∈N

∥∥At
iĝ

t
i

∥∥2 ≤ nd2
T∑
t=1

η2t .

We then decompose the last term as

T∑
t=1

ηt
∑
i∈N

〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
=

T∑
t=1

ηt
∑
i∈N

〈
gti − ĉti(x

t
i), ωi − xti

〉
+
∑
i∈N

T∑
t=1

ηt
〈
∇iĉi(x

t)−∇ici
(
xt
)
, ωi − xti

〉
.

By Lemma F.1, we have

T∑
t=1

ηt
〈
gti − ĉti(x

t
i), ωi − xti

〉
≤ O

(
Bd log2(1/δ) log(T )

min{√µ, µ}

)
,

with a probability of at least 1− log(T )δ, δ ≤ e−1.
By Lemma K.5, for any ωi ∈ Xi, we have

∑
i∈N

T∑
t=1

ηt
〈
∇iĉi(x

t)−∇ici
(
xt
)
, ωi − xti

〉
≤
∑
i∈N

Bℓi

T∑
t=1

ηt
∑
j∈N

(
σmax

(
At

j

)2) | xt

≤
∑
i∈N

Bℓi

T∑
t=1

1

µ(t+ 1)

≤
B
∑

i∈N ℓi

µ

T∑
t=1

1

(t+ 1)

≤ BL log(T )

µ

where the third inequality is by ∇2h(x) being positive definite, and ∇2p(x) ≥ µI .
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Therefore,

T∑
t=1

ηt
∑
i∈N

〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
≤ O

(
BL log(T )

µ
+

nBd log2(1/δ) log(T )

min{√µ, µ}

)
.

Combining the terms, and with ηt =
1

2d
√
t
, we have∑

i∈N
Dp

(
x∗i , x

T+1
i

)
≤ O

(
ndν log(T )

κ
√
T

+
ndζB

T
+

nBL

κ
√
T

+
ndCp√

T
+

nd log(T )

κ
√
T

+
dBL log(T )

κµ
√
T

+
nBd2 log2(1/δ) log(T )

κmin{√µ, µ}
√
T

)
.

Lemma F.1 With a probability of at least 1− log(T )δ, δ ≤ e−1, we have

T∑
t=1

ηt
〈
gti − ĉti(x

t
i), ωi − xti

〉
≤ O

(
Bd log2(1/δ) log(T )

min{√µ, µ}

)
.

Proof Define Zt = ηt
〈
gti − ĉti(x

t
i), ωi − xti

〉
. Var[Zt] ≤ η2(ωi − xti)

⊤E[gti(gti)⊤](ωi − xti). Then,
with ηt =

1
2d

√
t
,

max
t

|Zt| ≤ max
t

∥∥ηt (gti − ĉti(x
t
i)
)∥∥ ∥∥ωi − xti

∥∥ ≤ O
(
Bdmax

t
∥ηt(At

i)
−1zti∥

)
≤ O

(
max

t

Bd

µ(t+ 1)

)
≤ O

(
Bd

µ

)
,

where the third inequality is by the definition of At
i.

By the definition of gradient estimator, we have

(gti)
⊤gti ≤ d2

(
(At

i)
−1zti

)⊤ (
(At

i)
−1zti

)
≤ d2

µηt(t+ 1)
.

Therefore, with ηt =
1

2d
√
t

(ωi − xti)
⊤E[gti(gti)⊤](ωi − xti) ≤

d2∥ωi − xti∥2

µηt(t+ 1)
≤ d2B2

µηt(t+ 1)
≤ dB2

µ
√
t
.

We have√√√√ T∑
t=1

η2t (ωi − xti)
⊤E[gti(gti)⊤](ωi − xti) ≤

√√√√ T∑
t=1

B2

dµt3/2
≤ O

(
B
√
log(T )√
dµ

)
.

Then, by Lemma 2 of [2], with a probability of at least 1− log(T )δ, δ ≤ e−1,

T∑
t=1

ηt
〈
gti − ĉti(x

t
i), ωi − xti

〉
≤ 2max

2

√√√√ T∑
t=1

Var[Zt],max
t

|Zt| log(1/δ)


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≤ max

{
O

(
B
√
log(T )√
dµ

)
, O

(
Bd log(1/δ)

µ

)}
· log(1/δ)

≤ O

(
Bd log2(1/δ) log(T )

min{√µ, µ}

)
.
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Appendix G. Extension to Linear Cost Functions

When ci is linear, there does not exist a p that is convex while making ci − κp convex. Algorithm
1 therefore does not apply to the linear case. This coincides with our intuition that the landscape ci
does not provide enough curvature information for the algorithm to utilize.

To extend the algorithm to the linear case, we modify line 6 of Algorithm 1 as xt+1
i = argminxi∈Xi

{
ηt
〈
xi, ĝ

t
i

〉
+ ηtτ(t+ 1)Dp(xi, x

t
i) +Dh(xi, x

t
i)
}

.
The idea is to first show the convergence of xT to a game with the cost ci(x)+τp(x). With this reg-
ularized game, we choose p to be a strongly convex function and measure the convergence in terms
of the gap function ⟨ci(x), xi − x∗⟩. By carefully controlling τ , we obtain the following result.

Theorem G.1 With ηt =
1

2d
√
t
, τ = 1

T 1/6 , Gp = supx ∥∇p(x)∥ and Algorithm 1, we have

E

[∑
i∈N

〈
∇ici

(
xT
)
, xTi − x∗i

〉]

≤ Õ

(
BGp +

√
d(BL+G)(nν + nBL+ nd2)

T 1/6
+

√
dBL(BL+G)
√
µT 1/6

+

√
dnCp(BL+G)

√
µT 1/4

)
.

Similar regularization techniques have been used in the analysis of the zero-sum game [7, 10].
Our result matches the last-iterate convergence for zero-sum matrix game [7], which is a class of
games with linear cost functions. However, our result is more general as it applies to multi-player
linear games with convex and compact action sets (while previous works only apply to a simplex
action set). It remains open to how games with linear cost functions could be effectively learned
and whether the convergence rate could be improved.
Proof We consider a regularized game with operator F̃ (x) = [F̃i(x)]i∈N , where F̃i(x) = ∇ci(x)+
τ∇p(xi), ∇p(x) = [∇ip(xi)]i∈N .

Similar to Lemma K.1, we have∑
i∈N

Dp

(
xτi , x

T+1
i

)
≤ O

(
nν log(T )

ηT τT
+

nµB

ηT τT 3/2

)
+O

(
nB
∑

i∈N ℓi

τT 3/2
+

n

τT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

ηT τ(T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

ηT τ(T + 1)

T∑
t=1

ηt
∑
i∈M

〈
ĝti − F̃i

(
xt
)
, xτi − xti

〉

+
1

ηT τ(T + 1)

T∑
t=1

ηt
∑

i∈N\M

〈
ĝti − F̃i

(
xt
)
, x̄i − xti

〉
.

Taking expectation conditioned on xt, we have E
[∥∥At

iĝ
t
i

∥∥2 | xt] = d2E
[
ci(x̂

t)2∥zti∥2 | xt
]
≤

d2. By Lemma K.2, and the choice ηt =
1

2d
√
t
, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

η2t
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑
t=1

η2t .
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By Lemma K.5, for any ωi ∈ Xi, we have

∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
| xt
]
=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉi(x

t)−∇ici
(
xt
)
, ωi − xti

〉
| xt
]

≤
∑
i∈N

T∑
t=1

ηtE
[∥∥∇iĉi(x

t)−∇ici
(
xt
)∥∥ ∥∥ωi − xti

∥∥ | xt
]

≤
∑
i∈N

Bℓi

T∑
t=1

ηtE

∑
j∈N

(
σmax

(
At

j

)2) | xt


≤
∑
i∈N

Bℓi

T∑
t=1

1

µ(t+ 1)

≤
B
∑

i∈N ℓi

µ

T∑
t=1

1

(t+ 1)
.

where the third inequality is by ∇2h(x) being positive definite, and ∇2p(x) ≥ µI .
Combing and rearranging the terms, we have

E

[∑
i∈N

Dp

(
xτi , x

T+1
i

)]

≤ O

(
nν log(T )

ηT τT
+

nζB

ηT τT 3/2

)
+O

(
nB
∑

i∈N ℓi

τ
√
T

+
n

τ
√
T

)
+O

(
nCp

ηTT

)
+O

(
nd2

τηTT

T∑
t=1

η2t +
B
∑

i∈N ℓi

τµηTT

T∑
t=1

1

t

)
.

Take ηt =
1

2d
√
t
, we have

E

[∑
i∈N

Dp

(
xτi , x

T+1
i

)]

≤ O

(
ndν log(T )

τ
√
T

+
ndζB

τT
+

nB
∑

i∈N ℓi

τ
√
T

+
n

τ
√
T

+
ndCp√

T
+

nd log(T )

τ
√
T

+
dB log(T )

∑
i∈N ℓi

τµ
√
T

)
.

We can decompose as〈
F
(
xT
)
, xT − x∗

〉
=
〈
F
(
xT
)
, xT − xτ

〉
+
〈
F
(
xT
)
, xτ − x∗

〉
≤ G

∥∥xT − xτ
∥∥+ ⟨F (xτ ) + τ∇p(xτ ), xτ − x∗⟩+

〈
F
(
xT
)
− F (xτ ) , xτ − x∗

〉
+ τB ∥∇p(xτ )∥

≤
∑
i∈N

(Bℓi +G)
∥∥xTi − xτ

∥∥+ τB ∥∇p(xτ )∥ .

Since ∇2p(x) ⪰ µI , we have ∥xτi − xTi ∥ ≤
√

Dp(xτi , x
T
i ). Let Gp = supx ∥∇p(x)∥, L =∑

i∈N ℓi, we have

E

[∑
i∈N

〈
∇ici

(
xT
)
, xTi − x∗i

〉]
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≤ O (τBGp) + Õ

(√
d(BL+G)(nν + nBL+ nd2)

√
τT 1/4

)
+ Õ

(√
dBL(BL+G)
√
τµT 1/4

)
+O

(√
dnCp(BL+G)

√
µT 1/4

)

≤ Õ

(
BGp +

√
d(BL+G)(nν + nBL+ nd2)

T 1/6

)
+ Õ

(√
dBL(BL+G)
√
µT 1/6

)
+O

(√
dnCp(BL+G)

√
µT 1/4

)
,

where the last inequality is by taking τ = 1
T 1/6 .
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Appendix H. Proof of Proposition 5.1

Proposition 5.1 With ηt = 1
2dt3/4

, δt = 1
t1/4

, and suppose every player employ Algorithm 1, we

have 1
T

∑T
t=1 E [SW(x̂)] = O

(
C1OPT
(1−C2)

+ nνd log(T )

(1−C2)T 1/4 +
√
nB

∑
i∈N ℓi

(1−C2)T 1/4

)
.

Proof By Theorem 5.2, we have

T∑
t=1

∑
i∈N

E
[
ci
(
x̂ti, x̂

t
−i

)]
≤

T∑
t=1

∑
i∈N

E
[
ci
(
ωi, x̂

t
−i

)]
+O

(
nνdT 3/4 log(T ) +

√
nBT 3/4

∑
i∈N

ℓi

)

≤ C1OPT · T + C2

T∑
t=1

E [SW(x̂)] +O

(
nνdT 3/4 log(T ) +

√
nBT 3/4

∑
i∈N

ℓi

)
.

As
∑T

t=1

∑
i∈N E

[
ci
(
x̂ti, x̂

t
−i

)]
= E [SW(x̂)], we solve for E [SW(x̂)] and obtain

1

T

T∑
t=1

E [SW(x̂)] = O

(
C1OPT

(1− C2)
+

nνd log(T )

(1− C2)T 1/4
+

√
nB
∑

i∈N ℓi

(1− C2)T 1/4

)
.

24



UNCOUPLED AND CONVERGENT LEARNING IN MONOTONE GAMES UNDER BANDIT FEEDBACK

Appendix I. Proof of Theorem 6.1

Theorem 6.1 With
∑T

t=1

∑
i∈N maxx ∥∇ici(x) − ∇ic

t
i(x)∥2 = Tα, take ηt =

1
2dt3/4

, δt = 1
t1/4

,

and under Algorithm 1, we have E
[∑

i∈N Dp

(
x∗i , x

T+1
i

)]
≤ O

(
ndν log(T )

κT 1/4 + nζdB
T 3/4 + nBL

κ
√
T
+

ndCp

T 1/4

+nd log(T )

κT 1/4 +
√
nB2L log(T )

κT 1/4 + B
T 1/4−α

)
.

Proof
Similar to Theorem 5.1, we have∑
i∈N

Dp

(
x∗i , x

T+1
i

)
≤ O

(
nν log(T )

ηTκT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

κηT (T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑
i∈M

〈
ĝti −∇ic

t
i

(
xt
)
, x∗i − xti

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑

i∈N\M

〈
ĝti −∇ic

t
i

(
xt
)
, x̄i − xti

〉
+B

T∑
t=1

∆t ,

where ∆t =
∑

i∈N maxx ∥∇ici(x)−∇ic
t
i(x)∥2.

We now upper bound the remaining terms by discussing them by cases.
When µ = 0, taking expectation conditioned on xt, we have E

[∥∥At
iĝ

t
i

∥∥2 | xt] = d2

δ2t
E
[
cti(x̂

t)2∥zti∥2 | xt
]
≤

d2

δ2t
. By Lemma K.2, and the choice ηt =

1
2d

√
t
, we have

T∑
t=1

ηt
∑
i∈N

E
[〈
ĝti , x

t
i − xt+1

i

〉]
≤

T∑
t=1

η2t
∑
i∈N

E
[∥∥At

iĝ
t
i

∥∥2] ≤ nd2
T∑
t=1

η2t
δ2t

.

By the definition of ĉi,

∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ic

t
i

(
xt
)
, ωi − xti

〉
| xt
]

=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉ

t
i(x

t)−∇ic
t
i

(
xt
)
, ωi − xti

〉
| xt
]

=
∑
i∈N

T∑
t=1

ηtE
[
Ewi∼BdEz−i∼Πj ̸=iSd

〈
∇ic

t
i

(
xti + δtA

t
iwi, x̂

t
−i

)
−∇ic

t
i

(
xt
)
, ωi − xti

〉
| xt
]

≤ B
∑
i∈N

T∑
t=1

ηtE
[
Ewi∼BdEz−i∼Πj ̸=iSd

∥∥∇ic
t
i

(
xti + δtA

t
iwi, x̂

t
−i

)
−∇ic

t
i

(
xt
)∥∥ | xt

]
By the smoothness of cti,

Ewi∼BdEz−i∼Πj ̸=iSd
[∥∥∇ic

t
i

(
xti + δtA

t
iwi, x̂

t
−i

)
−∇ic

t
i

(
xt
)∥∥]
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≤ ℓiEwi∼BdEz−i∼Πj ̸=iSd

√δ2t ∥Aiwi∥2 + δ2t
∑
j ̸=i

∥Ajzj∥2
 .

Since p is convex, ∇2p(x) is positive semi-definite, and At
i ⪯ (∇2h(xi))

−1/2. For x̄ti = xti+At
iw

t
i .

Define ∥v∥x =
√

v⊤∇2h(x)v, we have ∥x̄ti−xti∥xi ≤ ∥ωt
i∥ ≤ 1, and x̄ti ∈ W (xti), where W (xi) =

{x′i ∈ Rd, ∥x′i−xi∥xi ≤ 1} is the Dikin ellipsoid. Since W (xi) ⊆ Xi,∀xi ∈ int(Xi), we can upper
bound ∥Aiwi∥2 by B2, the diameter of the set Xi. Hence ∥∇iĉi(x

t)−∇ici
(
xt
)
∥ ≤ ℓiδt

√
nB. By

Lemma K.5

∑
i∈N

T∑
t=1

ηtE
[〈
ĝti −∇ic

t
i

(
xt
)
, ωi − xti

〉
| xt
]
=
∑
i∈N

T∑
t=1

ηtE
[〈
∇iĉ

t
i

(
xt
)
−∇ic

t
i

(
xt
)
, ωi − xti

〉
| xt
]

≤
∑
i∈N

T∑
t=1

ηtE
[∥∥∇iĉ

t
i

(
xt
)
−∇ic

t
i

(
xt
)∥∥ ∥∥ωi − xti

∥∥ | xt
]

≤
√
nB2

∑
i∈N

ℓi

T∑
t=1

ηtδt .

Let L =
∑

i∈N ℓi. When µ = 0, combing and rearranging the terms, we have

E

[∑
i∈N

Dp

(
x∗i , x

T+1
i

)]

≤ O

(
nν log(T )

κηTT
+

nζB

ηTT 3/2
+

nBL

κ
√
T

+
n

κ
√
T

+
nCp

ηTT
+

nd2

κηTT

T∑
t=1

η2t
δ2t

+

√
nB2L

∑T
t=1 ηtδt

κηTT
+

B
∑T

t=1∆
t

ηTT

)
.

Take ηt = 1
2dt3/4

, δt = 1
t1/4

, then
∑T

t=1
η2t
δ2t

= O
(∑T

t=1
1
t

)
= O(log(T )), and

∑T
t=1 ηtδt =

O
(∑T

t=1
1
t

)
= O(log(T )). Hence, we have

E

[∑
i∈N

Dp

(
x∗i , x

T+1
i

)]
≤ O

(
ndν log(T )

κT 1/4
+

nζdB

T 3/4
+

nBL

κ
√
T

+
ndCp

T 1/4
+

nd log(T )

κT 1/4
+

√
nB2L log(T )

κT 1/4
+

B∆

T 1/4

)
,

where ∆ =
∑T

t=1

∑
i∈N maxx ∥∇ici(x)−∇ic

t
i(x)∥2.
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Appendix J. Proof of Theorem 6.2

Theorem 6.2 Assume Vi(T ) ≤ Tφ, φ ∈ [0, 1]. Take ηt = 1

2dt
(1−φ)

3

, δt = 1
t1/2

, and under Algorithm

1, we have 1
T

∑T
t=1

∑
i∈N

〈
∇ic

t
i

(
x̂ti, x̂

t
−i

)
, x̂ti − xt,∗i

〉
= Õ

(
nνd+Ln3/2B2+nG

T
2(1−φ)

3

+ n

T
9
8− (4φ+5)2

72

)
.

Proof We first fix a player i decomposes

T∑
t=1

〈
∇ic

t
i

(
x̂ti, x̂

t
−i

)
, x̂ti − xt,∗i

〉
=

T∑
t=1

〈
∇ic

t
i

(
x̂ti, x̂

t
−i

)
, x̂ti − ωi

〉
+

T∑
t=1

〈
∇ic

t
i

(
x̂ti, x̂

t
−i

)
, ωi − xt,∗i

〉
.

For the second term, we partition the horizon of play T into m batches Tk, k ∈ [m], each of
length |Tk| = T q, q ∈ [0, 1]. We will determine q later. Note that the number of batches is thus
m = T 1−q. For the batch Tk, we pick ωi to be the Nash equilibrium of the first game. Then∑

t∈[Tk]

〈
∇ic

t
i

(
x̂ti, x̂

t
−i

)
, ωi − xt,∗i

〉
≤
∑
t∈[Tk]

∥∥∇ic
t
i

(
x̂ti, x̂

t
−i

)∥∥ ∥∥∥ωi − xt,∗i

∥∥∥
≤ GT q max

t∈[Tk]

∥∥∥ωi − xt,∗i

∥∥∥
≤ GT q

∑
t∈[Tk]

∥∥∥xt+1,∗
i − xt,∗i

∥∥∥
≤ GT qVi(Tk) ,

where the third inequality is by the definition of ωi.
Therefore, we have

T∑
t=1

〈
∇ic

t
i

(
x̂ti, x̂

t
−i

)
, x̂ti − xt,∗i

〉
=

m∑
k=1

∑
t∈[Tk]

〈
∇ic

t
i

(
x̂ti, x̂

t
−i

)
, x̂ti − ωi

〉
+GT qVi(T ) .

Define the smoothed version of ci as ĉti(x) = Ewi∼Bd

[
cti (xi + δAiwi, x−i)

]
. Then, for batch

Tk, we decompose
∑T

t=1

〈
∇ici

(
x̂ti, x̂

t
−i

)
, x̂ti − ωi

〉
as∑

t∈[Tk]

〈
∇ici

(
x̂ti, x̂

t
−i

)
, x̂ti − ωi

〉
=
∑
t∈[Tk]

〈
∇iĉi

(
x̂ti, x̂

t
−i

)
, x̂ti − ωi

〉
+
∑
t∈[Tk]

〈
∇ici

(
x̂ti, x̂

t
−i

)
−∇iĉi

(
x̂ti, x̂

t
−i

)
, x̂ti − ωi

〉
≤
∑
t∈[Tk]

〈
∇iĉi

(
x̂ti, x̂

t
−i

)
, x̂ti − ωi

〉
+B

∑
t∈[Tk]

∥∥∇ici
(
x̂ti, x̂

t
−i

)
−∇iĉi

(
x̂ti, x̂

t
−i

)∥∥
2
.

For the first term, recall that by the update rule, we have,

Dh

(
ωi, x̂

t+1
i

)
= Dh

(
ωi, x̂

t
i

)
+ ηt

〈
∇ĉti

(
x̂t
)
, ωi − x̂ti

〉
+ ηt

〈
ĝti −∇ĉti

(
x̂t
)
, ωi − x̂ti

〉
+ ηt

〈
ĝti , x̂

t
i − x̂t+1

i

〉
.
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By Lemma K.5, for any ωi ∈ Xi, we have

E
[〈
ĝti −∇ĉti

(
x̂t
)
, ωi − x̂ti

〉
| x̂t
]
= E

[〈
∇iĉ

t
i(x̂

t)−∇iĉ
t
i

(
x̂t
)
, ωi − x̂ti

〉
| x̂t
]
= 0 .

Therefore,

E
[
Dh

(
ωi, x̂

t+1
i

)]
= E

[
Dh

(
ωi, x̂

t
i

)
+ ηt

〈
∇ĉti

(
x̂t
)
, ωi − x̂ti

〉]
+ ηtE

[〈
ĝti , x̂

t
i − x̂t+1

i

〉]
.

Rearranging the terms yields

E
[〈
∇ĉti

(
x̂t
)
, x̂ti − ωi

〉]
≤ E

[(
Dh

(
ωi, x̂

t
i

)
−Dh

(
ωi, x̂

t+1
i

))
ηt

+ ηt
〈
ĝti , x̂

t
i − x̂t+1

i

〉]
.

By Lemma K.2, we have E
[〈
ĝti , x̂

t
i − x̂t+1

i

〉]
≤ ηtE

[∥∥At
iĝ

t
i

∥∥2]. Taking expectation condi-

tioned on x̂t, we have E
[∥∥At

iĝ
t
i

∥∥2 | x̂t] = d2

δ2t
E
[
c̃ti(x̂

t)2∥zti∥2 | x̂t
]
≤ d2

δ2t
, and therefore E

[〈
ĝti , x̂

t
i − x̂t+1

i

〉]
≤

ηtd2

δ2t
.

Taking summation over T , and take ηt =
1

2dtp , δt = 1
tr we have

∑
t∈[Tk]

E
[〈
∇ĉti

(
x̂t
)
, x̂ti − ωi

〉]
≤ dT pE

[
Dh

(
ωi, x

1
i

)]
+
∑
t∈[Tk]

ηtd
2

δ2

≤ O
(
dT pE

[
Dh

(
ωi, x

1
i

)]
+ T q(p−2r)

)
,

as we assumed Dp(xi, x
′
i) is bounded for any xi, x

′
i.

Define πx(y) = inf
{
t ≥ 0 : x+ 1

t (y − x) ∈ Xi

}
. Notice that x1i (x) = argminxi∈Xi

h(xi), so
Dh(ωi, x

1
i ) = h(ωi)− h(x1i ).

• If πx1
i
(ωi) ≤ 1− 1√

T q
, then by Lemma K.6, Dh(ωi, x

1
i ) = ν log(T q), and

∑T
t=1 E

[
ĉi
(
x̂ti, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)]
=

O
(
νdT 1−p log(T q)

)
.

• Otherwise, we find a point ω′
i such that ∥ω′

i − ωi∥ = O(1/
√
T q) and πx1

i
(ω′

i) ≤ 1 − 1√
T q

.
Then Dh(ω

′
i, x

1
i ) = ν log(T q),

〈
∇iĉ

t
i

(
ω′
i, x

t
−i

)
, ω′

i − ωi

〉
≤ ∥∇iĉ

t
i

(
ω′
i, x

t
−i

)
∥∥ω′

i − ωi∥ ≤ G√
T q

.

Therefore,
∑

t∈[Tk]
E
[
ĉi
(
x̂ti, x

t
−i

)
− ĉi

(
ωi, x

t
−i

)]
= O

(
νdT p log(T q) +GT q/2 + T q(p−2r)

)
.

By the definition of ĉi and the smoothness of ci,

∥∇iĉi(x̂
t)−∇ici

(
x̂t
)
∥ =

∥∥∥Ewi∼BdEz−i∼Πj ̸=iSd
[
∇ici

(
x̂ti + δtA

t
iwi, x̂

t
−i

)
−∇ici

(
x̂t
)]∥∥∥

≤ ℓi

√√√√√Ewi∼BdEz−i∼Πj ̸=iSd

δ2t ∥δtAiwi∥2 + δ2t
∑
j ̸=i

∥Ajzj∥2
 .
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Since p is convex, ∇2p(x) is positive semi-definite, and At
i ⪯ (∇2h(xi))

−1/2. For x̄ti = x̂ti+At
iw

t
i .

Define ∥v∥x =
√
v⊤∇2h(x)v, we have ∥x̄ti − x̂ti∥xi ≤ ∥ωt

i∥ ≤ 1, and x̄ti ∈ W (x̂ti), where W (x) =
{x′i ∈ Rd, ∥x′i−xi∥xi ≤ 1} is the Dikin ellipsoid. Since W (xi) ⊆ Xi,∀xi ∈ int(Xi), we can upper
bound ∥Aiwi∥2 by B2, the diameter of the set Xi. Hence ∥∇iĉi(x̂

t)−∇ici
(
x̂t
)
∥ ≤ ℓiδt

√
nB.

With δt =
1
tr , we have∑

t∈[Tk]

E
[〈
∇ici

(
x̂ti, x̂

t
−i

)
, x̂ti − ωi

〉]
= O

(
νdT p log(T q) +GT q/2 + T q(p−2r) + ℓi

√
nB2T q(1−r)

)
.

Combining, as m = T 1−q we have

T∑
t=1

E
[〈

∇ic
t
i

(
x̂ti, x̂

t
−i

)
, x̂ti − xt,∗i

〉]
= O (GT qVi(T )) +

∑
j∈[m]

Õ
(
νdT 1−p +GT q/2 + T q(p−2r) + ℓi

√
nB2T q(1−r)

)
= Õ

(
νdT (1−q)+p +GT (1−q)+q/2 + T (1−q)+q(p−2r) + ℓi

√
nB2T (1−q)+q(1−r) +GT qVi(T )

)
.

When Vi(T ) = Tφ, φ ∈ [0, 1], we set q = 2(1−φ)
3 , p = (1−φ)

3 , r = 1
2 , we have

T∑
t=1

E
[〈

∇ic
t
i

(
x̂ti, x̂

t
−i

)
, x̂ti − xt,∗i

〉]
= Õ

((
νd+G+ ℓi

√
nB2

)
T

1+2φ
3 + T

(2φ+1)(φ+2)
9

)
.

Divided by T , we have

1

T

T∑
t=1

E
[〈

∇ic
t
i

(
x̂ti, x̂

t
−i

)
, x̂ti − xt,∗i

〉]
= Õ

(
νd+G+ ℓi

√
nB2

T
2(1−φ)

3

+
1

T
9
8
− (4φ+5)2

72

)
.

Sum over i ∈ N and we have the claimed result.
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Appendix K. Auxiliary Lemmas

Lemma K.1 With the update rule equation 1,∑
i∈N

Dp

(
x∗i , x

T+1
i

)
≤ O

(
nν log(T )

ηTκT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

κηT (T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑
i∈M

〈
ĝti −∇ici

(
xt
)
, x∗i − xti

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑

i∈N\M

〈
ĝti −∇ici

(
xt
)
, x̄i − xti

〉
,

where x̄i is a point such that ∥x̄i − x∗i ∥ = O(1/
√
T ) and inf

{
t ≥ 0 : x1i +

1
t (x̄i − x1i ) ∈ Xi

}
≤

1− 1/
√
T .

Proof By the update rule equation 1, we have

ηtĝ
t
i + ηtκ(t+ 1)

(
∇p
(
xt+1
i

)
−∇p

(
xti
))

+
(
∇h
(
xt+1
i

)
−∇h

(
xti
))

= 0 .

For a fixed point ωi, by the three-point equality of Bregman divergence, we have

Dh

(
ωi, x

t+1
i

)
= Dh

(
ωi, x

t
i

)
−Dh

(
xt+1
i , xti

)
+
〈
∇h
(
xti
)
−∇h

(
xt+1
i

)
, ωi − xt+1

i

〉
= Dh

(
ωi, x

t
i

)
−Dh

(
xt+1
i , xti

)
+ ηt

〈
ĝti , ωi − xt+1

i

〉
+ ηtκ(t+ 1)

〈
∇p
(
xt+1
i

)
−∇p

(
xti
)
, ωi − xt+1

i

〉
= Dh

(
ωi, x

t
i

)
−Dh

(
xt+1
i , xti

)
+ ηt

〈
ĝti , ωi − xt+1

i

〉
+ ηtκ(t+ 1)

(
Dp

(
ωi, x

t
i

)
−Dp

(
ωi, x

t+1
i

)
−Dp

(
xt+1
i , xti

))
.

Rearranging and by the non-negativity of Bregman divergence, we have,

Dh

(
ωi, x

t+1
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t+1
i

)
≤ Dh

(
ωi, x

t
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t
i

)
+ ηt

〈
ĝti , ωi − xti

〉
+ ηt

〈
ĝti , x

t
i − xt+1

i

〉
= Dh

(
ωi, x

t
i

)
+ ηtκ(t+ 1)Dp

(
ωi, x

t
i

)
+ ηt

〈
∇ici

(
xt
)
, ωi − xti

〉
+ ηt

〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
+ ηt

〈
ĝti , x

t
i − xt+1

i

〉
.

By Lemma K.3 and the assumption that ci(x)− κp(xi) is convex, we have

ηt
∑
i∈N

〈
∇ici

(
xt
)
, ωi − xti

〉
≤ − ηtκ

∑
i∈N

(
Dp

(
xti, ωi

)
+Dp

(
ωi, x

t
i

))
+ ηt

∑
i∈N

〈
∇ici (ω) , ωi − xti

〉
.

Therefore,∑
i∈N

Dh

(
ωi, x

t+1
i

)
+ ηtκ(t+ 1)

∑
i∈N

Dp

(
ωi, x

t+1
i

)
≤
∑
i∈N

Dh

(
ωi, x

t
i

)
+ ηtκt

∑
i∈N

Dp

(
ωi, x

t
i

)
+ ηt

∑
i∈N

〈
∇ici(ω), ωi − xti

〉
+ ηt

∑
i∈N

〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
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+ ηt
∑
i∈N

〈
ĝti , x

t
i − xt+1

i

〉
.

Summing over T , by the non-negativity of Bregman divergence, we have

ηTκ(T + 1)
∑
i∈N

Dp

(
ωi, x

T+1
i

)

≤
∑
i∈N

Dh

(
ωi, x

1
i

)
+ κ

∑
i∈N

Dp

(
ωi, x

1
i

)
+

T∑
t=1

∑
i∈N

ηt
〈
∇ici(ω), ωi − xti

〉
+

T∑
t=1

∑
i∈N

ηt
〈
ĝti −∇ici

(
xt
)
, ωi − xti

〉
+

T∑
t=1

∑
i∈N

ηt
〈
ĝti , x

t
i − xt+1

i

〉
.

Define πx(y) = inf
{
t ≥ 0 : x+ 1

t (y − x) ∈ Xi

}
, let us consider x∗i , the equilibrium of the

game.

• If πx1
i
(x∗i ) ≤ 1− 1/

√
T , we set ωi = x∗i . Let this set of player be M

• Otherwise, we find x̄i ∈ Xi such that ∥x̄i − x∗i ∥ = O(1/
√
T ) and πx1

i
(x̄i) ≤ 1− 1/

√
T . We

set ωi = x̄i.

By Lemma K.6, and initializing x1i to minimize h, thus Dh(ωi, x
1
i ) = h(ωi)− h(x1i ) ≤ ν log(T ).

Therefore, we have

ηTκ(T + 1)

∑
i∈M

Dp

(
x∗i , x

T+1
i

)
+

∑
i∈N\M

Dp

(
x̄i, x

T+1
i

)
≤ nν log(T ) + κ

∑
i∈M

Dp

(
x∗i , x

1
i

)
+ κ

∑
i∈N\M

Dp

(
x̄i, x

1
i

)
+

T∑
t=1

ηt
∑
i∈M

〈
∇ici(x

∗
M, x̄N\M), x∗i − xti

〉
+

T∑
t=1

ηt
∑

i∈N\M

〈
∇ici(x

∗
M, x̄N\M), x̄i − xti

〉
+ ηt

T∑
t=1

∑
i∈M

〈
ĝti −∇ici

(
xt
)
, x∗i − xti

〉
+ ηt

T∑
t=1

∑
i∈N\M

〈
ĝti −∇ici

(
xt
)
, x̄i − xti

〉
+
∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
.

By the three-point inequality and the non-negativity of Bregman divergence, we have∑
i∈N\M

Dp

(
x̄i, x

T+1
i

)
=

∑
i∈N\M

Dp (x̄i, x
∗
i ) +

∑
i∈N\M

Dp

(
x∗i , x

T+1
i

)
−

∑
i∈N\M

〈
x̄i − x∗i ,∇p

(
xT+1
i

)
−∇p (x̄i)

〉
≥

∑
i∈N\M

Dp

(
x∗i , x

T+1
i

)
−

∑
i∈N\M

〈
x̄i − x∗i ,∇p

(
xT+1
i

)
−∇p (x̄i)

〉
.

By Cauchy-Schwarz and the smoothness of p, we have∑
i∈N\M

〈
x̄i − x∗i ,∇p

(
xT+1
i

)
−∇p (x̄i)

〉
≤

∑
i∈N\M

∥x̄i − x∗i ∥
∥∥∥∇p

(
xT+1
i

)
−∇p (x̄i)

∥∥∥
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≤ ζ
∑

i∈N\M

∥x̄i − x∗i ∥
∥∥∥xT+1

i − x̄i

∥∥∥
≤ O

(
nζB√

T

)
As x∗i is a Nash equilibrium, we have

∑
i∈N

〈
∇ici(x

∗), x∗i − xti
〉
= 0, therefore,

ηt
∑
i∈M

〈
∇ici(x

∗
M, x̄N\M), x∗i − xti

〉
+ ηt

∑
i∈N\M

〈
∇ici(x

∗
M, x̄N\M), x̄i − xti

〉
= ηt

∑
i∈N

〈
∇ici(x

∗), x∗i − xti
〉
+ ηt

∑
i∈N

〈
∇ici(x

∗
M, x̄N\M)−∇ici(x

∗), x∗i − xti
〉

+ ηt
∑

i∈N\M

〈
∇ici(x

∗
M, x̄N\M), x̄i − x∗i

〉

≤ ηt
∑
i∈N

ℓi
∥∥x∗i − xti

∥∥ ∑
i∈N\M

∥x∗i − x̄i∥

+ ηt
∑

i∈N\M

∥∥∇ici(x
∗
M, x̄N\M)

∥∥ ∥x̄i − x∗i ∥

≤ O

(
ηtnB

∑
i∈N ℓi√
T

+
ηtn√
T

)
.

Hence, as Dp(xi, x
′
i) ≤ Cp, ∀xi, x′i,∑

i∈N
Dp

(
x∗i , x

T+1
i

)
≤ O

(
nν log(T )

ηTκT
+

nζB

ηTT 3/2

)
+O

(
nB
∑

i∈N ℓi

κT 3/2
+

n

κT 3/2

) ∑T
t=1 ηt
ηT

+O

(
nCp

ηTT

)
+

1

κηT (T + 1)

∑
i∈N

T∑
t=1

ηt
〈
ĝti , x

t
i − xt+1

i

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑
i∈M

〈
ĝti −∇ici

(
xt
)
, x∗i − xti

〉
+

1

κηT (T + 1)

T∑
t=1

ηt
∑

i∈N\M

〈
ĝti −∇ici

(
xt
)
, x̄i − xti

〉
.

Lemma K.2 Take ηt ≤ 1
2d , we have〈

ĝti , x
t
i − xt+1

i

〉
= ηt

∥∥At
iĝ

t
i

∥∥2 .

Proof Define

f(xi) = ηt
〈
xi, ĝ

t
i

〉
+ ηt(t+ 1)Dp(xi, x

t
i) +Dh(xi, x

t
i) .

As adding the linear term ⟨xi, ĝti⟩ does not affect the self-concordant barrier property, and p is
strongly convex, f(x) is a self-concordant barrier.
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Define the local norm ∥h∥x :=
√
h⊤∇2f(x)h, by Holder’s inequality, we have〈

ĝti , x
t
i − xt+1

i

〉
=
∥∥ĝti∥∥xt

i,∗
∥∥xti − xt+1

i

∥∥
xt
i
.

Notice that

∇f(xti) = ηtĝ
t
i ,∇2f(xti) = ηt(t+ 1)∇2p(xti) +∇2h(xti) .

Therefore, by our assumption that ci(x) ∈ [0, 1],∥∥∥(∇2f(xti)
)−1∇f(xti)

∥∥∥
xt
i

= ηt
∥∥At

iĝ
t
i

∥∥
≤ ηtd|ci(x̂t)| ≤ ηtd .

By Lemma K.4, take ηt ≤ 1
2d , we have∥∥xti − xt+1

i

∥∥
xt
i
=
∥∥∥xti − argmin

x
f(xti)

∥∥∥
xt
i

≤ 2
∥∥∥(∇2f(xti)

)−1∇f(xti)
∥∥∥
xt
i

≤ ηt
∥∥At

iĝ
t
i

∥∥ .

Therefore, we have 〈
ĝti , x

t
i − xt+1

i

〉
= ηt

∥∥At
iĝ

t
i

∥∥2 .

Lemma K.3 [Proposition 1 [3]] For an operator G that G−∇p(x) is monotone,〈
G(x)−G(x′), x′ − x

〉
≤ −

∑
i∈N

(
Dp

(
xi, x

′
i

)
+Dp

(
x′i, xi

))
.

Proof By the monotonicity of G−∇p(x), we have〈
G(x)−G(x′), x′ − x

〉
≤
〈
∇p(x)−∇p(x′), x′ − x

〉
≤ −

∑
i∈N

(
Dp

(
xi, x

′
i

)
+Dp

(
x′i, xi

))
,

where the second inequality is due to the definition of Bregman divergence.

Lemma K.4 (Lemma 3 [23]) For any self-concordant function g and let λ(x, g) ≤ 1
2 , λ(x, g) :=

∥∇g(x)∥x,⋆ =
∥∥∥(∇2g(x)

)−1∇g(x)
∥∥∥
x
, we have ∥x− argminx′∈X g (x′) ∥x ≤ 2λ(x, g), where

∥ · ∥x is the local norm given by ∥h∥x :=
√
h⊤∇2g(x)h.

Lemma K.5 (Lemma 7 of [23]) Suppose that ci is a convex function and Ai ∈ Rd×d is an in-
vertible matrix for each i ∈ N , we define the smoothed version of ci with respect to Ai by
ĉi(x) = Ewi∼BdEz−i∼Πj ̸=iSd [ci (xi +Aiwi, x̂−i)] where Sd is a d-dimensional unit sphere, Bd

is a d-dimensional unit ball and x̂i = xi + Aizi for all i ∈ N . Then, the following statements hold
true:
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• ∇iĉi(x) = E
[
d · ci (x̂i, x̂−i) (Ai)

−1 zi | x1, x2, . . . , xN
]
.

• If ∇ci is ℓi-Lipschitz continuous and we let σmax(A) be the largest eigenvalue of A, we have

∥∇iĉi(x)−∇ici(x)∥ ≤ ℓi

√∑
j∈N (σmax (Aj))

2.

Lemma K.6 (Lemma 2 [23]) Suppose that X is a closed, convex and compact set, R is a ν-
self-concordant barrier function for X and x̄ = argminx∈X R(x) is a center. Then, we have
R(x) − R(x̄) ≤ ν log

(
1

1−πx̄(x)

)
. For any ϵ ∈ (0, 1] and x ∈ Xϵ, we have πx̄(x) ≤ 1

1+ϵ and

R(x)−R(x̄) ≤ ν log
(
1 + 1

ϵ

)
.
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Figure 1: Experiment on Cournot competition, zero-sum two-player minimax game, and convex-
concave game.

Appendix L. Experiment

In this section, we provide a numerical evaluation of our proposed algorithm in three static games.
We repeat each experiment with 5 different random seeds. We ran all experiments with a 10-core
CPU, with 32 GB memory. We set ηt = 1√

t+1
, and δt = 0.001.

We present the results of the following example games described below. More results with other
parameters can be found in the Appendix ??.

Cournot competition In this Cournot duopoly model, n players compete with constant marginal
costs, each having individual constant price intercepts and slopes. We model the game with 5
players, where the margin cost is 40, price intercept is [30, 50, 30, 50, 30], and the price slope is
[50, 30, 50, 30, 50].

Zero-sum matrix game In this zero-sum matrix game, the two players aim to solve the bilinear
problem minxmaxy x

⊤Ay. We set this matrix A to be [1, 2], [3, 4].

monotone zero-sum matrix game In this monotone version of the zero-sum matrix game, we
regularize the game by the regularizer x2 + y2.

Algorithm 1 is evaluated against two baseline methods: online mirror descent and gradient
descent, with exact gradient, or estimated gradient (bandit feedback). We set the learning rate η to
be 0.01 in both zero-sum matrix games and monotone zero-sum matrix games and 0.09 in Cournot
competition.

Figure 1 summarizes our experimental findings, where our algorithm attains comparable per-
formance to online mirror descent and gradient descent with full information. We also compare
our algorithm to gradient descent with an estimated gradient, using the same ellipsoidal gradient
estimator. However, apart from the zero-sum matrix game, we find the baseline algorithm performs
too poorly to be compared.

In Figure 2 and 3 we supplement more experiment results for zero-sum matrix games and
Cournot competition. Note that in Figure 3, the curve of OMD with gradient coincides exactly with
the curve GD with gradient. We found similar observations that our algorithm attains comparable
performance to OMD and GD with full information gradient.

35



UNCOUPLED AND CONVERGENT LEARNING IN MONOTONE GAMES UNDER BANDIT FEEDBACK

Figure 2: More examples on the zero-sum matrix game, with A being [2, 1], [1, 3], [3, 0], [0, 1], and
[1, 2], [2, 0].

Figure 3: More examples on the Cournot competition, with the marginal cost being 50, 60, 70.
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