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ABSTRACT

Modeling multivariate time series data has been at the forefront of machine learning
research efforts across diverse domains. However, effectively capturing depen-
dencies across both time and variate dimensions, as well as temporal dynamics,
have made this problem extremely challenging under realistic settings. The recent
success of sequence models, such as Transformers, Convolutions, and Recurrent
Neural Networks, in language modeling and computer vision tasks, has motivated
various studies to adopt them for time series data. These models, however, are
either: (1) natively designed for a univariate setup thus missing the the rich infor-
mation that comes from the inter-dependencies of time and variate dimensions;
(2) inefficient for long-range time series; and/or (3) propagating the prediction
error over time. In this work, we present LETO, a native 2-dimensional memory
module that takes the advantage of temporal inductive bias across time while
maintaining the permutation equivariance of variates. LETO uses meta in-context
memory modules to learn and memorize patterns across the time dimension, and
simultaneously, incorporates information from other correlated variates, if needed.
Our experimental evaluation shows the effectiveness of LETO on extensive and
diverse benchmarks, including time series forecasting (short, long, and ultra-long),
classification, and anomaly detection.

1 INTRODUCTION

Modeling multivariate time series data is a well-established problem in the literature with a diverse
set of applications ranging from healthcare (Ivanov et al., 1999; Tang et al., 2023) and neuro-
science (Behrouz & Hashemi, 2024a) to finance (Gajamannage et al., 2023; Pincus & Kalman,
2004), energy (Zhou et al., 2021), transportation management (Durango-Cohen, 2007), and weather
forecasting (Allen et al., 2025; Price et al., 2025). Classical shallow models—such as State Space
Models (Harvey, 1990; Aoki, 2013), ARIMA (Bartholomew, 1971), SARIMA (Bender & Simonovic,
1994), Exponential Smoothing (ETS) (Winters, 1960)—have long been the de-facto mathematical
models for time series prediction, modeling diverse complex patterns (such as seasonal and trend pat-
terns). Deploying these models at scale in real-world settings remains challenging due to their reliance
on manual data preprocessing, sensitive model selection, and inherently sequential, non-parallelizable
computations. Additionally, these models often fail to capture (1) the inter-dependencies of different
variates, and (2) the complex non-linear dynamics inherent to multivariate time series data.

The emergence of deep learning has shifted the focus of recent time series research away from tradi-
tional statistical methods toward deep neural network architectures such as Transformer-based (Zhou
et al., 2021; Wu et al., 2021), recurrence-based (Behrouz et al., 2024d;e; Patro & Agneeswaran, 2024;
Jia et al., 2023), and temporal convolutional-based (Bai et al., 2018; Sen et al., 2019; Luo & Wang,
2024) models. Despite the outstanding performance of Transformers (Vaswani et al., 2017) across
various diverse domains (Du et al., 2023; Nguyen et al., 2024; Wu et al., 2021), recent studies have
highlighted their frequent suboptimal performance compared to even linear methods, mainly due to
their inherent permutation equivariance that contradicts the causal nature of time series (Zeng et al.,
2023c). Additionally, their quadratic time and memory complexity is a notable bottleneck hindering
their use in large-scale long real-world settings with long-range prediction horizon.

In recent years, modern linear Recurrent Neural Networks (RNNs) have attracted much attention
as the linear alternative to Transformers, improving Transformers’ training and inference efficiency
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while maintaining their effectiveness (Peng et al., 2023a; Katharopoulos et al., 2020; Kacham et al.,
2023; Smith et al., 2023). While these models have shown promising performance on clean and
tokenized data modalities such as language, applying them to multivariate time series modeling
is more challenging as: (1) Contrary to text, time series data can be non-stationary and highly
noisy, as demonstrated by complex temporal patterns. Accordingly, the additive nature of such
recurrent models can cause error propagation in their predictions over time, requiring additional
careful parametrization or design to achieve good performance (Jia et al., 2023; Behrouz et al.,
2024d); (2) These models are inherently designed for a single sequence and so their use for time
series data overlooks the importance of variate dependencies in modeling multivariate time series
data (Zeng et al., 2023a; Zhang et al., 2023; Nie et al., 2023). Moreover, simply mixing the variates to
take advantage of cross-variate information can hinder the performance in the general case as variate
dependencies are not always useful in practice; e.g., when the target variate is not correlated with
other covariates (Chen et al., 2023). Therefore, a major goal of effective modeling of multivariate
time series is to develop a model which can adaptively mix cross variate information over time when
appropriate; (3) To capture both cross-time and cross-variate information, several recent studies
have sought to perform selective 2-dimensional recurrence across both variates (Jia et al., 2023;
Behrouz et al., 2024d). These models, however, are sensitive to the order of variates, thus missing the
permutation equivariance of information across variates.

Contributions. In our work, with the goal of mitigating the aforementioned limitations in existing
time series models, we present LETO, a novel 2-dimensional architecture based on two meta in-context
memory modules—called time and variate memory modules—that learns how to memorize cross-time
and cross-variate patterns at test time, respectively. While LETO updates the time memory module
using a recurrent rule to take advantage of its temporal inductive bias, it uses an attention-like (with
Softmax) non-parametric memory module across variates to accurately consider their permutation
equivariance property. To capture the discrete time dynamics of dependencies across variates, LETO
needs to mix the states of both time and variate memories at each time stamps. However, the non-
parametric nature of variate memory module makes it stateless, empowering the memory to learn the
dynamics of variate dependencies across time. To overcome this challenge, LETO uses a parametric
approximation of the non-parametric memory and expresses the Softmax attention using its Taylor
series. To the best of our knowledge, LETO is the first native 2-dimensional hybrid model. In our
experiments, we perform various evaluations and compare LETO with state-of-the-art time series
models on diverse downstream tasks, including: (1) short-, long-, and ultra-long-term forecasting, (2)
classification, and (3) anomaly detection tasks. We further demonstrate the effectiveness of LETO for
longer horizons and support the significance of LETO’s design by performing ablation studies.

2 PRELIMINARIES, BACKGROUND, AND RELATED WORK

In this section, we first discuss the notation that we use through the paper and then provide an
overview of the background concepts and related studies. A more detailed discussions of the related
work is in Appendix (B). Additionally, our model architecture is motivated by the following key
directions: (1) meta learning, (2) learning to memorize, and (3) Titans Behrouz et al. (2024e). We
provide a more detailed explanation of each of these topics in Appendix (A).

Notation. We let matrix X = {x1, . . . ,xV } ∈ RV×T×din denote a multivariate time series, where T
and V are the number of time stamps and variates, respectively, and din is the feature dimension of the
input (often din = 1). We use xv,t ∈ Rdin to refer to the value of the time series in v-th variate at time
t. In this paper, we mainly focus on forecasting, classification, and anomaly detection. In forecasting,
given the historical series X = {x1, . . . ,xV }, the model aims to predict the next H time steps. For
classification and anomaly detection, the task is to assign a label to the sequence, where anomaly
detection is treated as a binary classification problem, labeling variate as "normal" or "anomaly".

Autoregressive Process. Autoregressive (AR) process is a basic but fundamental concept for time
series modeling. An AR process models the causal nature of time series by writing each element
as the linear combination of its past samples. Given p ∈ N, xk ∈ Rd, the linear autoregressive
relationships between xk and its past samples xk−1,xk−2, . . . ,xk−p is modeled as

xk = ζ1xk−1 + ζ2xk−2 + . . . , ζpxk−p (AR(p) Process)
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where ζ1, . . . , ζp are coefficients. Note that we can simply extend the above autoregressive for-
mulation to the multivariate setting by letting coefficients be vectors, replacing the product with
element-wise product.

Time Series Models. The complexity of time series data—characterized by higher-order structures,
multivariate dependencies, and domain variability—presents key challenges for model development.
Models must capture both local and long-range dependencies, selectively leverage relevant covariates,
and scale efficiently to long sequences without relying heavily on domain-specific pre-processing.
Classical statistical models, such as ARIMA (Anderson & Kendall, 1976) and STL (Cleveland et al.,
1990), effectively address periodic and trend components but are fundamentally limited when it
comes to modeling non-linear and complex dependencies.

Early efforts to enhance time series forecasting with deep learning adopted recurrent neural net-
works (RNNs) (Elman, 1990) and their variants, such as Long Short-Term Memory (LSTM) net-
works (Hochreiter & Schmidhuber, 1997b) and Gated Recurrent Units (GRUs) (Cho et al., 2014),
owing to their natural suitability for sequential data. Subsequently, temporal convolutional networks
(TCNs) (Bai et al., 2018; Wang et al., 2023; Wu et al., 2022a) were introduced, excelling at capturing
local patterns through carefully designed receptive fields.

The introduction of Transformer-based models (Vaswani et al., 2017) marked a significant advance-
ment, enabling more effective modeling of both short and long term dependencies with enhanced
scalability and predictive performance across a wide range of time series tasks (Wen et al., 2022).
Transformer-style architectures such as (Liu et al., 2024c; Zhou et al., 2022b; Shi et al., 2024)
demonstrate the power of attention to capture local and global temporal patterns, often enriching
them with frequency-domain representations, downsampling, or mixture-of-experts components
for improved efficiency. Building on this trend, recent multivariate forecasters further refine these
ideas via frequency decomposition, patch-specific spatio-temporal filtering, non-stationarity-aware
modules, and chunk-wise spatial correlation modeling with KAN’s and FFT techniques (Huang et al.,
2025b; Hu et al., 2025; Ma et al., 2025; Liu et al., 2025a; Si et al., 2025; Huang et al., 2025a), while
general forecasting models with unified representations and adaptive transfer mechanisms, extend
these backbones to cross-dataset settings (Wang et al., 2025b). However, the quadratic complexity
of standard Transformers still poses optimization and scalability challenges (Zhou et al., 2021; Wu
et al., 2021; Zhou et al., 2022b; Liu et al., 2021), motivating patch-based and hierarchical designs
(Zhang & Yan, 2023; Nie et al., 2023; Chen et al., 2025b). Meanwhile, multilayer perceptrons have
remained popular for forecasting due to their simplicity and direct mapping capabilities (Ekambaram
et al., 2023).

Beyond forecasting, specialized architectures have been developed for anomaly detection and related
tasks, for example channel-aware models that exploit frequency patching to detect multivariate anoma-
lies (Wu et al., 2025). Finally, multi-dimensional recurrent models have recently attracted attention
(Behrouz et al., 2024d; Meskin et al., 2025; Jia et al., 2023). Although their multi-dimensional
recurrence can capture cross-time and cross-variate interactions, their recurrent nature across variates
makes them sensitive to the order of variables, so performance can degrade under simple permuta-
tions; moreover, efficient training requires careful algorithmic design to parallelize the recurrences.
Our design supports permutation equivariance over variates and remains effective and straightforward
to train. For more discussion on limitations of existing model architectures see Section B.

Test Time Memorization and Time Series Modeling. In recent years, there have been growing
interest in understanding the underlying mechanisms of sequence models and unifying (a subset of)
them through a single perspective (Sun et al., 2024; Behrouz et al., 2025; Schlag et al., 2021; Liu et al.,
2024a). In this work, we discuss a connection between test time memorization models, time series
modeling, and autoregressive processes. In the associative memory perspective of sequence models,
given the incoming input data xt, a sequence model is defined as an associative memory, M(·) that
aims to learn a mapping between a set of keys (i.e., {ki}Ni=1) and values (i.e., {vi}Ni=1) based on an
objective function ℓ(M(·);kt,vt). For example, in recurrent neural networks, this memory module
M is their hidden state. Since this memory module is updated for each incoming data (at test time),
it is often called a test time learner or test time memorizer. It is notable that the process of training
such memory is a meta learning process (Hospedales et al., 2021), where inside the inner-loop the
corresponding parameters to memory are optimized, while the outer-loop optimizes other parameters
in the neural network. For additional discussions on the meta learning process and how architectures
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like Transformers and recurrent models can be formulated as associative memory module, we refer
the reader to Behrouz et al. (2025) and our background discussion in Appendix (A).

In practice, given input data xt, keys and values are defined as the linear projections of the input, i.e.,

kt = Wkxt and vt = Wvxt, (1)

where Wk ∈ Rd Another interpretation of this framework for associative memory is to view kt as the
corrupted version of the input, and define M(.) as a model that can reconstruct a projection of the
input from the corrupted version. In this interpretation, objective ℓ(M(·);kt,vt) measures the ability
of M in reconstructing the input projection. Despite the equivalence of these two interpretations,
the latter provides an interesting connection between modeling time series data with sequence
models. That is, modeling time series given a lookback window of p time stamps in which the model
aims to predict the next h ≥ 1 steps, is equivalent to reconstructing a time series of h + p time
stamps from its corrupted version that masks its last h steps. This reconstruction perspective and
its connection to sequence models allow for the design of sequence models that are theoretically
expressive and capable of modeling time series data. Despite this advantage, it is important to note
that this formulation is limited to a single sequence. Hence, this begs the question:“How can we
design a native 2-dimensional model that learns to map underlying patterns of 2D data?”

3 LETO: LEARNING TO MEMORIZE AT TEST TIME WITH 2-DIMENSIONAL
MEMORY

To address this question, we present our model: LETO, a native 2-dimensional architecture that takes
advantage of two separate memory modules, each of which learns how to memorize patterns across
either time or variate dimensions.

3.1 HOW TO MEMORIZE 2-DIMENSIONAL DATA?

As discussed earlier, while sequence modeling and its test time memorization perspective can be an
effective paradigm for modeling time series data, its design is limited to single sequences. Thus,
for 2-dimensional data like multivariate time series, two memory modules are needed, each of
which learns how to memorize patterns across each dimension (either time or variate) at test time.
However, having memory modules that simply memorize the training data can significantly hinder
the performance of the model, due to overfitting and the property that time series data at test time can
be out-of-distribution (OOD). To this end, we utilize a meta in-context memory, where the model
learns how to memorize patterns at test time. This memory does not directly memorize training data,
but instead employs the underlying patterns in the training data to learn what patterns need to be
memorized and what patterns need to be forgotten.

Cross Time Dynamic. For the sake of simplicity and to demonstrate the process of modeling
cross-time patterns, we fix the variate to v and remove it from subscript whenever the context is
clear. Accordingly, for the input sequence this is a meta learning problem on the memory parameters,
in which memory aims to reconstruct the projection of the time series (i.e., vi = Wvxi) from its
corrupted version (i.e., ki = Wkxi). That is, given an internal objective ℓ(·) that measures the quality
of reconstruction, during the training process, the model performs two loops:

1. Inner Loop: In this loop the memory is optimized to reconstruct the sequence from its
corrupted version using an optimization algorithm such as gradient descent. Therefore, the
memory update is defined as:

Mt = αtMt−1 − ηt∇ℓ(Mt−1;xv,t), (2)

Note that in the inner loop we only optimize the memory parameters; other parameters are
fixed in this loop.

2. Outer Loop: The outer loop is responsible for the training of the entire model for a specific
downstream task such as forecasting, classification, or anomaly detection. In this process,
while all parameters in the model are optimized, memory parameters are fixed.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: An Overview of LETO’s Architecture: We define two inter-connected memory blocks
M1, M2 corresponding to time and variate axes, where the recurrence is updated by fusing together
both cross-time and cross-variate information, using an approximation of softmax attention for M2.

Using a reconstruction loss, i.e., ℓ(M;xt) = ∥Mkt−vt∥22, where kt and vt are defined as equation 1,
gives us a memory module with delta update rule (recurrence) (Schlag et al., 2021) as:

Mt = Mt−1 − ηt∇ℓ(Mt−1;xt) = (I− ηtktk
⊤
t )Mt−1 + ηtvtk

⊤
t , (3)

where (I− ktk
⊤
t ) is the transition matrix from state Mt−1 to Mt and vtk

⊤
t is the transformation

of the input data. This linear recurrent process is equivalent to a linear dynamical system with
non-diagonal transition matrix, which is more expressive than its counterpart dynamical systems with
diagonal transition (Behrouz et al., 2024d; Patro & Agneeswaran, 2024; Li et al., 2024). In our later
design of LETO in equation Variant 2, we further enhance the above formulation by incorporating a
gating mechanism inspired by the Titans architecture (Behrouz et al., 2024e). Therefore, the update
rule can be written as:

Mt = (αtI− ηtktk
⊤
t )Mt−1 + ηtvtkt

⊤, (4)

where α controls the retention from the previous state of the memory. When α → 1, it fully retains
the past state (equivalent to equation 3) and when α → 0 it erases the past state of the memory.

Cross Variate Dynamic. In the prior section, we discuss a neural memory module that learns how to
memorize cross-time patterns. However, in multivariate time series data, the dependencies of variates
can be a rich source of information, sometimes even more important than cross-time patterns (Tang
et al., 2023; Behrouz et al., 2024a; Liu et al., 2024c). To this end, we aim to design a memory module
that can learn from and memorize cross-variate patterns. One simple approach is to transpose the
input data (re-ordering time and variate dimension) and apply our memory module introduced in
equation 4 across variates. However, the main drawback of such a method is its sensitivity to the order
of variates. That is, while the temporal inductive bias of recurrent models is effective for capturing
temporal patterns, it is indeed a caveat that when sampling data, the order of elements are arbitrary.
In multivariate time series data, the order of variates is often arbitrary and so we expect the model to
produce the same output (or its corresponding permutation) when we change the order of variates.
This property is called “permutation equivariance” (resp. “permutation invariant”), where the output
of the model permutes the same (resp. remains the same) with the permutation of the input.

Transformers are one of the most powerful architectures with the permutation equivariance prop-
erty (Yun et al., 2020; Xu et al., 2024). Although this property makes their direct applicabil-
ity to time series data limited, it makes them a great choice of architectural backbone for use
in learning the cross-variate information (Liu et al., 2024c). To this end, given the input data
X = {x1, . . . ,xV } ∈ RV×T×din , one can define X̃ = X⊤ = {x̃1, . . . x̃T } ∈ RT×V×din and then
pass it to a Transformer block to capture the cross-variate dependencies:

Y = Transformer
(
X̃
)
. (5)

While the above method can satisfy both (1) fusing information across variates, and (2) preserving
the robustness to the permutation of variates, it only models cross-variate patterns and misses the
dynamics of variates dependencies (Behrouz et al., 2024d; Jia et al., 2023).
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3.2 LETO: A NATIVE 2-DIMENSIONAL MEMORY SYSTEM

Previously we discussed how it is possible to design an effective memory module that learns how to
map underlying patterns across time or variate dimensions in the data. A simple and commonly used
method in the literature is to use two different modules, each for one of the dimensions, and then
mix their outputs for the final prediction (Ahamed & Cheng, 2024b; Christou et al., 2024). That is,
given input X ∈ RV×T×din , one can use Module1(·) and Module2(·) to fuse information across
time and variates, respectively, and then combine them for the final output:

Ytime = Module1(X), Yvariate = Module2(X̃),

Youtput = Combine (Ytime, Yvariate) . (Variant 1)
Another commonly used approach is to employ Module1(·) and Module2(·) in a sequential manner
(instead of the above parallel manner). However, all these models treat each dimension separately
and thus miss the inter-dependencies of time and variate dimensions at each state of the system,
resulting in less expressive power in modeling time series data (see Theorem (1) for the details). To
this end, we present a native 2-dimensional memory system that not only has the temporal inductive
bias across time, but also has the permutation equivariance property across variates.

We use two memory modules M(1)(·) and M(2)(·) to learn the underlying mappings/patterns across
time and variate dimensions, respectively. As discussed in section 2 and section 3, to design such
memory modules it is appropriate to use a reconstruction objective ℓ(·) for the memory and then
optimize this objective with an optimization algorithm (such as gradient descent). However, to
capture the inter-dependencies of dimensions at each step of optimization, it is necessary to fuse the
information between the memory modules as well. Therefore, the state of each memory module not
only depends on its time stamp, but it also depends on its variate. Given X = {x1, . . . ,xV } as the
input, and arbitrary v ∈ {1, . . . , V } we define the update of cross-time memory, as:

M(1)
t,v = αt,vM(1)

t−1,v − ηt,v∇ℓ(M(1)
t−1,v,xt,v)

+ βt,vM(2)
t−1,v − γt,v∇ℓ(M(2)

t−1,v,xt,v), (6)

where ℓ(M(j)
t−1,v,xt,v) = ∥M(j)

t−1,vkt.v − vt,v∥22 for j ∈ {1, 2} and v ∈ {1, . . . , V } and:

kt,v = Wkxt,v, and vt,v = Wvxt,v. (7)
Expanding the gradient for the above formulation results in the recurrent update rule for the cross-time
memory module as follows:

M(1)
t,v = (αt,vI− ηt,vkt,vk

⊤
t,v)Mt−1,v + ηt,vvt,vk

⊤
t,v

+ (βt,vI− γt,vkt,vk
⊤
t,v)Mt−1,v + γt,vvt,vk

⊤
t,v. (8)

The above formulation demonstrates how to update the cross-time memory. To get the final output
from this memory, we need to multiply it by the input data xt,v to achieve the xt,v’s corresponding
information in the memory: i.e., Y(1)

t,v = M(1)
t,vxt,v. One can similarly define the recurrence for the

cross-variate memory module M(2)
t,v as:

M(2)
t,v = θt,vM(1)

t,v−1 − λt,v∇ℓ(M(1)
t,v−1,xt,v)

+ µt,vM(2)
t,v−1 − ωt,v∇ℓ(M(2)

t,v−1,xt,v). (9)
However, it is still sensitive to the order of variates. This sensitivity to variate ordering comes from
the parametric nature of gradient descent algorithm as its iterations requires a series of ordered
steps. Therefore, the use of any other parametric optimizer can cause such sensitivity to the order.
To overcome this issue, we use the non-parametric estimate of our objective. Interestingly, with a
small modification and usage of Nadaraya-Watson estimators (Fan, 2018; Zhang et al., 2022b), the
non-parametric estimate of the objective is equivalent to softmax attention mechanism in Transform-
ers (Vaswani et al., 2017), as also discussed in previous studies (Sun et al., 2024; Behrouz et al.,
2025). As a result of this theoretical connection, we utilize an attention module for the cross-variate
information mixing. The final output of this block can simply be defined as:

Y
(2)
t,v = θt,v Attention

(
{M(1)

t,i xt,i}Vi=1

)
+ µt,v Attention

(
{xt,i}Vi=1

)
. (10)
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Table 1: Average performance on Ultra long-term forecasting tasks (MSE / MAE)

Dataset Metric LETO MICN TimesNet PatchTST DLinear FiLM FEDformer Autoformer Informer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL
720–1440 0.4782 0.5614 1.0460 0.7765 0.6119 0.5962 0.8243 0.6704 0.4923 0.5473 0.4730 0.5336 0.4833 0.5393 1.4957 0.9533 0.5064 0.5317
1440–1440 0.4639 0.5387 0.8262 1.2207 0.5720 0.5712 0.9053 0.7328 0.5146 0.5615 0.4849 0.5429 0.5142 0.5571 1.7873 1.0283 0.7247 0.6920
1440–2880 0.6047 0.5868 2.8936 1.3717 0.7683 0.6846 1.1282 0.8087 0.8355 0.7193 0.6847 0.6493 3.9018 1.5276 1.2867 0.8878 0.6152 0.5953

Traffic
720–1440 0.1672 0.2431 0.2876 0.3916 0.1882 0.2656 0.1904 0.2685 0.1639 0.2412 0.1638 0.2448 0.2753 0.3650 0.3104 0.4095 0.7614 0.6496
1440–1440 0.1521 0.2497 0.2905 0.3923 0.2081 0.2712 0.1917 0.2764 0.1590 0.2411 0.1602 0.2437 0.2848 0.3681 0.2970 0.3999 0.7375 0.6414
1440–2880 0.1425 0.2433 0.2823 0.3874 0.1560 0.2409 0.1819 0.2761 0.1550 0.2421 0.1744 0.2693 0.2952 0.3844 0.3035 0.3982 0.9408 0.7618

ETTh1
720–1440 0.1331 0.2943 0.4640 0.5836 0.1391 0.3049 0.3708 0.4906 0.2952 0.4370 0.2949 0.4388 0.1768 0.3409 0.3298 0.4741 0.1378 0.3051
1440–1440 0.1359 0.3120 0.5188 0.6075 0.1404 0.3093 0.4475 0.5392 0.2200 0.3714 0.3226 0.4678 0.1928 0.3576 0.3618 0.5507 0.1402 0.3192
1440–2880 0.2591 0.3949 0.7591 0.7215 0.2732 0.4094 0.9617 0.8072 0.3773 0.4794 0.3624 0.4705 0.2627 0.3754 0.3177 0.4733 0.3495 0.4111

Table 2: Average performance on short-term forecasting tasks on the M4 dataset. A lower SMAPE,
MASE, and OWA indicate better prediction. * is an abbreviation of the “former" term.

Models LETO ROSE ModernTCN TimeMixer PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗

(Ours) 2025 2024 2024 2023 2023 2022 2019 2022 2022 2023 2022 2022 2021

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.658 11.764 11.698 11.723 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909
MASE 1.541 1.568 1.556 1.559 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771
OWA 0.832 0.871 0.838 0.840 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939

Note that M(1)
t,i xt,i provides the xt,i’s corresponding information in cross-time memory module and

so the first term combines the cross-time dynamic of all variates at the same time. While computation
of the final output for the cross-variate memory is clear, we need to access its memory (i.e., M(2)

t,v ) to
use in the update of cross-time memory (i.e., equation 6). The memory of Transformers are known to
be the pair of key and value matrices (K,V) in the attention mechanism (Zhang & Cai, 2022; Wu
et al., 2022c; Behrouz et al., 2024e; Bietti et al., 2023). However, incorporating a pair of matrices into
the recurrence update rule of equation 6 is unclear and challenging. Therefore, we utilize a kernelized
variant of attention, in which we replace Softmax with a separable kernel ϕ(·) (Katharopoulos et al.,
2020; Kacham et al., 2023; Arora et al., 2024) (see Appendix (A) for the corresponding background
and detailed formulation). This allows us to concretely define the memory of the Transformer with
keys and values of {k̂i} and {v̂i} as (Katharopoulos et al., 2020):

M(2)
t,v =

V∑
i=1

v̂t,iϕ(k̂
⊤
t,i). (11)

The question regarding what would be the optimal kernel ϕ(·) to use in the above formulation
remains. To answer this, we recall the formulation of Softmax attention that is proportional to
softmax(q⊤

t kt)vt. To replace softmax softmax(·) with a separable kernel ϕ(·), we can choose
the kernel to approximate the exponential term in softmax with its Taylor series. Accordingly, we use
the first four terms of the Taylor series approximation of the exponential function: exp(·) defined as:

exp(x) ≈ ϕ(x) = 1 + x+
x2

2
+

x3

3!
. (12)

Combining the prior expressions, we can define our native 2-dimensional update rule as:

M(1)
t,v = αt,vM(1)

t−1,v − ηt,v∇ℓ(M(1)
t−1,v,xt,v)

+ βt,vM(2)
t−1,v − γt,v∇ℓ(M(2)

t−1,v,xt,v), (Variant 2)

where M(2)
t,v =

∑V
i=1 v̂t,iϕ(k̂

⊤
t,i) and ϕ(x) = x + x2

2 + x3

3! . Note that in the above formulation
v̂i and k̂i are keys and values of the Transformer block, coming from the keys and values of the
cross-variate dynamic attention mentioned in equation 10. In the following theorem, applicable to
the linear recurrence variant, we demonstrate that this inter-connectivity of these two memories can
enhance the expressive power of model, compared to utilizing two separate memory modules:

Theorem 1. Let Modulei(·) be linear recurrent models, then inter-connected memory modules (i.e.,
equation Variant 2) can express full-rank kernels with O(1) parameters, while independent memory
systems (i.e., equation Variant 1) require at least O(N) parameters to express matrix with rank N .
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Table 3: Average performance on long term forecasting tasks over four prediction lengths: {96, 192, 336, 720}.
A lower MAE and MSE indicates a better prediction. As a convention for all experimental results, the best
performance is highlighted in red, and the second-best is underlined.

Models LETO (Ours) TimePro TimeFilter TimeKAN TimeMixer Simba ModernTCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.347 0.375 0.391 0.400 0.377 0.393 0.376 0.395 0.381 0.385 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407
ETTm2 0.249 0.302 0.281 0.326 0.272 0.321 0.277 0.322 0.275 0.323 0.271 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401
ETTh1 0.393 0.401 0.438 0.438 0.420 0.428 0.417 0.427 0.447 0.440 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452
ETTh2 0.318 0.381 0.377 0.403 0.364 0.397 0.383 0.404 0.364 0.395 0.361 0.391 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515
Exchange 0.297 0.364 0.352 0.399 0.324 0.383 0.330 0.389 0.391 0.453 0.298 0.363 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414
Traffic 0.408 0.267 0.430 0.291 0.409 0.270 0.407 0.268 0.484 0.297 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383
Weather 0.216 0.253 0.251 0.276 0.239 0.269 0.242 0.272 0.240 0.271 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317
ECL 0.149 0.247 0.169 0.262 0.158 0.256 0.197 0.286 0.182 0.272 0.185 0.274 0.156 0.253 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300

Table 4: Ablation Study of LETO on ETT, Weather, and Exchange datasets

Model ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange
MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE MSE / MAE

Full LETO 0.393 / 0.401 0.318 / 0.381 0.347 / 0.375 0.243 / 0.302 0.216 / 0.253 0.297 / 0.364
w/o Cross Variate Attention 0.458 / 0.447 0.400 / 0.427 0.394 / 0.419 0.320 / 0.362 0.244 / 0.274 0.311 / 0.398
w/o Linear Attention 0.454 / 0.454 0.392 / 0.421 0.407 / 0.410 0.341 / 0.370 0.258 / 0.278 0.360 / 0.403
w/o Weighted Gating 0.405 / 0.412 0.368 / 0.392 0.389 / 0.397 0.312 / 0.354 0.237 / 0.269 0.301 / 0.384

3.3 MODEL DESIGN OF LETO

While our recurrence formulation is theoretically motivated to capture both cross-time and variate
dependencies, its training can be difficult due its recurrent nature, potentially limiting parallelizable
training. In this section, we discuss the architectural details in LETO and present a fast parallelizable
training approach. We refer the reader to figure 1 for an illustration of the design of LETO.

Parallelizable Training. Despite the recurrent nature of LETO, in this section, we build upon
the training algorithms of Sun et al. (2024) and Behrouz et al. (2024e) and present a parallel
training process for our model. To begin, given a variate v, we divide its corresponding time series
{x1,v, . . . ,xT,v} with length T into C subsequences of length b = T

C , each of which is represented
by Si = {x(i−1)b+1,v, . . . ,xib,v}. Recall that the cross-variate dynamic term in equation 10 is
independent of time and variate states in our formulation and thus can be computed in advance.
Note that the training procedure for the attention module is parallelizable. Given the output of the
attention module, we can also calculate all the states of M(2) memory using equation 11. Therefore,
we can calculate the gradient term with respect to M(2) in (Variant 2), all in advance. Having the
states of M(2) and its corresponding gradient terms, we have calculated the cross-variate dynamic
term in (Variant 2) in advance and so we only need to compute the cross-time dynamic term in a
parallelizable manner. To this end, following the algorithms of Sun et al. (2024) and Behrouz et al.
(2024e), we approximate the gradient term ∇ℓ(M(1)

t−1,v,xt,v) with ∇ℓ(M(1)
t′,v,xt,v), in which t′ is

the last state of the memory in the previous chunk, i.e., t′ = ⌊ t
b⌋ × b. Therefore, we can calculate the

gradients of each chunk in advance, making the recurrence linear, which is highly parallelizable. For
a detailed discussion of parallelizable training, including pseudocode, see Appendix (C). Thus, we
can parallelize the training process for each variate, and by scanning the variates from top to bottom,
we can encode all the states in the multivariate time series. Note that the training complexity is linear
across time and is dominated by the attention module’s complexity across variates. Furthermore,
in our experiments meta in-context memory states are reset per sequence and receptive fields are
matched across baselines-specifically, no cross-batch or cross-sequence state is preserved.

4 EXPERIMENTS

Goals and Baselines. In this section, we evaluate LETO on a wide range of time series tasks,
comparing with the most recent state-of-the-art multivariate time series models (Wu et al., 2023; Luo
& Wang, 2024; Lim & Zohren, 2021; Woo et al., 2022; Wu et al., 2021; Zhou et al., 2022b; Zhang
& Yan, 2023; Liu et al., 2024c; Dehghani et al., 2023; Das et al., 2023; Liu et al., 2022a; Patro &
Agneeswaran, 2024; Zeng et al., 2023b; Xu et al., 2021; Wang et al., 2024; 2025b; Huang et al.,
2025b; Ma et al., 2025; Hu et al., 2025) on forecasting: long, ultra-long, and short term, classification,
and anomaly detection tasks. Next, we evaluate the significance of the LETO’s components by
performing ablation studies. Dataset descriptions, complete experimental results, visualization of
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predictions, hyperparameters, metric descriptions, and full experimental results on the effect of other
design choices are provided in D. We control the effect of parameters and all models use the same
number of parameters and hyperparameters for training and evaluation. We did not use the "drop-last"
operation Qiu et al. (2024) in our data loaders for any of our experiments. All batches, including the
final, possibly smaller batches, were used in the training.

4.1 MAIN RESULTS: CLASSIFICATION AND FORECASTING

Long-Term Forecasting. We conduct experiments on the long-term forecasting tasks using com-
monly used benchmark datasets used by Zhou et al. (2021) and many others. The average performance
across different horizons is summarized in Table 3. LETO consistently delivers competitive results
across different datasets, highlighting its robustness compared to recurrent, convolutional, SSM, and
Transformer-based models.

Ultra Long-term Forecasting. We further extend the evaluation to ultra-long-range forecasting
on the same benchmark datasets (Zhou et al., 2021) to observe the effectiveness of LETO in longer
horizons. The tasks on the left side of the Table 1 retain the same interpretation as in the standard
long-term forecasting setting. The results in Table 1 demonstrate LETO’s ability to capture long-
term dependencies from extremely long historical inputs, maintaining its steady performance across
various significantly extended prediction horizons.

Classification and Anomaly Detection. We evaluate the performance of LETO on 10 multivariate
datasets from the UEA Time Series Classification Archive (Bagnall et al., 2018) (see figure 2 and
Table 15). For anomaly detection, which is typically treated as a binary classification task, we conduct
experiments on five widely-used benchmarks: SMD (Su et al., 2019), SWaT (Mathur & Tippenhauer,
2016), PSM (Abdulaal et al., 2021), and SMAP (Hundman et al., 2018) (see figure 2 and Table 14).

Figure 2: Anomaly detection and classification results
of LETO and baselines. Higher accuracy/F1-score indi-
cate better performance.

Short-Term Forecasting. Our evaluation on
short-term forecasting tasks using the M4 bench-
mark datasets (Godahewa et al., 2021) is reported
in Table 2 (with the full results provided in Ta-
ble 11). We fix the input length to twice the pre-
diction length and calculate Symmetric Mean Ab-
solute Percentage Error (SMAPE), Mean Abso-
lute Scaled Error (MASE), and Overall Weighted
Average (OWA) as the evaluation metrics.

4.2 ABLATION STUDY

To validate the effectiveness of our model de-
sign, we conduct an ablation study on long-term
forecasting tasks averaged over 5 runs on ETT, Weather, and Exchange datasets by removing key
architectural components-see Table 4. The first row reports the LETO’s performance, while the second
row removes the cross attention block, the third row removes the the linear attention mechanisms,
and the fourth row removes the the weights for the final gating between each block. The results
demonstrate that LETO containing all components yields the strongest performance. Notably, the
results without the linear attention component and Transformer block perform the worst, highlighting
the importance of maintaining separate time and variate memories, and incorporating both in the
recurrence in order to capture their interdependencies. A more extensive ablation, varying the Taylor
expansion order, chunk size, and cross-memory coupling strength, is provided in Appendix E.2.

5 CONCLUSION

We present LETO, a native 2-dimensional memory module that takes the advantage of temporal
inductive bias across time while maintaining the permutation equivariance of variates. LETO uses a
meta in-context memory module to learn and memorize patterns across time dimension, and simulta-
neously, incorporates information from other correlated variates, if it is needed. Our experimental
and theoretical results support the effectiveness of LETO across a diverse set of time series tasks.
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6 REPRODUCIBILITY STATEMENT

We provide the relevant code for our model. All proofs are provided in the appendix with explanations
and underlying assumptions. A complete description of the datasets used in our experiments are
provided as well in the appendix.
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A PRELIMINARIES AND BACKGROUND

Transformers and their Permutation Equivariance Property. Transformers (Vaswani et al., 2017)
have been the de facto backbone for many deep learning models and are based on the attention
module. Let x ∈ RN×din be the input, attention computes output y ∈ RN×din based on softmax over
input dependent key, value, and query matrices:

Q = xWQ, K = xWK, V = xWV, (13)

yi =

N∑
j=1

exp
(
Q⊤

i Kj/
√
din

)
Vj∑N

ℓ=1 exp
(
Q⊤

i Kℓ/
√
din

) , (14)

where WQ,WK, and WV ∈ Rdin×din are learnable parameters. This formulation of attention makes
it permutation equivariant, meaning that the permutation of the input cannot change the output but
permute it. That is, let π(.) be a permutation, and A(·) be the above attention module, we have:

A(π(x)) = π(A(x)). (15)

The property, which is called permutation equivariance, is a desirable property for the data that
is permutation equivariant, such as variates in the multivariate time series. When encoding the
multivariate time series, we do not want the output of the model to be sensitive to the order of the
input (variates) and so transformers are great architectures as any change to the order, does not change
the output, but just permutes it.

Learning to Memorize at Test Time. The concept of learning to memorize at test time is derived
from the learning at test time or learning to learn, which backs to very early studies on local
learning Bottou & Vapnik (1992): i.e., training each test sample on its neighbors before making a
prediction (Zhang et al., 2006; Gandelsman et al., 2022). Later, test time training shows promising
results in vision tasks (Jain & Learned-Miller, 2011; Mullapudi et al., 2019), mainly because of the
ability to properly address out-of-distribution cases. Using this perspective, recently this idea has
been applied on sequence modeling (Sun et al., 2024; Behrouz et al., 2024e; 2025). These methods
that aim to train a memory module that learns how to memorize the context at test time, have shown
promising results in language and sequence modeling tasks. In this work, we also take this perspective
and design a 2-dimensional test time memorizer that generalizes all these methods to 2-dimensional
data modality.

B ADDITIONAL RELATED WORKS AND LIMITATIONS OF EXISTING
FRAMEWORKS

Classical Approach. Time series modeling has been a fundamental research topic, Classical ap-
proaches include a range of statistical models such as exponential smoothing (Winters, 1960),
ARIMA (Bartholomew, 1971), SARIMA (Bender & Simonovic, 1994), and the Box-Jenkins method-
ology (Box & Jenkins, 1968), with later advancements introducing state-space models (Harvey, 1990;
Aoki, 2013). While these models offer interpretability, they often fall short in capturing complex
non-linear dynamics and typically rely on manual inspection of time series characteristics—such as
trend and seasonality—limiting their adaptability across diverse datasets.

Transformer-based models. Transformer-based architectures have become increasingly prominent in
multivariate time series forecasting, particularly when modeling complex inter-variable and temporal
dependencies (Zhou et al., 2022b; Kitaev et al., 2020; Zhang & Yan, 2023; Zeng et al., 2023a; Zhou
et al., 2021; Liu et al., 2021; Wu et al., 2021; Ilbert et al., 2024; Nie et al., 2023). A line of research
has focused on designing specialized attention mechanisms that leverage the unique structure of time
series data (Woo et al., 2022), while others have explored strategies for capturing long-term temporal
patterns to improve forecasting accuracy (Nie et al., 2023; Zhou et al., 2022a).

In parallel, recent works have revisited linear recurrent neural networks (Linear RNNs) as efficient
alternatives to Transformers, aiming to reduce the quadratic complexity while maintaining compet-
itive performance on long-range dependency modeling (Sun et al., 2023; Peng et al., 2023b; Wu
et al., 2023). For instance, Chen et al. (2023) introduce TSMixer, a purely MLP-based model that
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demonstrates strong performance on time series forecasting tasks. Notably, the expressive capacity
of certain linear models aligns with 2D state space models (SSMs), suggesting that these architec-
tures can be interpreted as specific instances within the broader 2D SSM framework. Additionally,
convolution-based models have shown renewed promise (Luo & Wang, 2024), where the use of global
convolutional kernels facilitates an expanded receptive field for capturing long-range dynamics.

More recently, several multivariate forecasters build on Transformer-style patching or hierarchical
designs. TimeKAN (Huang et al., 2025b) introduces a KAN-based frequency decomposition over
temporal patches; TimeFilter (Hu et al., 2025) constructs patch-specific spatio-temporal graphs and
filters them to emphasize informative frequency components; and TimePro (Ma et al., 2025) proposes
variable- and time-aware hyper-states to efficiently capture multivariate dynamics. These models can
be viewed as sophisticated 1D (temporal) architectures augmented with channel-mixing modules. In
contrast, LETO maintains two coupled meta-memories that are updated jointly along the temporal and
variate axes, providing a native 2D view of multivariate dynamics rather than treating cross-variate
interactions as a post-hoc mixer on top of a purely temporal backbone.

Recurrent-based models. Another line of research closely related to our work involves deep
sequence modeling. Recurrent neural networks (RNNs), including variants such as GRUs (Chung
et al., 2014), LSTMs (Hochreiter & Schmidhuber, 1997a), and DeepAR (Salinas et al., 2020), have
been widely used for sequential data. However, these models suffer from well-known limitations such
as vanishing and exploding gradients, along with inherently sequential computation that slows down
training and inference. To address these inefficiencies, recent efforts have explored linear attention
mechanisms as faster alternatives (Katharopoulos et al., 2020; Schlag et al., 2021; Kacham et al.,
2023). For instance, Katharopoulos et al. (2020) propose a linear attention model with a recurrent
formulation, enabling efficient inference and reduced computational complexity.

In parallel, deep state space models (SSMs) have gained momentum as a compelling alternative to
Transformer-based architectures (Vaswani et al., 2017), offering improved scalability and training
efficiency (Gu et al., 2020). These models blend classical state space formulations with deep learning
by parameterizing neural network layers using multiple linear SSMs. This hybrid formulation
leverages the convolutional interpretation of SSMs to mitigate the optimization challenges typically
associated with RNNs (Smith et al., 2023). Recently, Gu & Dao (2023) introduced Mamba, a novel
deep SSM architecture where parameters dynamically depend on input features. This SSM based
approach has been successfully extended to various modalities—including images (Ma et al., 2024;
Liu et al., 2024d; Behrouz et al., 2024c), point clouds (Liang et al., 2024), tabular data (Ahamed &
Cheng, 2024a), graphs (Behrouz & Hashemi, 2024b; Behrouz et al., 2024b; Huang et al., 2024), and
time series (Behrouz et al., 2024d; Cao et al., 2025; Ahamed & Cheng, 2024b; Patro & Agneeswaran,
2024)—demonstrating strong capabilities in modeling long-range dependencies across domains.

Time-series foundation models. A recent line of work aims to build time-series foundation models
(TSFMs) that learn a single universal backbone from large, heterogeneous collections of time series
and adapt it to many downstream tasks (forecasting, classification, anomaly detection, imputation,
etc.). Representative examples include models that learn unified sequence representations and
adaptive transfer mechanisms using FFT based techniques (Wang et al., 2025b; Benechehab et al.,
2025), pattern machines such as TimeMixer++ that scale patch-based temporal mixers across domains
(Wang et al., 2025a), and large TSFM families such as Sundial and Moirai-MoE that push capacity
via dense or sparse mixture-of-experts architectures (Liu et al., 2025c;b). These works primarily
study scaling laws, cross-dataset pretraining, and transfer protocols (zero-shot, few-shot, or light
fine-tuning), typically building on standard Transformer- or MLP-style backbones.

Our focus is complementary and orthogonal to TSFMs. LETO is a native 2D meta-memory architec-
ture designed for supervised, per-dataset forecasting at a fixed parameter budget, with no cross-dataset
pretraining and a model size comparable to strong supervised baselines such as ModernTCN and
iTransformer. Directly comparing our results to TSFMs would simultaneously conflate (i) architec-
tural inductive bias, (ii) model scale, and (iii) pretraining data. Instead, we treat LETO as a building
block at the same scale as existing supervised models: in principle, the LETO cell could be used as
the backbone inside a TSFM pipeline (replacing a Transformer or MLP block) to provide an explicitly
coupled temporal–variate memory within large pretrain-and-transfer frameworks. Exploring such
integrations is an interesting direction for future work.
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Other Methods. Graph-based models have emerged as powerful tools for time series forecasting(Wu
et al., 2020; Yi et al., 2024), especially when the data exhibits spatial or relational structure across
variables or entities. Approaches such as graph neural networks (GNNs) model dependencies through
learned graph representations, enabling effective spatiotemporal forecasting in domains like traffic (Yu
et al., 2017; Li et al., 2017) and sensor networks (Wu et al., 2019). Recent work has extended these
ideas by incorporating dynamic graphs (Wu et al., 2023; Dwivedi et al., 2022; Gastinger et al., 2024),
learning graph structures jointly with temporal dynamics to better capture evolving relationships over
time. These methods offer strong performance in settings where explicit or latent graph structure
underpins multivariate time series behavior.

Limitations of Prior Frameworks. Recent diagnostic and theoretical studies have made the
limitations of existing time–series backbones much more concrete. A growing body of work shows
that vanilla Transformer, MLP, and linear global models, when applied to multivariate time series
data, often lack strong temporal inductive bias, under–utilize cross–series structure, or require
fragile evaluation protocols to appear competitive. For example, Chen et al. (2025a) systematically
compare point–wise, patch–wise, and variate–wise Transformers and find that performance on
standard long–horizon benchmarks is dominated by intra–variate dependencies, with inter–variate
attention contributing relatively little and success relying heavily on Z–score normalization and
(approximate) stationarity of each series. Theoretical work on in–context forecasting further shows
that simplified Transformer variants with linear self–attention cannot outperform classical linear
predictors on AR(p) processes and exhibit a provably non–vanishing performance gap at finite context
length, despite quadratic complexity. Zhou et al. (2025) Recurrent and convolutional alternatives
address temporal inductive bias but introduce other trade–offs: linear RNNs provide a natural causal
prior yet are inherently single–sequence and prone to error accumulation, Meskin et al. (2025)
while ModernTCN–style architectures require careful handling of data loading, validation, and
“drop–last” to avoid overly optimistic conclusions.Akacik & Hoogendoorn (2025) Complementary
work on context neural networks and related global models emphasizes that many “global univariate”
approaches still forecast each series in isolation at inference time, leaving useful cross–series context
under–exploited unless one is willing to pay the cost of full attention or graph–based modeling.
Sriramulu et al. (2024). At the multivariate architectural level, several recent papers explicitly
document limitations of current ways of mixing temporal and variate information. UniTST Liu et al.
(2024b) shows that many multivariate time series Transformers—including iTransformer Liu et al.
(2024c), and Crossformer Zhang & Yan (2023) apply time–wise and variate–wise attention in separate
stages (sequentially or in parallel) and therefore cannot directly model cross–time and cross–variate
dependencies in a single operation; they demonstrate that such cross–time cross–variate links are
present and beneficial in real–world data. Independent analyses of TimesNet and its variants report
that embedding all variates at a single time step into one token can blur physically different signals and
degrade multivariate performance, motivating “inverted” designs that are more variate–centric. Hu &
Li (2024). HYDRA Meskin et al. (2025) formalizes a related gap: architectures that only mix along
one dimension at a time (e.g., separate temporal and channel mixers, or pure variate–wise attention as
in iTransformer) implement a restricted class of kernels, while a genuine 2D recurrence that updates a
time memory and a variate memory jointly at each step can represent strictly higher–rank interactions
between time and variates. LETO is designed precisely in response to these documented limitations:
it combines a contractive recurrent temporal memory that encodes a strong causal inductive bias with
a permutation–equivariant cross–variate memory, and an explicit coupling between the two memories
at every time step. Our kernel analysis and ablations show that this hybrid 2D meta–memory strictly
enlarges the class of realizable kernels compared to pure variate–wise attention, thereby providing an
analytical separation from iTransformer–style architectures while remaining at the same parameter
scale. An extended discussion of limitations of various time series architecture is beyond the scope of
this work.

C PARALLELIZABLE TRAINING OF LETO

While the recurrence-based formulation of LETO enables it to better capture joint temporal and variate
dependencies, as well as their independent dynamics, it introduces sequential dependencies that can
hinder training efficiency. To address this, we develop a parallelizable training strategy inspired by
recent advances in test-time memorization frameworks Sun et al. (2024); Behrouz et al. (2024e).
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Specifically, for a given variate v, we divide its time series {x1,v, . . . , xT,v} into C disjoint chunks
of length b = T/C. Each chunk Si = {x(i−1)b+1,v, . . . , xib,v} can be treated as an independent
subsequence for computing the inner-loop updates of the memory module. This chunking allows us
to approximate the gradient ∇ℓ(M

(1)
t−1,v, xt,v) with ∇ℓ(M

(1)
t′,v, xt,v), where t′ = ⌊t/b⌋ · b is the last

time step of the previous chunk. Since t′ is fixed for each chunk, this gradient can be computed in
parallel for all time steps within a chunk.

Moreover, the cross-variate dynamic component—modeled via the attention mechanism—is indepen-
dent of time and can be computed in advance. We precompute the attention-based memory M

(2)
t,v

for all variates using equation above with a Taylor-approximated softmax kernel. This enables us to
also precompute ∇ℓ(M

(2)
t,v , xt,v), further decoupling the cross-variate dynamics from the sequential

recurrence.

With the cross-variate memory and its corresponding gradient terms available, the remaining compu-
tation in each chunk reduces to a linear update over the cross-time memory using the precomputed
components. As a result, we obtain a recurrence that is linear within chunks and can be parallelized
across both time and variates. We now provide granular descriptions regarding data flow, batching,
and pseudocode for our parallel training.

Data flow and batching. For a mini-batch of multivariate time series, the input to the model is a
tensor

X ∈ RB×T×V×d,

where B is the batch size, T is the lookback length, V is the number of variates, and d is the
feature dimension after embedding and normalization. We index X as Xt,v ∈ RB×d for time step
t ∈ {1, . . . , T} and variate v ∈ {1, . . . , V }.

For each time step t, we form variate-wise queries, keys, and values

Qt,Kt, Vt ∈ RB×V×d

via linear projections of Xt. We then apply a Taylor-approximated softmax attention across the
variate dimension (size V ) to obtain the cross-variate memory state

M
(2)
t ∈ RB×V×d.

Because this attention is performed independently at each t, the full tensor M (2)
1:T is computed for all

time steps in a single batched operation over (B, T, V ).

Chunking and parallel time memories. For the time memory, we fix a variate index v and treat
the sequence {

(Xt,v,M
(2)
t,v )

}T

t=1

as a univariate sequence of length T . Directly applying the recurrent update across t would be strictly
sequential. To expose parallelism, we divide the time axis into C disjoint chunks of length b = T/C:

Si =
{
(Xt,v,M

(2)
t,v ) : t = (i− 1)b+ 1, . . . , ib

}
, i = 1, . . . , C.

Let ℓ denote the loss on the mini-batch and M
(1)
t,v the time memory at time t for variate v. Within a

chunk, we approximate the dependence of the update on the previous time memory by freezing the
gradient term at the last state of the previous chunk. Formally, for t in a given chunk we use

∇ℓ
(
M

(1)
t−1,v, Xt,v

)
≈ ∇ℓ

(
M

(1)
t′,v, Xt,v

)
, t′ =

⌊
t/b

⌋
· b, (16)

so that the gradient anchor t′ is fixed within each chunk. This approximation makes the inner update
linear in M

(1)
t,v inside a chunk, which allows us to implement the recurrence using parallel scans over

t (and over v) rather than a fully sequential loop.

Moreover, the cross-variate component M (2)
t,v and its contribution to the loss are independent of the

time recurrence and can be fully precomputed. In particular, we first compute M
(2)
t,v for all (t, v)

using the Taylor-approximated softmax kernel and cache these tensors. The subsequent time-memory
updates then only require simple linear combinations of M

(1)
t−1,v and precomputed functions of

(Xt,v,M
(2)
t,v ).
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Algorithm 1 Parallelizable training step for LETO (one mini-batch)

Require: Input batch X ∈ RB×T×V×d, chunk length b, model parameters θ, time-memory parame-
ters (α, η).

1: Variate attention (precompute cross-variate memory):
2: Compute Qt,Kt, Vt from Xt for all t = 1, . . . , T .
3: For each t, apply Taylor-approximated softmax attention across v to obtain M

(2)
t ∈ RB×V×d.

4: Initialize time memories: Set M (1)
0,v = 0 for all variates v.

5: Process chunks in parallel over (B, V ):
6: for i = 1 to C do

{C = T/b}
7: Let t range over the indices in chunk i.
8: Set anchor index t′ = ⌊t/b⌋ · b for this chunk.
9: Freeze ∇ℓ(M

(1)
t−1,v, Xt,v) ≈ ∇ℓ(M

(1)
t′,v, Xt,v) for all t in the chunk.

10: for all t in chunk i (in parallel) do
11: Update time memory using Variant 2: M (1)

t,v = αM
(1)
t−1,v + η fθ

(
Xt,v,M

(2)
t,v

)
.

12: end for
13: end for
14: Readout: Apply the forecasting head to {M (1)

T,v}Vv=1 (or a short suffix {M (1)
t,v }Tt=T−k+1) to obtain

predictions and compute the loss ℓ.
15: Backpropagate through the batched computation with the chunked gradient approximation.

Coupled update and stability. The Variant 2 coupled update for the time memory at each step t
and variate v combines a time-recursive term and a cross-variate term:

M
(1)
t,v = αM

(1)
t−1,v + η fθ

(
Xt,v,M

(2)
t,v

)
, (17)

where fθ is a small MLP and α, η are learned scalars constrained to (0, 1) and a bounded interval,
respectively. Within each chunk, the right-hand side of equation 17 is linear in M

(1)
t−1,v because

fθ(Xt,v,M
(2)
t,v ) depends only on precomputed quantities. For bounded inputs (Xt,v,M

(2)
t,v ) and

|α| < 1, this update defines a contractive linear system in the time direction, which yields stable
memory trajectories over long sequences.

End-to-end procedure. After processing all C chunks, we obtain the final time memories M (1)
T,v

for all variates v. The forecasting head (a lightweight decoder) is applied on top of these final time
memories, or on an average over the last few time steps, to predict the future horizon. During training,
the forward pass and the approximate backward pass induced by equation 16 are both implemented
using batched tensor operations, enabling efficient parallelization across batch, time (within chunks),
and variates.

For clarity and reproducibility, we summarize the full batched and parallelizable training procedure
in Algorithm 1.

D DATASET AND EXPERIMENTAL DETAILS

The experimental and benchmark datasets details are reported in Table 5. We conduct a Student’s
2-tailed t test averaged over 5 runs at 99 or 95 % confidence. We note that Luo & Wang (2024)
outperforms many other architectures and multivariate time series forecasting which are variants of
SSMs including: Mamba Gu & Dao (2023), S4Gu et al. (2022), Transformer Vaswani et al. (2017),
and others grouped accordingly in the related works section.
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Table 5: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

(Long-term) Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)

M4-Yearly 1 6 (23000, 0, 23000) Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Finance

Forecasting M4-Monthly 1 18 (48000, 0, 48000) Industry

(short-term) M4-Weakly 1 13 (359, 0, 359) Macro

M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

Imputation

ETTm1, ETTm2 7 96 (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 96 (8545, 2881, 2881) Electricity (15 mins)

Weather 21 96 (36792, 5271, 10540) Weather (10 mins)

EthanolConcentration 3 1751 (261, 0, 263) Alcohol Industry

FaceDetection 144 62 (5890, 0, 3524) Face (250Hz)

Handwriting 3 152 (150, 0, 850) Handwriting

Heartbeat 61 405 (204, 0, 205) Heart Beat

Classification JapaneseVowels 12 29 (270, 0, 370) Voice

(UEA) PEMS-SF 963 144 (267, 0, 173) Transportation (Daily)

SelfRegulationSCP1 6 896 (268, 0, 293) Health (256Hz)

SelfRegulationSCP2 7 1152 (200, 0, 180) Health (256Hz)

SpokenArabicDigits 13 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 315 (120, 0, 320) Gesture

SMD 38 100 (566724, 141681, 708420) Server Machine

Anomaly MSL 55 100 (44653, 11664, 73729) Spacecraft

Detection SMAP 25 100 (108146, 27037, 427617) Spacecraft

SWaT 51 100 (396000, 99000, 449919) Infrastructure

PSM 25 100 (105984, 26497, 87841) Server Machine
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 METRICS

We utilize the mean square error (MSE) and mean absolute error (MAE) for long-term forecasting.
For short-term forecasting on the M4 datasets, we fully mirror the methodology of works on short
term forecasting such as N-BEATS Oreshkin et al. (2019) and utilize the symmetric mean absolute
percentage error (SMAPE), mean absolute scaled error (MASE), and overall weighted average (OWA)
as metrics. It is worth noting that OWA is a specific metric utilized in the M4 competition. The
calculations of these metrics are:

RMSE = (

F∑
i=1

(Xi − X̂i)
2)

1
2 , MAE =

F∑
i=1

|Xi − X̂i|,

SMAPE =
200

F

F∑
i=1

|Xi − X̂i|
|Xi|+ |X̂i|

, MAPE =
100

F

F∑
i=1

|Xi − X̂i|
|Xi|

,

MASE =
1

F

F∑
i=1

|Xi − X̂i|
1

F−s

∑F
j=s+1 |Xj −Xj−s|

, OWA =
1

2

[
SMAPE

SMAPENaïve2
+

MASE
MASENaïve2

]
,

where s is the periodicity of the data. X, X̂ ∈ RF×C are the ground truth and prediction results of the
future with F time pints and C dimensions. Xi means the i-th future time point. For classification,
we use accuracy as the metric. Lastly for anomaly detection, we use F1-Score as the metric.

E.2 FULL ABLATION STUDY

In this section we provide an extended ablation study to complement Table 4 in the main text and to
address the reviewer’s request for a more detailed analysis of our design choices. Unless otherwise
stated, all results are averaged over 3 random seeds; the standard deviation is smaller than 3× 10−3

for all entries. We first ablate major architectural components across all small-scale benchmarks
(Table 4), and then perform finer-grained hyperparameter ablations on the Taylor order K of the
linear-attention kernel, the chunk size b in our parallelizable training scheme, and the cross-memory
coupling strength λ on six datasets (ETTh1/2, ETTm1/2, Weather, Exchange). Metrics are long term
forecasting and thus use MSE/MAE. We measure average performance on long term forecasting
tasks over four prediction lengths: {96, 192, 336, 720}

Table 4 reports the effect of removing three core components: (i) cross-variate attention (the variate
meta-memory), (ii) the linear-attention kernel, and (iii) weighted gating in the time memory.

Across all datasets, the full LETO architecture achieves the best performance. Removing cross-
variate attention substantially harms performance, confirming that the variate meta-memory is a
key ingredient. Removing the linear-attention kernel yields the largest degradation on long-horizon
datasets (ETTh1/2, ETT m1/m2, Weather, and Exchange), consistent with our claim that the kernelized
formulation is crucial for scalable, long-range modeling. Finally, removing the weighted gating in
the time memory also degrades performance, though less dramatically, indicating that learned gating
improves the effective temporal dynamics.

Taylor approximation order K Our linear-attention block approximates the softmax kernel via
a truncated Taylor series derived from the TTM framework. The remaining hyperparameter is
the truncation order K. In 7 We therefore ablate K ∈ {1, 2, 3, 4} on all six datasets, keeping all
other settings fixed. The row K = 3 corresponds to the default configuration reported in the main
experiments.

Chunk size b in parallelizable time memories Our parallelization scheme for the time memory
divides the sequence into C disjoint chunks of length b = T/C and exploits a linearization within
each chunk. The chunk size b controls a bias–variance trade-off: very small chunks increase variance
in the gradient approximation, while very large chunks weaken the linearization and reduce parallel
efficiency. In 8 We vary b ∈ {8, 16, 32, 64} across all datasets; b = 32 is the default used in the main
experiments.
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Variant ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange

LETO, K = 1 0.421 / 0.429 0.344 / 0.396 0.371 / 0.392 0.264 / 0.319 0.230 / 0.267 0.322 / 0.383
LETO, K = 2 0.402 / 0.408 0.329 / 0.387 0.356 / 0.381 0.251 / 0.308 0.223 / 0.260 0.305 / 0.372
LETO, K = 3 0.393 / 0.401 0.318 / 0.381 0.347 / 0.375 0.243 / 0.302 0.216 / 0.253 0.297 / 0.364
LETO, K = 4 0.392 / 0.400 0.317 / 0.380 0.346 / 0.374 0.242 / 0.301 0.215 / 0.252 0.296 / 0.363

Table 7: Extended ablation on Taylor series order K for all ETT, Weather, and Exchange
datasets. Across all benchmarks, very low orders (K = 1) under-approximate the softmax kernel
and degrade performance. Moving from K = 1 to K = 2 yields consistent gains, and K = 3
(our default) gives the best or near-best performance. Increasing to K = 4 produces only marginal
additional improvements (typically within one standard deviation) while increasing computation,
confirming that K = 3 is a good trade-off between approximation quality and efficiency.

Variant ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange

LETO, b = 8 0.398 / 0.404 0.324 / 0.385 0.352 / 0.379 0.249 / 0.308 0.220 / 0.255 0.302 / 0.368
LETO, b = 16 0.395 / 0.402 0.321 / 0.383 0.349 / 0.376 0.246 / 0.304 0.217 / 0.254 0.299 / 0.366
LETO, b = 32 (default) 0.393 / 0.401 0.318 / 0.381 0.347 / 0.375 0.243 / 0.302 0.216 / 0.253 0.297 / 0.364
LETO, b = 64 0.399 / 0.406 0.323 / 0.386 0.351 / 0.378 0.247 / 0.305 0.219 / 0.256 0.301 / 0.367

Table 8: Extended ablation on chunk size b for the parallel time-memory computation. Across
all datasets, performance is robust over a wide range of chunk sizes. Very small chunks (b = 8)
slightly hurt performance, likely due to higher variance in the gradient approximation, while very
large chunks (b = 64) reduce the effectiveness of the linearization trick and slightly degrade results.
A moderate chunk size b = 32 consistently achieves the best overall performance and is used as the
default.

Extent of cross-memory coupling λ In Variant 2, the time memory update includes a scalar
coupling coefficient λ multiplying the contribution of the cross-variate memory M

(2)
t,v :

M
(1)
t,v = αM

(1)
t−1,v + η

(
gθ(Xt,v) + λhθ(M

(2)
t,v )

)
, (18)

where gθ and hθ are small MLPs and (α, η) are learned scalars. The case λ = 0 corresponds exactly
to removing the variate pathway (“w/o Cross Variate Attention” in Table 4), while λ = 1.0 matches
the full LETO used in the main experiments. In 9 evaluate λ ∈ {0, 0.25, 0.5, 1.0, 1.5} across all
datasets.

Taken together, Tables 4–9 show that: (i) removing any major architectural component of the 2D
meta-memory (cross-variate attention, linear attention, or weighted gating) leads to consistent and
often substantial degradations across all datasets, and (ii) LETO is robust with respect to the Taylor
order K and chunk size b around our chosen defaults, while the cross-memory coupling λ is indeed a
crucial design parameter: completely removing it (λ = 0) significantly harms performance, whereas
moderate coupling (λ ≈ 1) yields consistent gains.

E.3 SHORT TERM FORECASTING

Short-term Forecasting is vital for demand planning and marketing. The complete results of short
term forecasting are reported in Table 11.

E.4 LONG TERM FORECASTING

Long-term forecasting is crucial for strategic planning in areas such as weather prediction, traffic
management, and energy utilization. The complete results of long term forecasting are reported in 12.

E.5 ANOMALY DETECTION

Anomaly detection is generally viewed as a binary classification task, where 0 denotes “normal” and
1 denotes “anomaly”. We let X = {x1, . . . ,xN} ∈ RN×T be the input sequences, where N is the
number of variates and T is the time steps. We use xv,t to refer to the value of the series v at time t.
The complete results of Anomaly Detection are reported in Table 14.
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Variant ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange

λ = 0 (no variate memory) 0.458 / 0.447 0.400 / 0.427 0.394 / 0.419 0.320 / 0.362 0.244 / 0.274 0.311 / 0.398
λ = 0.25 0.438 / 0.438 0.373 / 0.405 0.371 / 0.401 0.287 / 0.330 0.235 / 0.268 0.305 / 0.387
λ = 0.5 0.417 / 0.422 0.344 / 0.393 0.358 / 0.386 0.261 / 0.313 0.225 / 0.260 0.301 / 0.375
λ = 1.0 (default) 0.393 / 0.401 0.318 / 0.381 0.347 / 0.375 0.243 / 0.302 0.216 / 0.253 0.297 / 0.364
λ = 1.5 0.404 / 0.409 0.325 / 0.386 0.353 / 0.380 0.249 / 0.306 0.221 / 0.258 0.300 / 0.370

Table 9: Extended ablation on coupling strength λ between time and variate memories. Setting
λ = 0 (no variate memory) reproduces the “w/o Cross Variate Attention” variant and substantially
degrades performance on all datasets. Introducing even weak coupling (λ = 0.25 or 0.5) yields
consistent improvements, and the fully coupled setting λ = 1.0 matches the best results reported for
the full LETO. Over-coupling (λ = 1.5) slightly worsens performance, suggesting that excessively
strong cross-variate influence can interfere with temporal smoothing. These trends hold across all
benchmarks, underscoring the importance of moderate cross-memory coupling.

Table 10: Standard deviation and statistical tests for our model LETO method compared with the
strongest baseline ModernTCN on the M4 dataset (short-term forecasting). For all metrics, the lower
the better. Confidence is derived from a paired two-tailed t-test over five runs.

Frequency LETO (Ours) ModernTCN (2024) ConfidenceSMAPE MASE OWA SMAPE MASE OWA

Yearly 13.183 ± 0.115 2.941 ± 0.028 0.754 ± 0.022 13.226 ± 0.118 2.957 ± 0.031 0.777 ± 0.025 99%
Quarterly 9.953 ± 0.101 1.150 ± 0.015 0.851 ± 0.015 9.971 ± 0.105 1.167 ± 0.017 0.878 ± 0.018 95%
Monthly 12.517 ± 0.115 0.935 ± 0.014 0.853 ± 0.014 12.556 ± 0.120 0.917 ± 0.015 0.866 ± 0.016 95%
Others 4.583 ± 0.084 2.797 ± 0.027 0.900 ± 0.021 4.715 ± 0.090 3.107 ± 0.028 0.986 ± 0.024 99%

Averaged 11.658 ± 0.112 1.541 ± 0.022 0.832 ± 0.018 11.698 ± 0.120 1.556 ± 0.024 0.838 ± 0.020 95%

E.6 CLASSIFICATION

In classification, we aim to classify input sequences and for forecasting tasks, given an input sequence
xi, we aim to predict x̃i ∈ R1×H , i.e., the next H time steps for variate xi, where H is called horizon.
Classification and anomaly detection test models’ ability to capture coarse and fine-grained patterns
in time series. The complete results of Classification are reported in 15.

F LIMITATIONS AND FUTURE WORK

We note LETO has a few limitations worth acknowledging. First, the use of gradient-based meta in-
context updates at test time, while powerful, introduces additional computational overhead compared
to traditional non-adaptive sequence models. Although our dual-form implementation and parallel
training strategies mitigate some of this cost, the memory and compute requirements may still be
prohibitive in resource-constrained settings, particularly for long-horizon forecasting tasks.

Second, while LETO is designed to model both cross-time and cross-variate dependencies, its reliance
on Taylor approximations for the variate attention mechanism may limit its capacity to fully capture
complex, high-order variate interactions in some datasets. Adopting more expressive non-parametric
approximators or learned kernel functions could offer improved generalization and efficiency - all of
which are active areas of research.

Finally, our current formulation assumes access to reasonably stationary statistics at test time for
the meta-memorization process to be effective. In highly non-stationary environments or under
strong distribution shifts, the learned test-time updates may generalize poorly, leading to suboptimal
performance - which has been empirically shown to be the case for other baselines as well, particularly
in ultra long term forecasting.
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Table 11: Full results for the short-term forecasting task in the M4 dataset. ∗. in the Transformers
indicates the prefix of a ∗former name. Stationary means the Non-stationary Transformer. A lower
SMAPE, MASE, and OWA indicate a better prediction. As a convention for all experimental results,
best performance is highlighted in red, and the second-best is underlined. We take the average of 5
separate runs for each prediction frequency.

Models LETO ROSE ModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗ In∗ Re∗
(Ours) (2025b) (2024) (2023) (2023) (2023) (2022) (2019) (2022) (2022a) (2023a) (2022b) (2022b) (2021) (2021) (2021)

Y
ea

rl
y SMAPE 13.183 13.302 13.226 13.258 13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.717 13.974 15.530 14.727 16.169

MASE 2.941 3.014 2.957 2.985 2.996 3.045 3.043 4.487 3.109 4.283 3.048 3.078 3.134 3.711 3.418 3.800

OWA 0.754 0.833 0.777 0.781 0.786 0.793 0.794 1.115 0.827 1.058 0.803 0.807 0.822 0.942 0.881 0.973

Q
ua

rt
er

ly SMAPE 9.953 9.998 9.971 10.179 10.100 10.202 10.124 13.376 11.364 12.145 10.792 10.958 11.338 15.449 11.360 13.313

MASE 1.150 1.165 1.167 0.803 1.182 1.194 1.169 1.906 1.328 1.520 1.283 1.325 1.365 2.350 1.401 1.775

OWA 0.851 0.885 0.878 0.803 0.890 0.899 0.886 1.302 1.000 1.106 0.958 0.981 1.012 1.558 1.027 1.252

M
on

th
ly SMAPE 12.517 12.650 12.556 12.641 12.670 12.791 12.677 14.588 14.014 13.514 14.260 13.917 13.958 17.642 14.062 20.128

MASE 0.935 0.915 0.917 0.930 0.933 0.969 0.937 1.368 1.053 1.037 1.102 1.097 1.103 1.913 1.141 2.614

OWA 0.853 0.866 0.866 0.876 0.878 0.899 0.880 1.149 0.981 0.956 1.012 0.998 1.002 1.511 1.024 1.927

O
th

er
s SMAPE 4.583 4.668 4.715 4.946 4.891 5.061 4.925 7.267 15.880 6.709 4.954 6.302 5.485 24.786 24.460 32.491

MASE 2.797 3.126 3.107 2.985 3.302 3.216 3.391 5.240 11.434 4.953 3.264 4.064 3.865 18.581 20.960 33.355

OWA 0.900 1.020 0.986 1.044 1.035 1.040 1.053 1.591 3.474 1.487 1.036 1.304 1.187 5.538 5.013 8.679

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.658 11.764 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200

MASE 1.541 1.568 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223

OWA 0.832 0.871 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.775

G BROADER IMPACT

LETO has demonstrated strong performance as a general-purpose model for time series pattern recog-
nition, achieving competitive results across a wide range of tasks including forecasting, classification,
and anomaly detection. Its versatility makes it well-suited for deployment in diverse real-world
scenarios, such as energy and power demand forecasting with pronounced seasonal trends, weather
prediction under complex and dynamic conditions, financial market modeling in rapidly shifting
environments, and demand forecasting within supply chains. Furthermore, LETO has shown particular
promise in industrial anomaly detection tasks, tasks which often require robustness to noise and
structural adaptability. These capabilities highlight LETO’s potential as a foundational model for
advancing time series analysis across multiple applied domains. It would be interesting to optimize
LETO’s designs to develop stronger hybrid memory/attention architectures and test them on other 2D
modalities such as video or EEG.

H COMPUTE RESOURCES

For experiments, we utilized up to 4 NVIDIA A6000 and A6000 ADA GPUs on a single compute
node.

I PROOF OF THEOREM (1)

To prove this theorem, we show that our LETO can recover the 2D linear recurrent models that are
proven to model full-rank matrices (Behrouz et al., 2024d; Baron et al., 2024). To this end, we show
that a special instance of our LETO is equivalent to these linear 2D recurrent models. We let the
chunk size to be the size of the sequence length. Therefore, for every 1 ≤ t ≤ T , we have:

∇ℓ(M(1)
0 ;kt,vt) = (M(1)

0 kt − vt)k
⊤
t , (19)
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Table 12: Complete experiments on long term forecasting tasks over four prediction lengths: {96, 192, 336,
720}. A lower MAE and MSE indicates a better prediction. As a convention for all experimental results, best
performance is highlighted in red, and the second-best is underlined. We take the average of 5 separate runs for
each prediction length.

LETO TimeMixer Simba TCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(ours) (2024) (2024) (2024) (2024c) (2023) (2023) (2023) (2023) (2023) (2023c) (2022a) (2022b) (2022c) (2021)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.312 0.343 0.320 0.357 0.342 0.360 0.292 0.346 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.330 0.365 0.361 0.381 0.363 0.382 0.332 0.368 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.355 0.384 0.390 0.404 0.395 0.405 0.365 0.391 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.391 0.408 0.454 0.441 0.451 0.437 0.416 0.417 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.347 0.375 0.381 0.395 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2

96 0.164 0.248 0.175 0.258 0.177 0.263 0.166 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.217 0.284 0.237 0.299 0.245 0.306 0.222 0.293 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.266 0.312 0.298 0.340 0.304 0.343 0.272 0.324 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.349 0.363 0.391 0.396 0.400 0.399 0.351 0.381 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.249 0.302 0.275 0.323 0.271 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

E
T

T
h1

96 0.365 0.383 0.375 0.400 0.379 0.395 0.368 0.394 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.396 0.400 0.429 0.421 0.432 0.424 0.405 0.413 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.461 0.462 0.484 0.458 0.473 0.443 0.391 0.412 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.427 0.428 0.498 0.482 0.483 0.469 0.450 0.461 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.393 0.401 0.447 0.440 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

E
T

T
h2

96 0.258 0.337 0.289 0.341 0.290 0.339 0.263 0.332 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.316 0.379 0.372 0.392 0.373 0.390 0.320 0.374 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.309 0.379 0.386 0.414 0.376 0.406 0.313 0.376 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.389 0.430 0.412 0.434 0.407 0.431 0.392 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.318 0.381 0.364 0.395 0.361 0.377 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

E
xc

ha
ng

e 96 0.079 0.208 0.090 0.235 - - 0.080 0.196 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
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Table 13: Standard deviation and statistical tests for LETO compared with the strongest baseline
ModernTCN on long-term forecasting (lower is better). Confidence levels derive from a paired
two-tailed t-test over five seeds.

Dataset LETO (Ours) ModernTCN (2024) ConfidenceMSE MAE MSE MAE

ETTm1 0.347 ± 0.010 0.375 ± 0.012 0.351 ± 0.011 0.381 ± 0.013 99%
ETTm2 0.249 ± 0.009 0.302 ± 0.011 0.253 ± 0.010 0.314 ± 0.013 95%
ETTh1 0.393 ± 0.012 0.401 ± 0.014 0.404 ± 0.013 0.420 ± 0.015 99%
ETTh2 0.318 ± 0.010 0.381 ± 0.012 0.322 ± 0.011 0.379 ± 0.013 95%
Exchange 0.297 ± 0.016 0.364 ± 0.018 0.302 ± 0.017 0.366 ± 0.019 95%
Traffic 0.408 ± 0.020 0.267 ± 0.012 0.398 ± 0.019 0.270 ± 0.013 90%
Weather 0.216 ± 0.009 0.253 ± 0.011 0.224 ± 0.010 0.264 ± 0.012 95%
ECL 0.149 ± 0.007 0.247 ± 0.009 0.156 ± 0.008 0.253 ± 0.010 99%

Table 14: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall
and F1-score in percentage respectively. A higher value of P, R and F1 indicates a better performance.
Best performance is highlighted in red, and the second-best is underlined. We take the average of 5
separate runs for each dataset.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

LSTM (1997a) 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 78.06 91.72 84.34 69.24 99.53 81.67 77.97
Transformer (2017) 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
LogTrans (2019) 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74 76.60
TCN (2019) 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 76.59 95.71 85.09 54.59 99.77 70.57 77.24
Reformer (2020) 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer (2021) 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ (2021) 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer (2021) 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer (2021) 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
LSSL (2021) 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90 79.05 93.72 85.76 66.02 92.93 77.20 76.74
Stationary (2022b) 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
DLinear (2023a) 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer (2022) 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS (2022a) 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer (2022b) 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet (I) (2023) 87.76 82.63 85.12 82.97 85.42 84.18 91.50 57.80 70.85 88.31 96.24 92.10 98.22 92.21 95.21 85.49
TimesNet (R) (2023) 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
CrossFormer (2023) 83.6 76.61 79.70 84.68 83.71 84.19 92.04 55.37 69.14 88.49 93.48 90.92 97.16 89.73 93.30 83.45
PatchTST (2023) 87.42 81.65 84.44 84.07 86.23 85.14 92.43 57.51 70.91 80.70 94.93 87.24 98.87 93.99 96.37 84.82
ModernTCN (2024) 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62
LETO (ours) 88.20 85.52 86.84 83.50 89.27 86.29 93.20 57.10 70.81 92.00 96.73 94.31 99.20 94.61 96.85 87.02

where M(1)
0 is the initial state of the memory, which we let M(1)

0 = I for the simplicity. Replacing
this gradient in equation Variant 2, we have:

M(1)
t,v = αt,vM(1)

t−1,v − ηt,v

(kt − vt)︸ ︷︷ ︸
ut

k⊤
t

+ βt,vM(2)
t−1,v − γt,v

(
M(2)

t ktk
⊤
t − vtk

⊤
t

)
, (20)

where we let ηt,v = γt,v = 1. Also, for the attention module, we use polynomials with degree 1 to
approximate the softmax attention (which is the special instance and the weaker version of our design,
i.e., considering only the first two terms of the Taylor series). The resulting formula can be written as:

M(1)
t,v = αt,vM(1)

t−1,v − ηt,vutk
⊤
t + βt,vM(2)

t−1,v − γt,vM(2)
t + γt,vutk

⊤
t , (21)

which is equivalent to the 2-dimensional linear recurrence with diagonal transition matrix. Therefore,
as proven by Baron et al. (2024), the recurrence can model full-rank matrix.

On the other hand, the univariate version of this recurrence (i.e., γt,v = 0) results in linear attention
formulation, which is limited and cannot express full-rank matrices.
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Table 15: Full results for the classification task (accuracy %). We omit “former” from the names
of Transformer-based methods. For all methods, the standard deviation is less than 0.1%. A higher
average accuracy indicates a better prediction. Best performance is highlighted in red, and the
second-best is underlined. We take the average of 5 separate runs for each dataset.

Datasets / Models
LSTM LSTNet LSSL Trans. Re. In. Pyra. Auto. Station. FED. /ETS. /Flow. /DLinear/LightTS./TimesNet/PatchTST/MTCN/LETO

(1997a)(2018) (2017)(2020)(2021)(2021)(2021) (2022b) (2022b)(2022)(2022b) (2023a) (2022a) (2023) (2023) (2024) (ours)

EthanolConcentration 32.3 39.9 31.1 32.7 31.9 31.6 30.8 31.6 32.7 31.2 28.1 33.8 32.6 29.7 35.7 32.8 36.3 38.8
FaceDetection 57.7 65.7 66.7 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 68.0 67.5 68.6 68.3 70.8 71.3
Handwriting 15.2 25.8 24.6 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 27.0 26.1 32.1 29.6 30.6 32.9
Heartbeat 72.2 77.1 72.7 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.1 75.1 78.0 74.9 77.2 78.3
JapaneseVowels 79.7 98.1 98.4 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 96.2 96.2 98.4 97.5 98.8 98.5
PEMS-SF 39.9 86.7 86.1 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86.0 83.8 75.1 88.4 89.6 89.3 89.1 89.6
SelfRegulationSCP1 68.9 84.0 90.8 92.2 90.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 87.3 89.8 91.8 90.7 93.4 94.4
SelfRegulationSCP2 46.6 52.8 52.2 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 50.5 51.1 57.2 57.8 60.3 61.1
SpokenArabicDigits 31.9 100.0 100.0 98.4 97.0 100.0 99.6 100.0 100.0 100.0 100.0 98.8 81.4 100.0 99.0 98.3 98.7 98.7
UWaveGestureLibrary 41.2 87.8 85.9 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 82.1 80.3 85.3 85.8 86.7 87.1

Average Accuracy 48.6 71.8 70.9 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 67.5 70.4 73.6 72.5 74.2 75.07

As an important note: Theorem 1 is intentionally stated in a linear recurrent setting and should
be read as a structural comparison within a linearized model class rather than a full theory of the
nonlinear LETO architecture. Recall from equation 11 that our cross-variate block uses a kernelized
attention with an explicit feature map ϕ, so that in the feature space induced by ϕ the memory
M(2)

t,v evolves linearly in ϕ(k̂t,i). When we fix ϕ and consider the joint update of M(1) and M(2)

in equation Variant 2, the resulting dynamics fall exactly into the class of interconnected linear
recurrences analyzed in Theorem 1. Within this linearized class, the theorem shows that coupling
the two memories allows us to realize full-rank kernels with O(1) parameters, whereas using two
independent modules of the form equation Variant 1 requires at least O(N) parameters to represent
rank-N interactions. We do not claim that this result characterizes the full nonlinear LETO or provides
general expressivity bounds beyond rank; rather, it offers mechanistic intuition about the parameter
efficiency of the inter-connected design. This intuition is complemented by our empirical ablations
(Table 4 and Appendix E.2), where removing the cross-variate memory, removing the linearized
attention, or decoupling the two memories all lead to consistent performance degradation compared
to the full LETO.
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J VISUALIZATIONS

J.1 LONG TERM FORECASTING

Figure 3: Visualization of Traffic Long Term Forecasting results given by models under the input-96-predict-96
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.
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J.2 ULTRA LONG TERM FORECASTING

(a) Input-720, Predict-720 (b) Input-720, Predict-1440

(c) Input-1440 –Predict-1440

Figure 4: Ultra-long-horizon forecasting examples on the ETTh1 dataset. The blue lines stand for the
ground truth and the orange lines stand for predicted values.
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