

LETO: MODELING MULTIVARIATE TIME SERIES WITH MEMORIZING AT TEST TIME

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling multivariate time series data has been at the forefront of machine learning research efforts across diverse domains. However, effectively capturing dependencies across both time and variate dimensions, as well as temporal dynamics, have made this problem extremely challenging under realistic settings. The recent success of sequence models, such as Transformers, Convolutions, and Recurrent Neural Networks, in language modeling and computer vision tasks, has motivated various studies to adopt them for time series data. These models, however, are either: (1) natively designed for a univariate setup thus missing the the rich information that comes from the inter-dependencies of time and variate dimensions; (2) inefficient for long-range time series; and/or (3) propagating the prediction error over time. In this work, we present LETO, a native 2-dimensional memory module that takes the advantage of temporal inductive bias across time while maintaining the permutation equivariance of variates. LETO uses meta in-context memory modules to learn and memorize patterns across the time dimension, and simultaneously, incorporates information from other correlated variates, if needed. Our experimental evaluation shows the effectiveness of LETO on extensive and diverse benchmarks, including time series forecasting (short, long, and ultra-long), classification, and anomaly detection.

1 INTRODUCTION

Modeling multivariate time series data is a well-established problem in the literature with a diverse set of applications ranging from healthcare (Ivanov et al., 1999; Tang et al., 2023) and neuroscience (Behrouz & Hashemi, 2024a) to finance (Gajamannage et al., 2023; Pincus & Kalman, 2004), energy (Zhou et al., 2021), transportation management (Durango-Cohen, 2007), and weather forecasting (Allen et al., 2025; Price et al., 2025). Classical shallow models—such as State Space Models (Harvey, 1990; Aoki, 2013), ARIMA (Bartholomew, 1971), SARIMA (Bender & Simonovic, 1994), Exponential Smoothing (ETS) (Winters, 1960)—have long been the de-facto mathematical models for time series prediction, modeling diverse complex patterns (such as seasonal and trend patterns). Deploying these models at scale in real-world settings remains challenging due to their reliance on manual data preprocessing, sensitive model selection, and inherently sequential, non-parallelizable computations. Additionally, these models often fail to capture (1) the inter-dependencies of different variates, and (2) the complex *non-linear* dynamics inherent to multivariate time series data.

The emergence of deep learning has shifted the focus of recent time series research away from traditional statistical methods toward deep neural network architectures such as Transformer-based (Zhou et al., 2021; Wu et al., 2021), recurrence-based (Behrouz et al., 2024d;e; Patro & Agneeswaran, 2024; Jia et al., 2023), and temporal convolutional-based (Bai et al., 2018; Sen et al., 2019; Luo & Wang, 2024) models. Despite the outstanding performance of Transformers (Vaswani et al., 2017) across various diverse domains (Du et al., 2023; Nguyen et al., 2024; Wu et al., 2021), recent studies have highlighted their frequent suboptimal performance compared to even linear methods, mainly due to their inherent permutation equivariance that contradicts the causal nature of time series (Zeng et al., 2023c). Additionally, their quadratic time and memory complexity is a notable bottleneck hindering their use in large-scale long real-world settings with long-range prediction horizon.

In recent years, modern linear Recurrent Neural Networks (RNNs) have attracted much attention as the linear alternative to Transformers, improving Transformers’ training and inference efficiency

054 while maintaining their effectiveness (Peng et al., 2023a; Katharopoulos et al., 2020; Kacham et al.,
 055 2023; Smith et al., 2023). While these models have shown promising performance on clean and
 056 tokenized data modalities such as language, applying them to multivariate time series modeling
 057 is more challenging as: (1) Contrary to text, time series data can be non-stationary and highly
 058 noisy, as demonstrated by complex temporal patterns. Accordingly, the additive nature of such
 059 recurrent models can cause error propagation in their predictions over time, requiring additional
 060 careful parametrization or design to achieve good performance (Jia et al., 2023; Behrouz et al.,
 061 2024d); (2) These models are inherently designed for a single sequence and so their use for time
 062 series data overlooks the importance of variate dependencies in modeling multivariate time series
 063 data (Zeng et al., 2023a; Zhang et al., 2023; Nie et al., 2023). Moreover, simply mixing the variates to
 064 take advantage of cross-variate information can hinder the performance in the general case as variate
 065 dependencies are not always useful in practice; e.g., when the target variate is not correlated with
 066 other covariates (Chen et al., 2023). Therefore, a major goal of effective modeling of multivariate
 067 time series is to develop a model which can *adaptively* mix cross variate information over time when
 068 appropriate; (3) To capture both cross-time and cross-variate information, several recent studies
 069 have sought to perform selective 2-dimensional recurrence across both variates (Jia et al., 2023;
 070 Behrouz et al., 2024d). These models, however, are sensitive to the order of variates, thus missing the
 071 permutation equivariance of information across variates.

072 **Contributions.** In our work, with the goal of mitigating the aforementioned limitations in existing
 073 time series models, we present LETO, a novel 2-dimensional architecture based on two meta in-context
 074 memory modules—called time and variate memory modules—that learns how to memorize cross-time
 075 and cross-variate patterns at test time, respectively. While LETO updates the time memory module
 076 using a recurrent rule to take advantage of its temporal inductive bias, it uses an attention-like (with
 077 `Softmax`) non-parametric memory module across variates to accurately consider their permutation
 078 equivariance property. To capture the discrete time dynamics of dependencies across variates, LETO
 079 needs to mix the states of both time and variate memories at each time stamps. However, the non-
 080 parametric nature of variate memory module makes it stateless, empowering the memory to learn the
 081 dynamics of variate dependencies across time. To overcome this challenge, LETO uses a parametric
 082 approximation of the non-parametric memory and expresses the `Softmax` attention using its Taylor
 083 series. To the best of our knowledge, LETO is the first native 2-dimensional hybrid model. In our
 084 experiments, we perform various evaluations and compare LETO with state-of-the-art time series
 085 models on diverse downstream tasks, including: (1) short-, long-, and ultra-long-term forecasting, (2)
 086 classification, and (3) anomaly detection tasks. We further demonstrate the effectiveness of LETO for
 087 longer horizons and support the significance of LETO’s design by performing ablation studies.

088 2 PRELIMINARIES, BACKGROUND, AND RELATED WORK

089 In this section, we first discuss the notation that we use through the paper and then provide an
 090 overview of the background concepts and related studies. A more detailed discussions of the related
 091 work is in Appendix (B). Additionally, our model architecture is motivated by the following key
 092 directions: (1) meta learning, (2) learning to memorize, and (3) Titans Behrouz et al. (2024e). We
 093 provide a more detailed explanation of each of these topics in Appendix (A).

094 **Notation.** We let matrix $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_V\} \in \mathbb{R}^{V \times T \times d_{\text{in}}}$ denote a multivariate time series, where T
 095 and V are the number of time stamps and variates, respectively, and d_{in} is the feature dimension of the
 096 input (often $d_{\text{in}} = 1$). We use $x_{v,t} \in \mathbb{R}^{d_{\text{in}}}$ to refer to the value of the time series in v -th variate at time
 097 t . In this paper, we mainly focus on forecasting, classification, and anomaly detection. In forecasting,
 098 given the historical series $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_V\}$, the model aims to predict the next H time steps. For
 099 classification and anomaly detection, the task is to assign a label to the sequence, where anomaly
 100 detection is treated as a binary classification problem, labeling variate as "normal" or "anomaly".

101 **Autoregressive Process.** Autoregressive (AR) process is a basic but fundamental concept for time
 102 series modeling. An AR process models the causal nature of time series by writing each element
 103 as the linear combination of its past samples. Given $p \in \mathbb{N}$, $\mathbf{x}_k \in \mathbb{R}^d$, the linear autoregressive
 104 relationships between \mathbf{x}_k and its past samples $\mathbf{x}_{k-1}, \mathbf{x}_{k-2}, \dots, \mathbf{x}_{k-p}$ is modeled as

$$105 \mathbf{x}_k = \zeta_1 \mathbf{x}_{k-1} + \zeta_2 \mathbf{x}_{k-2} + \dots + \zeta_p \mathbf{x}_{k-p} \quad (AR(p) \text{ Process})$$

108 where ζ_1, \dots, ζ_p are coefficients. Note that we can simply extend the above autoregressive formulation to the multivariate setting by letting coefficients be vectors, replacing the product with element-wise product.

111
112 Time Series Models. The complexity of time series data—characterized by higher-order structures, 113 multivariate dependencies, and domain variability—presents key challenges for model development. 114 Models must capture both local and long-range dependencies, selectively leverage relevant covariates, 115 and scale efficiently to long sequences without relying heavily on domain-specific pre-processing. 116 Classical statistical models, such as ARIMA (Anderson & Kendall, 1976) and STL (Cleveland et al., 117 1990), effectively address periodic and trend components but are fundamentally limited when it 118 comes to modeling non-linear and complex dependencies.

119 Early efforts to enhance time series forecasting with deep learning adopted recurrent neural networks (RNNs) (Elman, 1990) and their variants, such as Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber, 1997b) and Gated Recurrent Units (GRUs) (Cho et al., 2014), 120 owing to their natural suitability for sequential data. Subsequently, temporal convolutional networks 121 (TCNs) (Bai et al., 2018; Wang et al., 2023; Wu et al., 2022a) were introduced, excelling at capturing 122 local patterns through carefully designed receptive fields.

123 The introduction of Transformer-based models (Vaswani et al., 2017) marked a significant advancement, 124 enabling more effective modeling of both short and long term dependencies with enhanced 125 scalability and predictive performance across a wide range of time series tasks (Wen et al., 2022). 126 Transformer-style architectures such as (Liu et al., 2024c; Zhou et al., 2022b; Shi et al., 2024) 127 demonstrate the power of attention to capture local and global temporal patterns, often enriching 128 them with frequency-domain representations, downsampling, or mixture-of-experts components 129 for improved efficiency. Building on this trend, recent multivariate forecasters further refine these 130 ideas via frequency decomposition, patch-specific spatio-temporal filtering, non-stationarity-aware 131 modules, and chunk-wise spatial correlation modeling with KAN’s and FFT techniques (Huang et al., 132 2025b; Hu et al., 2025; Ma et al., 2025; Liu et al., 2025a; Si et al., 2025; Huang et al., 2025a), while 133 general forecasting models with unified representations and adaptive transfer mechanisms, extend 134 these backbones to cross-dataset settings (Wang et al., 2025b). However, the quadratic complexity 135 of standard Transformers still poses optimization and scalability challenges (Zhou et al., 2021; Wu 136 et al., 2021; Zhou et al., 2022b; Liu et al., 2021), motivating patch-based and hierarchical designs 137 (Zhang & Yan, 2023; Nie et al., 2023; Chen et al., 2025b). Meanwhile, multilayer perceptrons have 138 remained popular for forecasting due to their simplicity and direct mapping capabilities (Ekambaram 139 et al., 2023).

140 Beyond forecasting, specialized architectures have been developed for anomaly detection and related 141 tasks, for example channel-aware models that exploit frequency patching to detect multivariate anomalies 142 (Wu et al., 2025). Finally, multi-dimensional recurrent models have recently attracted attention 143 (Behrouz et al., 2024d; Meskin et al., 2025; Jia et al., 2023). Although their multi-dimensional 144 recurrence can capture cross-time and cross-variate interactions, their recurrent nature across variates 145 makes them sensitive to the order of variables, so performance can degrade under simple permutations; 146 moreover, efficient training requires careful algorithmic design to parallelize the recurrences. 147 Our design supports permutation equivariance over variates and remains effective and straightforward 148 to train. For more discussion on limitations of existing model architectures see Section B.

149
150 Test Time Memorization and Time Series Modeling. In recent years, there have been growing 151 interest in understanding the underlying mechanisms of sequence models and unifying (a subset of) 152 them through a single perspective (Sun et al., 2024; Behrouz et al., 2025; Schlag et al., 2021; Liu et al., 153 2024a). In this work, we discuss a connection between test time memorization models, time series 154 modeling, and autoregressive processes. In the associative memory perspective of sequence models, 155 given the incoming input data \mathbf{x}_t , a sequence model is defined as an associative memory, $\mathcal{M}(\cdot)$ that 156 aims to learn a mapping between a set of keys (i.e., $\{\mathbf{k}_i\}_{i=1}^N$) and values (i.e., $\{\mathbf{v}_i\}_{i=1}^N$) based on an 157 objective function $\ell(\mathcal{M}(\cdot); \mathbf{k}_t, \mathbf{v}_t)$. For example, in recurrent neural networks, this memory module 158 \mathcal{M} is their hidden state. Since this memory module is updated for each incoming data (at test time), 159 it is often called a test time learner or test time memorizer. It is notable that the process of training 160 such memory is a meta learning process (Hospedales et al., 2021), where inside the inner-loop the 161 corresponding parameters to memory are optimized, while the outer-loop optimizes other parameters 162 in the neural network. For additional discussions on the meta learning process and how architectures

162 like Transformers and recurrent models can be formulated as associative memory module, we refer
 163 the reader to Behrouz et al. (2025) and our background discussion in Appendix (A).

164 In practice, given input data \mathbf{x}_t , keys and values are defined as the linear projections of the input, i.e.,

$$166 \quad \mathbf{k}_t = W_k \mathbf{x}_t \quad \text{and} \quad \mathbf{v}_t = W_v \mathbf{x}_t, \quad (1)$$

168 where $W_k \in \mathbb{R}^d$ Another interpretation of this framework for associative memory is to view \mathbf{k}_t as the
 169 corrupted version of the input, and define $\mathcal{M}(\cdot)$ as a model that can reconstruct a projection of the
 170 input from the corrupted version. In this interpretation, objective $\ell(\mathcal{M}(\cdot); \mathbf{k}_t, \mathbf{v}_t)$ measures the ability
 171 of \mathcal{M} in reconstructing the input projection. Despite the equivalence of these two interpretations,
 172 the latter provides an interesting connection between modeling time series data with sequence
 173 models. That is, modeling time series given a lookback window of p time stamps in which the model
 174 aims to predict the next $h \geq 1$ steps, is equivalent to reconstructing a time series of $h + p$ time
 175 stamps from its corrupted version that masks its last h steps. This reconstruction perspective and
 176 its connection to sequence models allow for the design of sequence models that are theoretically
 177 expressive and capable of modeling time series data. Despite this advantage, it is important to note
 178 that this formulation is limited to a single sequence. Hence, this begs the question: *“How can we*
 179 *design a native 2-dimensional model that learns to map underlying patterns of 2D data?”*

180 3 LETO: LEARNING TO MEMORIZATE AT TEST TIME WITH 2-DIMENSIONAL 181 MEMORY

184 To address this question, we present our model: LETO, a native 2-dimensional architecture that takes
 185 advantage of two separate memory modules, each of which learns how to memorize patterns across
 186 either time or variate dimensions.

188 3.1 HOW TO MEMORIZATE 2-DIMENSIONAL DATA?

190 As discussed earlier, while sequence modeling and its test time memorization perspective can be an
 191 effective paradigm for modeling time series data, its design is limited to single sequences. Thus,
 192 for 2-dimensional data like multivariate time series, two memory modules are needed, each of
 193 which *learns* how to memorize patterns across each dimension (either time or variate) at test time.
 194 However, having memory modules that simply memorize the training data can significantly hinder
 195 the performance of the model, due to overfitting and the property that time series data at test time can
 196 be out-of-distribution (OOD). To this end, we utilize a meta in-context memory, where the model
 197 learns *how to memorize patterns at test time*. This memory does not directly memorize training data,
 198 but instead employs the underlying patterns in the training data to learn *what patterns* need to be
 199 memorized and *what patterns* need to be forgotten.

200 **Cross Time Dynamic.** For the sake of simplicity and to demonstrate the process of modeling
 201 cross-time patterns, we fix the variate to v and remove it from subscript whenever the context is
 202 clear. Accordingly, for the input sequence this is a meta learning problem on the memory parameters,
 203 in which memory aims to reconstruct the projection of the time series (i.e., $\mathbf{v}_i = W_v \mathbf{x}_i$) from its
 204 corrupted version (i.e., $\mathbf{k}_i = W_k \mathbf{x}_i$). That is, given an internal objective $\ell(\cdot)$ that measures the quality
 205 of reconstruction, during the training process, the model performs two loops:

206 1. *Inner Loop:* In this loop the memory is optimized to reconstruct the sequence from its
 207 corrupted version using an optimization algorithm such as gradient descent. Therefore, the
 208 memory update is defined as:

$$210 \quad \mathcal{M}_t = \alpha_t \mathcal{M}_{t-1} - \eta_t \nabla \ell(\mathcal{M}_{t-1}; \mathbf{x}_{v,t}), \quad (2)$$

211 Note that in the inner loop we only optimize the memory parameters; other parameters are
 212 fixed in this loop.

214 2. *Outer Loop:* The outer loop is responsible for the training of the entire model for a specific
 215 downstream task such as forecasting, classification, or anomaly detection. In this process,
 216 while all parameters in the model are optimized, memory parameters are fixed.

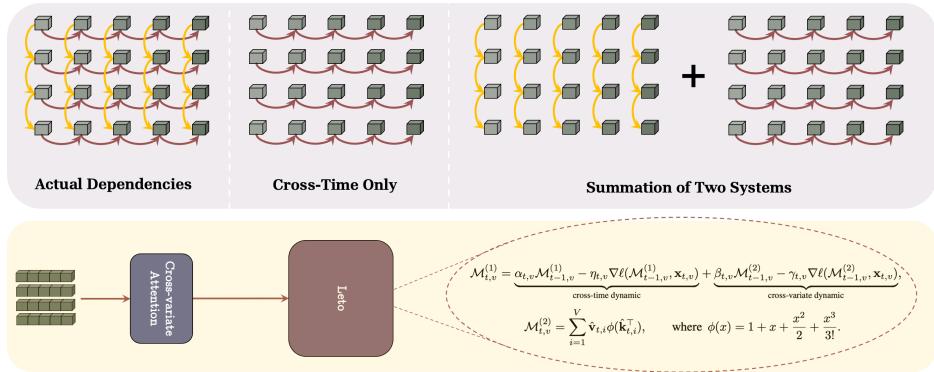


Figure 1: **An Overview of LETO’s Architecture**: We define two inter-connected memory blocks $\mathcal{M}^1, \mathcal{M}^2$ corresponding to time and variate axes, where the recurrence is updated by fusing together both cross-time and cross-variate information, using an approximation of softmax attention for \mathcal{M}^2 .

Using a reconstruction loss, i.e., $\ell(\mathcal{M}; \mathbf{x}_t) = \|\mathcal{M}\mathbf{k}_t - \mathbf{v}_t\|_2^2$, where \mathbf{k}_t and \mathbf{v}_t are defined as equation 1, gives us a memory module with delta update rule (recurrence) (Schlag et al., 2021) as:

$$\mathcal{M}_t = \mathcal{M}_{t-1} - \eta_t \nabla \ell(\mathcal{M}_{t-1}; \mathbf{x}_t) = (\mathbf{I} - \eta_t \mathbf{k}_t \mathbf{k}_t^\top) \mathcal{M}_{t-1} + \eta_t \mathbf{v}_t \mathbf{k}_t^\top, \quad (3)$$

where $(\mathbf{I} - \mathbf{k}_t \mathbf{k}_t^\top)$ is the transition matrix from state \mathcal{M}_{t-1} to \mathcal{M}_t and $\mathbf{v}_t \mathbf{k}_t^\top$ is the transformation of the input data. This linear recurrent process is equivalent to a linear dynamical system with non-diagonal transition matrix, which is more expressive than its counterpart dynamical systems with diagonal transition (Behrouz et al., 2024d; Patro & Agneeswaran, 2024; Li et al., 2024). In our later design of LETO in equation Variant 2, we further enhance the above formulation by incorporating a gating mechanism inspired by the Titans architecture (Behrouz et al., 2024e). Therefore, the update rule can be written as:

$$\mathcal{M}_t = (\alpha_t \mathbf{I} - \eta_t \mathbf{k}_t \mathbf{k}_t^\top) \mathcal{M}_{t-1} + \eta_t \mathbf{v}_t \mathbf{k}_t^\top, \quad (4)$$

where α controls the retention from the previous state of the memory. When $\alpha \rightarrow 1$, it fully retains the past state (equivalent to equation 3) and when $\alpha \rightarrow 0$ it erases the past state of the memory.

Cross Variate Dynamic. In the prior section, we discuss a neural memory module that learns how to memorize cross-time patterns. However, in multivariate time series data, the dependencies of variates can be a rich source of information, sometimes even more important than cross-time patterns (Tang et al., 2023; Behrouz et al., 2024a; Liu et al., 2024c). To this end, we aim to design a memory module that can learn from and memorize cross-variate patterns. One simple approach is to transpose the input data (re-ordering time and variate dimension) and apply our memory module introduced in equation 4 across variates. However, the main drawback of such a method is its sensitivity to the order of variates. That is, while the temporal inductive bias of recurrent models is effective for capturing temporal patterns, it is indeed a caveat that when sampling data, the order of elements are arbitrary. In multivariate time series data, the order of variates is often arbitrary and so we expect the model to produce the same output (or its corresponding permutation) when we change the order of variates. This property is called “permutation equivariance” (resp. “permutation invariant”), where the output of the model permutes the same (resp. remains the same) with the permutation of the input.

Transformers are one of the most powerful architectures with the permutation equivariance property (Yun et al., 2020; Xu et al., 2024). Although this property makes their direct applicability to time series data limited, it makes them a great choice of architectural backbone for use in learning the cross-variate information (Liu et al., 2024c). To this end, given the input data $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_V\} \in \mathbb{R}^{V \times T \times d_{in}}$, one can define $\tilde{\mathbf{X}} = \mathbf{X}^\top = \{\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_T\} \in \mathbb{R}^{T \times V \times d_{in}}$ and then pass it to a Transformer block to capture the cross-variate dependencies:

$$\mathbf{Y} = \text{Transformer}(\tilde{\mathbf{X}}). \quad (5)$$

While the above method can satisfy both (1) fusing information across variates, and (2) preserving the robustness to the permutation of variates, it only models cross-variate patterns and misses the dynamics of variates dependencies (Behrouz et al., 2024d; Jia et al., 2023).

270 3.2 LETO: A NATIVE 2-DIMENSIONAL MEMORY SYSTEM
271

272 Previously we discussed how it is possible to design an effective memory module that learns how to
273 map underlying patterns across time *or* variate dimensions in the data. A simple and commonly used
274 method in the literature is to use two different modules, each for one of the dimensions, and then
275 mix their outputs for the final prediction (Ahamed & Cheng, 2024b; Christou et al., 2024). That is,
276 given input $\mathbf{X} \in \mathbb{R}^{V \times T \times d_{in}}$, one can use $\text{Module}_1(\cdot)$ and $\text{Module}_2(\cdot)$ to fuse information across
277 time and variates, respectively, and then combine them for the final output:

$$278 \quad Y_{\text{time}} = \text{Module}_1(\mathbf{X}), \quad Y_{\text{variante}} = \text{Module}_2(\tilde{\mathbf{X}}), \\ 279 \quad Y_{\text{output}} = \text{Combine}(Y_{\text{time}}, Y_{\text{variante}}). \quad (\text{Variant 1})$$

280 Another commonly used approach is to employ $\text{Module}_1(\cdot)$ and $\text{Module}_2(\cdot)$ in a sequential manner
281 (instead of the above parallel manner). However, all these models treat each dimension separately
282 and thus miss the inter-dependencies of time and variate dimensions at each state of the system,
283 resulting in less expressive power in modeling time series data (see Theorem (1) for the details). To
284 this end, we present a native 2-dimensional memory system that not only has the temporal inductive
285 bias across time, but also has the permutation equivariance property across variates.

286 We use two memory modules $\mathcal{M}^{(1)}(\cdot)$ and $\mathcal{M}^{(2)}(\cdot)$ to learn the underlying mappings/patterns across
287 time and variate dimensions, respectively. As discussed in section 2 and section 3, to design such
288 memory modules it is appropriate to use a reconstruction objective $\ell(\cdot)$ for the memory and then
289 optimize this objective with an optimization algorithm (such as gradient descent). However, to
290 capture the inter-dependencies of dimensions at each step of optimization, it is necessary to fuse the
291 information between the memory modules as well. Therefore, the state of each memory module not
292 only depends on its time stamp, but it also depends on its variate. Given $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_V\}$ as the
293 input, and arbitrary $v \in \{1, \dots, V\}$ we define the update of cross-time memory, as:

$$294 \quad \mathcal{M}_{t,v}^{(1)} = \alpha_{t,v} \mathcal{M}_{t-1,v}^{(1)} - \eta_{t,v} \nabla \ell(\mathcal{M}_{t-1,v}^{(1)}, \mathbf{x}_{t,v}) \\ 295 \quad + \beta_{t,v} \mathcal{M}_{t-1,v}^{(2)} - \gamma_{t,v} \nabla \ell(\mathcal{M}_{t-1,v}^{(2)}, \mathbf{x}_{t,v}), \quad (6)$$

296 where $\ell(\mathcal{M}_{t-1,v}^{(j)}, \mathbf{x}_{t,v}) = \|\mathcal{M}_{t-1,v}^{(j)} \mathbf{k}_{t,v} - \mathbf{v}_{t,v}\|_2^2$ for $j \in \{1, 2\}$ and $v \in \{1, \dots, V\}$ and:

$$297 \quad \mathbf{k}_{t,v} = W_k \mathbf{x}_{t,v}, \quad \text{and} \quad \mathbf{v}_{t,v} = W_v \mathbf{x}_{t,v}. \quad (7)$$

300 Expanding the gradient for the above formulation results in the recurrent update rule for the cross-time
301 memory module as follows:

$$302 \quad \mathcal{M}_{t,v}^{(1)} = (\alpha_{t,v} \mathbf{I} - \eta_{t,v} \mathbf{k}_{t,v} \mathbf{k}_{t,v}^\top) \mathcal{M}_{t-1,v} + \eta_{t,v} \mathbf{v}_{t,v} \mathbf{k}_{t,v}^\top \\ 303 \quad + (\beta_{t,v} \mathbf{I} - \gamma_{t,v} \mathbf{k}_{t,v} \mathbf{k}_{t,v}^\top) \mathcal{M}_{t-1,v} + \gamma_{t,v} \mathbf{v}_{t,v} \mathbf{k}_{t,v}^\top. \quad (8)$$

305 The above formulation demonstrates how to update the cross-time memory. To get the final output
306 from this memory, we need to multiply it by the input data $\mathbf{x}_{t,v}$ to achieve the $\mathbf{x}_{t,v}$'s corresponding
307 information in the memory: i.e., $\mathbf{Y}_{t,v}^{(1)} = \mathcal{M}_{t,v}^{(1)} \mathbf{x}_{t,v}$. One can similarly define the recurrence for the
308 cross-variante memory module $\mathcal{M}_{t,v}^{(2)}$ as:

$$310 \quad \mathcal{M}_{t,v}^{(2)} = \theta_{t,v} \mathcal{M}_{t,v-1}^{(2)} - \lambda_{t,v} \nabla \ell(\mathcal{M}_{t,v-1}^{(2)}, \mathbf{x}_{t,v}) \\ 311 \quad + \mu_{t,v} \mathcal{M}_{t,v-1}^{(1)} - \omega_{t,v} \nabla \ell(\mathcal{M}_{t,v-1}^{(1)}, \mathbf{x}_{t,v}). \quad (9)$$

313 However, it is still sensitive to the order of variates. This sensitivity to variate ordering comes from
314 the parametric nature of gradient descent algorithm as its iterations requires a series of ordered
315 steps. Therefore, the use of any other parametric optimizer can cause such sensitivity to the order.
316 To overcome this issue, we use the non-parametric estimate of our objective. Interestingly, with a
317 small modification and usage of Nadaraya-Watson estimators (Fan, 2018; Zhang et al., 2022b), the
318 non-parametric estimate of the objective is equivalent to softmax attention mechanism in Transfor-
319 mers (Vaswani et al., 2017), as also discussed in previous studies (Sun et al., 2024; Behrouz et al.,
320 2025). As a result of this theoretical connection, we utilize an attention module for the cross-variante
321 information mixing. The final output of this block can simply be defined as:

$$322 \quad \mathbf{Y}_{t,v}^{(2)} = \theta_{t,v} \text{Attention} \left(\{\mathcal{M}_{t,i}^{(1)} \mathbf{x}_{t,i}\}_{i=1}^V \right) \\ 323 \quad + \mu_{t,v} \text{Attention} \left(\{\mathbf{x}_{t,i}\}_{i=1}^V \right). \quad (10)$$

Table 1: Average performance on Ultra long-term forecasting tasks (MSE / MAE)

Dataset	Metric	LETO		MICN		TimesNet		PatchTST		DLinear		FiLM		FEDformer		Autoformer		Informer	
		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ECL	720-1440	0.4782	0.5614	1.0460	0.7765	0.6119	0.5962	0.8243	0.6704	0.4923	0.5473	0.4730	0.5336	0.4833	0.5393	1.4957	0.9533	0.5064	0.5317
	1440-1440	0.4639	0.5387	0.8262	1.2207	0.5720	0.5712	0.9053	0.7328	0.5146	0.5615	0.4849	0.5429	0.5142	0.5571	1.7873	1.0283	0.7247	0.6920
	1440-2880	0.6047	0.5868	2.8936	1.3717	0.7683	0.6846	1.1282	0.8087	0.8355	0.7193	0.6847	0.6493	3.9018	1.5276	1.2867	0.8878	0.6152	0.5953
Traffic	720-1440	0.1672	0.2431	0.2876	0.3916	0.1882	0.2656	0.1904	0.2685	0.1639	0.2412	0.1638	0.2448	0.2753	0.3650	0.3104	0.4095	0.7614	0.6496
	1440-1440	0.1521	0.2497	0.2905	0.3923	0.2081	0.2712	0.1917	0.2764	0.1590	0.2411	0.1602	0.2437	0.2848	0.3681	0.2970	0.3999	0.7375	0.6414
	1440-2880	0.1425	0.2433	0.2823	0.3874	0.1560	0.2409	0.1819	0.2761	0.1550	0.2421	0.1744	0.2693	0.2952	0.3844	0.3035	0.3982	0.9408	0.7618
ETTh1	720-1440	0.1331	0.2943	0.4640	0.5836	0.1391	0.3049	0.3708	0.4906	0.2952	0.4370	0.2949	0.4388	0.1768	0.3409	0.3298	0.4741	0.1378	0.3051
	1440-1440	0.1359	0.3120	0.5188	0.6075	0.1404	0.3093	0.4475	0.5392	0.2200	0.3714	0.3226	0.4678	0.1928	0.3576	0.3618	0.5507	0.1402	0.3192
	1440-2880	0.2591	0.3949	0.7591	0.7215	0.2732	0.4094	0.9617	0.8072	0.3773	0.4794	0.3624	0.4705	0.2627	0.3754	0.3177	0.4733	0.3495	0.4111

Table 2: Average performance on short-term forecasting tasks on the M4 dataset. A lower SMAPE, MASE, and OWA indicate better prediction. * is an abbreviation of the “former” term.

Models	LETO	ROSE	ModernTCN	TimeMixer	PatchTST	TimesNet	N-HiTS	N-BEATS*	ETS*	LightTS	DLinear	FED*	Stationary	Auto*	
	(Ours)	2025	2024	2024	2023	2023	2022	2019	2022	2022	2023	2022	2022	2021	
Weighted Average	SMAPE	11.658	11.764	11.698	11.723	11.807	11.829	11.927	11.851	14.718	13.525	13.639	12.840	12.780	12.909
	MASE	1.541	1.568	1.556	1.559	1.590	1.585	1.613	1.599	2.408	2.111	2.095	1.701	1.756	1.771
	OWA	0.832	0.871	0.838	0.840	0.851	0.851	0.861	0.855	1.172	1.051	1.051	0.918	0.930	0.939

Note that $\mathcal{M}_{t,i}^{(1)}$ $\mathbf{x}_{t,i}$ provides the $\mathbf{x}_{t,i}$ ’s corresponding information in cross-time memory module and so the first term combines the cross-time dynamic of all variates at the same time. While computation of the final output for the cross-variate memory is clear, we need to access its memory (i.e., $\mathcal{M}_{t,v}^{(2)}$) to use in the update of cross-time memory (i.e., equation 6). The memory of Transformers are known to be the pair of key and value matrices (\mathbf{K} , \mathbf{V}) in the attention mechanism (Zhang & Cai, 2022; Wu et al., 2022c; Behrouz et al., 2024e; Bietti et al., 2023). However, incorporating a pair of matrices into the recurrence update rule of equation 6 is unclear and challenging. Therefore, we utilize a kernelized variant of attention, in which we replace Softmax with a separable kernel $\phi(\cdot)$ (Katharopoulos et al., 2020; Kacham et al., 2023; Arora et al., 2024) (see Appendix (A) for the corresponding background and detailed formulation). This allows us to concretely define the memory of the Transformer with keys and values of $\{\hat{\mathbf{k}}_i\}$ and $\{\hat{\mathbf{v}}_i\}$ as (Katharopoulos et al., 2020):

$$\mathcal{M}_{t,v}^{(2)} = \sum_{i=1}^V \hat{\mathbf{v}}_{t,i} \phi(\hat{\mathbf{k}}_{t,i}^\top). \quad (11)$$

The question regarding what would be the optimal kernel $\phi(\cdot)$ to use in the above formulation remains. To answer this, we recall the formulation of Softmax attention that is proportional to $\text{softmax}(\mathbf{q}_t^\top \mathbf{k}_t) \mathbf{v}_t$. To replace softmax with a separable kernel $\phi(\cdot)$, we can choose the kernel to approximate the exponential term in softmax with its Taylor series. Accordingly, we use the first four terms of the Taylor series approximation of the exponential function: $\exp(\cdot)$ defined as:

$$\exp(x) \approx \phi(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!}. \quad (12)$$

Combining the prior expressions, we can define our native 2-dimensional update rule as:

$$\begin{aligned} \mathcal{M}_{t,v}^{(1)} &= \alpha_{t,v} \mathcal{M}_{t-1,v}^{(1)} - \eta_{t,v} \nabla \ell(\mathcal{M}_{t-1,v}^{(1)}, \mathbf{x}_{t,v}) \\ &+ \beta_{t,v} \mathcal{M}_{t-1,v}^{(2)} - \gamma_{t,v} \nabla \ell(\mathcal{M}_{t-1,v}^{(2)}, \mathbf{x}_{t,v}), \end{aligned} \quad (\text{Variant 2})$$

where $\mathcal{M}_{t,v}^{(2)} = \sum_{i=1}^V \hat{\mathbf{v}}_{t,i} \phi(\hat{\mathbf{k}}_{t,i}^\top)$ and $\phi(x) = x + \frac{x^2}{2} + \frac{x^3}{3!}$. Note that in the above formulation $\hat{\mathbf{v}}_i$ and $\hat{\mathbf{k}}_i$ are keys and values of the Transformer block, coming from the keys and values of the cross-variate dynamic attention mentioned in equation 10. In the following theorem, applicable to the linear recurrence variant, we demonstrate that this inter-connectivity of these two memories can enhance the expressive power of model, compared to utilizing two separate memory modules:

Theorem 1. *Let $\text{Module}_i(\cdot)$ be linear recurrent models, then inter-connected memory modules (i.e., equation Variant 2) can express full-rank kernels with $\mathcal{O}(1)$ parameters, while independent memory systems (i.e., equation Variant 1) require at least $\mathcal{O}(N)$ parameters to express matrix with rank N .*

378 Table 3: Average performance on long term forecasting tasks over four prediction lengths: {96, 192, 336, 720}.
379 A lower MAE and MSE indicates a better prediction. As a convention for all experimental results, the best
380 performance is highlighted in **red**, and the second-best is underlined.

Models	LETO (Ours)	TimePro	TimeFilter	TimeKAN	TimeMixer	Simba	ModernTCN	ITransformer	RLinear	PatchTST	Crossformer	TIDE	TimesNet	DLInar
	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETTm1	0.347 / <u>0.375</u>	0.391	0.400	0.377	0.393	0.381	0.385	<u>0.351</u> / 0.381	0.407	0.410	0.414	0.407	0.400	0.513
ETTm2	0.249 / <u>0.302</u>	0.281	0.326	0.272	0.321	0.277	0.322	0.275	0.323	0.271	0.327	<u>0.253</u> / 0.314	0.288	0.332
ETTh1	0.393 / 0.401	0.438	0.420	0.428	0.417	0.427	0.447	0.440	0.441	0.432	0.430	<u>0.404</u> / 0.420	0.454	0.447
ETTh2	0.318 / <u>0.381</u>	0.377	0.403	0.364	0.397	0.383	0.404	0.364	0.395	0.386	0.392	<u>0.322</u> / 0.370	0.383	0.407
Exchange	0.350	0.377	0.352	0.353	0.359	0.355	0.353	<u>0.350</u> / 0.363	0.366	0.367	0.374	0.367	0.367	0.367
Traffic	0.408	0.267	0.430	0.291	0.409	0.270	<u>0.407</u> / 0.268	0.484	0.297	0.493	0.291	0.398	0.270	0.428
Weather	0.216 / <u>0.253</u>	0.251	0.276	0.239	0.269	0.242	0.272	0.240	0.271	0.255	0.280	<u>0.224</u> / 0.264	0.258	0.278
ECL	0.149 / <u>0.247</u>	0.169	0.262	0.158	0.256	0.197	0.286	0.182	0.272	0.185	0.274	<u>0.156</u> / 0.253	0.178	0.270

Table 4: Ablation Study of LETO on ETT, Weather, and Exchange datasets

Model	ETTh1 MSE / MAE	ETTh2 MSE / MAE	ETTm1 MSE / MAE	ETTm2 MSE / MAE	Weather MSE / MAE	Exchange MSE / MAE
Full LETO	0.393 / <u>0.401</u>	0.318 / <u>0.381</u>	<u>0.347</u> / <u>0.375</u>	0.243 / <u>0.302</u>	0.216 / <u>0.253</u>	0.297 / <u>0.364</u>
w/o Cross Variate Attention	0.458 / 0.447	0.400 / 0.427	0.394 / 0.419	0.320 / 0.362	0.244 / 0.274	0.311 / 0.398
w/o Linear Attention	0.454 / 0.454	0.392 / 0.421	0.407 / 0.410	0.341 / 0.370	0.258 / 0.278	0.360 / 0.403
w/o Weighted Gating	0.405 / 0.412	0.368 / 0.392	0.389 / 0.397	0.312 / 0.354	0.237 / 0.269	0.301 / 0.384

3.3 MODEL DESIGN OF LETO

While our recurrence formulation is theoretically motivated to capture both cross-time and variate dependencies, its training can be difficult due its recurrent nature, potentially limiting parallelizable training. In this section, we discuss the architectural details in LETO and present a fast parallelizable training approach. We refer the reader to figure 1 for an illustration of the design of LETO.

Parallelizable Training. Despite the recurrent nature of LETO, in this section, we build upon the training algorithms of Sun et al. (2024) and Behrouz et al. (2024e) and present a parallel training process for our model. To begin, given a variate v , we divide its corresponding time series $\{\mathbf{x}_{1,v}, \dots, \mathbf{x}_{T,v}\}$ with length T into C subsequences of length $b = \frac{T}{C}$, each of which is represented by $\mathcal{S}_i = \{\mathbf{x}_{(i-1)b+1,v}, \dots, \mathbf{x}_{ib,v}\}$. Recall that the cross-variante dynamic term in equation 10 is independent of time and variate states in our formulation and thus can be computed in advance. Note that the training procedure for the attention module is parallelizable. Given the output of the attention module, we can also calculate all the states of $\mathcal{M}^{(2)}$ memory using equation 11. Therefore, we can calculate the gradient term with respect to $\mathcal{M}^{(2)}$ in (Variant 2), all in advance. Having the states of $\mathcal{M}^{(2)}$ and its corresponding gradient terms, we have calculated the cross-variante dynamic term in (Variant 2) in advance and so we only need to compute the cross-time dynamic term in a parallelizable manner. To this end, following the algorithms of Sun et al. (2024) and Behrouz et al. (2024e), we approximate the gradient term $\nabla \ell(\mathcal{M}_{t-1,v}^{(1)}, \mathbf{x}_{t,v})$ with $\nabla \ell(\mathcal{M}_{t',v}^{(1)}, \mathbf{x}_{t,v})$, in which t' is the last state of the memory in the previous chunk, i.e., $t' = \lfloor \frac{t}{b} \rfloor \times b$. Therefore, we can calculate the gradients of each chunk in advance, making the recurrence linear, which is highly parallelizable. For a detailed discussion of parallelizable training, including pseudocode, see Appendix (C). Thus, we can parallelize the training process for each variate, and by scanning the variates from top to bottom, we can encode all the states in the multivariate time series. Note that the training complexity is linear across time and is dominated by the attention module's complexity across variates. Furthermore, in our experiments meta in-context memory states are reset per sequence and receptive fields are matched across baselines—specifically, no cross-batch or cross-sequence state is preserved.

4 EXPERIMENTS

Goals and Baselines. In this section, we evaluate LETO on a wide range of time series tasks, comparing with the most recent state-of-the-art multivariate time series models (Wu et al., 2023; Luo & Wang, 2024; Lim & Zohren, 2021; Woo et al., 2022; Wu et al., 2021; Zhou et al., 2022b; Zhang & Yan, 2023; Liu et al., 2024c; Dehghani et al., 2023; Das et al., 2023; Liu et al., 2022a; Patro & Agneeswaran, 2024; Zeng et al., 2023b; Xu et al., 2021; Wang et al., 2024; 2025b; Huang et al., 2025b; Ma et al., 2025; Hu et al., 2025) on forecasting: long, ultra-long, and short term, classification, and anomaly detection tasks. Next, we evaluate the significance of the LETO's components by performing ablation studies. Dataset descriptions, complete experimental results, visualization of

432 predictions, hyperparameters, metric descriptions, and full experimental results on the effect of other
 433 design choices are provided in D. We control the effect of parameters and all models use the same
 434 number of parameters and hyperparameters for training and evaluation. We did not use the "drop-last"
 435 operation Qiu et al. (2024) in our data loaders for any of our experiments. All batches, including the
 436 final, possibly smaller batches, were used in the training.

437 4.1 MAIN RESULTS: CLASSIFICATION AND FORECASTING

440 **Long-Term Forecasting.** We conduct experiments on the long-term forecasting tasks using com-
 441 monly used benchmark datasets used by Zhou et al. (2021) and many others. The average performance
 442 across different horizons is summarized in Table 3. LETO consistently delivers competitive results
 443 across different datasets, highlighting its robustness compared to recurrent, convolutional, SSM, and
 444 Transformer-based models.

445 **Ultra Long-term Forecasting.** We further extend the evaluation to ultra-long-range forecasting
 446 on the same benchmark datasets (Zhou et al., 2021) to observe the effectiveness of LETO in longer
 447 horizons. The tasks on the left side of the Table 1 retain the same interpretation as in the standard
 448 long-term forecasting setting. The results in Table 1 demonstrate LETO’s ability to capture long-
 449 term dependencies from extremely long historical inputs, maintaining its steady performance across
 450 various significantly extended prediction horizons.

451 **Classification and Anomaly Detection.** We evaluate the performance of LETO on 10 multivariate
 452 datasets from the UEA Time Series Classification Archive (Bagnall et al., 2018) (see figure 2 and
 453 Table 15). For anomaly detection, which is typically treated as a binary classification task, we conduct
 454 experiments on five widely-used benchmarks: SMD (Su et al., 2019), SWaT (Mathur & Tippenhauer,
 455 2016), PSM (Abdulaal et al., 2021), and SMAP (Hundman et al., 2018) (see figure 2 and Table 14).

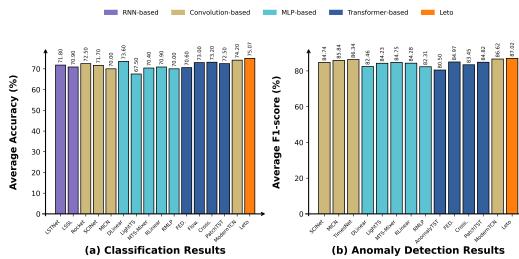
456 **Short-Term Forecasting.** Our evaluation on
 457 short-term forecasting tasks using the M4 bench-
 458 mark datasets (Godahewa et al., 2021) is reported
 459 in Table 2 (with the full results provided in Ta-
 460 ble 11). We fix the input length to twice the pre-
 461 diction length and calculate Symmetric Mean Ab-
 462 solute Percentage Error (SMAPE), Mean Ab-
 463 solute Scaled Error (MASE), and Overall Weighted
 464 Average (OWA) as the evaluation metrics.

465 4.2 ABLATION STUDY

466 To validate the effectiveness of our model de-
 467 sign, we conduct an ablation study on long-term
 468 forecasting tasks averaged over 5 runs on ETT, Weather, and Exchange datasets by removing key
 469 architectural components—see Table 4. The first row reports the LETO’s performance, while the second
 470 row removes the cross attention block, the third row removes the the linear attention mechanisms,
 471 and the fourth row removes the the weights for the final gating between each block. The results
 472 demonstrate that LETO containing all components yields the strongest performance. Notably, the
 473 results without the linear attention component and Transformer block perform the worst, highlighting
 474 the importance of maintaining separate time and variate memories, and incorporating both in the
 475 recurrence in order to capture their interdependencies. A more extensive ablation, varying the Taylor
 476 expansion order, chunk size, and cross-memory coupling strength, is provided in Appendix E.2.

477 5 CONCLUSION

478 We present LETO, a native 2-dimensional memory module that takes the advantage of temporal
 479 inductive bias across time while maintaining the permutation equivariance of variates. LETO uses a
 480 meta in-context memory module to learn and memorize patterns across time dimension, and simulta-
 481 neously, incorporates information from other correlated variates, if it is needed. Our experimental
 482 and theoretical results support the effectiveness of LETO across a diverse set of time series tasks.



479 Figure 2: Anomaly detection and classification results
 480 of LETO and baselines. Higher accuracy/F1-score indicate
 481 better performance.

486

6 REPRODUCIBILITY STATEMENT

487
488 We provide the relevant code for our model. All proofs are provided in the appendix with explanations
489 and underlying assumptions. A complete description of the datasets used in our experiments are
490 provided as well in the appendix.
491492

REFERENCES

493
494 Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous
495 multivariate time series anomaly detection and localization. In *Proceedings of the 27th ACM*
496 *SIGKDD conference on knowledge discovery & data mining*, pp. 2485–2494, 2021.497
498 Md Atik Ahamed and Qiang Cheng. Mambatab: A simple yet effective approach for handling tabular
499 data. *arXiv preprint arXiv:2401.08867*, 2024a.500
501 Md Atik Ahamed and Qiang Cheng. Timemachine: A time series is worth 4 mambas for long-term
502 forecasting. In *ECAI 2024: 27th European Conference on Artificial Intelligence, 19-24 October*
503 *Santiago de Compostela, Spain-Including 13th Conference on Prestigious Applications of*
504 *Intelligent Systems. European Conference on Artificial Intelli*, volume 392, pp. 1688, 2024b.505
506 Önder Akacik and Mark Hoogendoorn. ModernTCN revisited: A critical look at the experimental
507 setup in general time series analysis. *Transactions on Machine Learning Research*, 2025. ISSN
508 2835-8856. URL <https://openreview.net/forum?id=R20kKdWmVZ>.509
510 Anna Allen, Stratis Markou, Will Tebbutt, James Requeima, Wessel P Bruinsma, Tom R Andersson,
511 Michael Herzog, Nicholas D Lane, Matthew Chantry, J Scott Hosking, et al. End-to-end data-driven
512 weather prediction. *Nature*, pp. 1–3, 2025.513
514 Oliver D. Anderson and M. G. Kendall. Time-series. 2nd edn. *The Statistician*, 1976.515
516 Masanao Aoki. *State space modeling of time series*. Springer Science & Business Media, 2013.517
518 Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
519 Rudra, and Christopher Re. Simple linear attention language models balance the recall-throughput
520 tradeoff. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
521 Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference*
522 *on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 1763–1840.
523 PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/arora24a.html>.524
525 Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
526 Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. *arXiv*
527 *preprint arXiv:1811.00075*, 2018.528
529 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
530 recurrent networks for sequence modeling. *arXiv preprint arXiv:1803.01271*, 2018.531
532 Ethan Baron, Itamar Zimerman, and Lior Wolf. A 2-dimensional state space layer for spatial inductive
533 bias. In *The Twelfth International Conference on Learning Representations*, 2024.534
535 David J Bartholomew. Time series analysis forecasting and control., 1971.536
537 Ali Behrouz and Farnoosh Hashemi. Brain-mamba: Encoding brain activity via selective state space
538 models. In Tom Pollard, Edward Choi, Pankhuri Singhal, Michael Hughes, Elena Sizikova, Bobak
539 Mortazavi, Irene Chen, Fei Wang, Tasmie Sarker, Matthew McDermott, and Marzyeh Ghassemi
540 (eds.), *Proceedings of the fifth Conference on Health, Inference, and Learning*, volume 248 of
541 *Proceedings of Machine Learning Research*, pp. 233–250. PMLR, 27–28 Jun 2024a.542
543 Ali Behrouz and Farnoosh Hashemi. Graph Mamba: Towards learning on graphs with state space
544 models. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data*
545 *Mining*, pp. 119–130, 2024b.

540 Ali Behrouz, Parsa Delavari, and Farnoosh Hashemi. Unsupervised representation learning of brain
 541 activity via bridging voxel activity and functional connectivity. In *International conference on*
 542 *machine learning (ICML)*, 2024a.

543 Ali Behrouz, Ali Parviz, Mahdi Karami, Clayton Sanford, Bryan Perozzi, and Vahab S. Mirrokni. Best
 544 of both worlds: Advantages of hybrid graph sequence models. *arXiv preprint arXiv:2411.15671*,
 545 2024b.

546 Ali Behrouz, Michele Santacatterina, and Ramin Zabih. MambaMixer: Efficient selective state space
 547 models with dual token and channel selection. *arXiv preprint arXiv:2403.19888*, 2024c.

548 Ali Behrouz, Michele Santacatterina, and Ramin Zabih. Chimera: Effectively modeling multivariate
 549 time series with 2-dimensional state space models. In *Thirty-eighth Conference on Advances in*
 550 *Neural Information Processing Systems*, 2024d.

551 Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. *arXiv*
 552 *preprint arXiv:2501.00663*, 2024e.

553 Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It's all connected: A journey
 554 through test-time memorization, attentional bias, retention, and online optimization. *arXiv preprint*
 555 *arXiv:2504.13173*, 2025.

556 Michael Bender and Slobodan Simonovic. Time-series modeling for long-range stream-flow forecasting.
 557 *Journal of Water Resources Planning and Management*, 120(6):857–870, 1994.

558 Abdelhakim Benechehab, Vasilii Feofanov, Giuseppe Paolo, Albert Thomas, Maurizio Filippone, and
 559 Balázs Kégl. AdaPTS: Adapting univariate foundation models to probabilistic multivariate time
 560 series forecasting. In *Forty-second International Conference on Machine Learning*, 2025. URL
 561 <https://openreview.net/forum?id=yeICCRy31E>.

562 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Hervé Jegou, and Leon Bottou. Birth of a
 563 transformer: A memory viewpoint. *Advances in Neural Information Processing Systems*, 36:
 564 1560–1588, 2023.

565 Leon Bottou and Vladimir Vapnik. Local learning algorithms. *Neural computation*, 4(6):888–900,
 566 1992.

567 George EP Box and Gwilym M Jenkins. Some recent advances in forecasting and control. *Journal of*
 568 *the Royal Statistical Society. Series C (Applied Statistics)*, 17(2):91–109, 1968.

569 Daniel Yiming Cao, Ali Behrouz, Ali Parviz, Mahdi Karami, Michele Santacatterina, and Ramin
 570 Zabih. Effectively designing 2-dimensional sequence models for multivariate time series. In
 571 *ICLR 2025 Workshop on World Models: Understanding, Modelling and Scaling*, 2025. URL
 572 <https://openreview.net/forum?id=xkFRduCUNz>.

573 Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza, Max Mergenthaler, and Artur
 574 Dubrawski. N-hits: Neural hierarchical interpolation for time series forecasting. *arXiv preprint*
 575 *arXiv:2201.12886*, 2022.

576 Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An all-mlp
 577 architecture for time series forecasting. *arXiv preprint arXiv:2303.06053*, 2023.

578 Yu Chen, Nathalia Céspedes, and Payam Barnaghi. A closer look at transformers for time series
 579 forecasting: Understanding why they work and where they struggle. In *Forty-second International*
 580 *Conference on Machine Learning*, 2025a. URL <https://openreview.net/forum?id=kHEVCFES4Q>.

581 Yu Chen, Nathalia Céspedes, and Payam Barnaghi. A closer look at transformers for time series
 582 forecasting: Understanding why they work and where they struggle. In *Forty-second International*
 583 *Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=kHEVCFES4Q>.

584 Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
 585 neural machine translation: Encoder-decoder approaches. *arXiv preprint arXiv:1409.1259*, 2014.

594 Panayiotis Christou, Shichu Chen, Xupeng Chen, and Parijat Dube. Test time learning for time series
 595 forecasting. *arXiv preprint arXiv:2409.14012*, 2024.

596

597 Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
 598 gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.

599 R. B. Cleveland, William S. Cleveland, Jean E. McRae, and Irma J. Terpenning. Stl: A seasonal-trend
 600 decomposition procedure based on loess (with discussion). 1990.

601

602 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan K Mathur, Rajat Sen, and Rose Yu. Long-term
 603 forecasting with tiDE: Time-series dense encoder. *Transactions on Machine Learning Research*,
 604 2023. ISSN 2835-8856.

605

606 Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
 607 Caron, Andreas Peter Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, Avital
 608 Oliver, Piotr Padlewski, Alexey A. Gritsenko, Mario Lucic, and Neil Houlsby. Patch n' pack:
 609 Navit, a vision transformer for any aspect ratio and resolution. In *Thirty-seventh Conference on
 Neural Information Processing Systems*, 2023.

610

611 Dazhao Du, Bing Su, and Zhewei Wei. Preformer: Predictive transformer with multi-scale segment-
 612 wise correlations for long-term time series forecasting. In *ICASSP 2023 - 2023 IEEE International
 Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5, 2023. doi: 10.1109/
 613 ICASSP49357.2023.10096881.

614

615 Pablo L Durango-Cohen. A time series analysis framework for transportation infrastructure manage-
 616 ment. *Transportation Research Part B: Methodological*, 41(5):493–505, 2007.

617

618 Vijay Prakash Dwivedi, Ladislav Rampaek, Mikhail Galkin, Alipanah Parviz, Guy Wolf, Anh Tuan
 619 Luu, and D. Beaini. Long range graph benchmark. *ArXiv*, abs/2206.08164, 2022. URL <https://api.semanticscholar.org/CorpusID:249712241>.

620

621 Vijay Ekambaran, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
 622 Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In *Proceedings
 of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 459–469,
 623 2023.

624

625 Jeffrey L Elman. Finding structure in time. *Cognitive science*, 14(2):179–211, 1990.

626

627 Jianqing Fan. *Local polynomial modelling and its applications: monographs on statistics and applied
 probability* 66. Routledge, 2018.

628

629 Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
 630 learning for multivariate time series. In *NeurIPS*, 2019.

631

632 Kelum Gajamannage, Yonggi Park, and Dilhani I Jayathilake. Real-time forecasting of time series in
 633 financial markets using sequentially trained dual-lstms. *Expert Systems with Applications*, 223:
 119879, 2023.

634

635 Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with masked autoen-
 636 coders. *Advances in Neural Information Processing Systems*, 35:29374–29385, 2022.

637

638 Julia Gastinger, Shenyang Huang, Michael Galkin, Erfan Loghmani, Ali Parviz, Farimah Poursafaei,
 639 Jacob Danovitch, Emanuele Rossi, Ioannis Koutis, Heiner Stuckenschmidt, et al. Tgb 2.0: A
 640 benchmark for learning on temporal knowledge graphs and heterogeneous graphs. *Advances in
 neural information processing systems*, 37:140199–140229, 2024.

641

642 Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman, and Pablo Montero-
 Manso. Monash time series forecasting archive. *arXiv preprint arXiv:2105.06643*, 2021.

643

644 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
 preprint arXiv:2312.00752*, 2023.

645

646 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
 647 with optimal polynomial projections. *Advances in neural information processing systems*, 33:
 1474–1487, 2020.

648 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
649 Combining recurrent, convolutional, and continuous-time models with linear state space layers.
650 *Advances in neural information processing systems*, 34:572–585, 2021.

651

652 Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initial-
653 ization of diagonal state space models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
654 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
655 <https://openreview.net/forum?id=yJE7iQSAep>.

656 Andrew C Harvey. Forecasting, structural time series models and the kalman filter. *Cambridge*
657 *university press*, 1990.

658 S. Hochreiter and J. Schmidhuber. Long short-term memory. *Neural Comput.*, 1997a.

659

660 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
661 1735–1780, 1997b.

662

663 Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
664 networks: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 44(9):
665 5149–5169, 2021.

666 Jinhang Hu and Shijie Li. Invnet inverted timesnet for multivariate time series forecasting. In
667 *2024 IEEE International Conference on Smart City (SmartCity)*, pp. 70–76, 2024. doi: 10.1109/
668 SmartCity64275.2024.00020.

669

670 Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shu-Tao
671 Xia, and Shirui Pan. Timefilter: Patch-specific spatial-temporal graph filtration for time series
672 forecasting. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=490VcNtjh7>.

673

674 Qihe Huang, Zhengyang Zhou, Kuo Yang, Zhongchao Yi, Xu Wang, and Yang Wang. Timebase: The
675 power of minimalism in efficient long-term time series forecasting. In *Forty-second International*
676 *Conference on Machine Learning*, 2025a. URL <https://openreview.net/forum?id=GhTdNOMfOD>.

677

678 Songtao Huang, Zhen Zhao, Can Li, and LEI BAI. TimeKAN: KAN-based frequency decomposition
679 learning architecture for long-term time series forecasting. In *The Thirteenth International*
680 *Conference on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=id=wTLC79YNbh>.

681

682 Yinan Huang, Siqi Miao, and Pan Li. What can we learn from state space models for machine
683 learning on graphs? *ArXiv*, abs/2406.05815, 2024.

684

685 Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. De-
686 tecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In *Proceedings*
687 *of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
688 387–395, 2018.

689

690 Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis
691 Palpanas, and Ievgen Redko. Unlocking the potential of transformers in time series forecasting
692 with sharpness-aware minimization and channel-wise attention. *arXiv preprint arXiv:2402.10198*,
693 2024.

694

695 Plamen Ch Ivanov, Luis A Nunes Amaral, Ary L Goldberger, Shlomo Havlin, Michael G Rosenblum,
696 Zbigniew R Struzik, and H Eugene Stanley. Multifractality in human heartbeat dynamics. *Nature*,
697 399(6735):461–465, 1999.

698

699 Vudit Jain and Erik Learned-Miller. Online domain adaptation of a pre-trained cascade of classifiers.
700 In *CVPR 2011*, pp. 577–584. IEEE, 2011.

701

Yuxin Jia, Youfang Lin, Xinyan Hao, Yan Lin, Shengnan Guo, and Huaiyu Wan. WITRAN: Water-
702 wave information transmission and recurrent acceleration network for long-range time series
703 forecasting. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.

702 Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
 703 sketches for polynomial kernels. *arXiv preprint arXiv:2310.01655*, 2023.

704

705 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
 706 Fast autoregressive transformers with linear attention. In *International conference on machine
 707 learning*, pp. 5156–5165. PMLR, 2020.

708 Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
 709 *International Conference on Learning Representations*, 2020.

710

711 Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
 712 temporal patterns with deep neural networks. In *SIGIR*, 2018.

713

714 Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhui Chen, Yu-Xiang Wang, and Xifeng
 715 Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
 716 forecasting. In *NeurIPS*, 2019.

717

718 Shufan Li, Harkanwar Singh, and Aditya Grover. Mamba-nd: Selective state space modeling for
 719 multi-dimensional data. *arXiv preprint arXiv:2402.05892*, 2024.

720

721 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
 722 Data-driven traffic forecasting. *arXiv: Learning*, 2017.

723

724 Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
 725 investigation on linear mapping. *arXiv preprint arXiv:2305.10721*, 2023.

726

727 Dingkang Liang, Xin Zhou, Xinyu Wang, Xingkui Zhu, Wei Xu, Zhikang Zou, Xiaoqing Ye, and
 728 Xiang Bai. Pointmamba: A simple state space model for point cloud analysis. *arXiv preprint
 729 arXiv:2402.10739*, 2024.

730

731 Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. *Philosophical
 732 Transactions of the Royal Society A*, 379(2194):20200209, 2021.

733

734 Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and Qiang Liu. Longhorn: State space
 735 models are amortized online learners. *arXiv preprint arXiv:2407.14207*, 2024a.

736

737 Juncheng Liu, Chenghao Liu, Gerald Woo, Yiwei Wang, Bryan Hooi, Caiming Xiong, and Doyen
 738 Sahoo. Unitst: Effectively modeling inter-series and intra-series dependencies for multivariate
 739 time series forecasting. *arXiv preprint arXiv:2406.04975*, 2024b.

740

741 Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
 742 Time series modeling and forecasting with sample convolution and interaction. *Advances in Neural
 743 Information Processing Systems*, 35:5816–5828, 2022a.

744

745 Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, and Shu-Tao Xia. Timebridge:
 746 Non-stationarity matters for long-term time series forecasting. In *Forty-second International
 747 Conference on Machine Learning*, 2025a. URL <https://openreview.net/forum?id=pyK00ZZ51z>.

748

749 Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
 750 dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
 751 forecasting. In *International Conference on Learning Representations (ICLR)*, 2021.

752

753 Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann, Chenghao
 754 Liu, Junnan Li, Silvio Savarese, Caiming Xiong, and Doyen Sahoo. Moirai-moe: Empowering
 755 time series foundation models with sparse mixture of experts. In *Forty-second International
 756 Conference on Machine Learning*, 2025b. URL <https://openreview.net/forum?id=SrEOUSyJcR>.

757

758 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Rethinking
 759 the stationarity in time series forecasting. In *NeurIPS*, 2022b.

760

761 Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
 762 the stationarity in time series forecasting. *Advances in Neural Information Processing Systems*, 35:
 763 9881–9893, 2022c.

756 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
 757 itransformer: Inverted transformers are effective for time series forecasting. In *The Twelfth*
 758 *International Conference on Learning Representations*, 2024c.

759

760 Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, and
 761 Mingsheng Long. Sundial: A family of highly capable time series foundation models. In *Forty-*
 762 *second International Conference on Machine Learning*, 2025c. URL <https://openreview.net/forum?id=LO7ciRpjI5>.

763

764 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
 765 Yunfan Liu. Vmamba: Visual state space model. *arXiv preprint arXiv:2401.10166*, 2024d.

766

767 Donghao Luo and Xue Wang. ModernTCN: A modern pure convolution structure for general time
 768 series analysis. In *The Twelfth International Conference on Learning Representations*, 2024.

769

770 Jun Ma, Feifei Li, and Bo Wang. U-Mamba: Enhancing long-range dependency for biomedical
 771 image segmentation. *arXiv preprint arXiv:2401.04722*, 2024.

772

773 Xiaowen Ma, Zhen-Liang Ni, Shuai Xiao, and Xinghao Chen. Timepro: Efficient multivariate
 774 long-term time series forecasting with variable- and time-aware hyper-state. In *Forty-second*
 775 *International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=s69Ei2VrIW>.

776

777 Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training
 778 on ics security. In *2016 international workshop on cyber-physical systems for smart water networks*
 (CySWater), pp. 31–36. IEEE, 2016.

779

780 Asal Meskin, Alireza Mirrokni, Ali Najar, and Ali Behrouz. Hydra: Dual exponentiated memory for
 781 multivariate time series analysis. *arXiv*, 2025.

782

783 Ravi Teja Mullapudi, Steven Chen, Keyi Zhang, Deva Ramanan, and Kayvon Fatahalian. Online
 784 model distillation for efficient video inference. In *Proceedings of the IEEE/CVF International*
 785 *conference on computer vision*, pp. 3573–3582, 2019.

786

787 Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
 788 Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
 789 genomic sequence modeling at single nucleotide resolution. *Advances in neural information*
 790 *processing systems*, 36, 2024.

791

792 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
 793 64 words: Long-term forecasting with transformers. In *International Conference on Learning*
 794 *Representations (ICLR)*, 2023.

795

796 Boris N Oreshkin, Dmitri Carpow, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis
 797 expansion analysis for interpretable time series forecasting. *ICLR*, 2019.

798

799 Badri N. Patro and Vijay S. Agneeswaran. SiMBA: Simplified Mamba-based architecture for vision
 800 and multivariate time series, 2024.

801

802 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
 803 Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the
 804 transformer era. *arXiv preprint arXiv:2305.13048*, 2023a.

805

806 Bo Peng, Eric Alcaide, Quentin G. Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
 807 Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, G Kranthikiran, Xingjian Du, Xuming
 808 He, Haowen Hou, Przemyslaw Kazienko, Jan Kocoń, Jiaming Kong, Bartłomiej Koptyra, Hayden
 809 Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Xiangru Tang, Bolun Wang,
 810 Johan Sokrates Wind, Stansilaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng
 811 Zhou, Jian Zhu, and Rui Zhu. Rwkv: Reinventing rnns for the transformer era. In *Conference on*
 812 *Empirical Methods in Natural Language Processing*, 2023b.

813

814 Steve Pincus and Rudolf E Kalman. Irregularity, volatility, risk, and financial market time series.
 815 *Proceedings of the National Academy of Sciences*, 101(38):13709–13714, 2004.

810 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
 811 Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
 812 weather forecasting with machine learning. *Nature*, 637(8044):84–90, 2025.

813 Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying
 814 Zhou, Christian S Jensen, Zhenli Sheng, et al. Tfb: Towards comprehensive and fair benchmarking
 815 of time series forecasting methods. *arXiv preprint arXiv:2403.20150*, 2024.

816 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic
 817 forecasting with autoregressive recurrent networks. *International journal of forecasting*, 36(3):
 818 1181–1191, 2020.

819 Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
 820 programmers. In *International Conference on Machine Learning*, pp. 9355–9366. PMLR, 2021.

821 Rajat Sen, Hsiang-Fu Yu, and Inderjit S Dhillon. Think globally, act locally: A deep neural
 822 network approach to high-dimensional time series forecasting. In *Advances in Neural Information
 823 Processing Systems (NeurIPS)*, 2019.

824 Xiao Long Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-moe:
 825 Billion-scale time series foundation models with mixture of experts. *ArXiv*, abs/2409.16040, 2024.

826 Haotian Si, Changhua Pei, Jianhui li, Dan Pei, and Gaogang Xie. CMos: Rethinking time series
 827 prediction through the lens of chunk-wise spatial correlations. In *Forty-second International
 828 Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=eyjrms4HHm>.

829 Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
 830 sequence modeling. In *The Eleventh International Conference on Learning Representations*, 2023.

831 Abishek Sriramulu, Christoph Bergmeir, and Slawek Smyl. Context neural networks: A scalable
 832 multivariate model for time series forecasting, 2024. URL <https://arxiv.org/abs/2405.07117>.

833 Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
 834 multivariate time series through stochastic recurrent neural network. In *Proceedings of the 25th
 835 ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 2828–2837,
 836 2019.

837 Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
 838 Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
 839 hidden states. *arXiv preprint arXiv:2407.04620*, 2024.

840 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
 841 Furu Wei. Retentive network: A successor to transformer for large language models. *ArXiv*,
 842 abs/2307.08621, 2023.

843 Siyi Tang, Jared A Dunnmon, Qu Liangqiong, Khaled K Saab, Tina Baykaner, Christopher Lee-
 844 Messer, and Daniel L Rubin. Modeling multivariate biosignals with graph neural networks and
 845 structured state space models. In *Conference on health, inference, and learning*, pp. 50–71. PMLR,
 846 2023.

847 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 848 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information
 849 Processing Systems (NeurIPS)*, volume 30, 2017.

850 Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. MICN:
 851 Multi-scale local and global context modeling for long-term series forecasting. In *International
 852 Conference on Learning Representations (ICLR)*, 2023.

853 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
 854 and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting.
 855 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=7oLshfEIC2>.

864 Shiyu Wang, Jiawei LI, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenzhe Lin, Ju Shengtong, Zhixuan
 865 Chu, and Ming Jin. Timemixer++: A general time series pattern machine for universal predictive
 866 analysis. In *The Thirteenth International Conference on Learning Representations*, 2025a. URL
 867 <https://openreview.net/forum?id=1CLzLXSFNn>.

868 Yihang Wang, Yuying Qiu, Peng Chen, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang,
 869 and Chenjuan Guo. Towards a general time series forecasting model with unified representation
 870 and adaptive transfer. In *Forty-second International Conference on Machine Learning*, 2025b.
 871 URL <https://openreview.net/forum?id=6J9tJKK4YI>.

872 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
 873 Transformers in time series: A survey. *arXiv preprint arXiv:2202.07125*, 2022.

874 Peter R Winters. Forecasting sales by exponentially weighted moving averages. *Management science*,
 875 6(3):324–342, 1960.

876 Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven C. H. Hoi. Etsformer:
 877 Exponential smoothing transformers for time-series forecasting. *arXiv preprint arXiv:2202.01381*,
 878 2022.

879 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transform-
 880 ers with auto-correlation for long-term series forecasting. In *Advances in Neural Information
 881 Processing Systems (NeurIPS)*, 2021.

882 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 883 Temporal 2d-variation modeling for general time series analysis. In *The eleventh international
 884 conference on learning representations*, 2022a.

885 Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing
 886 transformers with conservation flows. In *ICML*, 2022b.

887 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
 888 Temporal 2d-variation modeling for general time series analysis. In *The Eleventh International
 889 Conference on Learning Representations*, 2023.

890 Xingjian Wu, Xiangfei Qiu, Zhengyu Li, Yihang Wang, Jilin Hu, Chenjuan Guo, Hui Xiong, and
 891 Bin Yang. CATCH: Channel-aware multivariate time series anomaly detection via frequency
 892 patching. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 893 <https://openreview.net/forum?id=m08aK3xxdJ>.

894 Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing
 895 transformers. In *International Conference on Learning Representations*, 2022c. URL
 896 <https://openreview.net/forum?id=TrjbxzRcnf->.

897 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
 898 spatial-temporal graph modeling. In *International Joint Conference on Artificial Intelligence*, 2019.

899 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting
 900 the dots: Multivariate time series forecasting with graph neural networks. In *Proceedings of the
 901 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 753–763,
 902 2020.

903 Hengyuan Xu, Liyao Xiang, Hangyu Ye, Dixi Yao, Pengzhi Chu, and Baochun Li. Permutation
 904 equivariance of transformers and its applications. In *Proceedings of the IEEE/CVF Conference on
 905 Computer Vision and Pattern Recognition*, pp. 5987–5996, 2024.

906 Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series
 907 anomaly detection with association discrepancy. In *ICLR*, 2021.

908 Kun Yi, Qi Zhang, Wei Fan, Hui He, Liang Hu, Pengyang Wang, Ning An, Longbing Cao, and
 909 Zhendong Niu. Fouriergnn: Rethinking multivariate time series forecasting from a pure graph
 910 perspective. *Advances in Neural Information Processing Systems*, 36, 2024.

918 Ting Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional neural network: A
 919 deep learning framework for traffic forecasting. *ArXiv*, abs/1709.04875, 2017.
 920

921 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
 922 transformers universal approximators of sequence-to-sequence functions? In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=ByxRM0Ntv>.
 923

924 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 925 forecasting? In *AAAI*, 2023a.
 926

927 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 928 forecasting? *Proceedings of the AAAI Conference on Artificial Intelligence*, 37(9):11121–11128,
 929 Jun. 2023b.
 930

931 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 932 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 933 11121–11128, 2023c.
 934

935 Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra Malik. Svm-knn: Discriminative nearest
 936 neighbor classification for visual category recognition. In *2006 IEEE Computer Society Conference
 937 on Computer Vision and Pattern Recognition (CVPR'06)*, volume 2, pp. 2126–2136. IEEE, 2006.
 938

939 Michael Zhang, Khaled Kamal Saab, Michael Poli, Tri Dao, Karan Goel, and Christopher Re.
 940 Effectively modeling time series with simple discrete state spaces. In *The Eleventh International
 941 Conference on Learning Representations*, 2023.
 942

943 T. Zhang, Yizhuo Zhang, Wei Cao, J. Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is more: Fast
 944 multivariate time series forecasting with light sampling-oriented mlp structures. *arXiv preprint
 945 arXiv:2207.01186*, 2022a.
 946

947 Yizhe Zhang and Deng Cai. Linearizing transformer with key-value memory. In Yoav Goldberg,
 948 Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical
 949 Methods in Natural Language Processing*, pp. 346–359, Abu Dhabi, United Arab Emirates,
 December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.
 950 24. URL <https://aclanthology.org/2022.emnlp-main.24>.
 951

952 Yufeng Zhang, Boyi Liu, Qi Cai, Lingxiao Wang, and Zhaoran Wang. An analysis of attention via
 953 the lens of exchangeability and latent variable models. *arXiv preprint arXiv:2212.14852*, 2022b.
 954

955 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 956 for multivariate time series forecasting. In *The eleventh international conference on learning
 957 representations*, 2023.
 958

959 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 960 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings
 961 of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.
 962

963 Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
 964 Frequency improved legendre memory model for long-term time series forecasting. *Advances in
 965 Neural Information Processing Systems*, 35:12677–12690, 2022a.
 966

967 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
 968 enhanced decomposed transformer for long-term series forecasting. In *International Conference
 969 on Machine Learning (ICML)*, 2022b.
 970

971 Yufa Zhou, Yixiao Wang, Surbhi Goel, and Anru R. Zhang. Why do transformers fail to forecast
 time series in-context?, 2025. URL <https://arxiv.org/abs/2510.09776>.
 972

972 A PRELIMINARIES AND BACKGROUND
973

974
975 **Transformers and their Permutation Equivariance Property.** Transformers (Vaswani et al., 2017)
976 have been the de facto backbone for many deep learning models and are based on the attention
977 module. Let $x \in \mathbb{R}^{N \times d_{\text{in}}}$ be the input, attention computes output $y \in \mathbb{R}^{N \times d_{\text{in}}}$ based on softmax over
978 input dependent key, value, and query matrices:

$$979 \quad \mathbf{Q} = x\mathbf{W}_Q, \quad \mathbf{K} = x\mathbf{W}_K, \quad \mathbf{V} = x\mathbf{W}_V, \quad (13)$$

$$980 \quad 981 \quad 982 \quad \mathbf{y}_i = \sum_{j=1}^N \frac{\exp(\mathbf{Q}_i^\top \mathbf{K}_j / \sqrt{d_{\text{in}}}) \mathbf{V}_j}{\sum_{\ell=1}^N \exp(\mathbf{Q}_i^\top \mathbf{K}_\ell / \sqrt{d_{\text{in}}})}, \quad (14)$$

983 where \mathbf{W}_Q , \mathbf{W}_K , and $\mathbf{W}_V \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}$ are learnable parameters. This formulation of attention makes
984 it permutation equivariant, meaning that the permutation of the input cannot change the output but
985 permute it. That is, let $\pi(\cdot)$ be a permutation, and $\mathcal{A}(\cdot)$ be the above attention module, we have:

$$986 \quad 987 \quad \mathcal{A}(\pi(x)) = \pi(\mathcal{A}(x)). \quad (15)$$

988 The property, which is called permutation equivariance, is a desirable property for the data that
989 is permutation equivariant, such as variates in the multivariate time series. When encoding the
990 multivariate time series, we do not want the output of the model to be sensitive to the order of the
991 input (variates) and so transformers are great architectures as any change to the order, does not change
992 the output, but just permutes it.

993 **Learning to Memorize at Test Time.** The concept of learning to memorize at test time is derived
994 from the learning at test time or learning to learn, which backs to very early studies on local
995 learning Bottou & Vapnik (1992): i.e., training each test sample on its neighbors before making a
996 prediction (Zhang et al., 2006; Gandelsman et al., 2022). Later, test time training shows promising
997 results in vision tasks (Jain & Learned-Miller, 2011; Mullapudi et al., 2019), mainly because of the
998 ability to properly address out-of-distribution cases. Using this perspective, recently this idea has
999 been applied on sequence modeling (Sun et al., 2024; Behrouz et al., 2024e; 2025). These methods
1000 that aim to train a memory module that learns how to memorize the context at test time, have shown
1001 promising results in language and sequence modeling tasks. In this work, we also take this perspective
1002 and design a 2-dimensional test time memorizer that generalizes all these methods to 2-dimensional
1003 data modality.

1004 B ADDITIONAL RELATED WORKS AND LIMITATIONS OF EXISTING
1005 FRAMEWORKS
1006

1007 **Classical Approach.** Time series modeling has been a fundamental research topic, Classical ap-
1008 proaches include a range of statistical models such as exponential smoothing (Winters, 1960),
1009 ARIMA (Bartholomew, 1971), SARIMA (Bender & Simonovic, 1994), and the Box-Jenkins method-
1010 ology (Box & Jenkins, 1968), with later advancements introducing state-space models (Harvey, 1990;
1011 Aoki, 2013). While these models offer interpretability, they often fall short in capturing complex
1012 non-linear dynamics and typically rely on manual inspection of time series characteristics—such as
1013 trend and seasonality—limiting their adaptability across diverse datasets.

1014 **Transformer-based models.** Transformer-based architectures have become increasingly prominent in
1015 multivariate time series forecasting, particularly when modeling complex inter-variable and temporal
1016 dependencies (Zhou et al., 2022b; Kitaev et al., 2020; Zhang & Yan, 2023; Zeng et al., 2023a; Zhou
1017 et al., 2021; Liu et al., 2021; Wu et al., 2021; Ilbert et al., 2024; Nie et al., 2023). A line of research
1018 has focused on designing specialized attention mechanisms that leverage the unique structure of time
1019 series data (Woo et al., 2022), while others have explored strategies for capturing long-term temporal
1020 patterns to improve forecasting accuracy (Nie et al., 2023; Zhou et al., 2022a).

1021 In parallel, recent works have revisited linear recurrent neural networks (Linear RNNs) as efficient
1022 alternatives to Transformers, aiming to reduce the quadratic complexity while maintaining compet-
1023 itive performance on long-range dependency modeling (Sun et al., 2023; Peng et al., 2023b; Wu
1024 et al., 2023). For instance, Chen et al. (2023) introduce TSMixer, a purely MLP-based model that

1026 demonstrates strong performance on time series forecasting tasks. Notably, the expressive capacity
 1027 of certain linear models aligns with 2D state space models (SSMs), suggesting that these architec-
 1028 tures can be interpreted as specific instances within the broader 2D SSM framework. Additionally,
 1029 convolution-based models have shown renewed promise (Luo & Wang, 2024), where the use of global
 1030 convolutional kernels facilitates an expanded receptive field for capturing long-range dynamics.

1031 More recently, several multivariate forecasters build on Transformer-style patching or hierarchical
 1032 designs. TimeKAN (Huang et al., 2025b) introduces a KAN-based frequency decomposition over
 1033 temporal patches; TimeFilter (Hu et al., 2025) constructs patch-specific spatio-temporal graphs and
 1034 filters them to emphasize informative frequency components; and TimePro (Ma et al., 2025) proposes
 1035 variable- and time-aware hyper-states to efficiently capture multivariate dynamics. These models can
 1036 be viewed as sophisticated 1D (temporal) architectures augmented with channel-mixing modules. In
 1037 contrast, LETO maintains two coupled meta-memories that are updated jointly along the temporal and
 1038 variate axes, providing a native 2D view of multivariate dynamics rather than treating cross-variate
 1039 interactions as a post-hoc mixer on top of a purely temporal backbone.

1040 **Recurrent-based models.** Another line of research closely related to our work involves deep
 1041 sequence modeling. Recurrent neural networks (RNNs), including variants such as GRUs (Chung
 1042 et al., 2014), LSTMs (Hochreiter & Schmidhuber, 1997a), and DeepAR (Salinas et al., 2020), have
 1043 been widely used for sequential data. However, these models suffer from well-known limitations such
 1044 as vanishing and exploding gradients, along with inherently sequential computation that slows down
 1045 training and inference. To address these inefficiencies, recent efforts have explored linear attention
 1046 mechanisms as faster alternatives (Katharopoulos et al., 2020; Schlag et al., 2021; Kacham et al.,
 1047 2023). For instance, Katharopoulos et al. (2020) propose a linear attention model with a recurrent
 1048 formulation, enabling efficient inference and reduced computational complexity.

1049 In parallel, deep state space models (SSMs) have gained momentum as a compelling alternative to
 1050 Transformer-based architectures (Vaswani et al., 2017), offering improved scalability and training
 1051 efficiency (Gu et al., 2020). These models blend classical state space formulations with deep learning
 1052 by parameterizing neural network layers using multiple linear SSMs. This hybrid formulation
 1053 leverages the convolutional interpretation of SSMs to mitigate the optimization challenges typically
 1054 associated with RNNs (Smith et al., 2023). Recently, Gu & Dao (2023) introduced Mamba, a novel
 1055 deep SSM architecture where parameters dynamically depend on input features. This SSM based
 1056 approach has been successfully extended to various modalities—including images (Ma et al., 2024;
 1057 Liu et al., 2024d; Behrouz et al., 2024c), point clouds (Liang et al., 2024), tabular data (Ahamed &
 1058 Cheng, 2024a), graphs (Behrouz & Hashemi, 2024b; Behrouz et al., 2024b; Huang et al., 2024), and
 1059 time series (Behrouz et al., 2024d; Cao et al., 2025; Ahamed & Cheng, 2024b; Patro & Agneeswaran,
 1060 2024)—demonstrating strong capabilities in modeling long-range dependencies across domains.

1061 **Time-series foundation models.** A recent line of work aims to build time-series foundation models
 1062 (TSFMs) that learn a single universal backbone from large, heterogeneous collections of time series
 1063 and adapt it to many downstream tasks (forecasting, classification, anomaly detection, imputation,
 1064 etc.). Representative examples include models that learn unified sequence representations and
 1065 adaptive transfer mechanisms using FFT based techniques (Wang et al., 2025b; Benechehab et al.,
 1066 2025), pattern machines such as TimeMixer++ that scale patch-based temporal mixers across domains
 1067 (Wang et al., 2025a), and large TSFM families such as Sundial and Moirai-MoE that push capacity
 1068 via dense or sparse mixture-of-experts architectures (Liu et al., 2025c;b). These works primarily
 1069 study scaling laws, cross-dataset pretraining, and transfer protocols (zero-shot, few-shot, or light
 1070 fine-tuning), typically building on standard Transformer- or MLP-style backbones.

1071 Our focus is complementary and orthogonal to TSFMs. LETO is a native 2D meta-memory architec-
 1072 ture designed for supervised, per-dataset forecasting at a fixed parameter budget, with no cross-dataset
 1073 pretraining and a model size comparable to strong supervised baselines such as ModernTCN and
 1074 iTransformer. Directly comparing our results to TSFMs would simultaneously conflate (i) architec-
 1075 tural inductive bias, (ii) model scale, and (iii) pretraining data. Instead, we treat LETO as a building
 1076 block at the same scale as existing supervised models: in principle, the LETO cell could be used as
 1077 the backbone inside a TSFM pipeline (replacing a Transformer or MLP block) to provide an explicitly
 1078 coupled temporal–variate memory within large pretrain-and-transfer frameworks. Exploring such
 1079 integrations is an interesting direction for future work.

1080 **Other Methods.** Graph-based models have emerged as powerful tools for time series forecasting (Wu
 1081 et al., 2020; Yi et al., 2024), especially when the data exhibits spatial or relational structure across
 1082 variables or entities. Approaches such as graph neural networks (GNNs) model dependencies through
 1083 learned graph representations, enabling effective spatiotemporal forecasting in domains like traffic (Yu
 1084 et al., 2017; Li et al., 2017) and sensor networks (Wu et al., 2019). Recent work has extended these
 1085 ideas by incorporating dynamic graphs (Wu et al., 2023; Dwivedi et al., 2022; Gastinger et al., 2024),
 1086 learning graph structures jointly with temporal dynamics to better capture evolving relationships over
 1087 time. These methods offer strong performance in settings where explicit or latent graph structure
 1088 underpins multivariate time series behavior.

1089 **Limitations of Prior Frameworks.** Recent diagnostic and theoretical studies have made the
 1090 limitations of existing time-series backbones much more concrete. A growing body of work shows
 1091 that vanilla Transformer, MLP, and linear global models, when applied to multivariate time series
 1092 data, often lack strong temporal inductive bias, under-utilize cross-series structure, or require
 1093 fragile evaluation protocols to appear competitive. For example, Chen et al. (2025a) systematically
 1094 compare point-wise, patch-wise, and variate-wise Transformers and find that performance on
 1095 standard long-horizon benchmarks is dominated by intra-variate dependencies, with inter-variate
 1096 attention contributing relatively little and success relying heavily on Z-score normalization and
 1097 (approximate) stationarity of each series. Theoretical work on in-context forecasting further shows
 1098 that simplified Transformer variants with linear self-attention cannot outperform classical linear
 1099 predictors on AR(p) processes and exhibit a provably non-vanishing performance gap at finite context
 1100 length, despite quadratic complexity. Zhou et al. (2025) Recurrent and convolutional alternatives
 1101 address temporal inductive bias but introduce other trade-offs: linear RNNs provide a natural causal
 1102 prior yet are inherently single-sequence and prone to error accumulation, Meskin et al. (2025)
 1103 while ModernTCN-style architectures require careful handling of data loading, validation, and
 1104 “drop-last” to avoid overly optimistic conclusions. Akacik & Hoogendoorn (2025) Complementary
 1105 work on context neural networks and related global models emphasizes that many “global univariate”
 1106 approaches still forecast each series in isolation at inference time, leaving useful cross-series context
 1107 under-exploited unless one is willing to pay the cost of full attention or graph-based modeling.
 1108 Sriramulu et al. (2024). At the multivariate architectural level, several recent papers explicitly
 1109 document limitations of current ways of mixing temporal and variate information. UniTST Liu et al.
 1110 (2024b) shows that many multivariate time series Transformers—including iTransformer Liu et al.
 1111 (2024c), and Crossformer Zhang & Yan (2023) apply time-wise and variate-wise attention in separate
 1112 stages (sequentially or in parallel) and therefore cannot directly model cross-time *and* cross-variate
 1113 dependencies in a single operation; they demonstrate that such cross-time cross-variate links are
 1114 present and beneficial in real-world data. Independent analyses of TimesNet and its variants report
 1115 that embedding all variates at a single time step into one token can blur physically different signals and
 1116 degrade multivariate performance, motivating “inverted” designs that are more variate-centric. Hu &
 1117 Li (2024). HYDRA Meskin et al. (2025) formalizes a related gap: architectures that only mix along
 1118 one dimension at a time (e.g., separate temporal and channel mixers, or pure variate-wise attention as
 1119 in iTransformer) implement a restricted class of kernels, while a genuine 2D recurrence that updates a
 1120 time memory and a variate memory jointly at each step can represent strictly higher-rank interactions
 1121 between time and variates. LETO is designed precisely in response to these documented limitations:
 1122 it combines a contractive recurrent temporal memory that encodes a strong causal inductive bias with
 1123 a permutation-equivariant cross-variate memory, and an explicit coupling between the two memories
 1124 at every time step. Our kernel analysis and ablations show that this hybrid 2D meta-memory strictly
 1125 enlarges the class of realizable kernels compared to pure variate-wise attention, thereby providing an
 1126 analytical separation from iTransformer-style architectures while remaining at the same parameter
 1127 scale. An extended discussion of limitations of various time series architecture is beyond the scope of
 1128 this work.

1129 C PARALLELIZABLE TRAINING OF LETO

1130 While the recurrence-based formulation of LETO enables it to better capture joint temporal and variate
 1131 dependencies, as well as their independent dynamics, it introduces sequential dependencies that can
 1132 hinder training efficiency. To address this, we develop a parallelizable training strategy inspired by
 1133 recent advances in test-time memorization frameworks Sun et al. (2024); Behrouz et al. (2024e).

1134 Specifically, for a given variate v , we divide its time series $\{x_{1,v}, \dots, x_{T,v}\}$ into C disjoint chunks
 1135 of length $b = T/C$. Each chunk $S_i = \{x_{(i-1)b+1,v}, \dots, x_{ib,v}\}$ can be treated as an independent
 1136 subsequence for computing the inner-loop updates of the memory module. This chunking allows us
 1137 to approximate the gradient $\nabla \ell(M_{t-1,v}^{(1)}, x_{t,v})$ with $\nabla \ell(M_{t',v}^{(1)}, x_{t,v})$, where $t' = \lfloor t/b \rfloor \cdot b$ is the last
 1138 time step of the previous chunk. Since t' is fixed for each chunk, this gradient can be computed in
 1139 parallel for all time steps within a chunk.
 1140

1141 Moreover, the cross-variate dynamic component—modeled via the attention mechanism—is indepen-
 1142 dent of time and can be computed in advance. We precompute the attention-based memory $M_{t,v}^{(2)}$
 1143 for all variates using equation above with a Taylor-approximated softmax kernel. This enables us to
 1144 also precompute $\nabla \ell(M_{t,v}^{(2)}, x_{t,v})$, further decoupling the cross-variate dynamics from the sequential
 1145 recurrence.

1146 With the cross-variate memory and its corresponding gradient terms available, the remaining compu-
 1147 tation in each chunk reduces to a linear update over the cross-time memory using the precomputed
 1148 components. As a result, we obtain a recurrence that is linear within chunks and can be parallelized
 1149 across both time and variates. We now provide granular descriptions regarding data flow, batching,
 1150 and pseudocode for our parallel training.

1151 **Data flow and batching.** For a mini-batch of multivariate time series, the input to the model is a
 1152 tensor

$$X \in \mathbb{R}^{B \times T \times V \times d},$$

1153 where B is the batch size, T is the lookback length, V is the number of variates, and d is the
 1154 feature dimension after embedding and normalization. We index X as $X_{t,v} \in \mathbb{R}^{B \times d}$ for time step
 1155 $t \in \{1, \dots, T\}$ and variate $v \in \{1, \dots, V\}$.
 1156

1157 For each time step t , we form variate-wise queries, keys, and values

$$Q_t, K_t, V_t \in \mathbb{R}^{B \times V \times d}$$

1158 via linear projections of X_t . We then apply a Taylor-approximated softmax attention across the
 1159 *variante* dimension (size V) to obtain the cross-variate memory state
 1160

$$M_t^{(2)} \in \mathbb{R}^{B \times V \times d}.$$

1161 Because this attention is performed independently at each t , the full tensor $M_{1:T}^{(2)}$ is computed for all
 1162 time steps in a single batched operation over (B, T, V) .
 1163

1164 **Chunking and parallel time memories.** For the time memory, we fix a variate index v and treat
 1165 the sequence
 1166

$$\{(X_{t,v}, M_{t,v}^{(2)})\}_{t=1}^T$$

1167 as a univariate sequence of length T . Directly applying the recurrent update across t would be strictly
 1168 sequential. To expose parallelism, we divide the time axis into C disjoint chunks of length $b = T/C$:
 1169

$$S_i = \{(X_{t,v}, M_{t,v}^{(2)}) : t = (i-1)b+1, \dots, ib\}, \quad i = 1, \dots, C.$$

1170 Let ℓ denote the loss on the mini-batch and $M_{t,v}^{(1)}$ the time memory at time t for variate v . Within a
 1171 chunk, we approximate the dependence of the update on the previous time memory by freezing the
 1172 gradient term at the last state of the previous chunk. Formally, for t in a given chunk we use
 1173

$$\nabla \ell(M_{t-1,v}^{(1)}, X_{t,v}) \approx \nabla \ell(M_{t',v}^{(1)}, X_{t,v}), \quad t' = \lfloor t/b \rfloor \cdot b, \quad (16)$$

1174 so that the gradient anchor t' is fixed within each chunk. This approximation makes the inner update
 1175 *linear* in $M_{t,v}^{(1)}$ inside a chunk, which allows us to implement the recurrence using parallel scans over
 1176 t (and over v) rather than a fully sequential loop.
 1177

1178 Moreover, the cross-variate component $M_{t,v}^{(2)}$ and its contribution to the loss are independent of the
 1179 time recurrence and can be fully precomputed. In particular, we first compute $M_{t,v}^{(2)}$ for all (t, v)
 1180 using the Taylor-approximated softmax kernel and cache these tensors. The subsequent time-memory
 1181 updates then only require simple linear combinations of $M_{t-1,v}^{(1)}$ and precomputed functions of
 1182 $(X_{t,v}, M_{t,v}^{(2)})$.
 1183

1188 **Algorithm 1** Parallelizable training step for LETO (one mini-batch)

1189 **Require:** Input batch $X \in \mathbb{R}^{B \times T \times V \times d}$, chunk length b , model parameters θ , time-memory parameters (α, η) .

1190 1: **Variate attention (precompute cross-variate memory):**

1191 2: Compute Q_t, K_t, V_t from X_t for all $t = 1, \dots, T$.

1192 3: For each t , apply Taylor-approximated softmax attention across v to obtain $M_t^{(2)} \in \mathbb{R}^{B \times V \times d}$.

1193 4: **Initialize time memories:** Set $M_{0,v}^{(1)} = 0$ for all variates v .

1194 5: **Process chunks in parallel over (B, V) :**

1195 6: **for** $i = 1$ to C **do**

1196 $\{C = T/b\}$

1197 7: Let t range over the indices in chunk i .

1198 8: Set anchor index $t' = \lfloor t/b \rfloor \cdot b$ for this chunk.

1199 9: Freeze $\nabla \ell(M_{t-1,v}^{(1)}, X_{t,v}) \approx \nabla \ell(M_{t',v}^{(1)}, X_{t,v})$ for all t in the chunk.

1200 10: **for** all t in chunk i (in parallel) **do**

1201 11: Update time memory using Variant 2: $M_{t,v}^{(1)} = \alpha M_{t-1,v}^{(1)} + \eta f_\theta(X_{t,v}, M_{t,v}^{(2)})$.

1202 12: **end for**

1203 13: **end for**

1204 14: **Readout:** Apply the forecasting head to $\{M_{T,v}^{(1)}\}_{v=1}^V$ (or a short suffix $\{M_{t,v}^{(1)}\}_{t=T-k+1}^T$) to obtain predictions and compute the loss ℓ .

1205 15: Backpropagate through the batched computation with the chunked gradient approximation.

1211 **Coupled update and stability.** The Variant 2 coupled update for the time memory at each step t
 1212 and variate v combines a time-recursive term and a cross-variate term:

$$M_{t,v}^{(1)} = \alpha M_{t-1,v}^{(1)} + \eta f_\theta(X_{t,v}, M_{t,v}^{(2)}), \quad (17)$$

1213 where f_θ is a small MLP and α, η are learned scalars constrained to $(0, 1)$ and a bounded interval,
 1214 respectively. Within each chunk, the right-hand side of equation 17 is linear in $M_{t-1,v}^{(1)}$ because
 1215 $f_\theta(X_{t,v}, M_{t,v}^{(2)})$ depends only on precomputed quantities. For bounded inputs $(X_{t,v}, M_{t,v}^{(2)})$ and
 1216 $|\alpha| < 1$, this update defines a contractive linear system in the time direction, which yields stable
 1217 memory trajectories over long sequences.

1218 **End-to-end procedure.** After processing all C chunks, we obtain the final time memories $M_{T,v}^{(1)}$
 1219 for all variates v . The forecasting head (a lightweight decoder) is applied on top of these final time
 1220 memories, or on an average over the last few time steps, to predict the future horizon. During training,
 1221 the forward pass and the approximate backward pass induced by equation 16 are both implemented
 1222 using batched tensor operations, enabling efficient parallelization across batch, time (within chunks),
 1223 and variates.

1224 For clarity and reproducibility, we summarize the full batched and parallelizable training procedure
 1225 in Algorithm 1.

D DATASET AND EXPERIMENTAL DETAILS

1226 The experimental and benchmark datasets details are reported in Table 5. We conduct a Student's
 1227 2-tailed t test averaged over 5 runs at 99 or 95 % confidence. We note that Luo & Wang (2024)
 1228 outperforms many other architectures and multivariate time series forecasting which are variants of
 1229 SSMs including: Mamba Gu & Dao (2023), S4Gu et al. (2022), Transformer Vaswani et al. (2017),
 1230 and others grouped accordingly in the related works section.

Table 5: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks	Dataset	Dim	Series Length	Dataset Size	Information (Frequency)
Forecasting (Long-term)	ETTm1, ETTm2	7	{96, 192, 336, 720}	(34465, 11521, 11521)	Electricity (15 mins)
	ETTh1, ETTh2	7	{96, 192, 336, 720}	(8545, 2881, 2881)	Electricity (15 mins)
	Electricity	321	{96, 192, 336, 720}	(18317, 2633, 5261)	Electricity (Hourly)
	Traffic	862	{96, 192, 336, 720}	(12185, 1757, 3509)	Transportation (Hourly)
	Weather	21	{96, 192, 336, 720}	(36792, 5271, 10540)	Weather (10 mins)
	Exchange	8	{96, 192, 336, 720}	(5120, 665, 1422)	Exchange rate (Daily)
Forecasting (short-term)	M4-Yearly	1	6	(23000, 0, 23000)	Demographic
	M4-Quarterly	1	8	(24000, 0, 24000)	Finance
	M4-Monthly	1	18	(48000, 0, 48000)	Industry
	M4-Weakly	1	13	(359, 0, 359)	Macro
	M4-Daily	1	14	(4227, 0, 4227)	Micro
	M4-Hourly	1	48	(414, 0, 414)	Other
Imputation	ETTm1, ETTm2	7	96	(34465, 11521, 11521)	Electricity (15 mins)
	ETTh1, ETTh2	7	96	(8545, 2881, 2881)	Electricity (15 mins)
	Weather	21	96	(36792, 5271, 10540)	Weather (10 mins)
Classification (UEA)	EthanolConcentration	3	1751	(261, 0, 263)	Alcohol Industry
	FaceDetection	144	62	(5890, 0, 3524)	Face (250Hz)
	Handwriting	3	152	(150, 0, 850)	Handwriting
	Heartbeat	61	405	(204, 0, 205)	Heart Beat
	JapaneseVowels	12	29	(270, 0, 370)	Voice
	PEMS-SF	963	144	(267, 0, 173)	Transportation (Daily)
Anomaly Detection	SelfRegulationSCP1	6	896	(268, 0, 293)	Health (256Hz)
	SelfRegulationSCP2	7	1152	(200, 0, 180)	Health (256Hz)
	SpokenArabicDigits	13	93	(6599, 0, 2199)	Voice (11025Hz)
	UWaveGestureLibrary	3	315	(120, 0, 320)	Gesture
	SMD	38	100	(566724, 141681, 708420)	Server Machine
	MSL	55	100	(44653, 11664, 73729)	Spacecraft
	SMAP	25	100	(108146, 27037, 427617)	Spacecraft
	SWaT	51	100	(396000, 99000, 449919)	Infrastructure
	PSM	25	100	(105984, 26497, 87841)	Server Machine

1296 E ADDITIONAL EXPERIMENTAL RESULTS
12971298 E.1 METRICS
1299

1300 We utilize the mean square error (MSE) and mean absolute error (MAE) for long-term forecasting.
1301 For short-term forecasting on the M4 datasets, we fully mirror the methodology of works on short
1302 term forecasting such as N-BEATS Oreshkin et al. (2019) and utilize the symmetric mean absolute
1303 percentage error (SMAPE), mean absolute scaled error (MASE), and overall weighted average (OWA)
1304 as metrics. It is worth noting that OWA is a specific metric utilized in the M4 competition. The
1305 calculations of these metrics are:

$$\begin{aligned} \text{RMSE} &= \left(\sum_{i=1}^F (\mathbf{X}_i - \hat{\mathbf{X}}_i)^2 \right)^{\frac{1}{2}}, & \text{MAE} &= \sum_{i=1}^F |\mathbf{X}_i - \hat{\mathbf{X}}_i|, \\ \text{SMAPE} &= \frac{200}{F} \sum_{i=1}^F \frac{|\mathbf{X}_i - \hat{\mathbf{X}}_i|}{|\mathbf{X}_i| + |\hat{\mathbf{X}}_i|}, & \text{MAPE} &= \frac{100}{F} \sum_{i=1}^F \frac{|\mathbf{X}_i - \hat{\mathbf{X}}_i|}{|\mathbf{X}_i|}, \\ \text{MASE} &= \frac{1}{F} \sum_{i=1}^F \frac{|\mathbf{X}_i - \hat{\mathbf{X}}_i|}{\frac{1}{F-s} \sum_{j=s+1}^F |\mathbf{X}_j - \mathbf{X}_{j-s}|}, & \text{OWA} &= \frac{1}{2} \left[\frac{\text{SMAPE}}{\text{SMAPE}_{\text{Naive2}}} + \frac{\text{MASE}}{\text{MASE}_{\text{Naive2}}} \right], \end{aligned}$$

1315 where s is the periodicity of the data. $\mathbf{X}, \hat{\mathbf{X}} \in \mathbb{R}^{F \times C}$ are the ground truth and prediction results of the
1316 future with F time pints and C dimensions. \mathbf{X}_i means the i -th future time point. For classification,
1317 we use accuracy as the metric. Lastly for anomaly detection, we use F1-Score as the metric.
1318

1319 E.2 FULL ABLATION STUDY
1320

1321 In this section we provide an extended ablation study to complement Table 4 in the main text and to
1322 address the reviewer’s request for a more detailed analysis of our design choices. Unless otherwise
1323 stated, all results are averaged over 3 random seeds; the standard deviation is smaller than 3×10^{-3}
1324 for all entries. We first ablate major architectural components across all small-scale benchmarks
1325 (Table 4), and then perform finer-grained hyperparameter ablations on the Taylor order K of the
1326 linear-attention kernel, the chunk size b in our parallelizable training scheme, and the cross-memory
1327 coupling strength λ on six datasets (ETTh1/2, ETTm1/2, Weather, Exchange). Metrics are long term
1328 forecasting and thus use MSE/MAE. We measure average performance on long term forecasting
1329 tasks over four prediction lengths: {96, 192, 336, 720}

1330 Table 4 reports the effect of removing three core components: (i) cross-variate attention (the variate
1331 meta-memory), (ii) the linear-attention kernel, and (iii) weighted gating in the time memory.

1332 Across all datasets, the full LETO architecture achieves the best performance. Removing cross-
1333 variate attention substantially harms performance, confirming that the variate meta-memory is a
1334 key ingredient. Removing the linear-attention kernel yields the largest degradation on long-horizon
1335 datasets (ETTh1/2, ETT m1/m2, Weather, and Exchange), consistent with our claim that the kernelized
1336 formulation is crucial for scalable, long-range modeling. Finally, removing the weighted gating in
1337 the time memory also degrades performance, though less dramatically, indicating that learned gating
1338 improves the effective temporal dynamics.

1339 **Taylor approximation order K** Our linear-attention block approximates the softmax kernel via
1340 a truncated Taylor series derived from the TTM framework. The remaining hyperparameter is
1341 the truncation order K . In 7 We therefore ablate $K \in \{1, 2, 3, 4\}$ on all six datasets, keeping all
1342 other settings fixed. The row $K = 3$ corresponds to the default configuration reported in the main
1343 experiments.

1344 **Chunk size b in parallelizable time memories** Our parallelization scheme for the time memory
1345 divides the sequence into C disjoint chunks of length $b = T/C$ and exploits a linearization within
1346 each chunk. The chunk size b controls a bias-variance trade-off: very small chunks increase variance
1347 in the gradient approximation, while very large chunks weaken the linearization and reduce parallel
1348 efficiency. In 8 We vary $b \in \{8, 16, 32, 64\}$ across all datasets; $b = 32$ is the default used in the main
1349 experiments.

Variant	ETTh1	ETTh2	ETTm1	ETTm2	Weather	Exchange
LETO, $K = 1$	0.421 / 0.429	0.344 / 0.396	0.371 / 0.392	0.264 / 0.319	0.230 / 0.267	0.322 / 0.383
LETO, $K = 2$	0.402 / 0.408	0.329 / 0.387	0.356 / 0.381	0.251 / 0.308	0.223 / 0.260	0.305 / 0.372
LETO, $K = 3$	0.393 / 0.401	0.318 / 0.381	0.347 / 0.375	0.243 / 0.302	0.216 / 0.253	0.297 / 0.364
LETO, $K = 4$	0.392 / 0.400	0.317 / 0.380	0.346 / 0.374	0.242 / 0.301	0.215 / 0.252	0.296 / 0.363

Table 7: **Extended ablation on Taylor series order K for all ETT, Weather, and Exchange datasets.** Across all benchmarks, very low orders ($K = 1$) under-approximate the softmax kernel and degrade performance. Moving from $K = 1$ to $K = 2$ yields consistent gains, and $K = 3$ (our default) gives the best or near-best performance. Increasing to $K = 4$ produces only marginal additional improvements (typically within one standard deviation) while increasing computation, confirming that $K = 3$ is a good trade-off between approximation quality and efficiency.

Variant	ETTh1	ETTh2	ETTm1	ETTm2	Weather	Exchange
LETO, $b = 8$	0.398 / 0.404	0.324 / 0.385	0.352 / 0.379	0.249 / 0.308	0.220 / 0.255	0.302 / 0.368
LETO, $b = 16$	0.395 / 0.402	0.321 / 0.383	0.349 / 0.376	0.246 / 0.304	0.217 / 0.254	0.299 / 0.366
LETO, $b = 32$ (default)	0.393 / 0.401	0.318 / 0.381	0.347 / 0.375	0.243 / 0.302	0.216 / 0.253	0.297 / 0.364
LETO, $b = 64$	0.399 / 0.406	0.323 / 0.386	0.351 / 0.378	0.247 / 0.305	0.219 / 0.256	0.301 / 0.367

Table 8: **Extended ablation on chunk size b for the parallel time-memory computation.** Across all datasets, performance is robust over a wide range of chunk sizes. Very small chunks ($b = 8$) slightly hurt performance, likely due to higher variance in the gradient approximation, while very large chunks ($b = 64$) reduce the effectiveness of the linearization trick and slightly degrade results. A moderate chunk size $b = 32$ consistently achieves the best overall performance and is used as the default.

Extent of cross-memory coupling λ In Variant 2, the time memory update includes a scalar coupling coefficient λ multiplying the contribution of the cross-variate memory $M_{t,v}^{(2)}$:

$$M_{t,v}^{(1)} = \alpha M_{t-1,v}^{(1)} + \eta(g_\theta(X_{t,v}) + \lambda h_\theta(M_{t,v}^{(2)})), \quad (18)$$

where g_θ and h_θ are small MLPs and (α, η) are learned scalars. The case $\lambda = 0$ corresponds exactly to removing the variate pathway (“w/o Cross Variate Attention” in Table 4), while $\lambda = 1.0$ matches the full LETO used in the main experiments. In 9 evaluate $\lambda \in \{0, 0.25, 0.5, 1.0, 1.5\}$ across all datasets.

Taken together, Tables 4–9 show that: (i) removing any major architectural component of the 2D meta-memory (cross-variate attention, linear attention, or weighted gating) leads to consistent and often substantial degradations across all datasets, and (ii) LETO is robust with respect to the Taylor order K and chunk size b around our chosen defaults, while the cross-memory coupling λ is indeed a crucial design parameter: completely removing it ($\lambda = 0$) significantly harms performance, whereas moderate coupling ($\lambda \approx 1$) yields consistent gains.

E.3 SHORT TERM FORECASTING

Short-term Forecasting is vital for demand planning and marketing. The complete results of short term forecasting are reported in Table 11.

E.4 LONG TERM FORECASTING

Long-term forecasting is crucial for strategic planning in areas such as weather prediction, traffic management, and energy utilization. The complete results of long term forecasting are reported in 12.

E.5 ANOMALY DETECTION

Anomaly detection is generally viewed as a binary classification task, where 0 denotes “normal” and 1 denotes “anomaly”. We let $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\} \in \mathbb{R}^{N \times T}$ be the input sequences, where N is the number of variates and T is the time steps. We use $x_{v,t}$ to refer to the value of the series v at time t . The complete results of Anomaly Detection are reported in Table 14.

Variant	ETTh1	ETTh2	ETTm1	ETTm2	Weather	Exchange
$\lambda = 0$ (no variate memory)	0.458 / 0.447	0.400 / 0.427	0.394 / 0.419	0.320 / 0.362	0.244 / 0.274	0.311 / 0.398
$\lambda = 0.25$	0.438 / 0.438	0.373 / 0.405	0.371 / 0.401	0.287 / 0.330	0.235 / 0.268	0.305 / 0.387
$\lambda = 0.5$	0.417 / 0.422	0.344 / 0.393	0.358 / 0.386	0.261 / 0.313	0.225 / 0.260	0.301 / 0.375
$\lambda = 1.0$ (default)	0.393 / 0.401	0.318 / 0.381	0.347 / 0.375	0.243 / 0.302	0.216 / 0.253	0.297 / 0.364
$\lambda = 1.5$	0.404 / 0.409	0.325 / 0.386	0.353 / 0.380	0.249 / 0.306	0.221 / 0.258	0.300 / 0.370

Table 9: **Extended ablation on coupling strength λ between time and variate memories.** Setting $\lambda = 0$ (no variate memory) reproduces the “w/o Cross Variate Attention” variant and substantially degrades performance on all datasets. Introducing even weak coupling ($\lambda = 0.25$ or 0.5) yields consistent improvements, and the fully coupled setting $\lambda = 1.0$ matches the best results reported for the full LETO. Over-coupling ($\lambda = 1.5$) slightly worsens performance, suggesting that excessively strong cross-variante influence can interfere with temporal smoothing. These trends hold across all benchmarks, underscoring the importance of moderate cross-memory coupling.

Table 10: Standard deviation and statistical tests for our model LETO method compared with the strongest baseline ModernTCN on the M4 dataset (short-term forecasting). For all metrics, the lower the better. Confidence is derived from a paired two-tailed t -test over five runs.

Frequency	LETO (Ours)			ModernTCN (2024)			Confidence
	SMAPE	MASE	OWA	SMAPE	MASE	OWA	
Yearly	13.183 \pm 0.115	2.941 \pm 0.028	0.754 \pm 0.022	13.226 \pm 0.118	2.957 \pm 0.031	0.777 \pm 0.025	99%
Quarterly	9.953 \pm 0.101	1.150 \pm 0.015	0.851 \pm 0.015	9.971 \pm 0.105	1.167 \pm 0.017	0.878 \pm 0.018	95%
Monthly	12.517 \pm 0.115	0.935 \pm 0.014	0.853 \pm 0.014	12.556 \pm 0.120	0.917 \pm 0.015	0.866 \pm 0.016	95%
Others	4.583 \pm 0.084	2.797 \pm 0.027	0.900 \pm 0.021	4.715 \pm 0.090	3.107 \pm 0.028	0.986 \pm 0.024	99%
Averaged	11.658 \pm 0.112	1.541 \pm 0.022	0.832 \pm 0.018	11.698 \pm 0.120	1.556 \pm 0.024	0.838 \pm 0.020	95%

E.6 CLASSIFICATION

In classification, we aim to classify input sequences and for forecasting tasks, given an input sequence \mathbf{x}_i , we aim to predict $\tilde{\mathbf{x}}_i \in \mathbb{R}^{1 \times H}$, i.e., the next H time steps for variate \mathbf{x}_i , where H is called horizon. Classification and anomaly detection test models’ ability to capture coarse and fine-grained patterns in time series. The complete results of Classification are reported in 15.

F LIMITATIONS AND FUTURE WORK

We note LETO has a few limitations worth acknowledging. First, the use of gradient-based meta in-context updates at test time, while powerful, introduces additional computational overhead compared to traditional non-adaptive sequence models. Although our dual-form implementation and parallel training strategies mitigate some of this cost, the memory and compute requirements may still be prohibitive in resource-constrained settings, particularly for long-horizon forecasting tasks.

Second, while LETO is designed to model both cross-time and cross-variante dependencies, its reliance on Taylor approximations for the variante attention mechanism may limit its capacity to fully capture complex, high-order variante interactions in some datasets. Adopting more expressive non-parametric approximators or learned kernel functions could offer improved generalization and efficiency - all of which are active areas of research.

Finally, our current formulation assumes access to reasonably stationary statistics at test time for the meta-memorization process to be effective. In highly non-stationary environments or under strong distribution shifts, the learned test-time updates may generalize poorly, leading to suboptimal performance - which has been empirically shown to be the case for other baselines as well, particularly in ultra long term forecasting.

Table 11: Full results for the short-term forecasting task in the M4 dataset. *. in the Transformers indicates the prefix of a *former name. *Stationary* means the Non-stationary Transformer. A lower SMAPE, MASE, and OWA indicate a better prediction. As a convention for all experimental results, best performance is highlighted in **red**, and the second-best is underlined. We take the average of 5 separate runs for each prediction frequency.

Models	LETO	ROSE	ModernTCN	PatchTST	TimesNet	N-HiTS	N-BEATS*	ETS*	LightTS	DLinear	FED*	Stationary	Auto*	Pyra*	In*	Re*
	(Ours) (2025b)	(2024)	(2023)	(2023)	(2023)	(2022)	(2019)	(2022)	(2022a)	(2023a)	(2022b)	(2022b)	(2021)	(2021)	(2021)	
Yearly	SMAPE	13.183	13.302	<u>13.226</u>	13.258	13.387	13.418	13.436	18.009	14.247	16.965	13.728	13.717	13.974	15.530	14.727
	MASE	2.941	3.014	<u>2.957</u>	2.985	2.996	3.045	3.043	4.487	3.109	4.283	3.048	3.078	3.134	3.711	3.418
	OWA	0.754	<u>0.833</u>	<u>0.777</u>	0.781	0.786	0.793	0.794	1.115	0.827	1.058	0.803	0.807	0.822	0.942	0.881
Quarterly	SMAPE	9.953	9.998	<u>9.971</u>	10.179	10.100	10.202	10.124	13.376	11.364	12.145	10.792	10.958	11.338	15.449	11.360
	MASE	1.150	<u>1.165</u>	1.167	0.803	1.182	1.194	1.169	1.906	1.328	1.520	1.283	1.325	1.365	2.350	1.401
	OWA	<u>0.851</u>	0.885	0.878	0.803	0.890	0.899	0.886	1.302	1.000	1.106	0.958	0.981	1.012	1.558	1.027
Monthly	SMAPE	12.517	12.650	<u>12.556</u>	12.641	12.670	12.791	12.677	14.588	14.014	13.514	14.260	13.917	13.958	17.642	14.062
	MASE	0.935	0.915	<u>0.917</u>	0.930	0.933	0.969	0.937	1.368	1.053	1.037	1.102	1.097	1.103	1.913	1.141
	OWA	0.853	<u>0.866</u>	<u>0.866</u>	0.876	0.878	0.899	0.880	1.149	0.981	0.956	1.012	0.998	1.002	1.511	1.024
Others	SMAPE	4.583	4.668	4.715	4.946	4.891	5.061	4.925	7.267	15.880	6.709	4.954	6.302	5.485	24.786	24.460
	MASE	2.797	3.126	<u>3.107</u>	2.985	3.302	3.216	3.391	5.240	11.434	4.953	3.264	4.064	3.865	18.581	20.960
	OWA	0.900	1.020	<u>0.986</u>	1.044	1.035	1.040	1.053	1.591	3.474	1.487	1.036	1.304	1.187	5.538	5.013
Weighted Average	SMAPE	11.658	11.764	<u>11.698</u>	11.807	11.829	11.927	11.851	14.718	13.525	13.639	12.840	12.780	12.909	16.987	14.086
	MASE	1.541	1.568	<u>1.556</u>	1.590	1.585	1.613	1.599	2.408	2.111	2.095	1.701	1.756	1.771	3.265	2.718
	OWA	0.832	0.871	<u>0.838</u>	0.851	0.851	0.861	0.855	1.172	1.051	1.051	0.918	0.930	0.939	1.480	1.230

G BROADER IMPACT

LETO has demonstrated strong performance as a general-purpose model for time series pattern recognition, achieving competitive results across a wide range of tasks including forecasting, classification, and anomaly detection. Its versatility makes it well-suited for deployment in diverse real-world scenarios, such as energy and power demand forecasting with pronounced seasonal trends, weather prediction under complex and dynamic conditions, financial market modeling in rapidly shifting environments, and demand forecasting within supply chains. Furthermore, LETO has shown particular promise in industrial anomaly detection tasks, tasks which often require robustness to noise and structural adaptability. These capabilities highlight LETO’s potential as a foundational model for advancing time series analysis across multiple applied domains. It would be interesting to optimize LETO’s designs to develop stronger hybrid memory/attention architectures and test them on other 2D modalities such as video or EEG.

H COMPUTE RESOURCES

For experiments, we utilized up to 4 NVIDIA A6000 and A6000 ADA GPUs on a single compute node.

I PROOF OF THEOREM (1)

To prove this theorem, we show that our LETO can recover the 2D linear recurrent models that are proven to model full-rank matrices (Behrouz et al., 2024d; Baron et al., 2024). To this end, we show that a special instance of our LETO is equivalent to these linear 2D recurrent models. We let the chunk size to be the size of the sequence length. Therefore, for every $1 \leq t \leq T$, we have:

$$\nabla \ell(\mathcal{M}_0^{(1)}; \mathbf{k}_t, \mathbf{v}_t) = (\mathcal{M}_0^{(1)} \mathbf{k}_t - \mathbf{v}_t) \mathbf{k}_t^\top, \quad (19)$$

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521

1522 **Table 12:** Complete experiments on long term forecasting tasks over four prediction lengths: {96, 192, 336, 720}. A lower MAE and MSE indicates a better prediction. As a convention for all experimental results, best 1523 performance is highlighted in **red**, and the second-best is underlined. We take the average of 5 separate runs for 1524 each prediction length.

	LETO	TimeMixer	Simba	TCN	iTransformer	RLinear	PatchTST	Crossformer	TIDE	TimesNet	DLinear	SCINet	FEDformer	Stationary	Autoformer		
	(ours)	(2024)	(2024)	(2024)	(2024c)	(2023)	(2023)	(2023)	(2023)	(2023)	(2023c)	(2022a)	(2022b)	(2022c)	(2021)		
1528	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
1529	96	0.312 0.343	0.320 0.357	0.342 0.360	0.292 <u>0.346</u>	0.334 0.368	0.355 0.376	0.329 0.367	0.404 0.426	0.364 0.387	0.338 0.375	0.345 0.372	0.418 0.438	0.379 0.419	0.386 0.398	0.505 0.475	
1530	192	0.330 <u>0.365</u>	0.361 0.381	0.363 0.382	<u>0.332</u> 0.368	0.377 0.391	0.391 0.392	0.367 0.385	0.450 0.451	0.398 0.404	0.374 0.387	0.380 0.389	0.439 0.450	0.426 0.441	0.459 0.444	0.553 0.496	
1531	336	0.355 0.384	0.390 0.404	0.395 0.405	<u>0.365</u> 0.391	0.426 0.420	0.424 0.415	0.399 0.410	0.532 0.515	0.428 0.425	0.410 0.411	0.413 0.413	0.490 0.485	0.445 0.459	0.495 0.464	0.621 0.537	
1532	720	0.391 0.408	0.454 0.441	0.451 0.437	<u>0.416</u> 0.417	0.491 0.459	0.487 0.450	0.454 0.439	0.666 0.589	0.487 0.461	0.478 0.450	0.474 0.453	0.595 0.550	0.543 0.490	0.585 0.516	0.671 0.561	
1533	Avg	0.347 <u>0.375</u>	0.381 0.395	0.383 0.396	<u>0.351</u> 0.381	0.407 0.410	0.414 0.407	0.387 0.400	0.513 0.496	0.419 0.419	0.400 0.406	0.403 0.407	0.485 0.481	0.448 0.452	0.481 0.456	0.588 0.517	
1534	196	1.164 0.248	0.175 0.258	0.177 0.263	0.166 0.256	0.180 0.264	0.182 0.265	0.175 0.259	0.287 0.366	0.207 0.305	0.187 0.267	0.193 0.292	0.286 0.377	0.203 0.287	0.192 0.274	0.255 0.339	
1535	192	0.217 0.284	0.237 0.299	0.245 0.306	0.222 0.293	0.250 0.301	0.246 0.304	0.241 0.302	0.414 0.492	0.290 0.364	0.249 0.309	0.284 0.362	0.399 0.445	0.269 0.328	0.280 0.339	0.281 0.340	
1536	336	0.266 0.312	0.298 0.340	0.303 0.343	0.272 0.324	0.311 0.344	0.307 0.342	0.305 0.343	0.597 0.542	0.377 0.422	0.321 0.351	0.369 0.427	0.637 0.591	0.325 0.366	0.334 0.361	0.339 0.372	
1537	720	0.349 0.363	0.391 0.396	0.400 0.399	0.351 0.381	0.381 0.412	0.407 0.407	0.407 0.398	0.402 0.400	1.730 0.104	0.558 0.524	0.408 0.403	0.554 0.522	0.960 0.735	0.421 0.415	0.417 0.413	0.433 0.432
1538	Avg	0.249 <u>0.302</u>	0.275 0.323	0.271 0.327	0.253 0.314	0.288 0.332	0.286 0.327	0.281 0.326	0.757 0.610	0.358 0.404	0.291 0.333	0.350 0.401	0.571 0.537	0.305 0.349	0.306 0.347	0.327 0.371	
1539	96	0.365 0.383	0.375 0.400	0.379 0.395	0.368 0.394	0.386 0.405	0.386 0.395	0.414 0.419	0.423 0.448	0.479 0.464	0.384 0.402	0.386 0.400	0.654 0.599	0.376 0.419	0.513 0.491	0.449 0.459	
1540	192	0.396 0.400	0.429 0.421	0.432 0.424	0.405 0.413	0.441 0.436	0.437 0.424	0.460 0.445	0.471 0.474	0.525 0.492	0.436 0.429	0.437 0.432	0.719 0.631	0.420 0.448	0.534 0.504	0.500 0.482	
1541	336	0.461 0.462	0.484 0.485	0.473 0.443	0.391 0.412	0.487 0.455	0.479 0.446	0.501 0.466	0.570 0.546	0.565 0.515	0.491 0.469	0.481 0.459	0.778 0.659	0.459 0.465	0.588 0.535	0.521 0.496	
1542	720	0.427 0.428	0.482 0.483	0.483 0.469	0.450 0.461	0.503 0.491	0.481 0.470	0.500 0.488	0.653 0.594	0.521 0.500	0.519 0.516	0.836 0.699	0.506 0.507	0.643 0.616	0.514 0.512		
1543	Avg	0.393 <u>0.401</u>	0.447 0.440	0.441 0.432	<u>0.404</u> 0.420	0.454 0.447	0.446 0.434	0.469 0.454	0.529 0.522	0.541 0.507	0.458 0.450	0.456 0.452	0.747 0.647	0.440 0.460	0.570 0.537	0.496 0.487	
1544	96	0.258 0.337	0.289 0.341	0.290 0.339	0.263 0.332	0.297 0.349	0.288 0.338	0.302 0.348	0.745 0.584	0.400 0.440	0.340 0.374	0.333 0.387	0.707 0.621	0.358 0.397	0.476 0.458	0.346 0.388	
1545	192	0.316 0.379	0.372 0.392	0.373 0.390	0.320 0.374	0.380 0.400	0.374 0.390	0.388 0.400	0.877 0.656	0.528 0.509	0.402 0.414	0.477 0.476	0.860 0.689	0.429 0.439	0.512 0.493	0.456 0.452	
1546	336	0.309 0.379	0.386 0.414	0.376 0.406	0.313 0.376	0.428 0.432	0.415 0.426	0.426 0.433	1.043 0.731	0.643 0.571	0.452 0.452	0.594 0.541	1.000 0.744	0.496 0.487	0.552 0.551	0.482 0.486	
1547	720	0.389 0.430	0.412 0.434	0.407 0.431	0.392 0.433	0.427 0.445	0.420 0.440	0.431 0.446	1.104 0.763	0.874 0.679	0.462 0.468	0.831 0.657	1.249 0.838	0.463 0.474	0.562 0.560	0.515 0.511	
1548	Avg	0.318 0.381	0.364 0.395	0.361 0.377	<u>0.322</u> 0.379	0.383 0.407	0.374 0.398	0.387 0.407	0.942 0.684	0.611 0.550	0.414 0.427	0.559 0.515	0.954 0.723	0.437 0.449	0.526 0.516	0.450 0.459	
1549	96	0.079 0.208	0.090 0.235	-	-	0.080 0.196	0.086 0.208	0.093 0.217	0.088 0.205	0.256 0.367	0.094 0.218	0.107 0.234	0.088 0.218	0.267 0.396	0.148 0.278	0.111 0.237	0.197 0.323
1550	192	0.164 0.298	0.187 0.343	-	-	0.166 0.288	0.177 0.299	0.184 0.307	0.176 0.299	0.470 0.509	0.184 0.307	0.226 0.344	0.176 0.315	0.351 0.459	0.271 0.315	0.219 0.335	0.300 0.369
1551	336	0.308 0.329	0.353 0.473	-	-	0.307 0.398	0.331 0.417	0.351 0.432	0.301 0.397	1.268 0.883	0.349 0.431	0.367 0.448	0.313 0.427	1.324 0.853	0.460 0.427	0.421 0.476	0.509 0.524
1552	720	0.637 0.621	0.934 0.761	-	-	0.656 0.582	0.847 0.691	0.886 0.714	0.901 0.714	1.767 1.068	0.852 0.698	0.964 0.746	0.839 0.695	1.058 0.797	1.195 0.695	1.092 0.769	1.447 0.941
1553	Avg	0.297 <u>0.361</u>	0.391 0.453	-	-	0.302 0.366	0.360 0.403	0.378 0.417	0.367 0.404	0.940 0.707	0.370 0.413	0.416 0.443	0.354 0.414	0.750 0.626	0.519 0.429	0.461 0.454	0.613 0.539
1554	96	0.380 0.247	0.462 0.285	0.468 0.268	0.368 0.253	0.395 0.266	0.649 0.389	0.462 0.295	0.522 0.290	0.805 0.493	0.593 0.321	0.650 0.396	0.788 0.499	0.587 0.366	0.612 0.338	0.613 0.388	
1555	192	0.391 0.258	0.473 0.296	0.413 0.317	0.379 0.261	0.417 0.276	0.601 0.366	0.466 0.296	0.530 0.293	0.756 0.474	0.617 0.336	0.598 0.370	0.789 0.505	0.604 0.373	0.613 0.340	0.616 0.382	
1556	336	0.409 0.266	0.498 0.296	0.529 0.284	0.397 0.270	0.433 0.283	0.609 0.369	0.482 0.304	0.558 0.305	0.762 0.477	0.629 0.336	0.605 0.373	0.797 0.508	0.621 0.383	0.618 0.328	0.622 0.337	
1557	720	0.452 0.297	0.506 0.313	0.564 0.297	0.440 0.296	0.467 0.308	0.647 0.387	0.514 0.322	0.589 0.328	0.719 0.449	0.640 0.350	0.645 0.394	0.841 0.523	0.626 0.382	0.653 0.355	0.660 0.408	
1558	Avg	0.408 <u>0.267</u>	0.484 0.297	0.493 0.291	<u>0.398</u> 0.270	0.428 0.282	0.626 0.378	0.481 0.304	0.550 0.304	0.760 0.473	0.620 0.336	0.625 0.383	0.809 0.509	0.610 0.376	0.624 0.340	0.628 0.379	
1559	96	0.155 0.203	0.163 0.209	0.176 0.219	0.149 0.200	0.174 0.214	0.192 0.232	0.177 0.218	0.158 0.230	0.202 0.261	0.172 0.220	0.196 0.255	0.221 0.306	0.217 0.296	0.173 0.223	0.266 0.336	
1560	192	0.173 0.240	0.222 0.260	0.220 0.260	0.196 0.245	0.221 0.254	0.240 0.271	0.225 0.259	0.200 0.277	0.242 0.298	0.219 0.261	0.237 0.296	0.261 0.340	0.276 0.336	0.245 0.285	0.307 0.367	
1561	336	0.232 0.260	0.251 0.287	0.275 0.297	0.238 0.277	0.278 0.296	0.292 0.307	0.278 0.297	0.272 0.335	0.287 0.335	0.280 0.306	0.283 0.333	0.309 0.378	0.339 0.380	0.321 0.338	0.359 0.395	
1562	720	0.307 0.309	0.350 0.349	0.350 0.349	0.314 0.334	0.358 0.347	0.364 0.353	0.354 0.348	0.399 0.418	0.351 0.366	0.365 0.359	0.345 0.381	0.377 0.427	0.403 0.428	0.414 0.410	0.419 0.428	
1563	Avg	0.216 <u>0.253</u>	0.240 0.271	0.255 0.280	<u>0.224</u> 0.264	0.258 0.278	0.272 0.291	0.259 0.281	0.259 0.315	0.271 0.320	0.259 0.287	0.265 0.317	0.292 0.363	0.309 0.360	0.288 0.314	0.338 0.382	
1564	96	0.136 0.233	0.153 0.247	0.165 0.253	0.129 0.226	0.148 0.240	0.201 0.281	0.181 0.270	0.219 0.314	0.237 0.329	0.168 0.272	0.197 0.282	0.247 0.345	0.193 0.308	0.169 0.273	0.201 0.317	
1565	192	0.144 0.221	0.166 0.256	0.173 0.262	0.143 0.239	0.162 0.253	0.201 0.283	0.188 0.274	0.231 0.322	0.236 0.330	0.184 0.289	0.196 0.285	0.257 0.355	0.201 0.315	0.182 0.286	0.222 0.334	
1566	336	0.154 0.253	0.185 0.277	0.188 0.277	0.161 0.259	0.178 0.269	0.215 0.298	0.204 0.293	0.246 0.337	0.249 0.344	0.198 0.300	0.209 0.301	0.269 0.369	0.214 0.329	0.200 0.304	0.231 0.338	
1567	720	0.162 0.261	0.225 0.310	0.214 0.305	0.191 0.286	0.225 0.317	0.257 0.331	0.246 0.324	0.280 0.363	0.284 0.373	0.220 0.320	0.245 0.333	0				

1566 Table 13: Standard deviation and statistical tests for LETO compared with the strongest baseline
 1567 ModernTCN on long-term forecasting (lower is better). Confidence levels derive from a paired
 1568 two-tailed t -test over five seeds.

1569

1570

Dataset	LETO (Ours)			ModernTCN (2024)			Confidence
	MSE	MAE	MSE	MAE			
ETTm1	0.347 ± 0.010	0.375 ± 0.012	0.351 ± 0.011	0.381 ± 0.013	99%		
ETTm2	0.249 ± 0.009	0.302 ± 0.011	0.253 ± 0.010	0.314 ± 0.013	95%		
ETTh1	0.393 ± 0.012	0.401 ± 0.014	0.404 ± 0.013	0.420 ± 0.015	99%		
ETTh2	0.318 ± 0.010	0.381 ± 0.012	0.322 ± 0.011	0.379 ± 0.013	95%		
Exchange	0.297 ± 0.016	0.364 ± 0.018	0.302 ± 0.017	0.366 ± 0.019	95%		
Traffic	0.408 ± 0.020	0.267 ± 0.012	0.398 ± 0.019	0.270 ± 0.013	90%		
Weather	0.216 ± 0.009	0.253 ± 0.011	0.224 ± 0.010	0.264 ± 0.012	95%		
ECL	0.149 ± 0.007	0.247 ± 0.009	0.156 ± 0.008	0.253 ± 0.010	99%		

1579

1580 Table 14: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall
 1581 and F1-score in percentage respectively. A higher value of P, R and F1 indicates a better performance.
 1582 Best performance is highlighted in red, and the second-best is underlined. We take the average of 5
 1583 separate runs for each dataset.

1584

1585

Metrics	Datasets	SMD			MSL			SMAP			SWaT			PSM			Avg F1
		P	R	F1													
LSTM	(1997a)	78.52	65.47	71.41	78.04	86.22	81.93	91.06	57.49	70.48	78.06	91.72	84.34	69.24	<u>99.53</u>	81.67	77.97
Transformer	(2017)	83.58	76.13	79.56	71.57	87.37	78.68	89.37	57.12	69.70	68.84	96.53	80.37	62.75	96.56	76.07	76.88
LogTrans	(2019)	83.46	70.13	76.21	73.05	87.37	79.57	89.15	57.59	69.97	68.67	97.32	80.52	63.06	98.00	76.74	76.60
TCN	(2019)	84.06	79.07	81.49	75.11	82.44	78.60	86.90	<u>59.23</u>	70.45	76.59	95.71	85.09	54.59	<u>99.77</u>	70.57	77.24
Reformer	(2020)	82.58	69.24	75.32	<u>85.51</u>	83.31	84.40	90.91	57.44	70.40	72.50	96.53	82.80	59.93	95.38	73.61	77.31
Informer	(2021)	86.60	77.23	81.65	81.77	86.48	84.06	90.11	57.13	69.92	70.29	96.75	81.43	64.27	96.33	77.10	78.83
Anomaly*	(2021)	<u>88.91</u>	82.23	85.49	79.61	87.37	83.31	91.85	58.11	71.18	72.51	97.32	83.10	68.35	94.72	79.40	80.50
Pyraformer	(2021)	85.61	80.61	83.04	83.81	85.93	84.86	92.54	57.71	71.09	87.92	96.00	91.78	71.67	96.02	82.08	82.57
Autoformer	(2021)	88.06	82.35	85.11	77.27	80.92	79.05	90.40	58.62	71.12	89.85	95.81	92.74	99.08	88.15	93.29	84.26
LSSL	(2021)	78.51	65.32	71.31	77.55	88.18	82.53	89.43	53.43	66.90	79.05	93.72	85.76	66.02	92.93	77.20	76.74
Stationary	(2022b)	88.33	81.21	84.62	<u>68.55</u>	<u>89.14</u>	77.50	89.37	<u>59.02</u>	71.09	68.03	96.75	79.88	97.82	96.76	<u>97.29</u>	82.08
DLinear	(2023a)	83.62	<u>71.52</u>	77.10	84.34	85.42	84.88	92.32	55.41	69.26	80.91	95.30	87.52	98.28	89.26	93.55	82.46
ETFormer	(2022)	87.44	79.23	83.13	<u>85.13</u>	84.93	85.03	92.25	55.75	69.50	90.02	<u>80.36</u>	84.91	<u>99.31</u>	85.28	91.76	82.87
LightTS	(2022a)	87.10	78.42	82.53	82.40	75.78	78.95	92.58	55.27	69.21	91.98	94.72	93.33	98.37	95.97	97.15	84.23
FEDformer	(2022b)	87.95	82.39	85.08	77.14	80.07	78.57	90.47	58.10	70.76	90.17	96.42	93.19	97.31	97.16	97.23	84.97
TimesNet (I)	(2023)	87.76	82.63	85.12	82.97	85.42	84.18	91.50	57.80	70.85	88.31	96.24	92.10	98.22	92.21	95.21	85.49
TimesNet (R)	(2023)	<u>88.66</u>	83.14	85.81	83.92	86.42	<u>85.15</u>	92.52	58.29	71.52	86.76	<u>97.32</u>	91.74	98.19	96.76	<u>97.47</u>	86.34
CrossFormer	(2023)	83.6	76.61	79.70	84.68	83.71	84.19	92.04	55.37	69.14	88.49	93.48	90.92	97.16	89.73	93.30	83.45
PatchTST	(2023)	87.42	81.65	84.44	84.07	86.23	85.14	92.43	57.51	70.91	80.70	94.93	87.24	98.87	93.99	96.37	84.82
ModernTCN	(2024)	87.86	<u>83.85</u>	<u>85.81</u>	83.94	85.93	84.92	93.17	57.69	<u>71.26</u>	91.83	95.98	<u>93.86</u>	98.09	96.38	97.23	<u>86.62</u>
LETO	(ours)	<u>88.20</u>	<u>85.52</u>	<u>86.84</u>	83.50	<u>89.27</u>	<u>86.29</u>	<u>93.20</u>	57.10	70.81	<u>92.00</u>	96.73	<u>94.31</u>	<u>99.20</u>	94.61	96.85	<u>87.02</u>

1606

1607

where $\mathcal{M}_0^{(1)}$ is the initial state of the memory, which we let $\mathcal{M}_0^{(1)} = \mathbf{I}$ for the simplicity. Replacing this gradient in equation Variant 2, we have:

1608

1609

1610

1611

$$\mathcal{M}_{t,v}^{(1)} = \alpha_{t,v} \mathcal{M}_{t-1,v}^{(1)} - \eta_{t,v} \left(\underbrace{(\mathbf{k}_t - \mathbf{v}_t) \mathbf{k}_t^\top}_{\mathbf{u}_t} \right) + \beta_{t,v} \mathcal{M}_{t-1,v}^{(2)} - \gamma_{t,v} \left(\mathcal{M}_t^{(2)} \mathbf{k}_t \mathbf{k}_t^\top - \mathbf{v}_t \mathbf{k}_t^\top \right), \quad (20)$$

1612

1613

1614

where we let $\eta_{t,v} = \gamma_{t,v} = 1$. Also, for the attention module, we use polynomials with degree 1 to approximate the softmax attention (which is the special instance and the weaker version of our design, i.e., considering only the first two terms of the Taylor series). The resulting formula can be written as:

1615

1616

1617

1618

1619

$$\mathcal{M}_{t,v}^{(1)} = \alpha_{t,v} \mathcal{M}_{t-1,v}^{(1)} - \eta_{t,v} \mathbf{u}_t \mathbf{k}_t^\top + \beta_{t,v} \mathcal{M}_{t-1,v}^{(2)} - \gamma_{t,v} \mathcal{M}_t^{(2)} \mathbf{k}_t \mathbf{k}_t^\top, \quad (21)$$

which is equivalent to the 2-dimensional linear recurrence with diagonal transition matrix. Therefore, as proven by Baron et al. (2024), the recurrence can model full-rank matrix.

On the other hand, the univariate version of this recurrence (i.e., $\gamma_{t,v} = 0$) results in linear attention formulation, which is limited and cannot express full-rank matrices.

1620 Table 15: Full results for the classification task (accuracy %). We omit “former” from the names
 1621 of Transformer-based methods. For all methods, the standard deviation is less than 0.1%. A higher
 1622 average accuracy indicates a better prediction. Best performance is highlighted in **red**, and the
 1623 second-best is underlined. We take the average of 5 separate runs for each dataset.

1624

1625

1626 Datasets / Models	LSTM	LSTNet	LSSL	Trans.	Re.	In.	Pyra.	Auto.	Station.	FED.	/ETS.	/Flow.	/DLinear	/LightTS.	/TimesNet	/PatchTST	/MTCN	LETO
	(1997a)	(2018)		(2017)	(2020)	(2021)	(2021)	(2021)	(2022b)	(2022b)	(2022)	(2022b)	(2023a)	(2022a)	(2023)	(2023)	(2024)	(ours)
EthanolConcentration	32.3	39.9	31.1	32.7	31.9	31.6	30.8	31.6	32.7	31.2	28.1	33.8	32.6	29.7	35.7	32.8	<u>36.3</u> 38.8	
FaceDetection	57.7	65.7	66.7	67.3	68.6	67.0	65.7	68.4	68.0	66.0	66.3	67.6	68.0	67.5	68.6	68.3	<u>70.8</u> 71.3	
Handwriting	15.2	25.8	24.6	32.0	27.4	32.8	29.4	36.7	31.6	28.0	32.5	33.8	27.0	26.1	32.1	29.6	<u>30.6</u> 32.9	
Heartbeat	72.2	77.1	72.7	76.1	77.1	80.5	75.6	74.6	73.7	73.7	71.2	77.6	75.1	75.1	78.0	74.9	<u>77.2</u> 78.3	
Japanese Vowels	79.7	98.1	98.4	98.7	97.8	98.9	98.4	96.2	99.2	98.4	95.9	98.9	96.2	96.2	98.4	97.5	98.8 <u>98.5</u>	
PEMS-SF	39.9	86.7	86.1	82.1	82.7	81.5	83.2	82.7	87.3	80.9	86.0	83.8	75.1	88.4	89.6	89.3	<u>89.1</u> 89.6	
SelfRegulationSCP1	68.9	84.0	90.8	92.2	90.4	90.1	88.1	84.0	89.4	88.7	89.6	92.5	87.3	89.8	91.8	90.7	<u>93.4</u> 94.4	
SelfRegulationSCP2	46.6	52.8	52.2	53.9	56.7	53.3	53.3	50.6	57.2	54.4	55.0	56.1	50.5	51.1	57.2	57.8	<u>60.3</u> 61.1	
SpokenArabicDigits	31.9	100.0	100.0	98.4	97.0	100.0	<u>99.6</u>	100.0	100.0	100.0	100.0	98.8	81.4	100.0	99.0	98.3	98.7	98.7
UWaveGestureLibrary	41.2	87.8	85.9	85.6	85.6	85.6	83.4	85.9	87.5	85.3	85.0	86.6	82.1	80.3	85.3	85.8	<u>86.7</u> 87.1	
Average Accuracy	48.6	71.8	70.9	71.9	71.5	72.1	70.8	71.1	72.7	70.7	71.0	73.0	67.5	70.4	73.6	72.5	<u>74.2</u> 75.07	

1637

1638 As an important note: Theorem 1 is intentionally stated in a linear recurrent setting and should
 1639 be read as a structural comparison within a *linearized* model class rather than a full theory of the
 1640 nonlinear LETO architecture. Recall from equation 11 that our cross-variate block uses a kernelized
 1641 attention with an explicit feature map ϕ , so that in the feature space induced by ϕ the memory
 1642 $\mathcal{M}_{t,v}^{(2)}$ evolves linearly in $\phi(\hat{\mathbf{k}}_{t,i})$. When we fix ϕ and consider the joint update of $\mathcal{M}^{(1)}$ and $\mathcal{M}^{(2)}$
 1643 in equation Variant 2, the resulting dynamics fall exactly into the class of interconnected linear
 1644 recurrences analyzed in Theorem 1. Within this linearized class, the theorem shows that coupling
 1645 the two memories allows us to realize full-rank kernels with $\mathcal{O}(1)$ parameters, whereas using two
 1646 independent modules of the form equation Variant 1 requires at least $\mathcal{O}(N)$ parameters to represent
 1647 rank- N interactions. We do *not* claim that this result characterizes the full nonlinear LETO or provides
 1648 general expressivity bounds beyond rank; rather, it offers mechanistic intuition about the parameter
 1649 efficiency of the inter-connected design. This intuition is complemented by our empirical ablations
 1650 (Table 4 and Appendix E.2), where removing the cross-variate memory, removing the linearized
 1651 attention, or decoupling the two memories all lead to consistent performance degradation compared
 1652 to the full LETO.

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674
1675

J VISUALIZATIONS

1676
1677

J.1 LONG TERM FORECASTING

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

Figure 3: Visualization of Traffic Long Term Forecasting results given by models under the input-96-predict-96 setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

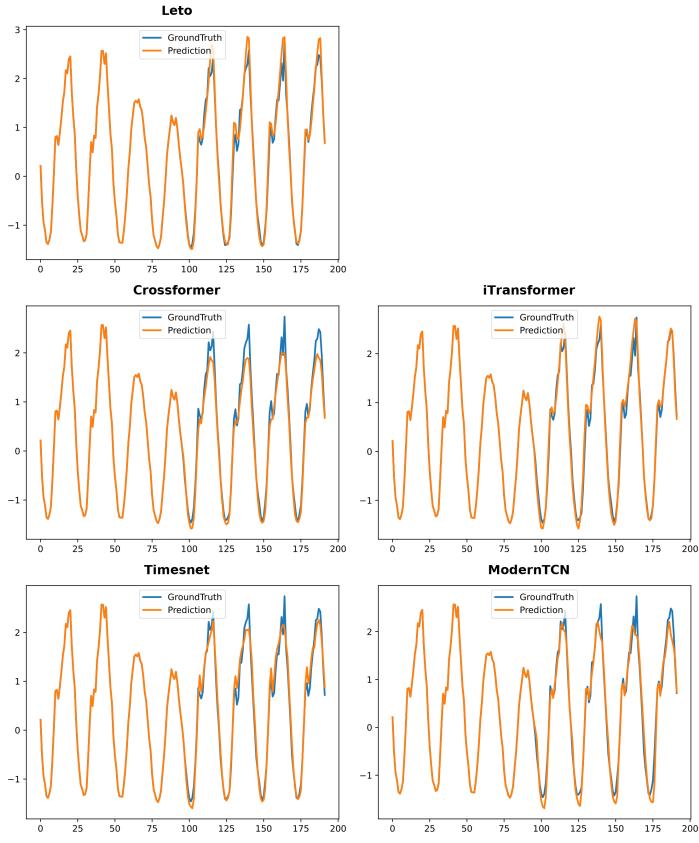
1723

1724

1725

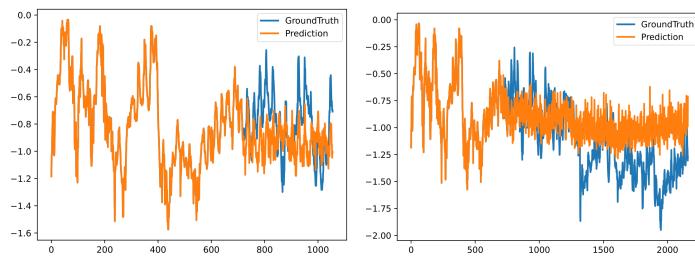
1726

1727

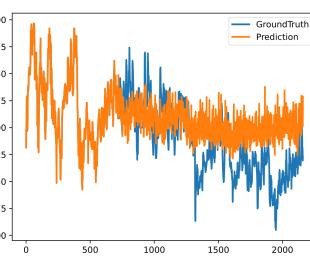


1728
1729

J.2 ULTRA LONG TERM FORECASTING

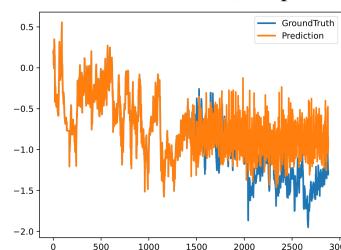
1730
1731
1732
1733
1734
1735
1736
1737
1738

(a) Input-720, Predict-720

1739
1740
1741
1742
1743
1744
1745
1746
1747

(b) Input-720, Predict-1440

1748



(c) Input-1440 -Predict-1440

1749

Figure 4: Ultra-long-horizon forecasting examples on the ETTh1 dataset. The blue lines stand for the ground truth and the orange lines stand for predicted values.

1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781