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ABSTRACT

We present ConDiff, a novel dataset for scientific machine learning. ConDiff
focuses on the parametric diffusion equation with space dependent coefficients,
a fundamental problem in many applications of partial differential equations
(PDEs). The main novelty of the proposed dataset is that we consider discon-
tinuous coefficients with high contrast. These coefficient functions are sampled
from a selected set of distributions. This class of problems is not only of great
academic interest, but is also the basis for describing various environmental and
industrial problems. In this way, ConDiff shortens the gap with real-world prob-
lems while remaining fully synthetic and easy to use. ConDiff consists of a di-
verse set of diffusion equations with coefficients covering a wide range of contrast
levels and heterogeneity with a measurable complexity metric for clearer com-
parison between different coefficient functions. We baseline ConDiff on standard
deep learning models in the field of scientific machine learning. By providing
a large number of problem instances, each with its own coefficient function and
right-hand side, we hope to encourage the development of novel physics-based
deep learning approaches, such as neural operators, ultimately driving progress
towards more accurate and efficient solutions of complex PDE problems.

1 INTRODUCTION

In recent years, machine learning techniques have emerged as a promising approach to solving
PDEs, offering a new perspective in scientific computing. Machine learning algorithms, especially
those based on neural networks, have demonstrated success in approximating complex functions
and physical phenomena. Neural networks can provide more efficient and scalable methods com-
pared to traditional numerical methods, which can be computationally expensive and limited by the
dimensionality of the problem to be solved. Approaches using physical losses (Karniadakis et al.,
2021), operator learning (Li et al., 2020), symmetries incorporation (Wang et al., 2020), data-driven
discretization (Bar-Sinai et al., 2019) lead to more physically meaningful solutions and gave neural
networks better recognition than just black-boxes.

Classical methods for solving PDEs have been extensively developed and refined over the years,
providing a basis for understanding and analyzing various physical phenomena. These methods
involve discretization the PDEs using techniques as the finite difference method (LeVeque, 2007),
finite element method (Bathe, 2006), finite volume method (Eymard et al., 2000) or spectral meth-
ods (Trefethen, 2000), followed by numerical solution of the resulting algebraic equations. While
these methods have been successful in solving a wide range of PDEs, they often face the curse of
dimensionality when parametric PDEs need to be solved in connection with optimization, optimal
control, parameter identification, uncertainty quantification. The reduction of complexity for such
classes of problems can be addressed with surrogate models using machine learning.

The main approaches in scientific machine learning are (i) using governing equations as loss func-
tions with physics-informed neural networks (Karniadakis et al., 2021; Cai et al., 2021; Eivazi et al.,
2024; Raissi et al., 2019); (ii) learning mappings between infinite-dimensional function spaces with
neural operators (Li et al., 2020; Fanaskov & Oseledets, 2023; Lu et al., 2021a; Li et al., 2024; Tran
et al., 2021); (iii) hybrid approaches where machine learning techniques are incorporated into clas-
sical simulations (Brunton & Kutz, 2022; Schnell & Thuerey, 2024; Hsieh et al., 2019; Ingraham
et al., 2018).
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These surrogate models have shown significant potential in solving parametric PDEs, but a critical
aspect of their development remains the availability of comprehensive datasets for validation. The
accuracy and reliability of these machine learning-based approaches are highly dependent on the
quality and diversity of the data used to train and test them. Without such datasets, the performance
and generalization ability of these models cannot be adequately assessed, and their applicability to
real-world problems may be limited. As new techniques and methods emerge in the future, the need
for robust and extensive datasets will only increase. It is therefore essential to develop approaches to
the curation of high quality datasets that can support the development and validation of innovative
approaches to solving complex problems in different scientific and engineering domains.

Typically, scientific machine learning datasets have a large number of parametric PDEs (Takamoto
et al., 2022; Luo et al., 2023; Hao et al., 2023) that have a single example per PDE. With ConDiff
(short for Contrast Diffusion) we focused on the idea of providing a large number of different real-
izations for a single problem - the diffusion equation. Currently, ConDiff consists of a diverse set
of diffusion equations with 24 realizations, which can be distinguished by complexity, and results
in a total of 28800 samples. We also propose an approach to generating complex coefficients for
parametric PDEs that can address real-world problems with a measurable metric of the complexity
of the dataset.

The ConDiff dataset is available on the Hugging Face Hub: https://huggingface.co/
datasets/condiff/ConDiff. The code with ConDiff generation, usage, validation and re-
quirements is available at: https://github.com/condiff-dataset/ConDiff.

2 CONDIFF

Motivation Creating a comprehensive benchmark for classes of parametric PDEs is a particular
challenge for the scientific machine learning community. The main challenges in creating a compre-
hensive dataset are: (i) computational complexity; (ii) storage complexity for the desired dimensions
of the discretized PDE and parameter space; (iii) properties of the coefficients and solution functions;
(iv) relation to real-world problems. The first and second reasons illustrate a technical bottleneck in
the creation of the dataset and are mostly dependent on the hardware and efficiency of the numer-
ical method used. Properties such as coefficient smoothness, discontinuity, spatial variation of the
coefficients, variance of the parametric space significantly affect the complexity of the dataset and
should be carefully chosen. The solution to parametric PDEs (i.e. the ground truth for the dataset)
depends on a number of numerical aspects such as choice of mesh, discretization, numerical algo-
rithm, boundary and initial conditions. Therefore, it is very important to consider every little detail
regarding different numerical schemes, PDEs, boundary and initial conditions.

Existing benchmarks and datasets cover different aspects of scientific machine learning for different
classes of PDEs and can be divided into several groups. PDEBench (Takamoto et al., 2022), PIN-
Nacle (Hao et al., 2023), CFDBench (Luo et al., 2023) have a large number of PDEs with different
boundary and initial conditions and different dimensionality and resolution. The best covered area is
weather forecasting: SuperBench (Ren et al., 2023), ClimSim (Yu et al., 2024), DynaBench (Dulny
et al., 2023), OceanBench (Johnson et al., 2024), ChaosBench (Nathaniel et al., 2024). There are
also domain specific datasets with applications to Lagrangian mechanics LagrangeBench (Toshev
et al., 2024) and phase change phenomena BubbleML (Hassan et al., 2023). Recently, the Flow-
Bench (Tali et al., 2024) dataset with complex geometries was introduced. Worth noting frameworks
for differential simulations and general environments for PDEs in scientific machine learning: PDE
Control Gym (Bhan et al., 2024), PDEArena (Gupta & Brandstetter, 2022), DiffTaichi (Hu et al.,
2019), DeepXDE (Lu et al., 2021b) and ΦFlow (Holl et al., 2020).

While all of these datasets contribute significantly to the community, to the best of the authors’
knowledge there is no dataset dedicated to the very important class of academic and real-world
problems, the class of parametric PDEs with random coefficients. Typically, when a new model is
proposed, authors test it with a set of equations with smooth coefficients (Brandstetter et al., 2022;
Nguyen et al., 2023; Ripken et al., 2023; Bryutkin et al., 2024). Such coefficients do not allow
important classes of industrial applications to be addressed. In section 3 we show that increasing
the heterogeneity and contrast in the coefficient function leads to increasing challenges in building
accurate surrogate models.

2
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Problem definition Existing benchmarks (Takamoto et al., 2022; Hao et al., 2023; Luo et al.,
2023) cover a set of PDEs, both steady-state and time-dependent, with different resolutions and
time lengths. In our work, we approach the problem from the other side tacking a fixed parametric
PDE and generating a comprehensive set of random coefficients for it. We consider a 2D steady-state
diffusion equation:

−∇ ·
(
k(x)∇u(x)

)
= f(x), in Ω

u(x)
∣∣∣
x∈∂Ω

= 0
. (1)

Note that the equation (1) models not only diffusion, but also steady-state Darcy flow in porous me-
dia, steady-state heat conduction, etc. To address certain real-world problems, we use the Gaussian
Random Field (GRF) to generate the field ϕ(x) (Figure 1) with the following covariance models as
functions of distance d:

• Cubic:

Cov(d) =

{
σ2

(
1− 7

(
d
l

)2
+ 35

4

(
d
l

)3 − 7
2

(
d
l

)5
+ 3

4

(
d
l

)7)
, d < l

0 , d ≥ l
. (2)

• Exponential:

Cov(d) = σ2 exp
(
− d

l

)
. (3)

• Gaussian:

Cov(d) = σ2 exp
(
− d2

l2

)
. (4)

The correlation length in each dataset is l = 0.05 and the complexity of a resulting dataset is
controlled by variance σ2. The forcing term f(x) is sampled from the standard normal distribution
for each sampled PDE in each dataset. The resulting coefficient k(x) is obtained with:

k(x) = exp
(
ϕ(x)

)
. (5)

We propose to measure the complexity of the generated GRF with the global contrast in the field
ϕ(x):

contrast = exp
(
max

(
ϕ(x)

)
−min

(
ϕ(x)

))
. (6)

Complexity grows with variance By increasing the variance σ2 one can obtain a higher con-
trast (6) and thus a higher complexity of the PDE. This is a well-known phenomenon in applied
numerical analysis and can be easily observed empirically. We illustrate this behaviour with the
condition number κ(A) of the matrices A obtained with discretization of the equation (1).

In the Table 1 one can observe that increasing σ2 leads to a higher condition number κ(A) =
|λmax|

/
|λmin| of the discretized differential operator (Capizzano, 2003). The condition number is

closely related to the performance of the numerical methods used to solve PDEs (Benzi et al., 2005;
Elman et al., 2014). A high condition number indicates that small changes in the input can lead to
large changes in the output, making the problem ill-conditioned. This is particularly important in
PDEs, where small perturbations can significantly affect the solution. Also, if iterative methods are
used to solve the discretized PDE, a larger condition number means a larger number of iterations for
unpreconditioned and most of preconditioned iterative methods (Saad, 2003).

Connection to real-world problems All of the above reasoning is done with regard to the fre-
quent occurrence of such tasks in real world (Hashmi, 2014; Massimo, 2013; Carr & Turner, 2016;
Oristaglio & Hohmann, 1984; Muravleva et al., 2021), including composite materials modeling, heat
transfer, geophysical problems, fluid flow modeling. In Figure 2 one can see a cross section of the
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Figure 1: Visualization of the GRF (top row), the coefficient k(x) generated from this GRF (middle
row) and the corresponding solution of the equation (1) (bottom row) for a sampled PDEs with grid
128× 128 and σ2 = 2.0.

Figure 2: Cross section of the x−permeability field along the z axis over the SPE10 model 2 with
z = 4.

x−permeability field along the z axis over the SPE10 model 2 benchmark (Christie & Blunt, 2001).
The term permeability is used to denote the coefficients of the above equation when considering
flow in porous media. This field is very similar to the ConDiff samples in Figure 1.
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This benchmark is well known in the field of reservoir modelling and fluid flow in porous media.
SPE10 model 2 poses a significant challenge for the tasks of uncertainty quantification, upscaling
and multiphase fluid flow modelling.

Table 1: Summary of the ConDiff with min, mean and max values of the contrast (6). 1Condition
number κ(A) is calculated for a single sampled discretized (1).

Covariance Variance Min contrast Mean contrast Max contrast κ1(A)

Grid 64× 64

Cubic

0.1 7.0 · 100 1.0 · 101 1.5 · 101 3.6 · 103
0.4 5.0 · 101 9.6 · 101 2.5 · 102 7.3 · 103
1.0 6.0 · 102 8.3 · 102 1.0 · 103 2.0 · 104
2.0 8.0 · 104 8.9 · 104 1.0 · 105 1.8 · 105

Exp

0.1 6.0 · 100 9.0 · 100 1.5 · 101 4.3 · 103
0.4 5.0 · 101 8.5 · 101 2.3 · 102 5.2 · 103
1.0 6.0 · 102 7.9 · 102 1.0 · 103 1.7 · 104
2.0 8.0 · 104 8.9 · 104 1.0 · 105 1.9 · 105

Gauss

0.1 5.0 · 100 8.0 · 100 1.4 · 101 4.1 · 103
0.4 5.0 · 101 7.5 · 101 2.3 · 102 8.1 · 103
1.0 6.0 · 102 7.7 · 102 1.0 · 103 2.4 · 104
2.0 8.0 · 104 8.9 · 104 1.0 · 105 8.8 · 105

Grid 128× 128

Cubic

0.1 8.0 · 100 1.1 · 101 1.5 · 101 1.6 · 104
0.4 5.5 · 101 1.3 · 102 2.5 · 102 3.8 · 104
1.0 6.0 · 102 8.8 · 102 1.0 · 103 1.0 · 105
2.0 8.0 · 104 8.9 · 104 1.0 · 105 1.2 · 106

Exp

0.1 6.0 · 100 1.0 · 101 1.5 · 101 1.7 · 104
0.4 5.1 · 101 1.1 · 102 2.5 · 102 3.3 · 104
1.0 6.0 · 102 8.3 · 102 1.0 · 103 9.7 · 104
2.0 8.0 · 104 8.9 · 104 1.0 · 105 6.3 · 105

Gauss

0.1 5.0 · 100 8.0 · 100 1.4 · 101 1.8 · 104
0.4 5.0 · 101 7.8 · 101 2.5 · 102 7.2 · 104
1.0 6.0 · 102 7.7 · 102 1.0 · 103 1.6 · 105
2.0 8.0 · 104 8.9 · 104 1.0 · 105 1.5 · 106

Dataset description To generate the fields ϕ(x) we use the highly efficient parafields library1

with C++ backend. We use covariance models from {cubic, exponential,Gaussian} with 4 variance
values from {0.1, 0.4, 1.0, 2.0}. We use the forcing term f(x) ∼ N (0, 1). The standard normal
force function is chosen to be more complex than a constant forcing term, but not too complex to
distract from the complex coefficients, which is the focus of ConDiff. A Dirichlet boundary condi-
tion is set for each coefficient realization since boundary conditions do not contribute significantly
to the resulting complexity (Capizzano, 2003). The ground truth solution is obtained using cell-
centered second-order finite volume method. The coefficients are in the center of cells, the values
are in the nodes.

For each parameter set, we generate 1000 training and 200 test realizations of the diffusion equa-
tion (1) on 64 × 64 and 128 × 128 grids. We provide the train-test split in the ConDiff for fair
comparison in future research papers. Note that datasets with the same field parameters but differ-
ent grid sizes are generated independently and do not represent the same field. The fixed geometry
of ConDiff allows PDEs with different fields ϕ(x) to be compared without fear that different ge-

1https://github.com/parafields/parafields
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ometries will interfere with a fair comparison across different coefficient functions. To control the
complexity of the generated PDEs realizations, we set contrast bounds during generation as follows:

• σ2 = 0.1, contrast ∈ [5, 15],

• σ2 = 0.4, contrast ∈ [50, 250],

• σ2 = 1.0, contrast ∈ [6 · 102, 103],
• σ2 = 2.0, contrast ∈ [8 · 104, 105].

In total, ConDiff consists of 24 PDEs with different GRFs and grid sizes. Table 1 summarizes the
properties of ConDiff. Figure 3 illustrates the contrast distributions. Coming back to the permeabil-
ity cross section of SPE10 model 2 (Figure 2), it has contrast = 2.5 · 106 according to (6). We want
to emphasize that although the most complex coefficient of ConDiff is smaller by an order of mag-
nitude compared to the cross section of SPE10 model 2, our experiments show that this coefficient
is too complex for the chosen models to predict well.

Figure 3: GRF contrast distribution for PDEs from Table 1.

3 EXPERIMENTS

Models We do not attempt to benchmark every scientific machine learning surrogate model on the
ConDiff. Since the ConDiff consists of triplets

(
k(x), f(x), u(x)

)
, its primary use is to validate dif-

ferent architectures of neural operators. Therefore, we have selected the following list of models to
validate on the ConDiff: Spectral Neural Operator (SNO) (Fanaskov & Oseledets, 2023), Factorized
Fourier Neural Operator (F-FNO) (Tran et al., 2021), Dilated ResNet (DilResNet) (Yu et al., 2017)
and U-Net (Ronneberger et al., 2015). Neural operators FNO and SNO are both types of neural
networks designed to learn mappings between function spaces, in particular to solve PDEs. Neural
operators are designed to be universal approximators of continuous operators acting between Ba-
nach spaces and to be discretization invariant, meaning that they can handle different discretizations
of the underlying function spaces without requiring changes to the model. DilResNet and U-Net are
classical neural network models originating from the field of computer vision (CV). Both models
have shown their applicability beyond CV and have been used extensively for modeling physical
phenomena (Stachenfeld et al., 2021; Ma et al., 2021). More details about the models used can be
found in the Appendix A.1.

Experiment environment For training neural networks we use frameworks from the JAX (Brad-
bury et al., 2018) ecosystem: Equinox (Kidger & Garcia, 2021) and Optax (DeepMind et al., 2020).
The loss function used is the relative L2 loss:

L2 =
1

N

N∑
i=1

∥ŷi − yi∥2
∥yi∥2

. (7)
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Training samples for the models are the values of the coefficient function k(x) and the forcing term
f(x) in the grid cells. Targets are the values of the solution function u(x) in the grid cells. We also
use (7) as a primary performance metric, assessing the quality of the models’ predictions, and report
averaged values over the test set with standard deviation.

For all the problems we train for 400 epochs for grid = 64 and for 500 epochs for grid = 128. We
use the AdamW optimizer with an initial learning rate equals to 10−3 and a weight decay equals
to 10−2. We use a learning rate schedule that halves the learning rate every 50 epochs. Each PDE
realization has a dataset size of 1000 training samples and 200 test samples. We use a single GPU
Nvidia Tesla V100 16Gb for training on grid = 64 and a single GPU Nvidia A40 48Gb for training
on grid = 128.

Table 2: Results for Poisson equation.

Grid SNO F-FNO DilResNet U-Net

64 0.056± 0.018 0.027± 0.008 0.018± 0.005 0.020± 0.007

128 0.073± 0.021 0.047± 0.013 0.063± 0.016 0.267± 0.049

Table 3: Performance comparison of the models on the PDEs with the 64× 64 grid from ConDiff.

Covariance Variance SNO F-FNO DilResNet U-Net

Cubic

0.1 0.09± 0.02 0.07± 0.02 0.07± 0.02 0.08± 0.02
0.4 0.15± 0.04 0.14± 0.03 0.14± 0.03 0.17± 0.04
1.0 0.23± 0.06 0.22± 0.06 0.22± 0.06 0.24± 0.06
2.0 0.35± 0.10 0.34± 0.09 0.35± 0.10 0.42± 0.10

Exp

0.1 0.12± 0.03 0.11± 0.03 0.11± 0.03 0.12± 0.04
0.4 0.21± 0.06 0.21± 0.06 0.20± 0.06 0.26± 0.07
1.0 0.33± 0.09 0.34± 0.09 0.36± 0.09 0.35± 0.09
2.0 0.59± 0.14 0.58± 0.14 0.60± 0.13 0.64± 0.13

Gauss

0.1 0.12± 0.04 0.11± 0.04 0.11± 0.03 0.12± 0.03
0.4 0.23± 0.06 0.22± 0.06 0.21± 0.06 0.25± 0.06
1.0 0.38± 0.08 0.37± 0.09 0.38± 0.09 0.39± 0.09
2.0 0.66± 0.14 0.65± 0.14 0.66± 0.13 0.72± 0.24

Table 4: Performance comparison of SNO and F-FNO on the PDEs with the 128 × 128 grid from
ConDiff.

Covariance Variance SNO F-FNO

Cubic

0.1 0.09± 0.03 0.08± 0.02
0.4 0.15± 0.04 0.14± 0.04
1.0 0.23± 0.06 0.22± 0.06
2.0 0.36± 0.11 0.36± 0.10

Exp

0.1 0.13± 0.03 0.12± 0.03
0.4 0.21± 0.07 0.21± 0.06
1.0 0.33± 0.09 0.33± 0.08
2.0 0.58± 0.15 0.57± 0.13

Gauss

0.1 0.13± 0.04 0.12± 0.03
0.4 0.23± 0.06 0.23± 0.06
1.0 0.37± 0.10 0.37± 0.10
2.0 0.68± 0.13 0.66± 0.13
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Validation on ConDiff We start the experiments with the Poisson equation and consider it as a
special case of (1) with k(x) = 1 and contrast = 1. All models achieve an accuracy of the order of
10−2 (Table 2). Increasing the grid size leads to moderate increases in error, except for the U-Net
for which the error increases by an order of magnitude.

The diffusion equation for grid 64 (Table 3) with covariances (2), (3) and (4) are more challenging for
the models. While the performance on the diffusion equation with cubic covariance with σ2 = 0.1
is comparable to the performance on the Poisson equation, the error on the diffusion equation with
exponential and Gaussian covariances is already an order of magnitude higher. Increasing σ2 leads
to worse performance of each model on each PDE. The most complex PDE is the one generated
with the Gaussian covariance model in GRF, which is also consistent with the condition number
estimation in Table 1. Interestingly, the performance of FNO and SNO models on PDEs with grid
128 is not much different from PDEs on grid 64 (Table 4).

Table 5: Generalization of the models to unseen PDEs with different GRF covariance model with
64× 64 grid and σ2 = 0.1.

SNO F-FNO

Train
∖

Test Cubic Exp Gauss Cubic Exp Gauss

Cubic 0.09± 0.02 0.12± 0.04 0.12± 0.03 0.07± 0.02 0.11± 0.03 0.11± 0.03

Exp 0.09± 0.03 0.12± 0.03 0.12± 0.04 0.08± 0.03 0.11± 0.03 0.11± 0.04

Gauss 0.09± 0.03 0.12± 0.03 0.12± 0.03 0.08± 0.02 0.11± 0.03 0.11± 0.04

DilResNet U-Net

Cubic Exp Gauss Cubic Exp Gauss

Cubic 0.07± 0.02 0.11± 0.04 0.11± 0.03 0.08± 0.02 0.12± 0.03 0.12± 0.03

Exp 0.07± 0.02 0.11± 0.03 0.11± 0.03 0.08± 0.03 0.11± 0.03 0.11± 0.04

Gauss 0.17± 0.06 0.25± 0.09 0.11± 0.04 0.08± 0.02 0.12± 0.04 0.12± 0.03

Table 6: Generalization of the models to unseen PDEs with different GRF covariance model with
64× 64 grid and σ2 = 0.4.

SNO F-FNO

Train
∖

Test Cubic Exp Gauss Cubic Exp Gauss

Cubic 0.15± 0.04 0.22± 0.06 0.22± 0.07 0.14± 0.03 0.21± 0.06 0.21± 0.07

Exp 0.18± 0.05 0.21± 0.06 0.22± 0.06 0.15± 0.04 0.21± 0.06 0.22± 0.07

Gauss 0.17± 0.05 0.22± 0.06 0.23± 0.07 0.15± 0.04 0.21± 0.07 0.22± 0.06

DilResNet U-Net

Cubic Exp Gauss Cubic Exp Gauss

Cubic 0.14± 0.04 0.23± 0.07 0.23± 0.07 0.17± 0.06 0.24± 0.07 0.24± 0.07

Exp 0.14± 0.04 0.20± 0.06 0.22± 0.06 0.23± 0.08 0.26± 0.07 0.27± 0.08

Gauss 0.30± 0.10 0.24± 0.07 0.21± 0.06 0.21± 0.06 0.27± 0.08 0.26± 0.07

Transfer between parametric spaces Ideally, the surrogate model should handle transfers be-
tween different underlying parametric spaces of PDEs without loss of quality. In Tables 5, 6, 7, 8
show that in most experiments the error increases when training on cubic GRF and inferencing on
exponential and Gaussian GRF. Conversely, the error decreases when training on Gaussian GRF and
inferencing on cubic GRF.
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Table 7: Generalization of the models to unseen PDEs with different GRF covariance model with
64× 64 grid and σ2 = 1.0.

SNO F-FNO

Train
∖

Test Cubic Exp Gauss Cubic Exp Gauss

Cubic 0.23± 0.06 0.35± 0.09 0.39± 0.09 0.22± 0.06 0.34± 0.09 0.37± 0.09

Exp 0.25± 0.06 0.33± 0.09 0.38± 0.09 0.24± 0.06 0.34± 0.09 0.38± 0.09

Gauss 0.24± 0.07 0.35± 0.09 0.38± 0.08 0.24± 0.06 0.35± 0.09 0.37± 0.09

DilResNet U-Net

Cubic Exp Gauss Cubic Exp Gauss

Cubic 0.22± 0.06 0.35± 0.09 0.38± 0.09 0.24± 0.06 0.36± 0.09 0.38± 0.08

Exp 0.25± 0.07 0.36± 0.09 0.38± 0.10 0.25± 0.07 0.35± 0.09 0.38± 0.10

Gauss 0.57± 0.22 0.59± 0.22 0.38± 0.09 0.27± 0.07 0.36± 0.11 0.39± 0.09

Table 8: Generalization of the models to unseen PDEs with different GRF covariance model with
64× 64 grid and σ2 = 2.0.

SNO F-FNO

Train
∖

Test Cubic Exp Gauss Cubic Exp Gauss

Cubic 0.35± 0.10 0.60± 0.14 0.70± 0.26 0.34± 0.09 0.61± 0.14 0.67± 0.19

Exp 0.39± 0.11 0.59± 0.14 0.69± 0.24 0.39± 0.11 0.58± 0.14 0.66± 0.15

Gauss 0.40± 0.11 0.60± 0.13 0.66± 0.14 0.37± 0.11 0.60± 0.13 0.65± 0.14

DilResNet U-Net

Cubic Exp Gauss Cubic Exp Gauss

Cubic 0.35± 0.10 0.61± 0.14 0.66± 0.15 0.42± 0.10 0.65± 0.14 0.68± 0.14

Exp 0.41± 0.10 0.60± 0.13 0.66± 0.17 0.53± 0.18 0.64± 0.13 0.72± 0.16

Gauss 0.72± 0.50 0.68± 0.20 0.66± 0.13 0.66± 0.40 0.69± 0.16 0.72± 0.24

4 DISCUSSION

We propose a novel dataset for the field of neural solving of parametric PDEs. The unique feature
of the dataset is discontinuous coefficients with high contrast for parametric PDEs from different
distributions. By designing the coefficients in this way, we achieve a high complexity of the gener-
ated PDEs, which also illustrates real-world problems. The proposed complexity function allows to
distinguish between the generated PDEs. We also provide code to generate new data based on the
approach used in this paper. Furthermore, we validate a number of surrogate models on the ConDiff
to illustrate its usefulness in the field of scientific machine learning.

The practical use of ConDiff is straightforward: it should be used for novel deep learning models
and approaches for modeling solution of parametric PDEs from their coefficients. Ultimately, novel
deep learning models should exhibit machine-precision prediction quality and not degrade with
increasing contrast.

It should be noted that the problems considered in this paper belong to the class of stochastic PDEs.
The equation (1) has to be solved for a very large number of sampled coefficients when Monte
Carlo or other methods are used to solve the stochastic PDEs. The surrogate models can help to
significantly reduce the computational burden, so embedding the surrogate models tested on ConDiff
into a Monte Carlo or similar stochastic PDEs solver is a reasonable next step.
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5 LIMITATIONS

Limitations of the proposed dataset are:

1. For practical numerical analysis, ConDiff is generated with small and moderate variances.
The case of large variances has to be studied separately.

2. A linear elliptic parametric PDE is the basis of ConDiff, so other high contrast datasets are
needed to test surrogate models for hyperbolic PDEs, nonlinear problems, etc.

3. ConDiff is generated on a regular rectangular grid. Other meshes and geometries may
be required as an evolution of ConDiff. This may require more complex computational
methods to obtain the ground truth solution.

44. The forcing term f(x) is sampled from the standard normal distributions. While in this pa-
per we focus on the complexity arising from discontinuous coefficients with high contrast,
the right-hand side of a PDE can also significantly affect the complexity of the solving
PDE. The case of complex forcing terms has to be studied separately.
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A APPENDIX

A.1 ARCHITECTURES

In this section, we discuss the architectures used in more detail and provide information on the
training procedures and hyperparameters used. The list of used models is:

1. F-FNO – Factorized Fourier Neural Operator (F-FNO) from (Tran et al., 2021).
2. fSNO – Spectral Neural Operator (SNO). The construction mirrors FNO, but instead of

FFT, a transformation based on Gauss quadratures is used (Fanaskov & Oseledets, 2023).
3. DilResNet – Dilated Residual Network from (Yu et al., 2017), (Stachenfeld et al., 2021).
4. U-Net – classical computer vision architecture introduced in (Ronneberger et al., 2015).

F-FNO Unlike the original (Li et al., 2020), the authors of (Tran et al., 2021) proposed to changing
the operator layer to:

zℓ+1 = zℓ + σ
[
W

(ℓ)
2 σ

(
W

(ℓ)
1 K(ℓ)(z(ℓ)) + b

(ℓ)
1

)
+ b

(ℓ)
2

]
,

where σ is an activation function, W1 and W2 are weight matrices in the physical space, b1 and b2
are bias vectors and

K(ℓ)
(
z(ℓ)

)
=

∑
d∈D

[
IFFT

(
R

(ℓ)
d · FFTd(z

ℓ)
)]
,

where Rd is a Fourier domain weight matrix, FFT and IFFT are Fast Fourier and inverse Fast Fourier
transforms.

F-FNO has an encoder-processor-decoder architecture. We used the following parameters: 4 Fourier
layers in the processor, 12 modes and GeLU as the activation function. We used 48 features in the
processor.

SNO We utilized spectral neural operators (SNO) (Fanaskov & Oseledets, 2023) with linear inte-
gral kernels:

u←
∫

dxAijpj(x) (pi, u) ,

where pj(x) are orthogonal or trigonometric polynomials.

These linear integral kernels are an extension of the integral kernels used in the FNO (Li et al., 2020).
More specifically, starting from the input function un, we produce the output function un+1, which
is later transformed by nonlinear activation. The transformation depends on the set of polynomials
pj that form a suitable basis for the problem at hand (e.g. trigonometric polynomials, Chebyshev
polynomials, etc.). These polynomials are chosen beforehand and do not change during training.
The transformation is naturally divided into three parts: analysis, processing, synthesis.

At the analysis stage, we find a discrete representation of the input function by projecting it onto a
set of polynomials. To do this, we compute scalar products:

αj = (pj , u
n) =

∫
dxpj(x)u

n(x)w(x) ,

where w(x) is a non-negative weight function given by the polynomial used.

At the processing stage, we process the obtained coefficients with a linear layer:

α‘
i =

∑
j

Aijαj .
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Finally, at the synthesis stage, we recover the continuous function as the sum of the processed
coefficients:

un+1 =
∑
j

pjα
‘
j .

We use SNO in Fourier basis (see (Fanaskov & Oseledets, 2023)) with encoder-processor-decoder
architecture. The number of SNO layers is 4 and the number of pj(x) is 20. We use GeLU as
activation function.

DilResNet The conventional dilated residual network was first proposed in (Stachenfeld et al.,
2021). In this study, the DilResNet architecture is configured with four blocks, each consisting of
a sequence of convolutions with steps of [1, 2, 4, 8, 4, 2, 1] and a kernel size of 3. Skip connections
are also applied after each block and the GeLU activation function is used.

U-Net We adopt the traditional U-Net architecture proposed in (Ronneberger et al., 2015). This
U-Net configuration is characterised by a series of levels, where each level has approximately half
the resolution of the previous one, and the number of features is doubled. At each level, we apply
a sequence of three convolutions, followed by max pooling, and then a transposed convolution for
upsampling. After upsampling, three more convolutions are applied at each level. The U-Net used
in this study consists of four layers and incorporates the GeLU activation function.
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