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ABSTRACT

We present a new method for reconstructing and refining complex surfaces based
on physical simulations. Taking a roughly approximated simulation as input, our
method infers corresponding spatial details while taking into account how they
evolve over time. We consider this problem in terms of spatial and temporal fre-
quencies, and leverage generative adversarial networks to learn the desired spatio-
temporal signal for the surface dynamics. Furthermore, we investigate the pos-
sibility to train our network in an unsupervised manner, i.e. without predefined
training pairs. We highlight the capabilities of our method with a set of synthetic
wave function tests and complex 3D dynamics of elasto-plastic materials.

1 INTRODUCTION

Complex and chaotic physical phenomena such as liquids, gels and goo are still very challenging
when it comes to representing them as detailed and realistically as possible. A variety of numerical
methods have been proposed to simulate such materials, from purely Eulerian methods (Harlow &
Welch, 1965; Stam, 1999), over particle based methods (Gingold & Monaghan, 1977; Ihmsen et al.,
2014), to hybrids (Zhu & Bridson, 2005; Stomakhin et al., 2013). Such simulations have also been
targeted with deep learning methods (Tompson et al., 2017; Mrowca et al., 2018; Li et al., 2019),
but despite significant advances, they remain very time-consuming and highly challenging to solve.

One approach to speed up the necessary calculations and to allow for more control is to employ
super-sampling. This can be seen as a form of post-processing where one simulates only a low-
resolution simulation and uses an up-sampling technique to approximate the behavior of a high-
resolution simulation. Neural networks are of special interest here because of their capability to
efficiently approximate the strongly nonlinear behavior of physical simulations. Applying neural
networks to space-time data sets of physical simulations has seen strongly growing interest in re-
cent years (Ladicky et al., 2015; Kim et al., 2020), and is particularly interesting in this context to
incorporate additional constraints, e.g., for temporal coherence (Xie et al., 2018), or for physical
plausibility (Tompson et al., 2017; Kim et al., 2019).

An important aspect here is that methods based on simple distance losses, such as mean square
errors, quickly reach their limits. The generated data tends to be smooth without the necessary
small-scale features. Generative adversarial networks (GANs) have been proposed to overcome this
issue (Goodfellow, 2016). They are characterized by the fact that, apart from a generative network,
they also make use of a discriminator that classifies the results of the generator with respect to the
ground-truth data. Via a joint training, the distribution of solutions of the generator is guided to
approximate the ground-truth data distribution. As the quality of the results is primarily determined
by the discriminator network, it remains an open problem to accurately evaluate the quality of the
inferred results. In our work we propose to evaluate the problem in the Fourier space. In this way,
we are able to evaluate the given methods reliably, and it allows us to design improved learning
algorithms that more faithfully recover the small scale details of the reference data.

For the core of our method, we build on an existing GAN-based architecture that employs two
discriminator networks, one for the spatial and one for the temporal behaviour (Xie et al., 2018).
In terms of ground truth data, we focus on multi-phase (solid-fluid-air) interactions with a sharp
fluid-air interface. Unlike single-phase flow whose details are visible and relevant solely due to
transparency throughout the volume, the details of our data are in most cases only visible on the
surface. Of course, the internal dynamics in the volume also play a role, but they are mostly hidden
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from the viewer, only the effects on the surface are visible. Furthermore, we consider phenomena
that build up and take place over the course of several frames. Thus, as we will outline below, we
employ a recurrent approach that is conditioned on a previous output in order to produce the solution
for a subsequent timestep.

In order to represent and process fine details, we treat such detail as high-frequency displacements
of a low-frequency surface, and correspondingly formulate the problem in Fourier space. The trans-
formation into Fourier space yields an isolated view of the individual frequencies, and thus allows
for a much improved analysis of the results achieved by different methods. E.g., it robustly identifies
the strong smoothing behavior of L2 metrics, and can detect mode collapse problems of adversarial
training runs. We also demonstrate how frequency information can be incorporated into the learning
objective in order to improve results.

To summarize, the central contributions of our work are: (1) A method for frequency evaluation with
a consideration of spatial properties, (2) A novel frequency aware loss formulation, (3) A simple,
yet intuitive evaluation of different generative methods, (4) A time consistent spatio-temporal up-
sampling of complex physical surfaces.

Related Work Deep learning methods in conjunction with physical models were employed in
variety of contexts, ranging from learning models for physical intuition (Battaglia et al., 2016;
Sanchez-Gonzalez et al., 2018), over robotic control (Schenck & Fox, 2018; Hu et al., 2019) to
engineering applications (Ling et al., 2016; Morton et al., 2018). In the following, we focus on
fluid-like materials with continuous descriptions, which encompass a wide range of behavior and
pose challenging tasks for learning methods (Mrowca et al., 2018; Li et al., 2019). For fluid flows
in particular, a variety of learning methods were proposed (Tompson et al., 2017; Prantl et al., 2017;
Um et al., 2018). A common approach to reduce the high computational cost of a simulation is to
employ super-resolution techniques (Dong et al., 2016; Chu & Thuerey, 2017; Bai et al., 2019). In
this context, our work targets the up-sampling for physics-based animations, for which we leverage
the approach proposed by Xie et al. (2018). However, in contrast to this work, we target phenomena
with clear interfaces, which motivates the frequency-based viewpoint of our work.

For sharp interfaces, Lagrangian models are a very popular discretization of continuum mechani-
cal systems. E.g., smoothed particle hydrodynamics (SPH) (Gingold & Monaghan, 1977; Koschier
et al., 2019) is a widely-used particle-based simulation method. While points and particles are like-
wise frequently used representations for physical deep learning (Li et al., 2019; Ummenhofer et al.,
2019; Sanchez-Gonzalez et al., 2020), Eulerian, i.e., grid-based representations offer advantages in
terms of efficient and robust kernel evaluations.

We employ generative adversarial networks (Goodfellow, 2016), as a powerful and established
method for learning generative models. Here, ”unconditional” GANs typically rely on a synthetic
input vector from Gaussian noise to produce the desired output distribution, e.g., the DC-GAN ap-
proach (Radford et al., 2016). Conditional GANs (Mirza & Osindero, 2014) were introduced to
provide the network with an input that allows the neural network to steer the generation of the out-
put. Hence super-resolution tasks for natural images (Ledig et al., 2016), or image translation tasks
(Isola et al., 2017) employ conditional GANs. The time dimension was also taken into account in
natural imaging works, e.g., by Saito et al. in the form of a temporal generator (Saito et al., 2017),
or via a stochastic sequence generator (Yu et al., 2017). Other works have included direct L2 loss
terms as temporal regularizers (Bhattacharjee & Das, 2017; Chen et al., 2017), which, however,
typically strongly restricts the changes over time. Similar to flow advection, video networks also
often use warping information to align data over time (Liu et al., 2017; de Bezenac et al., 2017). We
will demonstrate that recurrent architectures similar to those used for video super-resolution (Sajjadi
et al., 2018) are likewise very amenable for physical problems over time.

2 METHOD

The input for our method is a coarsely approximated source simulation, with the learning objective
to infer the surface of a target simulation over space and time. This target is typically computed via a
potentially very costly, finely resolved simulation run for the same physical setup. When it comes to
the possibilities of simulation representations, there is a great variance. In our case we have chosen
an implicit representation of the data, by a signed-distance field (SDF) denoted by g : R3 → R.
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Figure 1: The generator (a) takes low-resolution data Xt as input, together with a high-resolution
version, from the previous time step Ỹt−1. The low-resolution data is tri-linearly up-scaled (orange
layer), while the data with the previous state is advected with the velocity of the input (green layer).
The processed inputs are concatenated and processed via four residual blocks (in blue). A high-
resolution frame Ỹt is generated as output. (b) The structure of both discriminators (spatial and
temporal) is similar: both use high-resolution data as input, either from the generator (Ỹt) or ground-
truth data (Yt). The temporal discriminator additionally takes the previous and following frames and
advects them with the velocity of the middle frame. Both discriminators process the data with four
strided convolution layers (red layers) and two fully-connected layers (brown layers), combined with
a spectral normalization. The output is the classification 0 (fake) to 1 (real).

An SDF returns, for a given point, the signed distance to the surface, with negative being inside
the medium. Such a function is realized in practice by a grid X ∈ RMx×My×Mz , storing the
pre-computed signed distance values, where M∗, ∗ ∈ {x, y, z} specifies the size of the grid in the
respective dimension x, y or z. We have chosen this representation because most neural network
layers are designed for array-like representations, and the loss functions on grid-based data are very
efficient to evaluate. Additionally, an implicit representation via a grid can leverage tools from the
field of level-set processing (Adalsteinsson & Sethian, 1999), and facilitates the frequency viewpoint
via a Fourier transformation. Additional values, like the velocity, are also mapped on a grid V ∈
RMx×My×Mz×3. Our goal is to let a generative network G : RMx×My×Mz×4 → RNx×Ny×Nz

infer a grid Ỹ which approximates a desired high-resolution simulation Y ∈ RNx×Ny×Nz with
N∗ = kM∗, N∗ ∈ N{x,y,z} and up-sample factor k ∈ N, i.e. G(X) = Ỹ ≈ Y . As our method only
requires position and velocity data from a simulation, it is largely agnostic to the type of solver or
physical model for generating the source and target particle data.

2.1 NEURAL NETWORK FORMULATION

Our method is based on a generative, neural network with a 3D fully-convolutional ResNet architec-
ture (He et al., 2016) that produces an output field at a single instance in time. The low-resolution
input data is first up-sampled with a tri-linear up-sampling and then processed with several convo-
lutional layers, as shown in Figure 1a. We use leaky ReLU as activation function after each layer,
except for the last layer, where we use a tanh activation. In our case, the input data consists of the
implicitly represented geometry data Xt, the velocity Vt of the simulation as well as the results of a
previous pass Ỹt. The previously generated data is advected with the low-resolution velocity before
further processing. Through this feedback loop we train our network recurrently by iterating over
a sequence of T = 10 frames. This yields stability over longer periods of time and gives better in-
sights about temporal behaviour. Furthermore, the recurrent training is important to enable persistent
behavior over time, such as the progression of fine surface waves. Unlike the process for generating
the input data, the network training cannot resort to a physical simulation with full resolution, and
hence cannot uniquely determine the evolution of future states. Therefore, its main learning objec-
tive is to capture the dynamics of the target simulations beyond that basic motion computed with
an advection step. For initialization of the undefined first frame Ỹ−1 we use a tri-linear up-sampled
version of the input. To train our network we have to define first a loss function that allows us to
evaluate the differences between generated and ground-truth data. The most basic loss function is a
simple mean squared error (MSE):

Ls = ||Y − Ỹ ||22. (1)
This has the big disadvantage that it is ill-suited to measure the similarity or differences of solutions.
For example, considering a function with multiple solutions for a given input, i.e., a multi-modal
setting, a method that trains with an MSE loss will learn the expected value of the output distribution,
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i.e, the average of the different solutions. However, the average is typically not a part of the solution
set. Thus, the MSE loss often does not correspond to the correct distance in solution space, based
on significant factors corresponding to the distribution of the solutions. Our super-sampling setup
is such a problem: Due to the low resolution input, the high resolution details cannot be determined
uniquely, resulting in a variety of possible solutions when up-sampling. Via physical properties of
the material and its temporal sequence, some solutions can be eliminated, but nonetheless the space
of solutions typically remains infinitely large. If an MSE loss is used, all such samples from the
training data set are simply averaged to obtain a mean value, so that the result does no longer reflect
the level of detail of the ground-truth data.

The MSE loss nevertheless gives a rough direction, and provides a stable learning target. Hence,
we still use it as a component in the final loss formulation, in combination with an adversarial
loss. In contrast to a direct distance metric, the adversarial loss approximates the ground-truth
distribution. Hence, the network no longer learns one mean value, but chooses one valid solution out
of the possible ones. We define a discriminator Ds that takes as input a high-resolution version of a
simulation frame and classifies it, distinguishing between ground-truth and generated frames. It does
this through a binary output, where 0 is ”fake” and 1 is ”real”. Its task is to provide the generator
with feedback on the correctness of the given data. The special feature is that the discriminators
are trained together with the generator, thus creating a competitive interaction where both parties
improve each other. As loss for the discriminator we use a binary cross-entropy:

Lbce = y log(ỹ) + (1− y) log(1− ỹ), (2)

where y is the ground-truth and ỹ is the generated value from the discriminator. For complex tasks,
GANs can be unstable and difficult to control. For this reason we additionally use the recent Spectral
Normalization (Miyato et al., 2018), which we found to provide more stable adversarial training.

While we have primarily focused on spatial content, i.e., the surface of the material so far, the tem-
poral behavior likewise plays a crucial role, and poses similar difficulties in our multi-modal setting.
On the one hand, the generation of details can quickly lead to temporally incoherent results, which
is characterized by unappealing flickering. On the other hand, our network also should be able to
match and recreate spatial solutions over time that reflect the physical behavior. Following previous
work (Xie et al., 2018), we use an additional discriminator Dt to classify the temporal behavior
of data. This is done by passing three corresponding frames, which are aligned with each other
using advection A : RNx×Ny×Nz×3 × RMx×My×Mz×3 → RNx×Ny×Nz×3. Apart from this, the
temporal discriminator closely follows the structure of the spatial discriminator. Both discrimina-
tors (Figure 1b) use a typical funnel structure, where the dimension is increasingly reduced using
strided convolutional layers, with a last fully connected layer computing the classification result. We
likewise use leaky ReLU activations, with a sigmoid function for the last layer.

The classification of the discriminators is included in the loss formulation of the generator:

LDs =
1

T

T∑
t

Ds(G(tX), Xt),

LDt = Dt(A(G(Xt−1), Vt),G(X),A(G(Xt+1),−Vt), X),

(3)

which gives the final loss function:

LG = Ls + αLDs + βLDt, (4)

where α and β indicate the weighting of the individual loss terms.

An additional benefit of the adversarial loss is that it allows for learning from unpaired data. A
common problem for up-sampling methods is the generation of paired ground truth data for training.
Due to different numerical approximations, and hence potentially differing physical behavior, the
easiest solution is to simulate at high resolution, and down-sample the data. While at training time
the down-sampled data is used, at test time, the model needs to be applied to data from a low-
resolution simulation instead. This typically leads to large distribution shifts, and correspondingly
impaired inference quality. Therefore, we take an unpaired training approach into account that
decouples the low and high resolution data. The feedback from the discriminators is still based
on the ground-truth data, which makes the output conditionally dependent on the input, but also
approximates the behavior of the reference data. However, there is no direct supervision in the
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Figure 2: The process of our blockwise frequency evaluation. The input data is divided into blocks
of a given size. A 2D/3D FFT is performed on the blocks, thus obtaining the individual Fourier
coefficients, again in the form of grids. These grids are then arranged so that each grid corresponds
to a Fourier coefficient.

generator anymore: the output is no longer compared with a matching ground-truth in the loss, but
only related to the input. This is done by down-sampling the output and comparing it with the input:

L∗s = ||X − p(Ỹ )||22, (5)

where p : RNx×Ny×Nz×3 → RMx×My×Mz×3 is a down-sampling function based on average pool-
ing. This effectively removes the need for paired low- and high-resolution samples at training time,
and fully relies on the discriminator to match both distributions.

To indicate the focus on surface structures, we refer to the final version of our generative network
as surfGAN. For a more detailed description of the training and the network architecture we refer to
the appendix A.1 and A.2.

2.2 FREQUENCY EVALUATION

Given the formulation so far, an inherent difficulty that remains is a robust and reliable evaluation of
the generated outputs. In a GAN setting, the discriminator determines the content, but it is typically
not possible to evaluate whether it has correctly learned the shape of the output distribution. While
obvious cases such as a mode collapse towards a constant signal are easy to detect, it remains
challenging to reliably detect shifts in the data distributions, especially so for GANs (Arjovsky
et al., 2017; Jolicoeur-Martineau, 2018). In our setting, the outputs should on the one hand represent
a high-resolution version of the input, i.e., the down-scaled output should correspond to the input.
This can be measured with a simple MSE. In addition, we also expect the generation of details that
match the ground-truth as closely as possible. MSE is no longer usable for this, as even if the right
details are generated, a slight translation would already lead to substantial errors. In addition, small-
scale features have little effect on the MSE, despite being crucial for a realistic simulation result.
Finally, the temporal behaviour should also correspond to that of the ground-truth.

Considering the problem in frequency space, the sought after detail consists of high-frequency fea-
tures that cannot be represented by the low-resolution simulation. In addition, we have to distinguish
between spatial and temporal frequencies. The frequency-based view has the advantage that it yields
a simple but powerful performance evaluation that complements the discriminator of the GAN train-
ing. For the frequency evaluation we consider the SDF of our implicit grid Gt ∈ RNx×Ny×Nz for
t ∈ [0, T ), which can be equated with the frequency behavior of the surface. In order to retain
spatial properties in addition to the local frequency behaviour of the surface, we divide our im-
age into blocks with size b3 whose Fourier coefficients gkx,ky,kz we evaluate, where k∗ ∈ [0, b).
The method is similar to the one used for JPEG compressions. Therefore, we divide the domain
into N ′x × N ′y × N ′z regions for the spatial frequency evaluation, where N ′∗ = N∗/b. Using a
three-dimensional fast Fourier transformation (FFT), we then transform the extracted blocks into
the Fourier components:

gkx,ky,kz =
1

b3

∣∣∣∣∣
∣∣∣∣∣

b−1∑
nx=0

(
ωkxnx

b−1∑
ny=0

(
ωkyny

b−1∑
nz=0

ωkznz
))∣∣∣∣∣

∣∣∣∣∣, (6)

where ω = e
−i2π
b . An important point here is that we take the absolute value from the coefficients

in order to eliminate the phase, and focus only on the amplitude of the frequency component. This
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Figure 3: The averaged frequency spectrum of our data set (a) for the surface, spatial (left), and
for the temporal behavior (right). The spectrum of the low frequency input data is shown in blue,
while in orange the spectrum of the ground-truth data is shown. In the spatial spectrum, it’s clearly
visible that the spectrum of the input data only covers a quarter of the frequencies, while a large
peak of the ground-truth is visible for higher frequencies. This highlights what the generator needs
to reproduce. A similar shape can be seen in the time spectrum as the time response is strongly
coupled to the surface frequency. Here, the spectrum of the input data (blue) continues as the time
discretization is the same for both. Figure (b) shows an example of a surface from our synthetic data
set: the input wave in blue, and the corresponding ground-truth target in purple.

a)

b)

c)

Data. Spatial frequency blocks. Temporal frequency blocks.

Figure 4: From left to right the image data and the corresponding spatial and temporal frequency
images are shown. The respective columns indicate the frequency (from left, low to right, high
frequency). We consider the ground-truth (a), a result based on MSE (b) and the surfGAN result (c).

makes the problem more robust for translated small-scale structures. Equation 6 yields b × b × b
Fourier components per box. The individual components can now be grouped with the same com-
ponents from other blocks so that we get one Nx/b × Ny/b × Nz/b grid per Fourier component
(Figure 2), with each grid corresponding to a certain frequency. These grids can be further pro-
cessed, e.g., via computational kernels, and in addition can be inspected by humans for verification.
For the temporal frequencies we consider the changes per pixel over time via FFT. For longer se-
quences, a block-wise evaluation would be conceivable for time as well. The separation of spatial
and temporal frequencies gives us the possibility to compensate for differences by adjusting the
weighting. Based on this setup we can now evaluate results. On the one hand, we can directly
compare the frequency range of generated data and identify missing details for single samples or
mini-batches. E.g., this is amenable to loss formulations for learning objectives. On the other hand
we can also create a histogram for the frequencies of the whole solution space and thus compare the
frequency distribution of the generated and ground-truth data. This is especially helpful for GANs
and works also for unsupervised setups.

3 RESULTS

For evaluation we consider two different data sets: a synthetic 2D case and a 3D particle-based
simulation. The 2D data is fully controllable such that the frequency spectrum of the surface can
be evaluated reliably. The basis is a wavy surface, based on a sine wave with varying frequency
(Figure 3). This forms a wide range of analysis to isolate problems in the generative process and
illustrate the aspects of the proposed method. We then evaluate the established methodology in 3D
for a more complex scenario with data generated from a highly viscous SPH simulation (Weiler
et al., 2018). For more information on both data sets, refer to the appendix A.3 and A.4.

6



Under review as a conference paper at ICLR 2021

am
pl

itu
de

am
pl

itu
de

frequency [Hz]

(a) MSE.

frequency [Hz]

(b) Frequency loss.

frequency [Hz]

(c) surfGAN.

frequency [Hz]

(d) surfGAN unpair.

Figure 5: Frequency spectrum comparison of different versions of our network for the synthetic
2D data set. The top row always shows the spatial frequency, while the bottom row shows the
temporal frequency. The spectrum of the input is shown in blue, the ground-truth in yellow, and the
predictions in green. Versions (a) was trained with a simple MSE loss, while (b) was extended with
a frequency loss; (c) and (d) were trained with an adversarial loss, whereby the latter evaluation was
trained with unpaired data.

MSE Frequency surfGAN surfGAN unpaired
MSE 0.036 0.0361 0.0556 0.0389
Spatial freq. MAE (×100) 0.127 0.0711 0.0742 0.178
Temp. freq. MAE (×100) 0.302 0.128 0.0945 0.228

Table 1: Mean errors for 2D variants. The spatial and temporal MAE values represent the averaged
difference of the respective frequency blocks.

3.1 FREQUENCY EVALUATION

We first consider the controlled 2D data. Training is performed with the full data set of 10000
samples with 30 frames, and we evaluate the resulting models on 10 simulations that are not part
of the training set with 30 frames each. Examples of the block-wise analysis from our frequency
evaluation (Figure 2) are shown in Figure 4. From top to bottom, it compares ground-truth, a network
with MSE loss, and the surfGAN result. While the MSE-based variant is not able to reconstruct
fine details, the surfGAN can recover these, as highlighted by the frequency evaluation. The high-
frequency blocks clearly illustrate the differences into terms of reconstruction accuracy. In Table 1
and Figure 5 we also compare the mean error values of the different blocks quantitatively and via
histograms. The mean errors likewise illustrate that the MSE version is not able to reconstruct
the high frequencies of the target function. The spectrum of the generated data hardly shows any
deflection in the high frequency range (Figure 5(a)). We additionally extended this fully supervised
MSE loss with a term that takes into account differences in the frequency spectrum via an L2 norm
between the Fourier components of the data. Figure 5(b) shows that this improves the situation,
but does not suffice to reconstruct the full high frequency range. This is caused by the inherent
averaging of the MSE, which is still suboptimal in Fourier space. In contrast, our surfGAN setup
(Figure 5(c)) achieves the best results. The spectrum of the prediction very closely matches that
of the ground truth. The GAN based method seems to be able to implicitly learn the underlying
frequency distribution. Finally, we repeat the evaluation with an unpaired surfGAN setup. Despite
the fundamentally more challenging learning setup, the network manages to recover the missing
frequencies, as shown in Figure 5(d). Interestingly, the discriminator feedback causes the generator
to slightly overshoot in terms of high frequency content.

MSE tempoGAN surfGAN
MSE 0.0198 0.129 0.0404
Spatial freq. MAE (×100) 0.0259 0.039 0.0119
Temp. freq. MAE 0.206 0.477 0.205

Table 2: Mean error measurements for 3D test scenarios.
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For our 3D results we have collected the values in Table 2. We compare our method with tem-
poGAN, whose performance suffers mainly from the missing recursion loop. It is clearly visible
that surfGAN has the smallest error in the spatial frequencies, which correlates to the spatial detail
level. The temporal frequency, on the other hand, is almost equal to the value of the NN with the
MSE loss. This is probably due to the fact that the temporal behavior is relatively smooth.

3.2 QUALITATIVE RESULTS

Source Ground-truth surfGAN

MSE Frequency loss surfGAN unpaired

Figure 6: Comparison of a frame from a test run with the synthetic 2D data set. The input is shown
in blue, ground-truth in red, and predictions in green.

As a qualitative evaluation we executed our network with test data and visualize the results. Figure 6
shows visual examples of the 2D frequency evaluation. While a version based on MSE generates
very smooth images in the random data set, the surfGAN versions are able to reconstruct the jagged
edges. In direct comparison with the ground-truth data there are differences, but this is due to the
randomness of the data. Therefore, the exact solution cannot be reconstructed, but the surfGAN is
still able to generate a very plausible solution.

(a) Frame 190.

(a) Frame 200. (a) Frame 220 surfGAN.

(b) MSE

(c) tempoGAN

Figure 7: Comparison of 3D frames with a surfGAN model (a), with a MSE-based generator (b) and
tempoGAN (c). The input is shown in blue, ground-truth in red, and predictions in green.

For the 3D case we focus on the paired surfGAN setup. Figure 7(a) shows that our prediction is able
to reconstruct most of the details, even if they are not present in the input. We have deliberately cho-
sen frames after a long run-time (190-220 time-steps) to show that details can persist and that they
are the result of complex, physically-based behavior over multiple frames. Again, we compared our
method with a simpler MSE-based generator and tempoGAN. With MSE, the results become com-
paratively smooth, as can be seen in Figure 7(b). In Figure 7(c) however, the results of tempoGAN
are shown, where details are generated quite randomly and display a rather chaotic behavior over
time. Due to the lack of a recurrent processing, the network cannot build an accurate internal state,
which has the effect that the details are generated unnaturally.

4 CONCLUSION

We have presented a learning-based method to infer spatio-temporal detail to complex physical sim-
ulations. Our method puts special emphasis on high frequency content, and we present an approach
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for assessing GAN-based outputs in terms of the generated spatial and temporal frequencies. In-
terestingly, our proposed surfGAN performs better than a direct supervision in terms in frequency
space. Our method provides a first step towards evaluation and synthesis of physical space-time
processes, and could be employed for other phenomena such as turbulence Ling et al. (2016) or
weather Zaytar & El Amrani (2016). Furthermore, it will be interesting to employ it in conjunction
with other frequency-based representations Sitzmann et al. (2020).
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The main part of the generator consists of four blocks containing two convolution layers and
a residual connection. The feature count of the convolution layers per block is as follows:
[[8, 32], [64, 64], [32, 8], [1, 1]]. The kernel size is 5 × 5 × 5 for all layers. For the discriminators
we use only convolution layers and no residual blocks. Both discriminators, spatial and temporal,
have the same number of features per layer: [8, 16, 32, 32]. The fully-connected layer at the end of
the layer consists of 64 and 1 neurons. The kernel size is 4 × 4 × 4 for all layers. It is important
to mention that for the first convolution of every network we do not use zero padding as usual but
mirror padding. This is because we work with tiles from the training data and not with the complete
frame and zero padding falsifies the values at the transitions between the tiles.

A.2 TRAINING DETAILS

For the training we have implemented our network with the Tensorflow Framework. We use an
Adam optimizer with a learning rate of 0.00001 and a batch size of 16 for the 2D tests and 4 for the
3D tests for 50k iterations. All other weights are initialized with the respective standard initializers
of Tensorflow version 2.1. The weighting factors α and β of Equation 4 are set to 1.0 and 10.0
correspondingly.

+ =

Figure 8: In blue a wave with a randomly varying low frequency fl, which can still be represented
by the low-resolution sampling and serves as input data set for our synthetic data set. In red, on
the other hand, we see a wave with a high frequency fh that can only be correctly represented with
much higher resolution. Combined with the low-frequency version, we get the ground-truth data
(violet) for the synthetic data set.

A.3 SYNTHETIC DATA SET

We use a synthetic data set to test and evaluate different aspects of our approach. The data set is
designed to have a simple, clearly defined behavior, and such that the frequency spectrum of the
surface can be evaluated reliably. Therefore, we use a horizontal wavy surface based on a 1D sine
function st(x) with randomly varying frequency fl ∈ (0, M2 ):

s0(x) = sin(
πfl(x)x

M
), x ∈ [0,M), (7)

where M is the resolution of the low-resolution data.

To make a time sequence out of this, we use a simple wave equation:

δ2s

δt2
=
δ2s

δx2
, (8)

Discretizing this we can calculate the vertical velocity of our surface as follows:

vt(x) = vt−1(x) +
2 ∗ st(x)− st(x−∆x) + st(x+ ∆x)

∆x
, (9)

where v0(x) = 0. Given the velocity we can now calculate the next frame as follows:

st(x) = st−∆t(x) + ∆tvt(x), (10)

For the high resolution data set, i.e, the targets to be learned, we use the same low resolution wave
as base, and modulate it with a high frequency component (Figure 8):

t0(x) = sin(
πfl(x)x

kM
) + sin(

πfh(x)x

kM
), x ∈ [0, kM), (11)
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where k is the chosen up-sampling factor and the frequency fh(x) is chosen so that it cannot be
represented by the low-resolution version. According to the Nyquist-Shannon sampling theorem,
the frequency should be higher than M

2 and below kM
2 (Figure 3(a)). The generation of a sequence

is done in the same way like for the low-resolution data.

Based on this setup, we generate two different data sets of high resolution data: one where we
modulate with a fixed high frequency fh(x) = const, whereas in the second version we vary the
this high frequency component (Figure 3(b)). Thus the first version represents a deterministic up-
sampling, which a generator should be able to reconstruct perfectly, whereas the second version is
ill-posed, i.e. several solutions are possible, and hence poses a much more difficult learning target.
Both data sets consist of 10000 sequences with 30 frames each at the end. While the deterministic
version only serves as a sanity check which we only discuss here in the appendix (A.5) , the second,
randomized version shows how well the method can approximate the ground-truth distribution for
ill-posed tasks like the actual super-resolution problem for physical simulation data.

A.4 SIMULATION DATA

For the generation of simulation, data we use an SPH solver of the SPlisHSPlasH framework (Ben-
der, 2017). There are different materials to choose from. With materials that exhibit high-frequency
physical behavior, chaotic behavior occurs in some cases, such as splashes in water, which are typ-
ically very difficult to reconstruct. With more viscous materials, such as gel, details are mainly
distinguished by folds and fine waves on the surface. The chaotic behaviour is very difficult to re-
construct and it is sometimes very difficult to understand how correct the behaviour is. For these
reasons we focus more on materials like gel. With gel, fine wrinkles can form on the surface which
allows a good evaluation of the method. Another special feature is that details are persistent over
time. Methods such as Xie et al. (2018) cannot represent such details because they do not provide
feedback in the network. This means there is no memory. Therefore, we use an plastic material with
high viscosity, simulated with an advanced viscosity solver (Weiler et al., 2018).

For the training we generate 60 different scenes with 300 frames per simulation. The time step
corresponds to 100 frames per second. The scenes consist of randomly generated shapes that fall
into a pool from different heights at random times. This creates interesting waves and folds on
the surface. The ground-truth resolution is 1603. For the generation of the low-resolution data
we distinguish between the way the training is done. For the supervised setup the ground-truth
data is scaled down by the desired up-sampling factor k and then smoothed with a Gaussian blur.
This results in synchronous data pairs that can be used in a supervised setup. In the unsupervised
setup, however, the low-resolution data is generated in the same way as the high-resolution data,
with the correspondingly lower resolution. From the position and velocity data of the particles, we
then generate our SDF and velocity grid which we use for training. Before the training, the data is
normalized over the whole data set, so that the data is in the value range between -1 and 1. For a
sharper edge in the SDF grid, which prevents unwanted noise in the generated data, we additionally
modify the normalized values with a tangent hyperbolic function:

f(x) = tanh(cx) (12)

where c can be freely selected, depending on the strength of the transition. We found 5 to be a good
value. Finally, we take advantage of the locality of our problem and only use excerpts from the
training data frames in training. On the one hand, this saves memory, because the data is sometimes
very large and can cause problems with the GPU memory, on the other hand it allows us to extract
only relevant parts of the data. So in our example we can only consider the data in places where
there is a surface. Finally we have the advantage to augment the data by overlapping the tiles we
extract, so we can get a lot of information from only a few frames.

A.5 ADDITIONAL RESULTS

As a sanity check we used a deterministic setup as described in A.3. With this setup we tested if
the network is able to modulate a static high frequency with a simple MSE loss. In Figure 9a this is
shown to be the case. This serves as a baseline for what the network can achieve. In Table 9b we
compare the frequency deviation with the MSE network trained with the non-deterministic setup.
As expected, the error is much smaller with the deterministic setup.

13



Under review as a conference paper at ICLR 2021

In Figure 10 and Figure 11 we compare the frequency evaluation of two more data samples, the
same as in Figure 4.

Finally there are some more 3D results in Figure 12 and Figure 13.

(a) MSE with deterministic setup.

MSE Det. MSE
MSE 0.036 0.0377
Spatial freq. MAE (×100) 0.127 0.0226
Temp. freq. MAE (×100) 0.302 0.106

(b) Comparison det. vs not det.

Figure 9: Evaluation of deterministic setup.

a)

b)

c)

Data. Spatial frequency blocks. Temporal frequency blocks.

Figure 10: F.l.t.r the image data and the corresponding spatial and temporal frequency images are
shown. We consider the ground-truth (1), a result based on MSE (2) and the surfGAN result (3).

a)

b)

c)

Data. Spatial frequency blocks. Temporal frequency blocks.

Figure 11: F.l.t.r the image data and the corresponding spatial and temporal frequency images are
shown. We consider the ground-truth (a), a result based on MSE (b) and the surfGAN result (c).
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(a) Prior frames. (b) surfGAN.

(c) MSE.

(d) tempoGAN.

Figure 12: Comparison of a 3D test run wit our surfGAN (b), with a MSE-based generator (c) and
tempoGAN (d). The input is shown in blue, ground-truth in red, and predictions in green.

Figure 13: An additional output generated with the surfGAN network. The input is shown in blue,
ground-truth in red, and the prediction in green.
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