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Abstract

Graph neural networks (GNNs) have attracted001
extensive research interests in text classifica-002
tion tasks, due to their superiority in represen-003
tation learning. However, most existing stud-004
ies adopt the same semi-supervised learning005
setting as the vanilla Graph Convolution Net-006
work (GCN), which require a large amount007
of labelled data during training and thus are008
less robust when dealing with large-scale graph009
data with few labels. Additionally, graph struc-010
ture information is normally captured by direct011
information aggregation via network schema012
and missing adjacency knowledge may hinder013
the performance. Addressing those problems,014
this paper proposes a novel method to learn015
graph structure, by using simple neighbour con-016
trastive learning for an existing self-supervised017
heterogeneous graph neural network model018
(NC-HGAT). It considers the graph structure019
information from heterogeneous graphs with020
a multi-layer perceptrons (MLPs) and delivers021
consistent results, despite the corrupted neigh-022
bouring connections. Extensive experiments023
have been implemented on four benchmark024
short-text datasets, and demonstrate that our025
proposed model NC-HGAT outperforms the026
state-of-the-art methods on three datasets and027
achieves a competitive result on the remaining028
dataset.029

1 Introduction030

Text classification, is a fundamental task in natu-031

ral language processing (NLP), which can be ap-032

plied into a variety of downstream tasks, such as033

question answering, machine translation and sen-034

timent analysis (Li et al., 2020). The representa-035

tion learning ability of textual features is a leading036

cause for the performance of models on text clas-037

sification, and consequently, it is a pressing need038

to study how to extract textual features more ef-039

fective. Recently, graph neural networks (GNNs)040

have been increasingly applied to text classifica-041

tion tasks due to their advantage of dealing with042

complex semantics and topological information, by 043

modelling texts as graph structure (Wu et al., 2020). 044

Different from most long text classification studies, 045

we mainly focus on short text classification, as our 046

daily communication is increasingly completed via 047

short texts, such as tweets, messenger and online 048

comments, and thus it is important to study this 049

field, specifically. 050

Most existing studies of GNNs on text classifica- 051

tion tasks are trained in a semi-supervised manner, 052

same as the vanilla Graph Convolution Network 053

(GCN) (Kipf and Welling, 2016), which requires 054

sufficient labelled data and cannot be satisfied in 055

many real scenarios. Therefore, the shortage of 056

labelled data may undermine the performances 057

of graph neural network models on classification 058

tasks, particularly with large scale data (Linmei 059

et al., 2019; Sun et al., 2021). 060

On the other hand, most graph-based learning 061

models only capture one-hop neighbourhoods and 062

the associated textual features by supervised in- 063

formation aggregation, which may not be able to 064

incorporate the high-order, rich relations among 065

texts (Liu et al., 2021), and is not robust when the 066

connections among nodes are noisy or missing (Hu 067

et al., 2021). 068

To address the above problems, we propose to 069

integrate neighbouring contrastive learning with 070

the heterogeneous graph attention network (NC- 071

HGAT). Contrastive learning can learn intrinsic 072

and transferable topological information, enhance 073

the performance of graph neural networks (Qiu 074

et al., 2020) and is widely applied in NLP tasks for 075

pre-training (Gunel et al., 2020). The neighbouring 076

contrast learning enables the proposed model to 077

transform kth structural-aware features, without di- 078

rect message-passing modules and hence improve 079

the robustness despite the missing connections be- 080

tween words during inference (Hu et al., 2021), 081

with limited labelled data. 082

The contributions of the paper are summarised 083
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as follows:084

• To the best of our knowledge, this is the first085

attempt to apply contrastive learning with a086

heterogeneous graph neural network on short087

text classification tasks.088

• We propose to use a simple MLP to learn089

the neighbouring information, without direct090

message-passing, which can be easily applied091

to existing graph neural network models (Hu092

et al., 2021) on text classification.093

• Experimental results on three of four datasets094

prove the outperformance of the proposed095

model on short text classification over the096

state-of-the-art with limited labelled data, and097

it also delivers a competitive result on the re-098

maining dataset.099

2 Related Work100

Extensive studies have been conducted on text clas-101

sification, such as traditional machine learning us-102

ing manually designed features (Blei et al., 2003),103

convolutional neural networks (Chen, 2015) and re-104

current neural networks (Liu et al., 2015). Recently,105

graph neural networks (GNNs) showed promising106

performance on text classification, as text can be107

modelled as edges and nodes in a graph structure.108

For instance, TextGCN (Wang et al., 2019) ap-109

plied the vanilla GCN to heterogeneous graphs,110

on graphs built from a text corpus, and gained111

improved results. (Linmei et al., 2019) proposed112

a novel heterogeneous graph attention networks113

model (HGAT) with a dual attention mechanism,114

to consider more relations of different nodes. Re-115

cently, (Yang et al., 2021) introduced an orphan cat-116

egory to HGAT, to remove unrelated stop-words,117

and improve classification accuracy. (Liu et al.,118

2021) also incorporated the attention mechanism119

with deep diffusion layers, to enrich the context in-120

formation of texts. However, these methods all re-121

lied heavily on the direct message-passing function122

to learn node feature transformation, and the perfor-123

mance will be undermined when labelled training124

data is limited. We propose, for the first time to125

the best of our knowledge, to solve the problem by126

applying contrastive learning of graph structure in127

the text classification tasks.128

3 Model129

In this section, we will introduce our NC-HGAT130

model, which is mainly based on the HGAT model131

(Linmei et al., 2019) and the neighbouring con- 132

trastive learning adopted in the Graph-MLP model 133

(Hu et al., 2021). 134

3.1 HGAT 135

Compared with TextGCN (Wang et al., 2019), 136

which directly applies GCN to different subgraphs, 137

HGAT introduce a dual attention mechanism: type- 138

level attention and node-level attention, to learn 139

the relative influence of the different types and 140

neighbouring nodes on the target node during in- 141

formation aggregation (Linmei et al., 2019). The 142

type-level attention at is calculated as: 143

at = softmax(σ(µt · [hi||ht])) (1) 144

where σ is a LeakyReLU activation, µt denotes the 145

attention of the type t of the node, and operation || 146

is a concatenation. hi and ht are the node and type 147

embedding. Then a softmax function is applied to 148

normalise all types of neighbours of node i. The 149

node level attention anis formulated based on the 150

type level attention at from Equation 1: 151

an = softmax(σ(vt · [hi||hj′ ])) (2) 152

where v denotes the attention vector and hj′ is 153

the embedding of node j, which have already con- 154

sidered the type-level attention. The two attention 155

mechanisms will be integrated into the heteroge- 156

neous graph convolution, to update the embedding 157

of nodes in the next layer: 158

H l+1 = σ(
∑

Ât ·H l
t ·W l

t ) (3) 159

where Â is an adjacency matrix with type t edges, 160

H l
t is the feature of type t neighbouring nodes of 161

the target node and W l
t is a weight matrix. 162

3.2 Neighbouring Contrastive Learning 163

The neighbouring contrastive learning is mainly 164

implemented by calculating the contrastive loss for 165

node i. The initiative behind it is that neighbouring 166

documents are more likely to have a same class 167

label. The node feature X will simply pass two 168

linear layers with activation σ and layer normalisa- 169

tion LN , dropout in between to avoid over-fitting, 170

given by (Hu et al., 2021): 171

Z = W 1[Dropout(LN(σ(XW 0)))] (4) 172

Where W 1 and W 0 are the weight matrices of two 173

layers. The number of linear layers could be set 174
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differently (from 1-7) as analysed in 4.4. Next, the175

embedding Z will be used to calculate the neigh-176

bouring contrastive loss:177

lossNC = −log

∑
j λexp(sim(zi, zj)/η)∑
k exp(sim(zi, zk)/η)

(5)178

where λ is a connection measure of node j and i179

and is not zero only when the node j is within the180

k-hop neighbourhood of node i. sim is the cosine181

similarity and η is the temperature parameter.182

3.3 Model Training183

Considering limited labelled data is provided, we184

only use 20 labelled documents per class as train-185

ing data. We firstly use the HGAT model to build186

graphs from the text corpus and learn the represen-187

tation of nodes with the dual-level attention mech-188

anism. At the same time, we use the MLP-based189

model to learn more graph structure information,190

without an explicit message-passing function. To191

be more specific, the k-hop neighbours are consid-192

ered more similar to the target node and this kth193

power of the neighbouring information is in the194

range of [1,2,3,4,5,6,7]. If the neighbouring node195

is not a k-hop of the target node, the neighbours’ in-196

formation would be considered zero. Then, we cal-197

culate the neighbouring contrastive loss, lossNC .198

losstotal = lossNLL + β ∗ lossNC (6)199

The total loss of our model would be the sum200

of the conventional negative log-likelihood loss201

lossNLL and the contrastive loss, lossNC . β is a202

coefficient parameter to balance the total loss. The203

gradient descent algorithm is applied to optimise204

the total loss.205

4 Experiments206

4.1 Dataset207

We use the same four benchmark short text datasets208

as (Linmei et al., 2019), and the details are as fol-209

lows. The movie review dataset (MR) (Pang and210

Lee, 2005) has 5,331 positive and 5,331 negative re-211

views, where each review is one sentence. Twitter,212

a sentiment classification dataset provided by the213

NLTK library of Python, contains 5,000 positive214

and negative tweets, respectively. Ohsumed, is pro-215

vided by (Yao et al., 2019) where a graph convolu-216

tion network model is applied for text classification.217

AGNews are randomly selected 6,000 news from 218

(Zhang et al., 2015). We do not have results on the 219

other two datasets, Snippets and Tagmynews, used 220

by (Linmei et al., 2019; Yang et al., 2021), due to 221

the memory limit of the GPU. 222

4.2 Baselines and Experiment Settings 223

Baselines We consider three widely applied NLP 224

models and other three graph neural network mod- 225

els, applied as baselines for text classification. 226

SVM +TFIDF and SVM + LDA are conventional 227

machine learning classifiers, using classic features, 228

including TF-IDF and LDA features (Salton and 229

Buckley, 1988; Blei et al., 2003). 230

BERT, deploying a bidirectional Transformer 231

encoder (Devlin et al., 2018), is a widely-applied 232

model in NLP. 233

TextGCN is the first study which applies GCN 234

to text, by building heterogeneous graphs from a 235

text corpus (Yao et al., 2019). 236

HAN considers the importance of both node and 237

meta-path, by introducing an attention mechanism 238

into the heterogeneous graph neural network (Wang 239

et al., 2019). 240

HGAT integrating a dual attention mechanism 241

into heterogeneous information network (Linmei 242

et al., 2019; Yang et al., 2021), is state of the art on 243

the short text classification tasks. 244

Experiment Settings The hyper-parameters of 245

NC-HGAT are mainly borrowed from the experi- 246

ments of HGAT (Linmei et al., 2019) and Graph- 247

MLP (Hu et al., 2021). 40 labelled documents per 248

class are randomly selected and split equally into 249

training and validation sets. We use two layers 250

and the number of hidden units is 512, learning 251

rate 0.005, with an 80% dropout rate at each layer. 252

The dimension of pre-trained word embeddings is 253

set to 100. The kth power of adjacency matrix, 254

temperature parameter η and the coefficient bal- 255

ance parameter β are set by using grid search. The 256

range of η and β are [0,1,2] and [0.5, 1.0, 2.0, 3.0], 257

respectively. 258

4.3 Experimental Results 259

Figure 1 shows the classification performance of 260

different models on the four benchmark datasets. 261

The proposed model NC-HGAT outperforms all 262

baselines on three datasets, demonstrating the ef- 263

fectiveness of the neighbouring contrastive learn- 264

ing with the heterogeneous graph attention net- 265

work on short text classification. The minor under- 266

performance of NC-HGAT on the MR dataset may 267
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be because it captures more background informa-268

tion or stop-words, which are unrelated to a specific269

class, thus diminishing the result.270

Figure 1: Models Evaluation on Four Datasets

4.4 Impact of Layer Numbers of MLP271

To investigate the impact of the MLP layer num-272

ber deployed in section 3.2, we evaluate our NC-273

HGAT model with 1-7 layers on the Twitter and274

AGnews datasets. As shown in Figures 2, 3, the275

model with two layers performs better on the AG-276

news dataset; for the Twitter dataset, six layers277

perform the best. As for the news dataset, if the278

number of layers is excessive, the vanishing gra-279

dient and over-processed information will lead to280

an unstable model. The node representations may281

also become indistinguishable, known as the over-282

smoothing problem (Yang et al., 2020). While for283

the Twitter dataset, distant words may still be able284

to classify the document and six layers can capture285

sufficient structural information.286

5 Conclusion and Future Work287

In this paper, we propose to use contrastive learning288

to capture the topological information with HGAT289

on short text classification tasks. Extensive experi-290

ments illustrate that neighbour contrastive learning291

effectively learns and integrates structural informa-292

tion among entities and thus enhances the robust-293

ness of the existing model, particularly when there294

are limited labelled data. There may exist some bet-295

ter contrastive learning for graph structure methods,296

which we will explore in future work.297

Figure 2: Model Performance with Different Layers on
the Twitter Dataset

Figure 3: Model Performance with Different Layers on
the AGnews Dataset
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