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Abstract
Patient representation learning based on electronic health records (EHR) is a critical task
for disease prediction. This task aims to effectively extract useful information on dynamic
features. Although various existing works have achieved remarkable progress, the model
performance can be further improved by fully extracting the trends, variations, and the corre-
lation between the trends and variations in dynamic features. In addition, sparse visit records
limit the performance of deep learningmodels. To address these issues, we propose themulti-
perspective patient representation Extractor (MPRE) for disease prediction. Specifically, we
propose frequency transformation module (FTM) to extract the trend and variation infor-
mation of dynamic features in the time–frequency domain, which can enhance the feature
representation. In the 2D multi-extraction network (2D MEN), we form the 2D temporal
tensor based on trend and variation. Then, the correlations between trend and variation are
captured by the proposed dilated operation. Moreover, we propose the first-order difference
attention mechanism (FODAM) to calculate the contributions of differences in adjacent vari-
ations to the disease diagnosis adaptively. To evaluate the performance ofMPRE and baseline
methods, we conduct extensive experiments on two real-world public datasets. The exper-
iment results show that MPRE outperforms state-of-the-art baseline methods in terms of
AUROC and AUPRC.

B Ziyue Yu
ziyue.yu@mpu.edu.mo

B Wuman Luo
luowuman@mpu.edu.mo

Jiayi Wang
P1807511@mpu.edu.mo

Rita Tse
ritatse@mpu.edu.mo

Giovanni Pau
giovanni.pau@unibo.it

1 Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China

2 Engineering Research Centre of Applied Technology on Machine Translation and Artificial
Intelligence of Ministry of Education, Macao Polytechnic University, Macao SAR, China

3 Department of Computer Science and Engineering, University of Bologna, Bologna, Italy

4 Department of Computer Science, University of California, Los Angeles, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-024-02188-2&domain=pdf


Z. Yu et al.

Keywords Disease prediction · Patient representation · Visit records · Electronic health
records

1 Introduction

Patient representation aims at how to detect and represent useful information about each
patient related to themedical diagnosis. Nowadays, patient representation based on electronic
health records (EHR) [1, 2] is becoming increasingly important for disease prediction [3, 4].
Typically, EHR of a patient is a list of temporally ordered visit data. Each visit consists
of three parts, i.e., static features (e.g., demographic information), dynamic features (e.g.,
medical laboratory test information, medication information), and diagnostic results (e.g.,
cerebrovascular disease) [5, 6]. Static features are recorded only once at the patient’s initial
hospital visit, while dynamic features are updated at every subsequent visit. In this paper, we
focus on how to effectively learn patient representation for disease prediction based on EHR.

So far, various patient representation methods based on EHR have been proposed for dis-
ease prediction.Most of themare hybrids or variants of convolutional neural networks (CNN),
recurrent neural networks (RNN), and attention mechanisms. Specifically, one-dimensional
(1D)CNN [7] [8]with different kernel sizes can extract the adjacent variations in visit records.
Temporal convolutional network (TCN) [9] used 1Dkernels to capture contextual information
between visit records by crossing different time steps. To model visit records from multiple
timescales, AdaCare was proposed to capture the long-term trend and short-term variation of
biomarkers at different visit records. SAnD [10] adopted the Transformer-based framework
with the masked self-attention mechanism for incorporating the information in time order.
StageNet [11] proposed the stage-aware long short-term memory (LSTM) to identify the
stages (e.g., deterioration and recovery stages) of disease progression. These works have
greatly improved the performance of patient representation, and have made considerable
achievements in disease prediction.

However, these methods still have much room for improvement in fully detecting the
useful information hidden in dynamic features such as long-term and short-term trends,
variations, and correlations between trends and variations [12, 13]. Usually, an upward trend
in creatinine level indicates the patient is at risk for kidney disease [14]. The abnormal increase
in bicarbonate levels indicates that the patient may have metabolic alkalosis [15]. In addition,
capturing the correlations between trends and variations of dynamic features is an important
reference in medical diagnosis. For example, the positive correlation between the trend and
variation in blood albumin levels indicates an upward trend with a gradual increasing pattern
of variation, which causes acute inflammation to patients [16].

Detecting hidden useful information of dynamic features is challenging due to data spar-
sity [17]. According to the statistics of modern popular EHR datasets [18–20], the average
patient visit is only 10, the intervals between visits are irregular, and the average interval
between two contiguous visits is as large as 2.5 months. As a result, the sparsity of patient
visits limits the ability of the deep learning-based methods to detect the hidden useful infor-
mation of dynamic features.

To address the above issues, in this paper,we propose a framework calledmulti-perspective
patient representation extractor (MPRE) for disease prediction based onEHR [21]. The goal is
to effectively detect the useful information (e.g., long-term and short-term trends, variations,
and correlations between trends and variations) of dynamic features for patient represen-
tation. Specifically, we adopt symlets wavelet decomposition in frequency transformation
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module (FTM) to capture the trend and variation information of dynamic features in the
time–frequency domain. The reasons [22, 23] why we use wavelet decomposition to detect
trend and variation are: 1) it has the multi-scale analysis capability, which can obtain the rep-
resentation of the visit records based on different time–frequency domains, 2) it possesses the
property of time–frequency localization, which can effectively capture the rapid changes of
dynamic features and the moment of peak appearance, and 3) dynamic features exhibit poor
Cyclicality due to data sparsity, which makes traditional time series decomposition methods
(e.g., seasonal and trend decomposition using loess) inapplicable.

Besides, we design a 2D multi-extraction network (2D MEN) to transform the 1D trend
and variation information into the 2D temporal tensor. The goal is to capture the correlations
between trends and variations. In addition, we propose the first-order difference attention
mechanism (FODAM) to adaptively calculate the contribution of differences in adjacent
variations of dynamic features. As pointed out in the American Diabetes Association [24], it
is necessary to leverage the differences between adjacent variations in disease diagnosis. For
instance, alternating positive and negative fluctuations in blood glucose levels often indicate
abnormal insulin secretion. Additionally, differences in adjacent variations may have varying
impacts on disease diagnosis [25, 26].

In summary, the main contributions of this paper are listed as follows:

1. We proposeMPRE to enhance the learning of patient representation for disease prediction
based on EHR. MPRE consists of three major modules, namely FTM, 2D MEN, and
FODAM.

2. We propose FTM to extract the trend and variation from dynamic features. FTM can
transform dynamic features into time–frequency domains to obtain more hidden infor-
mation.

3. We propose 2D MEN to capture the correlation between the trend and variation. We
propose FODAM to adaptively calculate the contribution of the differences in dynamic
features’ variations to disease diagnosis.

4. We implement theMPREusing the two real-world public datasets, namely “SCRIPTCar-
peDiem Dataset” and “Health Facts Database” [18, 19]. To evaluate the performance of
theMPRE, we select the area under the receiver operating characteristic curve (AUROC)
and precision-recall curve (AUPRC) as evaluation metrics. The experiment results show
that the MPRE outperforms state-of-the-art baseline methods.

The remainder of this paper is organized as follows. In Sect. 2, we review related works for
the disease prediction task. Themethods ofMPREwill be given in Sect. 3. Section4 discusses
the experiments of MPRE and baseline methods. We summarize this paper in Sect. 5.

2 Related works

In this section, we review the major works in disease prediction tasks from two perspectives,
namely variation pattern detection methods and time-aware methods.

Variation Pattern Detection Methods. Typically, 1D CNN-based methods used different
kernel sizes to extract the local variation between the patients’ visit records [7, 8, 27, 28]. Choi
et al. proposed a reverse temporal attention mechanism with the RNNmodel called RETAIN
to analyze the importance of visit records [29]. It can identify important clinical features and
give higher attention weights to recent visit records. Ma et al. used bidirectional RNN with
three attention mechanisms named Dipole to model visit records [30]. They believed that all
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historical visit records needed to be considered. Song et al. proposed aTransformer-based [31]
model with a masked self-attention mechanism called SAnD. This work can aggregate the
patients’ information based on visit records in time order [10].

Time-aware Methods. Another perspective on the disease prediction task is the time-aware
method. The temporal convolutional network (TCN) is the improved model based on 1D
CNN. It proposed causal and dilation convolution to consider the temporal information
between the adjacent patient visit records [9, 32–35]. T-LSTM was proposed to consider
the patient information decreases with increase in time intervals [36]. It adopted the time-
aware mechanism for extracting the variations of dynamic features. Ma et al. proposed a
multiple-scale dilation convolutionalmodule calledAdaCare to extract the different timescale
information [37]. Gao et al. proposed StageNet to extract the stage of the disease progres-
sion [11]. Thismethod adopted stage-aware long short-termmemory to decide the time period
with health status progression. ConCare adopted the time-aware attention mechanism and
time information decay function to improve the model performance [38]. Luo et al. adopted
hierarchical time-aware attention networks (HiTANet) for disease prediction task [39]. This
network can capture the dynamic disease progression patterns from EHR data. Ye et al.
proposed an attention mechanism called LSAN for extracting the long-term and short-term
correlations to the corresponding diseases [40].More recently, Zhang et al. adopted theWarp-
former to utilize important information such as visit intervals, medical test sampling time
points for achieving multi-scale modeling and analysis [41].

These works have achieved remarkable results in disease prediction, but they have not
fully exploited the rich information contained in the dynamic features of EHR. For instance,
the long-term and short-term trends, variations, and the correlations between these trends
and variations in dynamic features. This hidden information is critical, as it can evaluate the
patient’s health status. In addition, sparse visit records and irregular visit intervals limit the
ability of deep learning models to extract information on trends, variations, and the corre-
lations between trends and variations. To better capture the hidden information of dynamic
features, we propose the MPRE for disease prediction. The proposed framework designs
FTMmodule to present dynamic features information into the time–frequency domain. This
module enhances feature representation and extracts the trend and variation information. In
addition, 2D MEN module is used for capturing the correlation between the trends and vari-
ations. The proposed FODAM of MPRE can adaptively detect the importance of different
variations differences to the disease diagnosis.

3 Methodology

In this section, we first give the problem formulation of the disease prediction task. Then,
we describe the overview of MPRE. After that, we introduce the major modules from the
proposed MPRE in detail. Finally, we introduce the loss function and optimizer.

3.1 Problem formulation

For patient’s visit records, suppose that each patient has t = (1, 2, . . . , τ ) visits with |c|
dynamic features (e.g., hemoglobin, creatinine) and |s| static features. Dynamic features V
and static features s can be represented as follow:
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Fig. 1 The overview of MPRE. Specifically, we adopt # as a specific dynamic feature across all visit records,
and ∗ means the one specific dynamic feature. FTM is used to capture trend and variation information from
the dynamic features separately. 2D MEN reshapes the trend and variation as the 2D temporal tensor and
further captures the adjacent, short-, and long-term correlation between the trend and variation. Fusion is
used to embed all dynamic feature representations based on the outputs from 2D MEN. FODAM adaptively
computes the contribution of variation differences. Static features are embedded by the linear layer. Finally,
the prediction module aggregates the output of fusion, the result of FODAM, and the embedded static features
to perform disease prediction

V = [V1, V2, . . . , Vc] =

⎛
⎜⎜⎜⎝

v11 v12 . . . v1,c
v21 v22 . . . v2,c
...

...

vτ1 vτ2 . . . vτ,c

⎞
⎟⎟⎟⎠ ∈ R

τ×c, (1)

Vn =

⎛
⎜⎜⎜⎝

v1n
v2n
...

vτn

⎞
⎟⎟⎟⎠ ∈ R

τ , (2)

s = [s1, s2, . . . , ss] ∈ R
s (3)

where n = 1, 2, . . . , c, Vn is the column vector of V (i.e., the value vector of one specific
dynamic feature across all visits).

In this paper, our predictive objective is presented as themulti-class disease prediction task.
Specifically, given V and s, each patient has a corresponding label y ∈ R

d(d = 0, 1, ..., D),
where d means the number of types of the same disease, we aim to predict whether the
patient will have the disease y in the future. We formulate the objective as a prediction
function ŷ = F(V , s;�), where�means the model parameters and ŷ is the predicted result.

Belowwegive the formal definitions related to trend, variation, and the correlation between
trend and variation.

Definition 1 (Trend) The trend information En of a dynamic feature corresponds to the low-
frequency component of symlets. This low-frequency component is derived by low pass filter
operation of symlets.
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Definition 2 (Variation) The variation information Rn of a dynamic feature corresponds to
the high-frequency component of symlets. This high-frequency component is derived by high
pass filter operation of symlets.

Definition 3 (Correlation between trend and variation) Given the trend information En and
the variation information Rn , the correlation between En and Rn is defined as the statisti-
cal relationship between these two components. This can be quantified using the Pearson
correlation coefficient. A high value indicates a strong correlation.

3.2 Framework overview

Figure1 shows the overview ofMPRE. Initially, each dynamic feature is individually inputted
into the FTM to obtain the corresponding time–frequency domain information (i.e., trend
and variation information). Subsequently, the trend and variation are reshaped to form a
2D temporal tensor and use the proposed 2D MEN to capture the correlation between the
trend and variation. In addition, 2D MEN can also extract the adjacent, short-, and long-
term correlation to maintain the dependencies of trends and variations. We use the proposed
FODAM to identify the contributions of the difference of adjacent variations for disease
diagnosis.We adopt the linear layer to embed the static features. Fusion is used to concatenate
the output of each 2D MEN and feed the concatenated result through the embedding layer.
Finally, the embedded static features, the output of fusion, and the results of FODAM are
inputted into the prediction module to perform the disease prediction.

3.3 Frequency transformationmodule

In this paper, we adopt symlets wavelet to decompose each dynamic feature separately.
The decomposed result reflects the time and frequency information of dynamic features.
The low-frequency components can be obtained by low pass filter, and used to indicate the
trend information of dynamic features in time–frequency domain. And the high-frequency
components are obtained by high pass filter, which can be utilized to express the variation
information of dynamic features in time–frequency domain [42]. In addition, we adopt the
symmetric mode to avoid boundary effects and to reduce the artifacts at the boundary [43].
The equations of FTM can be represented as follows:

En =
T∑

n=1

Vn · 1√
2

· φn (4)

Rn =
T∑

n=0

Vn · 1√
2

· ψn (5)

where E = [E1, E2, . . . , Ec] ∈ R
m×c means the trend information,m is the time dimension

in time–frequency domain. We adopt En ∈ R
m as the trend information of one specific

dynamic feature. R = [R1, R2, . . . , Rc] ∈ R
m×c is the variation information. And Rn ∈ R

m

denotes the variation information of one specific dynamic feature. φn and ψn denote the
low pass and high pass filter, respectively. The |m| is equal to the length |L| of coefficients
of symlets, such that m = � τ+L−1

2 � (τ < L) [22]. Consequently, the m > τ . Therefore,
the filtered results enhance the representation of dynamic features. In this work, we use
symlets-14 and symlets-18, where the |L| is 28 and 36, respectively.
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3.4 2Dmulti-extraction network

In 2DMEN,we aim to capture the correlation between the trend and variation. In thismodule,
we first reshape the trend and variation information obtained from the FTM to form the 2D
temporal tensor. The process of this operation can be represented as follows:

D = Reshape(En; Rn) (6)

where Reshape(·) represents the dimension transformation operation. After that, we apply
the proposed 2D MEN on 2D tensor D ∈ R

2×m . The idea of 2D MEN is inspired by the
work of Yu et al. and Ma et al [44, 45]. These two works showed that local information
can be captured in images and 1D temporal data by using dilated convolution. But different
from these works, we achieve the dilated convolution with different trend and variation
spans. Moreover, our dilated convolution is adapted to the 2D temporal tensor. Specifically,
a standard CNN (i.e., dilation rate is 0) can capture adjacent correlations. A dilation rate
of 1 captures short-term correlations, while a dilation rate greater than 2 extracts long-term
correlations. In this paper, we adopt different dilation rates for each dynamic feature to obtain
adjacent, short-, and long-term correlations simultaneously. Mathematically, the equation of
the proposed dilated operation is shown as follows:

ap,q =
2∑

k=1

L∑
l=1

dp,q+bl · Gk,l (7)

where d is the value from 2D tensor D. ap,q is the output of dilated operation. b denotes the
dilation rate. Gk,l means the kernel. k and l are the length. Based on the different dilation
rates, we can obtain three feature maps, i.e., Aad j ∈ R

qa , Ash ∈ R
qs , Along ∈ R

ql , which
represent the adjacent, short-, and long-term correlation between the trend and variation,
respectively.

The final step of 2DMEN is to concatenate the adjacent, short-, and long-term correlations
to form the better dynamic features representation:

A f = Concat(Aad j ; Ash; Along) (8)

where Concat(·) represents the concatenation operation. A f ∈ R
2×(qa+qs+ql ) represents

the output of 2D MEN module. We adopt [A1
f , ..., A

c
f ] as the representation of all dynamic

features.

3.5 First-order difference attentionmechanism

Based on the extracted variations from FTM, we propose FODAM to adaptively compute the
contributions of differences in adjacent variations to the disease progression. The FODAM
can be represented as follows:

α = so f tmax

(
(Rn

2:m − Rn
1:m−1)(R

n
2:m − Rn

1:m−1)
T

√
dim

)
(9)

hvar = α � [Rn
2:m − Rn

1:m−1] (10)

where α ∈ R
m−1 denotes the attention weight of first-order differences. Rn

2:m =
[Rn

2 , R
n
3 , . . . , R

n
m], Rn

1:m−1 = [Rn
1 , R

n
2 , . . . , R

n
m−1], Rn = [Rn

1 , R
n
2 , . . . , R

n
m]. dim repre-

sents the dimension of Rn . We adopt the
√
dim to avoid very small gradients in the training
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process [46]. hvar ∈ R
m−1 is the representation of first-order variation difference. � means

the Hadamard product.

3.6 Predictionmodule

The aim of the prediction module is to use the representation of static, dynamic features,
and first-order variation differences to perform disease prediction. We first embed the static
features based on the following equation:

hst = Wss + bs (11)

where hst ∈ R
d is the representation of static features. Ws ∈ R

d×s is learnable parameter,
and bs ∈ R

d is the bias.
Then, we do the fusion to embed all dynamic feature representations based on the 2D

MEN.

hcon = Concat(A1
f ; ...; Ac

f ) (12)

hdy = Wdhcon + bd (13)

where hcon ∈ R
2×((qa+qs+ql )∗c) means concatenating the results of each 2D MEN. hdy ∈

R
(qa+qs+ql )∗c denotes the representation of dynamic features. Wd ∈ R

2 means learnable
parameter, and bd ∈ R

2 is the bias.
Finally, the disease prediction result can be generated using the following equations:

ŷ = Sof tmax(Wy1hst + Wy2hdy + Wy3hvar + by) (14)

wherewy1 ∈ R
d×d ,wy2 ∈ R

d×((qa+qs+ql )∗c),wy3 ∈ R
d×(m−1) are the learnable parameters,

and by ∈ R
d is the bias.

3.7 Loss function and optimizer

In this paper, our loss function is cross entropy. This loss function is formalized as:

L = − 1

N

N∑
i=1

D∑
j=1

yi, j log(pi, j ) (15)

where N is the number of patients. yi, j means whether patient i belongs to label j , i.e,
yi, j = 1 or 0. pi, j denotes the prediction probability of the model for patient i belonging to
the label j .

We adopt adaptive moment estimation (Adam) as the optimizer in the training process of
MPRE. Adam is an optimization algorithm that utilizes first-order gradients to optimize the
stochastic objective function [47].

4 Experiments

In this section, we empirically study the performance of theMPRE. First, we describe the two
real-world public datasets. Second, we introduce the baseline methods. Then, we describe the
evaluation metrics of experiments. After that, we give the experiment environment. Finally,
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Table 1 ICD-9 Code for
Circulatory Disease

ICD-9 Code Label

393–398 Chronic rheumatic heart disease

401–405 Hypertensive disease

410–414 Ischemic heart disease

415–417 Diseases of pulmonary circulation

420–429 Other forms of heart disease

430–438 Cerebrovascular disease

440–449 Diseases of arteries, arterioles, and capillaries

451–459 Diseases of veins and lymphatics

we discuss the results of the experiments (i.e., performance analysis, ablation study, analysis
of symlets, and case study). The code is provided in Github.1

4.1 Dataset

We conduct all experiments on two public real-world datasets.

SCRIPT CarpeDiem Dataset (SCD) [18]: The dataset includes 12,495 visit records from
585 patients between June 2018 to March 2022. We used this dataset for respiratory disease
prediction. Specifically, 190 patients had COVID-19, 50 had respiratory viral pneumonia,
252 had bacterial pneumonia, and 93 had respiratory failure.

Health Facts Database (HFD) [19]: The database contains 101,767 visit records for 71,518
patients between 1999 and 2008. In this paper, we predict whether diabetic patients will suffer
from circulatory disease in the future. Therefore, the 30,389 visit records for 26,807 patients
are selected to form the dataset. We define the labels based on the World Health Organiza-
tion’s ICD-9 codes categories for circulatory diseases (i.e., Table 1) [48, 49]. Specifically,
181 patients had chronic rheumatic heart disease, 1469 had hypertensive disease, 9526 had
ischemic heart disease, 504 had diseases of pulmonary circulation, 8558 had other forms of
heart disease, 4157 had cerebrovascular disease, 1248 had diseases of arteries, arterioles, and
capillaries, and 1164 had diseases of veins and lymphatics.

We imputed themissing values in both datasets by using the average value of each dynamic
feature for each patient.

4.2 Baselines

We compare the proposed MPRE with the following baseline models.

• GRU [50] is the standard model for time series data. The embedded patients’ features
are inputted into the GRU for disease prediction.

• TCN [33] used the 1D convolutional layer to capture long-term dependencies in time
series and also improved the performance of the model by residual structure and dilated
convolution.

• RETAIN [29] proposed the attention-based RNN network for learning the weight of visit.
This model focused on the recent patient’s visit record.

1 https://github.com/ziyue-yu/MPRE.
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• T-LSTM [36] improved the LSTM model by adopting the time-aware mechanism. This
model learned the subspace of cell memory to avoid time decay, and it can be used for
irregular time intervals.

• Dipole [30] designed bidirectional RNN with the attention mechanism to analyze the
patients’ visit records. It can use the attention weight to compare the importance of each
visit.

• SAnD [10] introduced a Transformer-based model that utilized masked self-attention to
effectively model clinical time series data. This approach allowed for the integration of
information from multiple visit records.

• AdaCare [44] adopted the 1D dilated convolution network to capture the different vari-
ations of biomarkers at different scales and followed by the GRU model for disease
prediction.

• StageNet [11] used the stage-aware long short-term memory to extract the progression
of health status and utilized the convolutional layer to capture the underlying progression
patterns.

• ConCare [38] embedded each feature separately and adopted the time-aware attention
mechanism and information decay function for disease prediction.

• LSAN [40] utilized a hierarchical attention module and a temporal aggregation module
to model the two-level hierarchical structure of EHR data. This method can extract the
temporal correlations among neighboring visits.

• HiTANet [39] combined local and global time information of clinical visit data, and used
a time-aware key-query attention mechanism to generate patient representations.

• Warpformer [41] proposed a multi-scale modeling approach for irregular clinical time
series that addresses both intra-series irregularity and inter-series discrepancy.

4.3 Evaluationmetrics

To evaluate the disease prediction task, we adopt the area under the receiver operating charac-
teristic curve (AUROC) andprecision-recall curve (AUPRC) as evaluationmetrics to compare
the performance of the proposed MPRE and baseline methods. Note that AUPRC is the pri-
mary evaluation metric for the imbalanced dataset [51].

4.4 Implementation details

We implement MPRE and baseline methods with Python 3.8 and PyTorch framework.2 The
experiments are conducted on the machine equipped with Nvidia GPU RTX A6000. We
report the optimized parameters as follows. The learning rate is set to 10−4, and the batch
size is 64. We adopt Tanh as the activation function. In MPRE, the symlets-18 wavelet is
applied to the SCRIPT CarpeDiem Dataset, while the symlets-14 wavelet is utilized for the
Health Facts Database. For 2D MEN, the kernel size is set to 1. To extract the adjacent
correlation, we are not using the dilated rate. To extract the short-term correlation, the dilated
rate is set to 1. To extract the long-term correlation, the dilated rate is set to 3. For the sake
of fairness, we implement all baselines on the same platform and parameters. We adopt the
10-fold cross-validation and 10 different random seeds for the experiments. We report the
average performance and standard deviation of MPRE and baseline methods in terms of
AUROC and AUPRC.

2 https://pytorch.org/.
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Table 2 Average Performances
of Proposed MPRE and Baseline
Methods

Model SCD HFD

AUROC AUPRC AUROC AUPRC

GRU [50] 0.7528 0.6405 0.7377 0.6234

(0.0018) (0.0022) (0.0016) (0.0020)

TCN [33] 0.8009 0.6751 0.7209 0.6325

(0.0010) (0.0019) (0.0022) (0.0018)

RETAIN [29] 0.7612 0.6524 0.7431 0.6190

(0.0012) (0.0018) (0.0023) (0.0019)

T-LSTM [36] 0.7338 0.6274 0.7014 0.5978

(0.0014) (0.0021) (0.0026) (0.0017)

Dipole [30] 0.8324 0.7428 0.7398 0.6284

(0.0015) (0.0019) (0.0022) (0.0015)

SAnD [10] 0.7482 0.6316 0.7263 0.6271

(0.0017) (0.0020) (0.0018) (0.0021)

AdaCare [44] 0.7641 0.6449 0.7106 0.6092

(0.0016) (0.0018) (0.0019) (0.0015)

StageNet [11] 0.8183 0.7232 0.7326 0.6297

(0.0017) (0.0019) (0.0022) (0.0014)

ConCare [38] 0.8425 0.7531 0.7573 0.6507

(0.018) (0.0015) (0.0021) (0.0018)

LSAN [40] 0.8671 0.7723 0.7652 0.6356

(0.0019) (0.0016) (0.0023) (0.0017)

HiTANet [39] 0.8823 0.7640 0.7721 0.6426

(0.0020) (0.0017) (0.0024) (0.0016)

Warpformer [41] 0.8557 0.7438 0.7532 0.6304

(0.0015) (0.0017) (0.0023) (0.0016)

Ours 0.8948 0.8270 0.8675 0.7209

(0.0017) (0.0020) (0.0028) (0.0018)

4.5 Performance analysis

The average performances and standard deviation (in parenthesis) of MPRE and twelve
baseline methods in terms of AUROC and AUPRC are shown in Table 2. We can see that
our proposed MPRE outperforms all baseline methods, achieving AUROC of 0.8948 and
AUPRC of 0.8270 on the SCRIPT CarpeDiem Dataset, as well as AUROC of 0.8675 and
AUPRC of 0.7209 on the Health Facts Database.

In the SCRIPTCarpeDiemDataset, it is observed thatHiTANet outperforms other baseline
methods in terms of AUROC, with a value of 0.8823. This can be attributed to the ability
of HiTANet to effectively capture both local and global time information of visit records,
which can learn the disease progression patterns. Furthermore, LSAN demonstrates superior
performance in AUPRC compared to other baseline methods, yielding an AUPRC of 0.7723.
This is because LSAN excels at extracting the temporal correlation among neighbor patient
visits. ComparedwithHiTANet,MPRE improvesAUROCby 1.40%.Comparedwith LSAN,
MPRE improves AUPRC by 6.61%. We also observe that T-LSTM achieves worse results.
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Table 3 Configurations for Ablation Studies

Configurations FTM 2D MEN FODAM Trend Variation

A1 � × × � ×
A2 � × × × �
A3 � × � × �
A4 � × × � �
A5 � × � � �
A6 � � × � �
A7 � � � � �

One possible explanation for this result is that the importance of patient information does
not exhibit a monotonic decrease with increase in time intervals. This is because ignoring
the medical information of early stage patient visit records reduces the model’s capability to
extract health status progression such as trends, and patterns of variations.

In Health Facts Database, we observe that HiTANet also achieves the highest AUROC
among all the baselinemethods,withAUROCof 0.7721.ConCare gets the better performance
in AUPRC (i.e., 0.6507). This is because ConCare embedded the features separately, which
better learned the information of each feature. In addition, ConCare adopted the time decay
function to better learn the patients’ disease progression. Compared with HiTANet, MPRE
improvesAUROCby 11.00%.Comparedwith ConCare,MPRE improvesAUPRCby 9.74%.
Besides, we find that the T-LSTMmodel still has the worst performance among the baseline
methods.

We give an explanation for why the MPRE is capable of achieving superior performance
by highlighting three key factors. First, FTM transforms the dynamic feature information of
limited visit records into the time–frequency domain to enhance the feature representations.
Second, the 2D MEN is capable of capturing the correlation between trends and variations
simultaneously. Finally, the FODAM is used to adaptively identify the contribution of dif-
ferences in variations to the disease diagnosis.

4.6 Ablation study

To evaluate the effectiveness of our proposed framework, we conduct ablation studies on
MPRE. Table 3 displays the configuration for the ablation studies, where a “�” signifies the
inclusion of the corresponding module in the experiments and a “×” indicates its exclusion.
The first three columns list themodules used in theMPRE, while the last two columns display
the trend and variation obtained from the FTM.

• A1 solely employs FTM to extract trend information in the experiment, aiming to evaluate
the performance of the model using only trend information.

• A2 exclusively utilizes FTM to obtain variation for disease prediction, aiming to present
the model’s performance using only variations.

• A3 employs FTM to obtain variation and FODAM to calculate the contributions of
differences in adjacent variation to disease diagnosis, aiming to assess the importance of
utilizing variation and differences.

• A4 utilizes trend and variation from FTM, aiming to explore the importance of simulta-
neously using trend and variation information
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Fig. 2 The performance of ablation studies in terms of AUROC andAUPRC. a shows the average performance
on SCRIPT CarpeDiem Dataset. b presents the average performance on Health Facts Database

• A5 adopts trend and variation information from FTM and incorporates FODAM, aiming
to evaluate the model’s performance when exploiting trends, variations, and differences
simultaneously.

• A6 employs 2D MEN and FTM from MPRE, aiming to investigate the importance of
capturing correlations between trend and variation information.

• A7 is the complete MPRE.

The results of our ablation studies are presented in Fig. 2. We can observe that the uti-
lization of variation information (A2) yields superior model performance as compared to
solely utilizing trend information (A1). Compared to relying solely on variation information
(A2), the utilization of variation information and differences (A3) can further improve the
model performance. Compared to A1, A2, and A3, we find that the model’s performance
improves when both trend and variation information is used (A4). Our empirical findings
suggest that the performance of the model can be further improved by employing FODAM
in conjunction with the A4-based configurations, which we refer to as the configurations of
A5. In A6, we adopt the 2D MEN to extract the correlation between the trend and variation
information. In other words, we capture the trend information with significant variations.
Therefore, in comparison with A1, A2, and A4, we observe a significant improvement in the
model performance with the implementation of the A6 configuration. A7means the complete
MPRE, which is superior to the experimental results of A1 to A6. Based on the results of
these ablation studies, we can conclude that the design of the proposed MPRE is reasonable
and effective in capturing the critical features for disease prediction.
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Fig. 3 Example of FTM results from SCRIPT CarpeDiem Dataset

Fig. 4 Example of FTM results from Health Facts Database

4.7 Analysis of FTM

We randomly select dynamic features (i.e., heart rate and metformin) in SCRIPT CarpeDiem
Dataset and health facts database, presenting their visit records along with trend and variation
information obtained through FTM. Based on Figs. 3 and 4, we observe that the information
of the dynamic features expanded in the time–frequency domain, alleviating the limitation
imposed by the sparsity of the EHR data on the deep learning model. Particularly in the
case of the Health Facts Database, the metformin had only four visit records, but in the
time–frequency domain, with a time step of 15, the expansion exceeded threefold.

We conduct experiments to evaluate the performance of various types of symlets, which
differ in the number of vanishingmoments they possess. A larger value of vanishingmoments
means that the wavelet function is able to eliminate higher-order polynomial signals, thus
improving the smoothness and compression ratio of the signal. In this paper, we try 19 candi-
date vanishing moments values, i.e., symlets-2 to symlets-20. In all datasets, we implement
our method under these 19 candidate vanishing moments and report the average performance
in terms of AUPRC and AUROC.

InFig. 5,we show the performance of different types of symlets on theSCRIPTCarpeDiem
dataset.We find that the optimal vanishingmoment value of symlets is 18.While the symlets-
16 and symlets-18have the sameAUROCvalues, symlets-18outperforms symlets-16 in terms
of AUPRC, with values of 0.8270 and 0.8238, respectively. The performance of Health Facts
Database is also shown in Fig. 5. We can observe that the optimal vanishing moment value is
14. Based on the results from the two datasets, we can conclude that both excessively high or
low values of vanishingmoments are not desirable. Excessively high vanishingmomentsmay
lead to insufficient capture of details and subtle variations, while excessively low vanishing
moments may add redundant information.
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Fig. 5 The performance of symlets with different vanishing moments in terms of AUPRC and AUROC

Table 4 Top Five Correlations between Trend and Variation in Dynamic Features among Four Respiratory
Diseases

Types of Respiratory Disease Top five Correlations between the Trend and Variation

Bacterial Pneumonia Diastolic blood pressure (0.85)

Hemoglobin (0.83)

Mean arterial pressure (0.81)

Systolic blood pressure (0.81)

Heart rate (0.81)

Respiratory Viral Pneumonia Platelets (0.80)

Blood pressure (0.73)

Diastolic blood pressure (0.73)

Respiratory rate (0.73)

Heart rate (0.73)

COVID-19 Lymphocytes (0.87)

Peep changes (0.74)

Fio2 (0.72)

Peep (0.70)

Respiratory rate changes (0.68)

Respiratory Failure Bicarbonate (0.79)

Heart rate (0.59)

Urine output (0.58)

Platelets (0.55)

Diastolic blood pressure (0.54)

4.8 Case study

4.8.1 The existence of correlation between trend and variation

In this paper, we adopt the 2DMEN to capture the correlation between the trend and variation.
To quantitatively support the existence of the correlation between the trend and variation, we
conduct experiments to compute the Pearson correlation. We randomly select four patients
from the SCRIPT CarpeDiem Dataset and Health Facts Database as examples. For each
sampled patient, we calculate the correlation between trend and variation at one randomly
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Table 5 Top Five Correlations between Trend and Variation in Dynamic Features among Four Circulatory
Diseases

Types of circulatory disease Top five correlations between the trend and variation

Ischemic heart disease Metformin–pioglitazone (0.99)

HbA1c (0.72)

Glipizide (0.70)

Citoglipton (0.61)

Rosiglitazone (0.60)

Hypertensive disease Metformin–pioglitazone (0.94)

HbA1c (0.93)

Metformin (0.66)

Glipizide (0.59)

Glyburide (0.59)

Diseases of pulmonary circulation Glipizide (0.67)

Metformin (0.61)

Rosiglitazone (0.60)

Glimepiride (0.51)

Glyburide (0.51)

Chronic rheumatic heart disease Glyburide (0.87)

Rosiglitazone (0.62)

Metformin–pioglitazone (0.60)

Glimepiride (0.57)

Metformin (0.46)

selected time step in the time–frequency domain. In SCRIPTCarpeDiemDataset, the selected
patients are from four different types of respiratory disease, respectively, i.e., bacterial pneu-
monia, respiratory viral pneumonia, COVID-19, and respiratory failure. Table 4 shows the
top five correlations between the trend and variation of each type of respiratory disease.
The larger the value, the stronger the correlation. We can observe that the strongest corre-
lations between trends and variations in bacterial pneumonia were diastolic blood pressure,
hemoglobin, mean arterial pressure, systolic blood pressure, and heart rate. As for respira-
tory viral pneumonia, the most prominent correlations are found in platelets, blood pressure,
diastolic blood pressure, respiratory rate, and heart rate. In COVID-19, lymphocytes, peep
changes, fio2, peep, and respiratory rate changes display the strongest correlations between
the trend and variation. Finally, in the case of respiratory failure, the strongest correlations are
bicarbonate, heart rate, urine output, platelets, and diastolic blood pressure. In Health Facts
Database, Table 5 provides information on the top five correlations between trend and vari-
ation in dynamic features among four different types of circulatory diseases. These diseases
include ischemic heart disease, hypertensive disease, diseases of pulmonary circulation, and
chronic rheumatic heart disease. For each type of disease, the top five correlations are listed,
along with the corresponding correlation coefficient. By capturing the correlation between
trends and changes, our model provides correct predictions for these patients in both datasets.
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Fig. 6 The attention scores for differences of adjacent variation in two dynamic features from SCRIPT Car-
peDiem Dataset, i.e., systolic blood pressure and neutrophils

Fig. 7 The attention scores for differences of adjacent variation in two dynamic features from Health Facts
Database, i.e., glimepiride and glipizide

4.8.2 Analysis of results from FODAM

Weadditionally employ a random selection process to choose two dynamic features fromboth
the SCRIPT CarpeDiem Dataset and the Health Facts Database, presenting their respective
outcomes obtained through FODAM (i.e., the attention scores on differences of adjacent
variations). Based on Fig. 6, we can observe that the attention scores reach their pinnacle
when the patient undergoes the initial substantial rise or fall in contiguous fluctuations (i.e.,
0.161 for the primary notable increase in systolic blood pressure and 0.065 for the primary
notable decrease in neutrophils). This indicates that this is an important shift in patient health
status. For the subsequent significant increase or decrease, the attention scores exhibit a
decline and are lower than the attention scores of slight rise or fall (i.e., the score of 0.037
and 0.027 for slight improvement and the second significant improvement in systolic blood
pressure, respectively. The score of 0.048 and 0.041 for a slight decrease and the second
significant decrease in neutrophils, respectively). This result suggests that physicians should
pay attention to early changes in the patient’s health status, which aligns with the clinical
diagnosis guidance [52–54]. In Fig. 7, we find that attention scores take on larger values in the
later rises (i.e., 0.080 forGlimepiride, 0.091 forGlipizide). This implies that the occurrence of
side effects (i.e., the potential for adverse health outcomes) associated with pharmaceuticals
tends to manifest following repeated administration, which is consistent with common sense
in drug use [55, 56].

5 Conclusion and future work

In this paper, we propose multi-perspective patient representation extractor called MPRE for
disease prediction. Specifically, the proposed FTM obtains trend and variation information
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from dynamic features. FTM can enhance the dynamic feature representations by time–
frequency transformation, which addresses the challenge of data sparsity. Then, the proposed
2DMENis utilized to capture the adjacent, short-, and long-termcorrelation between the trend
and variation. In addition, we propose FODAM to compute the contributions of differences
in dynamic feature variations to disease diagnosis. We evaluate the MPRE and state-of-
the-art baseline methods on two real-world public datasets, namely "SCRIPT CarpeDiem
Dataset" and "Health Facts Database". The experiment results show that our MPRE method
outperforms the baseline methods. Our future work will explore the performance of MPRE
on different types of diseases. In addition, we will further evaluate the effectiveness ofMPRE
with external medical knowledge (e.g., disease knowledge graph) for disease prediction.
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