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ABSTRACT

Reducing hallucination of Large Language Models (LLMs) is imperative for use
in the sciences, where reliability and reproducibility are crucial. However, LLMs
inherently lack long-term memory, making it a nontrivial, ad hoc, and often bi-
ased task to fine-tune them on domain-specific literature and data. Here we in-
troduce LLaMP, a multimodal retrieval-augmented generation (RAG) framework
of hierarchical reasoning-and-acting (ReAct) agents that can dynamically and re-
cursively interact with computational and experimental data from the Materials
Project (MP) and run atomistic simulations via high-throughput workflow inter-
face. Without fine-tuning, LLaMP demonstrates strong tool-usage ability to com-
prehend and integrate various modalities of materials science concepts, fetch rel-
evant data stores on the fly, process higher-order data (such as crystal structure
and elastic tensor), and streamline complex tasks in computational materials and
chemistry. We propose a metric combining uncertainty and confidence estimates
to evaluate the self-consistency of responses by LLaMP and vanilla LLMs. Our
benchmark shows that LLaMP effectively mitigates the intrinsic bias in LLMs,
counteracting the errors on bulk moduli, electronic bandgaps, and formation ener-
gies that seem to derive from mixed data sources. We also demonstrate LLaMP’s
capability to edit crystal structures and run annealing molecular dynamics simu-
lations using pre-trained machine-learning interatomic potentials. The framework
offers an intuitive and nearly hallucination-free approach to exploring and scaling
materials informatics, and paves the way for future agentic scientific workflows
and knowledge-grounded LLMs.

1 INTRODUCTION

The generation of convincing yet unreliable information poses a pressing challenge to large language
model (LLMs), particularly to their application in the sciences. LLMs are prone to hallucination–
providing outright false information with high confidence (Bang et al., 2023; Xu et al., 2024). This
issue is particularly concerning for knowledge-intensive tasks, where users rely on chatbots and
other AI systems to provide accurate guidance (Lewis et al., 2020). LLMs often lack up-to-date
factual knowledge on topics outside their training data, requiring rigorous verification against trusted
external sources (Mallen et al., 2023). In the scientific community, where the integration of insights
and data accuracy is already complex, the proliferation of generative models may exacerbate the risk
of misinformation. This trend accentuates the importance of scrutinizing and ensuring the reliability
of information sources.

Current approaches to enhance LLM accuracy in domain-specific knowledge often involve fine-
tuning pre-trained models (Dagdelen et al., 2024; Gupta et al., 2022) or tailored prompt engineering
techniques (Yang et al., 2023; Zheng et al., 2023). While these models are easy to deploy, they
suffer from diminished reproducibility and data adherence due to the absence of a memory base, un-
traceable fine-tuning history, or opaque extraction processes. Even though fine-tuning can encode a
certain amount of domain-specific knowledge into LLMs, it is constrained by scalability and intrin-
sic memory capacity. Fine-tuned LLMs struggle to retain in the long term the knowledge they were
trained on as the training progresses, nor can they be aware of the recent events and data beyond pre-
training. Prompt engineering, while effective, also compromises the generalizability, thus limiting
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the overall power and flexibility of LLMs. Therefore, a more sensible approach involves equipping
LLMs with external data sources, allowing them to generate holistic responses via few-shot adapta-
tion to factual information (Lewis et al., 2021) that can reliably support real-world scientific research
and decision-making.

In this work, we propose LLaMP, a multimodal retrieval-augmented generation (RAG) framework
leveraging hierarchical reasoning-and-acting (ReAct) agents to interact with Materials Project (MP),
arXiv, Wikipedia, and atomistic simulation tools. The framework serves as a safeguard against
LLM hallucination by grounding them in high-fidelity material informatics from large-scale mate-
rial databasederived from various sources, including computational data from quantum-mechanical
first-principles calculations and expert-curated material synthesis recipes, and further enables the
capabilities of complex downstream tasks. The hierarchical planning of supervisor and assistant
ReAct agents improves self-correcting tool-usage performance and enhances the self-consistency
in final responses. The new capabilities emerge—such as multi-modal searching, tensor and 3D
crystal structure retrieval and operation, and language-driven simulation. The frameworkThrough
hierarchical planning of multiple ReAct agents, we demonstrate that LLaMP not only can correctly
retrieve high-fidelity, higher-order materials datahigher-order materials data such as tensors and
3D crystal structures but also can combine different modalities to perform complex, knowledge-
intensive inferences and operations essential for real-world materials science applications.

Our contributions are as follows: (1) we introduce a multimodal RAG framework employing hierar-
chical ReAct agents that dynamically interact with the Materials Project, enabling LLMs to access
high-fidelity materials informatics; (2) we propose a statistical metric to assess the self-consistency
of LLM responses in high-precision, reproducibility-critical settings; (3) we evaluate the perfor-
mance of LLaMP and standard LLMs in predicting key material properties, including bulk moduli,
electronic bandgaps, formation energies, and magnetic orderings; (4) we showcase real-world appli-
cations in materials science, such as inorganic synthesis and crystal structure generation and editing;
(5) we enhance LLaMP with high-throughput atomistic simulation workflows and pre-trained uni-
versal ML force fields, lowering the entry barriers to computational materials and chemistry.

2 BACKGROUND

Materials Project (MP) The Materials Project is a multi-institution effort to explore and com-
pute the properties of all known inorganic materials (Jain et al., 2013) and molecules (Spotte-Smith
et al., 2023). The initiative leverages high-throughput electronic structure calculations (Kresse and
Furthmüller, 1996; Shao et al., 2015) based on density functional theory (DFT), providing large-
scale open-source database and analysis algorithms, with the ultimate goal to drastically reduce the
time and cost required for materials discovery by focusing experiments on the promising candidates
from computational screening. Most of the atomic structures are selected from the Inorganic Crystal
Structure Database (ICSD) (Zagorac et al., 2019) and undergo standardized relaxation procedures,
followed by post-processing or additional calculations for higher-order material properties such as
electron and phonon bandgaps, elastic tensors, dielectric tensors, and more. MP provides these
calculated material properties through API endpoints.

NLP and LLM in materials science Natural language processing (NLP) has found extensive
application in extracting valuable information from scientific publications, with notable instances
involving text-to-text or more recent image-to-text summarization techniques (Gupta et al., 2022;
Radford et al., 2021; Tshitoyan et al., 2019). For summarizing crystal structures in textual form,
Ganose and Jain (2019) introduced the robocrystallographer, a toolkit designed for the analysis
and generation of descriptions for crystalline materials. Their method condenses atomic structures
into descriptive JSON representations that encompass coordination statistics, connectivity motifs,
geometric features, and dimensionality. MP leverages robocrystallographer to generate human-level
descriptions for 130K compounds which are accessible through MP website and API.

Recent efforts have curated datasets (Zaki et al., 2023) and benchmarks (Song et al., 2023) to better
evaluate the limitations of LLMs in question answering within the materials science domain. Zhang
et al. (2024) further curated instruction data to fine-tune Llama for material science-specific tasks.
These works focus on general (undergraduate-level) question answering instead of factual grounding
on expert-curated database and downstream agentic workflow. In a complementary aspect, other
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works address the challenges of extracting complex materials informatics from diverse formats such
as tables and unstructured texts (Hira et al., 2024; Schilling-Wilhelmi et al., 2024). This motivates
us to augment LLM’s knowledge base with MP—one of the most authoratative materials database
of stable crystal structures, high-fidelity DFT calculations, inorganic solid-state synthesis recipes,
etc.

3 RELATED WORK

Prompting and fine-tuning in domain science Prompt-based methods have been used as ef-
fective tools for automating data extraction process from the literature. Polak and Morgan (2023)
employ a prompt workflow to extract the cooling rates of metallic glasses and yield strengths of high
entropy alloys. Zheng et al. (2023) implement a ChatGPT metal-organic framework (MOF) synthe-
sis assistant through embedding and searching on preselected papers. StructChem (Ouyang et al.,
2024) leverages step-by-step reasoning, and iteratively refines results to solve college-level chem-
istry questions. Yang et al. (2023) use GPT-4 to extract experimentally measured bandgaps to train
a graph neural network for accurate bandgap prediction from crystal structures. Despite the success
in the specific data extraction tasks, prompt-based methods face challenges in reproducibility when
the used prompts are fine-grained to work for specific edge cases. They are also still prone to hal-
lucination and less generalizable to combine different data sources due to the deliberately designed
prompt.

Several other knowledge-grounded, domain-specific language models lean on the fine-tuning ap-
proach against pre-selected data and literature. For instance, ChemGPT (Frey et al., 2022) in-
volves fine-tuning GPT-neo on self-referencing embedded strings (SELFIES) representations of
small molecules. Jablonka et al. (2024) demonstrated GPT-3 fine-tuned against online corpora could
outperform purpose-trained models on classification, regression, and inverse design of high-entropy
alloys and molecules. Dagdelen et al. (2024) fine-tuned GPT-3 on∼500 prompt-completion pairs to
enhance LLM’s capability to extract useful information on materials chemistry from text paragraphs.
However, the fine-tuned models without augmentation inherently lack awareness of the up-to-date
results and any data only available after their training. Moreover, fine-tuned LLMs still suffer from
limited memory retention and are prone to forget during continual training (Wang et al., 2023).

LLM function calling and tool usage An emerging class of LLM applications, including this
work, take advantage of LLM text completion and instruction following capability for function
calling. This approach extends LLMs with expert-curated tools to improve the quality of control for
downstream applications. Coscientist (Boiko et al., 2023) combines tools such as search engines,
Python, and document index for autonomous chemical research. ChemCrow (M. Bran et al., 2024)
gathers multiple molecule and safety tools to enhance organic chemistry experiment and molecule
design. Concurrently, Zhang et al. (2024) develop retrieval based agentic framework on their curated
dataset. Ghafarollahi and Buehler (2024) propose AtomAgents for alloy design and analysis.

However, most prior works adopt flat planning strategy, where a single agent accesses all the avail-
able tools, resulting in a lack of self-correcting tool usage capabilities. This often leads to premature
reasoning stop and summarization when the agent encounters tool usage errors. We mitigate this
through hierarchical planning of multiple ReAct agents (see Section 4.1).

4 METHOD

4.1 HIERARCHICAL ORCHESTRATION

Overviews Flat planning, where an agent see all the available tools and related API schemas,
quickly exceeds LLM context window and incurs huge cost for large-scale database like MP. To
manage heterogeneous data sources and diverse types of queries, we introduce hierarchical planning,
featuring a supervisor ReAct agent overseeing multiple assistant ReAct agents that have access
to the tools (Figure 1). This design offers three major advantages over flat planning commonly
implemented in previous works (Boiko et al., 2023; M. Bran et al., 2024): (1) modularity of the
system ensures that each assistant agent can focus on domain-specific queries while the supervisor
agent handles higher-level reasoning and task allocation; (2) the hierarchical structure improves

3
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• Crystal structure
• Thermodynamics
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• Mechanical properties
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• Wikipedia search
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Action
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MP Database Search

Natural Language
Simulation
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Figure 1: Hierarchical ReAct agent planning in LLaMP. Two levels of agents are deployed using a
standardized LangChain interface (Chase, 2022). Supervisor ReAct agent oversees assistant ReAct
agents at the bottom-level, each equipped with distinct toolkits and data/document stores to accom-
plish various tasks, including high-fidelity materials information retrieval, atomistic modeling and
simulations, and literature search. For a detailed example, refer to Figure A.1.

the overall accuracy and efficiency by reducing the cognitive load on any individual agent; (3) by
offloading specific functions to specialized agents, we minimize the context window consumption
and schema parsing.

Supervisor agent The supervisor agent acts as a router and decision-maker, handling abstract
logic between user requests and assistant agents. Here, we adopt ReAct on GPT-4 (Yao et al., 2023)
to augment the agent’s action space A with a language space L to create an expanded action space
of Â = A ∪ L. This expanded action space empowers the agent to take action ât ∈ L in language
space that facilitate the collaboration with assistant agents to retrieve domain specific information
and achieve complex downstream tasks such as molecular dynamics simulations.

Assistant agent The efficient function calling in LLMs is often hindered by the need to process
complex API schemas, which can consume a significant portion of the context window. To address
this, we assign a specialized ReAct agent for each specific tool or API endpoint. It reduces con-
text window consumption, as each agent handles only the relevant schema for its task, avoiding
unnecessary schema parsing. Additionally, the use of ReAct agents enables them to refine their API
calls based on feedback, significantly improving task completion rates through ReAct’s iterative
self-correcting mechanism.

The full list of agents and tools are defined in A.1. Each MP assistant agent employs a self-correcting
ReAct mechanism, enabling agents to refine their API calls and improve task completion rates.
The framework’s modularity enable a seamless integration of new assistant agents, allowing for
extensibility to various materials discovery methods and experimental techniques (Luo et al., 2023;
Pilania et al., 2017; Wen et al., 2023; 2024; Zeni et al., 2024).

4.2 SELF-CONSISTENCY OF RESPONSE (SCOR)

When LLMs are integrated in scientific workflows and deployed in high-stakes settings (i.e. self-
driving labs), it is important for these models to have consistent and predictable behaviors (Liang
et al., 2023). For numeric knowledge retrieval tasks, we define the following metrics:

Precision (sample standard deviation) measures the uncertainty in the model’s responses where n is
the number valid responses from N trials and σ̂ is the standard deviation of valid response:

Precision =
σ̂√
n
≥ 0

.

4
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Coefficient of Precision (CoP) maps the precision to (0, 1]:

CoP = exp (−Precision) = exp

(
− σ̂√

n

)
∈ (0, 1] .

Confidence measures the ratio of generating n valid responses in N trials:

Confidence =
n

N
.

Self-consistency of Response (SCoR) is then defined as

SCoR = CoP× Confidence ∈ [0, 1] .

The limit of SCoR = 1 is reached when the model yields the same response to a given query every
time. At the limit of SCoR = 0, the model is either very inconsistent (with large variance across
the responses) or very reluctant (with low confidence) to answer the query. Despite the simplicity in
definition, SCoR effectively reflects the reproducibility and practical usability of the method, which
is important when the method is incorporated into broader systems where the stable and expected
behaviors are prioritized. Refer to Appendix A.2 for the detailed procedure of metric calculation.

5 EXPERIMENTS

5.1 MULTIMODAL REACT AUGMENTATION

Materials design often involves multi-objective property optimization. These properties span a
Pareto front where optimizing one factor incurs deterioration in others. To succeed in such tasks,
combining different modalities of materials properties is necessary. LLaMP achieves this through
the hierarchical orchestration of multiple ReAct agents (Yao et al., 2023). For the example ques-
tion “What’s the stiffest material with the lowest formation energy in Si-O system?” (Figure A.1),
when a query requires multimodal information and compound logic, the supervisor agent decom-
poses the query into multiple subtasks, delegates them to assistant agents (MPThermoExpert and
MPElasticityExpert) for information retrieval, and in the final stage of reasoning integrates in-
formation from both modalities, drawing on the context in episodic memory retrieved from the
assistant agents (Figure 1). This enables LLaMP to achieve various tasks step-by-step by combining
multiple data sources from the Materials Project (MP) (e.g. 3D crystal structures, thermodynamic,
mechanical, magnetic properties, and more listed in Appendix A.1) in a single query.

5.2 PERFORMANCE BENCHMARKS

Response quality and consistency We evaluate the performance of LLaMP, StructChem (Ouyang
et al., 2024), Darwin (Xie et al., 2023), and vanilla LLMs (gpt-4, llama3-8b, gemini-1.0-pro)
on material properties such as bulk modulus, formation energy, and bandgap (Figure 2, Table 1).
Performance is assessed through Precision, CoP, SCoR, and MAE metrics, as defined in Section 4.2.
We argue that any useful LLM agents to be included in the scientific workflow should have high
SCoR and low error on the materials properties. Notably, LLaMP consistently outperforms other
models, achieving the highest SCoR and the lowest errors across material properties, making it
highly suitable for scientific workflows. StructChem, despite extensive prompting strategies, often
fails due to a lack of necessary domain knowledge, resulting in high refusal rates when it cannot
validate outputs.

For bulk modulus prediction, vanilla LLMs, particularly Llama 3-8b, frequently rely on low-fidelity
online data, leading to significant deviations for elements like Cr, Mn, and Fe, compared to MP
theoretical values. Interestingly, Llama 3-8b usually cites spurious reference in the responses despite
largest response variance but occasionally agrees with MP values. In contrast, LLaMP outperforms
vanilla LLMs and reduces the MAE from around 40 to 14.57 GPa.

Our results demonstrate that vanilla LLMs fail to provide accurate formation energy predictions,
with low SCoR and high MAE ranging from 1.5 to 5.5 eV, which is impractical for material dis-
covery requiring meV-level precision. This is not unexpected, since accurate formation energy
prediction requires the computation of multiple energetics (energies of the compound itself and its
elemental constituents).

5
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Figure 2: Boxplot of LLaMP RAG responses, baseline methods, and LLM intrinsic knowledge on
material properties. (a) Bulk moduli, K, of 3d transition metals. (b) Formation energies, ∆Hf ,
of common compounds. (c) Electronic bandgaps, Eg , of common intrinsic semiconductors. (d)
Electronic bandgaps of multi-element (ternary or quaternary) materials. Missing predictions are
marked by shaded areas. Fliers (Outliers) are marked in circles. Horizontal lines represent the MP
reference data. All LLaMP results use GPT-4 as backend language provider. Method with higher
SCoR has narrower distribution. LLaMP is effectively grounded on MP reference across different
tasks and materials.

In evaluating bandgaps, we query 10 common compounds and 10 multi-element materials that
are less commonly encountered in the literature. Vanilla LLMs perform surprisingly well on the
bandgaps of common semiconductors (Figure 2c), with expected systematic deviation from MP
values retrieved by LLaMP1. This is likely due to the extensive literature on experimental semi-
conductor bandgaps, which have been studied and reported for decades. On the contrary, vanilla
LLMs lack intrinsic knowledge of the bandgaps for the queried multi-element materials and exhibit
low confidence or refuse to make predictions (Figure 2d, Table B6.8), whereas LLaMP retrieves
accurate data with a SCoR of 0.938 and correctly identifies the stable polymorph’s bandgap when
multiple forms are present.

Ablation study Our frameworks relies on two principal components: first, factual material infor-
matics on MP database; second, stable function calling mechanism that allows assistant agent to
interact with tools. In Table 5, we examine three variants: (1) LLaMP: ReAct with MP tools; (2)
GPT-4+ReAct with SerpAPI for internet browsing; (3) vanilla GPT-4. LLaMP achieved the best
performance when using the complete set of MP tools, highlighting the importance of grounding
in up-to-date, high-fidelity materials databases. In Section 4.1, we mentioned the importance of
hierarchical planning for robust function call. Evaluating several backbone models on bulk moduli
and formation energy prediction, we found LLaMP’s grounding performance correlates with the

1Bandgaps calculated from generalized gradient approximation (GGA) functional are known to underesti-
mate the experimental values by 40-50% (Borlido et al., 2020). Strategies to improve bandgap prediction at
moderate or low computational cost will be included in MP in the future.
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Table 1: Performance metrics of LLaMP and LLM baselines on the prediction of material properties.
The metrics from left to right are precision (sample standard deviation), coefficient of precision
(CoP), confidence, self-consistency of response (SCoR), and mean absolute error (MAE), where
Materials Project are taken as the ground truth. All the tabulated values are the average metrics
over five runs and the sampled materials. All LLaMP and StructChem results use GPT-4 as backend
language provider. Better method has high SCoR and MAE simultaneously.

Bulk Modulus K (GPa) Formation Energy ∆Hf (eV)

Precision↓ CoP Confidence SCoR↑ MAE↓ Precision↓ CoP Confidence SCoR↑ MAE↓
LLaMP (GPT-4) 2.698 0.900 1.000 0.900 14.574 0.006 0.994 0.940 0.934 0.007
LLaMP (Sonnet) 1.816 0.562 1.000 0.562 15.104 0.000 1.000 1.000 1.000 0.000
LLaMP (Gemini) 5.178 0.053 1.000 0.053 16.251 0.076 0.932 0.620 0.576 0.166
LLaMP (Llama3) 12.993 0.036 0.800 0.029 50.308 0.000 1.000 0.250 0.250 1.377

StructChem 0.000 1.000 0.200 0.200 41.017 0.000 1.000 0.200 0.200 3.146
Darwin 0.001 0.999 0.500 0.499 156.266 0.003 0.997 1.000 0.997 2.245

GPT-4+Serp 2.221 0.833 0.300 0.433 29.937 0.025 0.977 0.560 0.791 11.669
GPT-4 0.186 0.910 1.000 0.910 41.225 0.000 1.000 0.180 0.200 1.680
Sonnet 0.009 0.992 1.000 0.992 41.033 0.022 0.979 1.000 0.979 294.360

Gemini-Pro 6.065 0.169 1.000 0.169 43.429 0.467 0.657 1.000 0.657 1.412
Llama 3 11.222 0.010 1.000 0.010 41.874 2.346 0.139 0.960 0.137 4.657

Electronic Bandgap Eg - Common (eV) Electronic Bandgap Eg - Multi-element (eV)

Precision↓ CoP Confidence SCoR↑ MAE↓ Precision↓ CoP Confidence SCoR↑ MAE↓
LLaMP (GPT-4) 0.000 1.000 0.800 0.800 0.000 0.047 0.958 0.960 0.918 0.167
LLaMP (Sonnet) 0.145 0.870 0.600 0.522 0.298 0.046 0.962 1.000 0.962 0.304
LLaMP (Gemini) 0.627 0.571 0.600 0.343 1.327 0.003 0.997 0.500 0.997 0.637
LLaMP (Llama3) 0.051 0.952 0.800 0.761 1.038 0.169 0.848 0.800 0.678 1.094

StructChem 0.017 0.984 1.000 0.984 0.986 0.000 1.000 0.200 0.200 0.973
Darwin 0.002 0.998 1.000 0.998 1.224 0.000 1.000 1.000 1.000 1.951

GPT-4+Serp 0.040 0.963 1.000 0.963 1.012 0.000 1.000 0.660 0.660 0.576
GPT-4 0.032 0.970 1.000 0.970 0.959 - - 0.000 0.000 -
Sonnet 0.000 1.000 1.000 1.000 0.938 0.000 1.000 0.500 1.000 0.644

Gemini-Pro 0.034 0.968 1.000 0.968 0.994 0.168 0.849 0.600 0.509 0.989
Llama 3 0.042 0.960 1.000 0.960 1.053 0.182 0.836 0.860 0.719 1.091

function-calling capability of backbone LLM: Claude-3.5-Sonnet (#1) > Gemini-1.5-Flash (#24)
> and Llama3-8B (#46). The number following each model refers to its ranking on the Berkeley
Function-Calling Leaderboard at the time of the experiment (Yan et al., 2024).

High-fidelity and higher-order data retrieval The challenge for LLMs in excelling at
knowledge- and data-intensive tasks is well-documented (Cobbe et al., 2021; Hendrycks et al., 2021;
Liang et al., 2023). Figure 3 shows the prediction of LLaMP, GPT-3.5, and GPT-4 on the magnetic
orderings and total magnetization of 800 materials randomly selected from all unary, binary, and
ternary compounds in MP. Our result indicates that without RAG, vanilla LLMs suffer from hallu-
cinations and misclassify the magnetic orderings of materials. LLaMP with GPT-4 as backend can
counteract the intrinsic bias of GPT models, increasing the classification accuracy to 0.98 and R2 of
magnetization prediction to 0.992 (Table 2). We note that GPT-3.5 as backend, while effective for
classification and other information retrieval tasks, struggles to distinguish total magnetization
from magnetization per formula unit in magnetism API schema and often requests the wrong
field and forgets to normalize the values. In the magnetic orderings queries, LLaMP with GPT-3.5 as
backend fails to distinguish ferromagnetic (FM) and ferrimagnetic (FiM) orderings, while LLaMP
with GPT-4 as backend gracefully separates the two classes (Figure 3a, d).

Table 2: Prediction performance of
LLaMP, GPT-3.5, and GPT-4 on mag-
netic orderings and magnetization.
LLaMP with GPT-4 and GPT-3.5 as
backend LLM are compared.

Magnetic Ordering Magnetization

Accuracy F1 MAE R2

LLaMP (GPT-4) 0.98 0.89 0.045 0.992
GPT-4 0.48 0.26 1.611 -0.201

LLaMP (GPT-3.5) 0.96 0.88 1.896 0.407
GPT-3.5 0.23 0.18 1.988 -0.024

We further test the capability of LLaMP and LLMs
for higher-order data (such as tensors, 3D crystal struc-
tures, curves). As shown in Table B6.2, GPT-3.5 hal-
lucinates the values for the components in the elastic
tensor of NaCl, with serious erroneous values such as
C11 = 289.2GPa—a significant deviation from DFT-
calculated values (76GPa). It also omits the values for
C22, C33, C55, C66 and fails to represent the full elastic
tensor in a matrix format, despite the query explicitly re-
questing the full elastic tensor. This hightlights the lim-
itation of intrsinic knowledge in LLMs to recall higher-
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Figure 3: Prediction of LLaMP, GPT-3.5, and GPT-4 on (a,b,d,e) magnetic orderings and (c,f) total
magnetization per formula unit of randomly selected materials. Confusion matrix presents the num-
ber of entries in each class. Colormap represents the percentage of correct classification.

order, more complex data for more comprehensive, holis-
tic response.

5.3 REAL-WORLD APPLICATIONS

Table 3: Positive-unlabeled (PU) classifica-
tion of LLaMP and baseline methods on in-
organic material synthesizablity. (*) Evalu-
ations on 352,236 positive and 40,817 unla-
beled compounds by Kim et al. (2024).

Accuracy F1 Precision Recall

LLaMP (GPT-4) 0.800 0.773 0.895 0.680
LLaMP (Sonnet) 0.818 0.812 0.848 0.780

GPT-4 0.600 0.649 0.578 0.740
Sonnet 0.530 0.230 0.636 0.140
Llama3 0.480 0.623 0.489 0.860
Gemini 0.590 0.388 0.765 0.260

GPT-4* - - 0.151 0.620
GPT-3.5 (FT)* - - 0.558 0.951

stoi-CGNF* - - 0.541 0.942

Inorganic synthesis recipes Empowered by the
MP synthesis endpoint (Kononova et al., 2019),
LLaMP can extract synthesis recipes and summarize
detailed step-by-step procedures grounded on real
experimental papers with associated DOI references,
as demonstrated in the example queries (Table B6.9
and B6.10).

Vanilla LLMs often give seemingly correct and ver-
bose synthesis procedures but pull irrelevant com-
pounds into the recipes and overlook more optimal
or efficient reactions. In the example of YMnO3
(Table B6.9), GPT-3.5 suggests the possible reaction
pathways from two common oxide precursors (Y2O3
and MnO2). However, it pulls irrelevant lithium
compounds (Li2CO3 and LiOH) into the recipe and
overlooks the fact that metathesis reactions (Li et al.,
2015; Todd et al., 2021) require less applied energy
than high-temperature sintering, which relies on solid-state diffusion (Maximenko and Olevsky,
2004).

Vanilla LLMs also exhibit uncertainty about specific synthesis details, such as heating temperature,
duration, cooling rate, etc. In some edge cases such as LiFePO4 presented in Table B6.10, the cited
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references are associated with the real papers but the contents are dissociated from the cited titel and
hallucinated from the pre-training corpus.

We further compare the performance of LLaMP on synthesizability prediction with stoichiometric
convolutional graph neural fingerprint (stoi-CGNF) (Jang et al., 2024) and fine-tuned LLMs (Kim
et al., 2024). We follow the positive-unlabeled (PU) classification task proposed in (Kim et al., 2024)
by randomly selecting a subset of positive (probable) and unlabeled (unlikely) inorganic compounds
and compare the classification performances of LLaMP with different backend LLMs and baselines.
As presented in Table 3, LLaMP effectively enhances the performances of backbone GPT-4 and
Sonnet LLMs by a significant margin of 20%, with the classification precision of LLaMP (GPT-4)
up to 0.895.

(a) MP (DC Si, mp-149)
(b) LLaMP (DC Si with Li
hexagonal interstitial)

(c) GPT-3.5 (distorted Si with Li
tetrahedral interstitial)

Figure 4: Generation and manipulation of crystal structures using LLMs to insert an additional
lithium atom at the interstitial site in diamond cubic silicon structure. Blue: Si. Green: Li. Question-
answer pairs are listed in Table B6.11. Additional atoms extended through bonds are visualized.

Table 4: Structural parameters of the generated crystals compared with diamond cubic (DC) silicon.
From left to right are fractional coordinates of inserted Li atom (x, y, z)Li, total cell volume V ,
average Si Si bond lengths ℓSiSi, Si Si Si angles θSiSiSi, and Si Li Si angles θSiLiSi. GPT-4
refuses to respond due to their safeguard against the lack of atomic structure information.

(x, y, z)Li ℓSiSi (Å) Error (%) V (Å
3
) Error (%) θSiSiSi (◦) Error (%) θSiLiSi (◦)

LLaMP (0.5, 0.5, 0.5) 2.36 0.0 40.33 0.0 109.47 0.0 62.96
GPT-3.5 (0.5, 0.5, 0.5) 2.71 +15.0 67.05 +66.3 98.28 -10.2 67.69
GPT-4 - - - - - - - -

DC Si (mp-149) 2.36 40.33 109.47

RAG-assisted crystal generation and editing Fine-tuned LLMs for text-encoded atomistic infor-
mation have shown the capability to generate stable crystals under the constraints of atomic positions
and charges (Gruver et al., 2023). In this context, we delve into the examination and comparison
of the crystal generation capabilities between LLaMP and GPT-3.5, without resorting to fine-tuning
or tailored prompt messages in previous work. Figure 4 showcases the structures generated by
LLaMP and vanilla GPT-3.5 without RAG, both instructed to insert one lithium atom at the tetrahe-
dral site of the diamond cubic silicon structure (Table B6.11). Notably, both LLaMP and GPT-3.5
place an additional Li atom at fractional coordinate (0.5, 0.5, 0.5). However, the Si structure re-
trieved by LLaMP adheres to the MP convention, positioning two Si bases at (0.125, 0.125, 0.125)
and (0.875, 0.875, 0.875). This causes the inserted Li atom to be hexagonal interstitial instead of
tetrahedral interstitial.

GPT-3.5 locates the Li atom at the tetrahedral site given the “luckily chosen” Si bases at (0, 0, 0) and
(0.25, 0.25, 0.25); however, the resulting cell volume and shape are highly distorted, and the Si Si
bond length and Si Si Si angle deviate significantly from the ground truth (Table 4), highlight-
ing the limitations in the intrinsic encoding of LLMs for atomistic information and the challenges
associated with zero-shot generation of crystal structures. In contrast, the LLaMP-retrieved MP
structure serves as a robust prior, anchoring the lattice parameters of the generated structure to the
correct values.
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Language-driven simulation LLaMP equipped with Python REPL and atomistic simulation
workflow package atomate2 performs well out of the box for complex multi-step simulations us-
ing pre-trained universal machine learning interatomic potential MACE-MP-0 (Batatia et al., 2023)
through language instruction. As demonstrated in Appendix C.1 and Appendix C.2, LLaMP is able
to follow multi-step instruction to fetch stable crystal structure from MP, generate a supercell of
atomic structure, and run annealing molecular dynamics simulation with varying temperature from
300K to 800K and back to 300K. After the simulation is finished, LLaMP can read the simulation
trajectories and plot the temperature profile over time (Appendix C.1).

We further test the robustness of our language-driven workflow on running MD simulations (Fig-
ure 5). A subset of 50 supercell structures were randomly created from up-to-quinary compounds
in MP. Each MD simulation runs 0.1 ps with timestep of 2 fs. The timeout was set to 90 seconds.
96% workflows (SUCCESS+TIMEOUT) were successfully initiated, with 62% finished and 34% of sys-
tems exceeding 90 seconds timeout due to slow or stalled MACE-MP-0 runs (the simulation is still
running without error but runs slowly). 4% simulations ran into unspecified status (UNKNOWN). We
found that during these triggered workflows LLaMP asks user for approval on the precise chemical
formula to fetch the structure from MP, rendering the workflow unfinished.

6 DISCUSSION

SUCCESS

62.0%

TIMEOUT

34.0%

UNKNOWN4.0%

Figure 5: The final four
statuses (SUCCESS, TIMEOUT,
FAILURE, UNKNOWN) of trial
language-driven MD simu-
lation runs on random MP
supercell structures. LLaMP
successfully initiated 96%
(SUCCESS+TIMEOUT) of all the
simulations within 90 second
timeout window.

Robustness The hierarchical ReAct framework implemented
here is essentially a graph of agents, or language graph, with one
central node (supervisor) in connection with many satellite nodes
(assistants). The implementation of ReAct for the assistant agents
enables self-correcting tool usages and fortifies the robustness of
data retrieval. As presented in Figure A.1c, MPThermoExpert ini-
tially misunderstood the schema at the first trial and filled in the
formula field with Si O, an invalid input but a valid one for chem-
ical system (chemsys) field. The observation step (step 4) allows
MPThermoExpert to handle exceptions and to refine the correct in-
put fields after adaptation (step 6). Storing (Retrieving) question-
answer and query-argument pairs to (from) vector databases could
further reduce the number of trial-and-error steps, and the stored
pairs can be used to refine foundation LLMs to improve function
calling quality.

Limitation We recognize the effectiveness of LLaMP’s frame-
work relies on backbone LLM’s function calling and reasoning
capabilities. Sometimes LLMs misunderstand the description of
schemas and therefore yield unexpected behaviors. For example,
sort_fields argument allows sorting the returned documents in
ascending order or descending order if the field is prefixed with −,
but LLMs sometimes mistake the sign and sort in the opposite or-
der. Other example failure or safeguard modes are presented in Ap-
pendix A.3. The correctness of LLaMP is also subject to the quality
of theoretical prediction and the comprehensiveness of the data in MP. Other than the underpredicted
bandgaps by GGA functional, MP’s ongoing effort to search all possible magnetic configurations is
also not complete. Most of the existing calculations in MP start from high-spin ferromagnetic con-
figurations, which may overlook many antiferromagnetic ground states below the current energy
convex hull. While MP is one of the most comprehensive materials databases, the available crys-
tal structures on MP are not exhaustive but continuously expanding (Merchant et al., 2023), and
would be benefited from additional intermetallic compounds and high-entropy materials from other
databases such as AFLOW, OQMD, NOMAD, etc. (Curtarolo et al., 2012; Kirklin et al., 2015;
Scheidgen et al., 2023). Furthermore, Kohn-Sham DFT theory is insufficient in some cases, and a
higher level of theory is needed. Currently LLaMP only supports a few atomate2 workflows with
machine learning force fields and VASP calculations. More diverse electronic calculation methods
and workflows will be supported in the future work.
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Summary We present a hierarchical agentic framework, LLaMP, based on ReAct to extract and
manipulate material informatics through few-shot generalization. By grounding thoughts and ac-
tions with high-fidelity information, LLaMP showcases the ability to integrate various modalities of
material properties and perform logical inferences to accomplish assigned tasks, all without the need
for fine-tuning. In essence, the proposed LangChain framework holds the potential to expand its ap-
plicability to multiple data sources, encompassing both theoretical computations and experimental
data, knowledge graph databases (Venugopal and Olivetti, 2024; Ye et al., 2024), and real-world lab-
oratories by incorporating additional assistant agents for data retrieval and robot control (Fei et al.,
2024). LLaMP functions as a knowledge-aware agent, empowering users to navigate and manipulate
complex materials informatics. In the context of self-driving labs (Boiko et al., 2023; Szymanski
et al., 2023), LLM agents with multimodal data sources, sensors, and actors may improve their de-
cision making and operation (Miret and Krishnan, 2024). As new tools continue to emerge, there
is an exciting avenue for further exploration to ascertain if this framework can effectively facilitate
scientific hypothesis generation and guide data-driven experiments.
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A SUPPLEMENTARY INFORMATION

A.1 LIST OF IMPLEMENTED ASSISTANT AGENTS AND TOOLS

Here we provide the comprehensive list of implemented assistant agents and tools. Note that
MP Assistants are highly modular so it is very trivial to support extra API endpoints from
https://api.materialsproject.org/docs.

• MPSummaryExpert: summary provides amalgamated data for a material by combining
subsets of data from many of the other API endpoints.

• MPThermoExpert: thermo provides computed thermodynamic data for a material such
as formation energy and energy above hull.

• MPElasticityExpert: elasticity provides bulk, shear, and Young’s modulus, poisson
ratio, and universal anisotropy index.

• MPMagnetismExpert: magnetism provides computed magnetic ordering related data.

• MPDielectricExpert: dielectric provides computed dielectric data from density func-
tional perturbation theory.

• MPPiezoelectricExpert: piezoelectric provides computed piezoelectric data from den-
sity functional perturbation theory.

• MPElectronicExpert: electronic structure provides computed electronic structure
related data for a material such as band gap and fermi level. Python objects for line-mode
band structures, density of states, and fermi surfaces are also available.

• MPSynthesisExpert: synthesis provides a synthesis recipes for materials extracted from
literature using text mining and natural language processing techniques.

• MPStructureRetriever: MaterialsStructureText fetches and saves pymatgen Struc-
ture objects to local JSON files.

• MLFFAgent: MLFFMD runs molecular dynamics simulations using pre-trained machine
learning force fields; MLFFElastic calculates the elastic constants of a given material using
pre-trained machine learning force fields.

• PythonREPLTool: Python REPL that LLMs could run the generated script.

• ArxivQueryRun: LangChain built-in tool that LLMs can use to send API request to ArXiv.

• WikipediaQueryRun: LangChain built-in tool that LLMs can use to send API reqeust to
Wikipedia.

A.2 METRIC CALCULATION IN TABLE 1 AND FIGURE 2

The following procedures are adopted to calculate the metrics for material property regression
benchmarks presented in Table 1 and Figure 2:

1. Each method was presented with the same query asking for the property of multiple materi-
als. Here we ask each method for bulk modulus, formation energy, and electronic bandgap
of ten materials. For example, “What are the bulk moduli of the following metals: Sc, Ti,
V, Cr, Mn, Fe, Co, Ni, Cu, Zn?”.

2. Repeat the same query for five times and collect the responses.

3. The numerical values are extracted and formatted into 2D arrays with the aid by LLMs. If
the range is provided in the response (e.g. Llama 3), the median value was used.
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4. Calculate Precision, CoP, Confidence, and SCoR for each method across five trials on all
materials. The code is provided and the pseudocode can be written as follows:

Input:arr (2D array of five responses for different materials)
n← count of valid responses (non-NaN values) in each column of arr
prec← nanstd(arr,axis=0)√

n

cop← mean(exp(−prec))
conf← mean

(
n

# of trials N

)
scor←

{
0 if conf = 0 for all columns
cop× conf otherwise

prec← mean(prec)
Output:prec, cop, conf, scor

A.3 SAFEGUARD OR FAILURE MODES

• Question: What is the bulk modulus of stainless steel? ambiguous chemical formula
LLaMP: Stainless steel is an alloy with a composition that can vary widely, including
elements like iron, chromium, nickel, and molybdenum. Because of this variability, it does
not have a single chemical formula or a unique Materials Project ID, and its bulk modulus
can significantly vary based on its exact composition and heat treatment. The Materials
Project database, focusing on inorganic crystalline materials, may not provide specific data
on complex alloys like stainless steel. For precise values of the bulk modulus, consulting
specific datasheets or literature on the type of stainless steel in question is recommended.

• Question: How to synthesize Y2Be2Fe(SiO5)2 data unavailable
LLaMP: Currently, there are no synthesis recipes available in the Materials Project
database for Y2Be2Fe(SiO5)2.

• Question: What’s the phonon bandgap of Ac2HgGe computed property unavailable
LLaMP: The material Ac2HgGe, with a Materials Project ID of mp-861872, does not have
its phonon bandgap information directly available through the Materials Project database.
For detailed phonon properties, further analysis using specialized phonon calculation tools
or databases would be necessary.

Table 5: Performance of LLaMP with different backbone LLMs and ablation of ReAct agent with
MP API and SerpAPI tools.

Bulk Moduli K (GPa) Formation Energies ∆Hf (eV)

Precision↓ CoP Confidence SCoR↑ MAE↓ Precision↓ CoP Confidence SCoR↑ MAE↓
LLaMP 2.698 0.900 1.000 0.900 14.574 0.007 0.993 0.960 0.953 0.009

LLaMP (Sonnet) 1.345 0.702 0.867 0.608 16.121 0.000 1.000 1.000 1.000 0.000
LLaMP (Gemini-1.5) 21.586 0.217 1.000 0.217 64.324 0.390 0.718 0.560 0.402 0.531

LLaMP (Llama 3) 7.314 0.327 0.800 0.261 47.386 0.413 0.721 1.000 0.721 3.062

GPT-4+Serp 2.222 0.352 1.000 0.352 41.742 5.947 0.745 1.000 0.745 8.214
GPT-4 0.186 0.910 1.000 0.910 41.225 0.000 1.000 0.180 0.180 1.680

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

What's the sti�est material with the lowest formation energy in Si-O system?

���������� To answer this question, I need to �nd materials in the Si-O 
system with the lowest formation energy and the highest sti�ness. I will
use the MPThermoExpert tool to search for materials in the Si-O system 
and sort them by formation energy. After �nding candidates, I will need 
to use the MPElasticityExpert tool to determine the sti�ness of these 
materials.

��������� 
```json
{
  "action": "MPThermoExpert",
  "action_input": {
    "input": "What are the materials with the lowest 
formation energy in the Si-O system?"
  }
}
```

����������
The previous work has identi�ed materials in the Si-O system with the lowest 
formation energy. The next step is to determine the sti�ness of these materials. 
I will use the MPElasticityExpert tool to �nd the sti�ness (typically represented by 
the bulk modulus or Young's modulus) for each of these materials.

���������� 
```json
{
  "action": "MPElasticityExpert",
  "action_input": {
    "input": "What are the bulk and Young's moduli for 
Si2O5 (mp-862998), SiO2 (mp-733790), SiO2 (mp-6922), 
SiO2 (mp-556985), and SiO2 (mp-556994)?"
  }
}
```

�����������
The output from the MPElasticityExpert tool provides bulk modulus values for 
the Si-O materials with the lowest formation energy. However, it seems there was 
a mismatch between the material IDs requested and the material IDs returned in 
the output. The Young's modulus values are not provided, but the bulk modulus 
can be a good indicator of sti�ness. The material with the highest bulk modulus 
would be considered the sti�est. 

From the provided output, the SiO2 with material ID mp-9258 has the highest 
bulk modulus of 310.27 GPa, which suggests it is the sti�est among the listed 
materials. Since this material also belongs to the Si-O system and has a high bulk 
modulus, it is likely to be one of the sti�est materials with low formation energy 
in the Si-O system.

�����
��
�
The sti�est material in the Si-O system with low formation energy is likely SiO2 
with material ID mp-9258, which has a bulk modulus of 310.27 GPa. The Young's 
modulus values were not available, but the bulk modulus is a strong indicator of 
sti�ness.

c. Specialized ReAct (Assistant)

	�������� 
```json
{
  "action": "search_materiasls_thermo__get",
  "action_input": {
    "formula": "Si-O",
    "sort_fields": "formation_energy_per_atom",
    "limit": 5,
    "fields": "material_id,formula_pretty,formation_energy_per_atom"
  }
}
```
����
�
������� 
Error on search_materials_thermo__get: REST query returned with error status code 400  on URL 
https://api.materialsproject.org/materials/thermo/?_�elds=material_id... Problem processing one or more 
provided formulas.
���������� 
The query may be too broad or ambiguous. I will re�ne the search by specifying the chemical system 
more precisely.
��������� 
```json
{
  "action": "search_materials_thermo__get",
  "action_input": {
    "chemsys": "Si-O",
    "sort_fields": "formation_energy_per_atom",
    "limit": 5,
    "fields": "material_id,formula_pretty,formation_energy_per_atom"
  }
}
```
����
�
������� 
[{'formula_pretty': 'Si2O5', 'material_id': 'mp-862998', 
'formation_energy_per_atom': -2.289431383571429}, {'formula_pretty': 'SiO2', 
'material_id': 'mp-733790', 'formation_energy_per_atom': -3.039244523055555}, ...]
����
��
�
The materials with the lowest formation energy in the Si-O system are: Si2O5 (mp-862998) with a 
formation energy per atom of -2.289 eV/atom, SiO2 (mp-733790) with a formation energy per atom of 
-3.039 eV/atom, SiO2 (mp-6922) with a formation energy per atom of -3.037 eV/atom, SiO2 (mp-556985) 
with a formation energy per atom of -2.993 eV/atom, and SiO2 (mp-556994) with a formation energy per 
atom of -2.958 eV/atom.

b. LLaMP ReAct (Supervisor)

a. User Query

d. Specialized ReAct (Assistant)

���������� 
```json
{
  "action": "search_materials_elasticity__get",
  "action_input": {
    "formula": "Si2O5,SiO2,SiO2,SiO2,SiO2",
    "fields": "material_id,formula_pretty,bulk_modulus,young_modulus"
  }
}
```
�����
�
������� 
[{'formula_pretty': 'SiO2', 'material_id': 'mp-1021503', 'elastic_tensor': {
'raw': [[355.5072134787483, 236.22725456386155, 236.22725456386155, 
2.081668171172168e-16, 7.771561172376094e-16, 7.771561172376094e-16], ...]
�	���
��
�
The bulk and Young's moduli for the requested materials are as follows: Si2O5 (mp-1021503) - Bulk 
modulus: 275.987 GPa, Young's modulus: Not available; SiO2 (mp-11684) - Bulk modulus: 110.695 GPa, 
Young's modulus: Not available; SiO2 (mp-2374583) - Bulk modulus: 89.352 GPa, ...

MPThermoExpert

MPElasticityExpert

Figure A.1: Multimodal retrieval-augmented generation for materials informatics. (a) User query.
(b) Supervisor ReAct agent capable of handling multiple assistant agents and high-level reasoning.
(c-d) Assistant ReAct agents executing function calling and summarization. (c) MPThermoExpert
and (d) MPElasticityExpert have access to the API schemas of thermo and elasticity endpoints
on Materials Project, respectively. The selected details are highlighted in red, demonstrating the
capabilities of RAG and ReAct implemented in LLaMP. The blue texts show LLaMP assistant ReAct
agent can handle API calling errors and self-correct the input query accordingly.
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A.4 PROMPT TEMPLATE

We use the ReAct template hwchase17/react-multi-input-json from LangChain Hub
(https://smith.langchain.com/hub/hwchase17/react-json) as follows:

Answer the following questions as best you can. You have access to the following
tools:

{tools}

The way you use the tools is by specifying a JSON blob.
Specifically, this JSON should have an ‘action‘ key (with the name of the tool to

use) and an ‘action_input‘ key (with the input to the tool going here).

The only values that should be in the "action" field are: {tool_names}

The $JSON_BLOB should only contain a SINGLE action, do NOT return a list of multiple
actions. Here is an example of a valid $JSON_BLOB:

‘‘‘
{{
"action": $TOOL_NAME,
"action_input": $INPUT

}}
‘‘‘

ALWAYS use the following format:

Question: the input question you must answer
Thought: you should always think about what to do
Action:
‘‘‘
$JSON_BLOB
‘‘‘
Observation: the result of the action
... (this Thought/Action/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin! Reminder to always use the exact characters ‘Final Answer‘ when responding.

The above system prompt message is prepended with the following solicitation to guide the super-
visor agent:

You name is LLaMP and you are a helpful agent that can consult materials-related
data through Materials Project (MP) database, arXiv, Wikipedia, and run
calculations/simulations via a python REPL and MP atomate2 computational
workflow.

If you get an error, debug your code and try again. Only use the output of your code
to answer the question. Ask user to clarify their queries if needed. Please
note that you don’t have direct control over MP but through multiple assistant
agents to help you. You need to provide complete context in the input for
assistants to do their job. REFINE and CRITQUE the output of the assistants if
needed. You can end the conversation by saying "Bye".
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B SAMPLE QUESTIONS

Table 6: QA comparison between LLaMP and GPT-3.5.

Question Answer
LLaMP GPT-3.5

B6.1 What are the bulk mod-
uli of the following metals:
Sc, Ti, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn?

The bulk moduli of the metals you
asked for are as follows (in GPa): -
Scandium (Sc): Voigt = 45.715,
Reuss = 45.34, VRH = 45.528 -
Titanium (Ti): Voigt = 112.955,
Reuss = 112.807, VRH = 112.881 -
Vanadium (V): Voigt = 181.232,
Reuss = 181.232, VRH = 181.232 -
Chromium (Cr): Voigt = 252.155,
Reuss = 252.155, VRH = 252.155 -
Manganese (Mn): Voigt = 280.959,
Reuss = 280.959, VRH = 280.959 -
Iron (Fe): Voigt = 296.003, Reuss =
295.207, VRH = 295.605 - Cobalt
(Co): Voigt = 200.587, Reuss =
200.587, VRH = 200.587 - Nickel
(Ni): Voigt = 197.399, Reuss =
197.29, VRH = 197.345 - Copper
(Cu): Voigt = 151.394, Reuss =
151.394, VRH = 151.394 - Zinc
(Zn): Voigt = 76.283, Reuss =
95.46, VRH = 85.872

The bulk modulus (K) is a measure of a material’s resistance to uniform compres-
sion. It is defined as the ratio of the change in pressure to the fractional volume
compression. The values for the bulk modulus can vary somewhat depending on
the specific conditions and crystallographic structures of the materials. The values
provided here are approximate and given in gigapascals (GPa):
- Scandium (Sc): 55 GPa - Titanium (Ti): 110 GPa - Vanadium (V): 160 GPa -
Chromium (Cr): 160 GPa - Manganese (Mn): 120 GPa - Iron (Fe): 170 GPa -
Cobalt (Co): 180 GPa - Nickel (Ni): 180 GPa - Copper (Cu): 140 GPa - Zinc
(Zn): 70 GPa
These values represent typical bulk moduli for these metals, and actual values may
vary depending on factors such as temperature and pressure.
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B6.2 What is the full elastic ten-
sor of NaCl?

The elastic tensor for NaCl is
available for two different entries
on Materials Project. For
material˙id ’mp-22851’, the elastic
tensor in IEEE format is [[76.0, 1.0,
1.0, -0.0, 0.0, -0.0], [1.0, 76.0, 1.0,
-0.0, -0.0, 0.0], [1.0, 1.0, 76.0, 0.0,
-0.0, -0.0], [-0.0, -0.0, 0.0, -3.0,
-0.0, -0.0], [0.0, -0.0, -0.0, -0.0,
-3.0, 0.0], [-0.0, 0.0, -0.0, -0.0, 0.0,
-3.0]]. For material˙id ’mp-22862’,
the elastic tensor in IEEE format is
[[47.0, 12.0, 12.0, 0.0, -0.0, -0.0],
[12.0, 47.0, 12.0, 0.0, -0.0, -0.0],
[12.0, 12.0, 47.0, 0.0, 0.0, -0.0],
[0.0, 0.0, 0.0, 12.0, -0.0, -0.0], [-0.0,
-0.0, 0.0, -0.0, 12.0, 0.0], [-0.0, -0.0,
-0.0, -0.0, 0.0, 12.0]]

The elastic tensor describes the relationship between stress and strain in a material.
It is a 4th-rank tensor that characterizes the elastic properties of a crystal. In the
case of NaCl (sodium chloride), the elastic tensor is typically represented by a 6x6
matrix.
The elastic constants of NaCl can vary slightly depending on the specific condi-
tions and crystallographic orientation. Here is an approximate form of the elastic
tensor for NaCl:
C11 = 289.2 GPa C12 = 97.8 GPa C44 = 81.6 GPa C13 = C14 = C15 = C16 =
C23 = C24 = C25 = C26 = 0 GPa
Note: The values are given in gigapascals (GPa). The elastic constants Cij rep-
resent the components of the elastic tensor. In this case, C11, C12, and C44 are
the non-zero elastic constants. The off-diagonal terms C13, C14, C15, C16, C23,
C24, C25, and C26 are typically zero due to cubic symmetry.
Keep in mind that these values are approximate, and there may be slight varia-
tions depending on the source and the specific conditions under which the mea-
surements were made. Experimental techniques, such as Brillouin scattering or
ultrasonic measurements, are often used to determine the elastic constants of ma-
terials.

B6.3 What are the bandgaps of
the following materials: Si,
Ge, and GaAs, GaN, SiC,
BN, InSe, MoS2, BaTiO3,
CsPbI3? Only look for
ground-state bandgaps.

The ground state bandgaps for the
requested materials are as follows:
Si: 1.12 eV, Ge: 0.66 eV, GaAs:
1.42 eV, GaN: 3.28 eV, SiC: 2.36
eV, BN: 6.4 eV, InSe: 1.26 eV,
MoS2: 1.29 eV, BaTiO3: 3.2 eV,
CsPbI3: 1.73 eV. Please note that
these values are typical for bulk
materials and can vary depending
on the specific structure and
calculation method.

As of my last knowledge update in January 2022, I can provide you with approx-
imate values for the ground state bandgaps of the materials you mentioned. Keep
in mind that these values can vary depending on factors like temperature and crys-
tal structure. Additionally, more recent research may have refined these values.
Here are the approximate ground state bandgaps in electron volts (eV):
Silicon (Si): 1.1 eV Germanium (Ge): 0.67 eV Gallium Arsenide (GaAs): 1.42 eV
Gallium Nitride (GaN): 3.4 eV Silicon Carbide (SiC): 3.2 eV (for 4H-SiC) Boron
Nitride (BN): 6 eV Indium Selenide (InSe): 1.25 eV Molybdenum Disulfide
(MoS2): 1.3 eV (indirect bandgap) Barium Titanate (BaTiO3): 3.2 eV Cesium
Lead Iodide (CsPbI3): 1.7 eV Please note that these values are general approx-
imations and may not represent the specific conditions or variations in different
forms of these materials. For the most accurate and up-to-date information, I rec-
ommend checking recent scientific literature or databases.
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B6.4 Give me the decomposi-
tion enthalpies of the fol-
lowing materials: Ag2O3,
MgZn2, GaAs, GaN, SiC,
BN, InSe, MoS2, BaTiO3,
CsPbI3. If there are multi-
ple values, please give me
the largest value.

The maximum decomposition
enthalpies for the requested
materials are as follows: - Ag2O3:
0.2565836414999989 eV/atom -
MgZn2: 0.1356 eV/atom - GaAs:
0.075 eV/atom - GaN: 0.07162
eV/atom - SiC: -0.172 eV/atom -
BN: -0.358 eV/atom - InSe:
-0.01816 eV/atom - MoS2: 0.267
eV/atom - BaTiO3: 3.055 eV/atom
- CsPbI3: 0.017536019000000902
eV/atom Please note that the values
for SiC, BN, and InSe are negative,
indicating that the decomposition is
exothermic. All other values are
positive, indicating endothermic
decompositions.

The decomposition enthalpies (in kJ/mol) of the following materials are:
Ag2O3: -335
MgZn2: -82
GaAs: -317
GaN: -505
SiC: -40
BN: -248
InSe: -125
MoS2: -393
BaTiO3: -112
CsPbI3: -153

B6.5 Give me the formation
energies of the follow-
ing materials: Ag2O3,
MgZn2, GaAs, GaN, SiC,
BN, InSe, MoS2, BaTiO3,
CsPbI3. If there are multi-
ple values, please give me
the smallest value.

The smallest formation energies of
the materials you asked for are as
follows: Ag2O3: -0.3601 eV/atom,
MgZn2: -0.1306 eV/atom, GaAs:
-0.446 eV/atom, GaN: -0.052
eV/atom, SiC: -0.204 eV/atom, BN:
-1.41 eV/atom, InSe:
-0.742582154921875 eV/atom,
MoS2: -1.202 eV/atom, BaTiO3:
-3.493 eV/atom, CsPbI3: -1.296
eV/atom.

Ag2O3: -2.63 eV/atom MgZn2: -0.27 eV/atom GaAs: -4.13 eV/atom GaN: -3.51
eV/atom SiC: -4.98 eV/atom BN: -3.8 eV/atom InSe: -0.89 eV/atom MoS2: -3.31
eV/atom BaTiO3: -4.45 eV/atom CsPbI3: -2.32 eV/atom

Continued on next page
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B6.6 Give me the decomposi-
tion enthalpies of the fol-
lowing materials: Ag2O3,
MgZn2, GaAs, GaN, SiC,
BN, InSe, MoS2, BaTiO3,
CsPbI3. If there are multi-
ple values, please give me
the smallest value.

The smallest decomposition
enthalpy values for the requested
materials are as follows: Ag2O3:
0.019373648083333528 eV/atom,
MgZn2: -0.0197 eV/atom, GaAs:
-0.446 eV/atom, GaN: -0.05231
eV/atom, SiC: -0.204 eV/atom, BN:
-1.41 eV/atom, InSe: -0.06336
eV/atom, MoS2: -0.669 eV/atom,
BaTiO3: -0.063 eV/atom, CsPbI3:
-0.018602 eV/atom.

The decomposition enthalpies of the materials are as follows: - Ag2O3: -1138.5
kJ/mol - MgZn2: -54.2 kJ/mol - GaAs: -452.2 kJ/mol - GaN: -510.9 kJ/mol -
SiC: -2133.6 kJ/mol - BN: -2551.0 kJ/mol - InSe: -209.3 kJ/mol - MoS2: -739.3
kJ/mol - BaTiO3: -393.5 kJ/mol - CsPbI3: -65.3 kJ/mol

B6.7 Give me the energy
above hull values of
the following materials:
Ba2MnSe3, KAlSiO4,
LiCuO, H8C3N2O,
Dy2ZnS4, Rb2BeF4,
K9Fe2S7, Tb2FeC4,
ScAlAu, CaCrO4. If there
are multiple values, please
give me the lowest one.

Here are the lowest energy above
hull values for the requested
materials: Ba2MnSe3: 0.0 eV/atom
KAlSiO4: 0.0 eV/atom LiCuO: 0.0
eV/atom H8C3N2O: 0.0735
eV/atom Dy2ZnS4: 0.00966
eV/atom Rb2BeF4: 0.0 eV/atom
K9Fe2S7: 0.0 eV/atom Tb2FeC4:
0.0 eV/atom ScAlAu: 0.0 eV/atom
CaCrO4: 0.0 eV/atom. Please note
that these are the lowest values
found in the Materials Project
database and actual values may
vary based on different entries.

The energy above hull values for the given materials are as follows: - Ba2MnSe3:
0.0000 eV/atom - KAlSiO4: 0.0000 eV/atom - LiCuO: 0.0000 eV/atom -
H8C3N2O: 0.0000 eV/atom - Dy2ZnS4: 0.0000 eV/atom - Rb2BeF4: 0.0000
eV/atom - K9Fe2S7: 0.0000 eV/atom - Tb2FeC4: 0.0000 eV/atom - ScAlAu:
0.0000 eV/atom - CaCrO4: 0.0000 eV/atom

Continued on next page

22



1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136

U
nderreview

as
a

conference
paperatIC

L
R

2025

Table 6 – continued from previous page

Question Answer
LLaMP GPT-3.5

B6.8 What are the bandgaps
of the following materi-
als: Ba(PdS2)2, FePO4,
DyBi2IO4, NaFe(SO4)2,
Eu2B5BrO9, Sr5As3H, Tl-
GaS2, AgSbS2, Pr3S3N,
LiLaO2. If there are poly-
morphs, give me only the
bandgap of the stable ma-
terial.

The bandgaps for the materials are:
- Ba(PdS2)2: 0.779 eV
- Most stable FePO4: 2.1932 eV
- DyBi2IO4: 1.367 eV
- Most stable NaFe(SO4)2: 2.094
eV
- Eu2B5BrO9: 0.88 eV
- Sr5As3H: 0.676 eV
- TlGaS2: 1.7885 eV
- Most stable AgSbS2: 1.372 eV
- Pr3S3N: 1.15 eV
- Most stable LiLaO2: 3.7336 eV
Please note that these values are
obtained from the Materials Project
database and might be different in
experimental results due to various
factors.

I don’t have real-time data access, and my training only includes information
available up to January 2022. As a result, I may not have specific bandgap values
for the materials you mentioned. However, I can provide you with general infor-
mation about some of these materials and their known properties up to my last
update:
Ba(PdS2)2: I don’t have specific bandgap information for this compound. The
bandgap may depend on factors such as crystal structure and synthesis conditions.
FePO4: Iron(II) phosphate, known as ferrous phosphate, typically has a bandgap
in the range of 2.5-3.0 eV.
DyBi2IO4: Dysprosium bismuth iodate. I don’t have specific bandgap informa-
tion for this compound.
NaFe(SO4)2: Sodium iron sulfate. I don’t have specific bandgap information for
this compound.
Eu2B5BrO9: Europium borate bromate. I don’t have specific bandgap informa-
tion for this compound.
Sr5As3H: Strontium arsenide hydride. I don’t have specific bandgap information
for this compound.
TlGaS2: Thallium gallium sulfide. I don’t have specific bandgap information for
this compound.
AgSbS2: Silver antimony sulfide. This material is a semiconductor with a
bandgap typically around 1.5-2.0 eV.
Pr3S3N: Praseodymium sulfide nitride. I don’t have specific bandgap information
for this compound.
LiLaO2: Lithium lanthanum oxide. I don’t have specific bandgap information for
this compound.
The most stable structure for each material can vary based on synthesis conditions
and other factors. For accurate and up-to-date bandgap values and structural in-
formation, you may want to consult recent scientific literature or databases that
specialize in material properties.
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B6.9 How to synthesize
YMnO3?

To synthesize YMnO3, a solid-state
reaction method can be employed.
Here is a summarized procedure
based on the synthesis details
provided in the literature with DOI:
10.1021/ic502027k:
1. Dissolve Y(NO3)3·6H2O,
Mn(NO3)2·4H2O, and a source of
[OH-] in water to create a
homogeneous solution.
2. Add citric acid to the solution to
act as a mixing media.
3. Heat the mixture at 250°C for 2
hours to achieve pre-calcination.
4. Finally, heat the pre-calcined
mixture at a temperature range of
700°C to 930°C for 10 to 18 hours
in an air atmosphere to form
YMnO3.

Synthesizing YMnO3 (yttrium manganite) typically involves the solid-state reac-
tion method. Please note that the details may vary depending on the specific con-
ditions and equipment available in your laboratory. Here’s a general procedure:
Materials: Yttrium oxide (Y2O3) Manganese oxide (MnO2 or Mn2O3) High-
purity manganese carbonate (MnCO3) Lithium carbonate (Li2CO3) or lithium hy-
droxide (LiOH) Crucible and pestle High-temperature furnace Mortar and pestle
Platinum crucible or alumina crucible
Procedure:
Step 1: Weighing the Precursors
Weigh the appropriate amounts of yttrium oxide (Y2O3), manganese oxide (MnO2

or Mn2O3), and lithium carbonate (Li2CO3) or lithium hydroxide (LiOH) ac-
cording to the stoichiometric ratio of YMnO3.
Step 2: Mixing the Powders 2. GPT-3.5 starts to fail numbering correctly in this
response. Grind the powders thoroughly in a mortar and pestle to ensure a ho-
mogenous mixture.
Step 3: Heating 3. Place the mixed powder in a crucible or alumina crucible.
Heat the mixture in a high-temperature furnace. The specific temperature and
heating rate depend on the exact synthesis conditions, but a typical range is 800-
1100°C.
Step 4: Sintering 5. Hold the mixture at the target temperature for a specific
duration (several hours) to allow for sintering and the formation of YMnO3.
Step 5: Cooling 6. Slowly cool the sample to room temperature to avoid thermal
stress.
Step 6: Characterization 7. Characterize the synthesized YMnO3 using tech-
niques such as X-ray diffraction (XRD), scanning electron microscopy (SEM),
and energy-dispersive X-ray spectroscopy (EDS) to confirm the desired phase and
composition.
Notes: The choice of manganese precursor (MnO2 or Mn2O3) and lithium source
(carbonate or hydroxide) can impact the synthesis process and may require op-
timization. It’s crucial to use high-purity starting materials to avoid impurities
in the final product. The specific temperatures and times mentioned are general
guidelines and may need to be adjusted based on the equipment and conditions in
your laboratory. Always follow safety protocols when working with high temper-
atures and potentially hazardous materials. This is a simplified overview, and you
should consult relevant literature and adapt the procedure based on your specific
requirements and equipment.
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B6.10 How to synthesize
LiFePO4? Please pro-
vide a detailed step-by-
step procedure and the
reference.

LiFePO4 can be synthesized using
various methods. One method
involves a high-temperature
solid-state synthesis using
precursors such as Fe2O3, LiOH,
and NH4H2PO4. The precursors are
mixed and heated at temperatures
up to 850°C for several days.
Another method uses a sol-gel
combustion approach with
precursors like FePO4 and Li2CO3,
where the mixture is calcined at
700°C in a nitrogen atmosphere.
For detailed procedures, please
refer to the following scientific
literature:
1. High-temperature solid-state
synthesis - DOI:
10.1021/jp407510h
2. Ion-exchange method - DOI:
10.1021/cm402617b
3. Solution method - DOI:
10.1021/jp306936t
4. Solid-state reactions - DOI:
10.1021/cm303259j
5. Sol-gel combustion method -
DOI: 10.1007/s10853-011-6139-7

Synthesizing LiFePO4 (lithium iron phosphate) typically involves a solid-state re-
action method. Below is a step-by-step procedure for synthesizing LiFePO4:
Materials: - Lithium carbonate (Li2CO3) - Iron (II) acetate (Fe(CH3COO)2) -
Ammonium dihydrogen phosphate (NH4H2PO4) - Phosphoric acid (H3PO4) -
Deionized water - Ethanol - Mortar and pestle - Crucible - Furnace
Procedure: 1. Weigh out the appropriate amounts of lithium carbonate (Li2CO3)
and iron (II) acetate (Fe(CH3COO)2) in a 1:1 molar ratio. For example, if you want
to synthesize 1 mole of LiFePO4, you would weigh out 74.55 grams of Li2CO3 and
173.93 grams of Fe(CH3COO)2.
2. Grind the lithium carbonate and iron (II) acetate together using a mortar and
pestle to ensure a homogenous mixture.
3. Weigh out the appropriate amount of ammonium dihydrogen phosphate
(NH4H2PO4) and add it to the lithium carbonate and iron (II) acetate mixture
in a 1:1 molar ratio. For example, if you are synthesizing 1 mole of LiFePO4, you
would weigh out 122.00 grams of NH4H2PO4.
4. Add a few drops of phosphoric acid (H3PO4) to the mixture to adjust the pH to
around 7. This will help in the formation of LiFePO4.
5. Add a small amount of deionized water to the mixture and mix it thoroughly to
form a slurry.
6. Slowly evaporate the water from the slurry by placing it on a hot plate or in a
furnace at a low temperature.
7. Once the water has evaporated, heat the mixture in a crucible in a furnace at
around 600-700°C for several hours to initiate the solid-state reaction and form
LiFePO4.
8. After the reaction is complete, allow the crucible to cool and collect the
LiFePO4 powder.
9. Wash the LiFePO4 powder with ethanol to remove any impurities and then dry
it in a desiccator.
Reference: P. G. Bruce, B. Scrosati, J.-M. Tarascon, ”Nanomaterials for
Rechargeable Lithium Batteries,” Angew. Chem. Int. Ed. 2008, 47, 2930-2946.
DOI: 10.1002/anie.200702505.
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B6.11 Could you insert one Li
atom at the tetrahedral in-
terstitial site in diamond
cubic Si? Pull out the
most stable DC Si structure
from MP directly in JSON
string, modify the retrieved
structure directly, and give
me the final pymatgen
structure as a JSON string.

The final structure after inserting a
Li atom at the tetrahedral interstitial
site in the diamond cubic Si
structure is as follows:
{’@module’: ’pymatgen.core.structure’, ’

@class’: ’Structure’, ’charge’: 0,
’lattice’: {’matrix’: [[3.333573,
0.0, 1.924639], [1.111191,
3.142924, 1.924639], [0.0, 0.0,
3.849278]], ’pbc’: [True, True,
True], ’a’: 3.8492784033699095, ’b
’: 3.8492794116013456, ’c’:
3.849278, ’alpha’:
60.00001213094421, ’beta’:
60.00000346645984, ’gamma’:
60.00001097545789, ’volume’:
40.32952684741405}, ’properties’:
{}, ’sites’: [{’species’: [{’
element’: ’Si’, ’occu’: 1}], ’abc’:
[0.875, 0.875, 0.875], ’xyz’:

[3.8891685, 2.7500584999999997,
6.7362365], ’properties’: {’magmom
’: -0.0}, ’label’: ’Si’}, {’species
’: [{’element’: ’Si’, ’occu’: 1}],
’abc’: [0.125, 0.125, 0.125], ’xyz
’: [0.5555955, 0.3928655,
0.9623195], ’properties’: {’magmom
’: -0.0}, ’label’: ’Si’}, {’species
’: [{’element’: ’Li’, ’occu’: 1}],
’abc’: [0.5, 0.5, 0.5], ’xyz’:
[2.222382, 1.571462, 1.924639], ’
properties’: {}, ’label’: ’Li’}]}

Here’s the JSON string for the most stable diamond cubic Si structure retrieved
directly from MP:
‘‘‘json
{’sites’: [{’species’: [{’element’: ’Si’, ’occu’: 1}],

’abc’: [0, 0, 0], ’xyz’: [0, 0, 0], ’label’: ’Si’, ’properties’: {}},
{’species’: [{’element’: ’Si’, ’occu’: 1}],
’abc’: [0.25, 0.25, 0.25], ’xyz’: [0.178, 0.178, 0.178], ’label’: ’Si’, ’properties’:

{}}],
’lattice’: {’matrix’: [[3.866002, 0, 2.243049],
[3.866002, 3.866002, 0],
[0, 3.866002, 2.243049]],
’a’: 5.431, ’b’: 5.431, ’c’: 5.431,
’alpha’: 109.471219, ’beta’: 109.471219, ’gamma’: 109.471219,
’volume’: 129.584354898},
’properties’: {’space_group’: {’number’: 227,
’source’: ’spglib’,
’symbol’: ’Fd-3m’}}}

‘‘‘

Now, let’s insert one Li atom at the tetrahedral interstitial site in this diamond
cubic Si structure and retrieve the final pymatgen structure as a JSON string:
‘‘‘json
{’sites’: [{’species’: [{’element’: ’Si’, ’occu’: 1}],

’abc’: [0, 0, 0],
’xyz’: [0, 0, 0],
’label’: ’Si’,
’properties’: {}},
{’species’: [{’element’: ’Si’, ’occu’: 1}],
’abc’: [0.25, 0.25, 0.25],
’xyz’: [0.178, 0.178, 0.178],
’label’: ’Si’,
’properties’: {}},
{’species’: [{’element’: ’Li’, ’occu’: 1}],
’abc’: [0.5, 0.5, 0.5],
’xyz’: [0.5, 0.5, 0.5],
’label’: ’Li’,
’properties’: {}}],

’lattice’: {’matrix’: [[3.866002, 0, 2.243049],
[3.866002, 3.866002, 0],
[0, 3.866002, 2.243049]],
’a’: 5.431,
’b’: 5.431,
’c’: 5.431,
’alpha’: 109.471219,
’beta’: 109.471219,
’gamma’: 109.471219,
’volume’: 129.584354898},
’properties’: {’space_group’: {’number’: 227,
’source’: ’spglib’,
’symbol’: ’Fd-3m’}}}

‘‘‘
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Table 6 – continued from previous page

Question Answer
LLaMP GPT-3.5

B6.12 What is the magnetic or-
dering of stable FePO4?
Give me its material id,
space group, and magneti-
zation per formula unit.

The stable FePO4 has a
ferromagnetic (FM) magnetic
ordering. Its material ID is
’mp-753395’, it belongs to the
Triclinic crystal system with space
group symbol ’P-1’ and number 2.
The total magnetization per formula
unit is 5.00000015 Bohr
magnetons.

The magnetic ordering of stable FePO4 is antiferromagnetic. Its material id is mp-
5405, and its space group is Pnma. The magnetization per formula unit is 4.14
µB.
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C OTHER CAPABILITIES

C.1 AUTOMATED COMPUTATIONAL WORKFLOW

The following example shows how LLaMP uses computational workflow atomate2 and job man-
ager jobflow to run automated molecular dynamics simulation using foundation machine learning
interatomic potential MACE-MP-0 (Batatia et al., 2023).

Query:
I would like you to help me run MD simulation with the follwing steps:

1. Retrieve the stable LiTaO3 structure from Materials Project
2. Create a supercell around the size of 100 atoms
3. Use atomate2 with foundation ML forcefield MACE to run Nose-Hoover NVT simulation

for 2 ps with annealing temperature scheduling 300 to 800 back to 300 Kelvin.
Use 2 fs timestep and save the trajectory to a ASE traj file.

4. Read the trajectory file and plot the system temperature vs time

> Entering new AgentExecutor chain...
Thought: Do I need to use a tool? Yes
Action: MPStructureRetriever
Action Input: LiTaO3

> Entering new AgentExecutor chain...
Action:
‘‘‘json
{
"action": "search_materials_structure__get",
"action_input": {
"formula": "LiTaO3",
"limit": 5,
"fields": "material_id,structure"

}
}

All retrieved structures are saved as Pymatgen Structure JSON files to the following
paths: mp-3666.json, mp-1105280.json, mp-754345.json, mp-1105216.json, mp
-1105326.json

> Finished chain.
{’input’: ’LiTaO3’, ’output’: ’All retrieved structures are saved as Pymatgen

Structure JSON files to the following paths: mp-3666.json, mp-1105280.json, mp
-754345.json, mp-1105216.json, mp-1105326.json’}

Do I need to use a tool? Yes
Action: MPSummaryExpert
Action Input: mp-3666

> Entering new AgentExecutor chain...
Action:
‘‘‘json
{
"action": "search_materials_summary__get",
"action_input": {
"material_ids": "mp-3666"

}
}
‘‘‘Error on search_materials_summary__get: ‘fields‘ must be specified in the query.

Please revise arguments or try smaller request by specifying ’limit’ in request
.

‘‘‘json
{
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"action": "search_materials_summary__get",
"action_input": {
"material_ids": "mp-3666",
"fields": "material_id,formula_pretty,composition,nsites,symmetry"

}
}

[{’nsites’: 10, ’composition’: {’Li’: 2.0, ’Ta’: 2.0, ’O’: 6.0}, ’formula_pretty’: ’
LiTaO3’, ’symmetry’: {’crystal_system’: ’Trigonal’, ’symbol’: ’R3c’, ’number’:
161, ’point_group’: ’3m’, ’symprec’: 0.1, ’version’: ’2.0.2’}, ’material_id’: ’
mp-3666’}]

Action:
‘‘‘json
{
"action": "Final Answer",
"action_input": "Material ID mp-3666 corresponds to Lithium Tantalate (LiTaO3). It

has a trigonal crystal system with space group R3c (number 161) and point
group 3m. The structure consists of 10 sites, composed of Li, Ta, and O."

}
‘‘‘
Finished chain.
{’input’: ’mp-3666’, ’output’: ’Material ID mp-3666 corresponds to Lithium Tantalate

(LiTaO3). It has a trigonal crystal system with space group R3c (number 161)
and point group 3m. The structure consists of 10 sites, composed of Li, Ta, and
O.’}

Do I need to use a tool? Yes
Action: MPStructureRetriever
Action Input: mp-3666

Entering new AgentExecutor chain...
Action:
‘‘‘json
{
"action": "search_materials_structure__get",
"action_input": {
"material_ids": "mp-3666",
"limit": 1,
"fields": "material_id,structure"

}
}
‘‘‘

All retrieved structures are saved as Pymatgen Structure json files to the following
paths: mp-3666.json

Do I need to use a tool? Yes
Action: Python_REPL
Action Input:

from pymatgen.core import Structure

# Load the structure from the JSON file
structure = Structure.from_file(’mp-3666.json’)

# Create a supercell to approximately reach 100 atoms
num_atoms = len(structure)
multiplier = int((100 / num_atoms) ** (1/3)) + 1 # Calculate the multiplier for each

dimension
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supercell = structure * (multiplier, multiplier, multiplier)

# Save the supercell structure to a file and print the number of atoms
supercell.to(fmt="poscar", filename="supercell.vasp")
print({"supercell_path": "supercell.vasp", "num_atoms": len(supercell)})

{’supercell_path’: ’supercell.vasp’, ’num_atoms’: 270}

Do I need to use a tool? Yes
Action: MLFFMDAgent
Action Input: {"structure_path": "supercell.vasp", "forcefield": "MACE", "

simulation_type": "NVT", "temperature_schedule": [300, 800, 300], "
simulation_time": 2, "timestep": 2, "trajectory_file": "trajectory.traj"}Do I
need to use a tool? Yes

> Entering new AgentExecutor chain...
Action:
‘‘‘json
{
"action": "MLFF MD",
"action_input": {
"run_mode": "local",
"project": "llamp-atomate2",
"atom_path_or_dict": "supercell.vasp",
"force_field_name": "MLFF.MACE",
"time_step": 2,
"n_steps": 1000,
"ensemble": "NVT",
"dynamics": "langevin",
"temperature": [300, 800, 300],
"traj_file": "trajectory.traj",
"traj_file_fmt": "ase",
"traj_interval": 1

}
}
‘‘‘Action:

2024-05-12 14:42:31,797 INFO Started executing jobs locally
2024-05-12 14:42:31,837 INFO Starting job - Forcefield MD (040866d1-fbcb-4e0b-9044-0

ed3cf9d0eef)
Using Materials Project MACE for \texttt{MACECalculator} with /global/homes/c/

cyrusyc/.cache/mace/5yyxdm76
Using \texttt{float32} for \texttt{MACECalculator}, which is faster but less

accurate. Recommended for MD. Use float64 for geometry optimization.
Default dtype float32 does not match model dtype float64, converting models to

float32.
2024-05-12 14:43:58,683 INFO Finished job - Forcefield MD (040866d1-fbcb-4e0b-9044-0

ed3cf9d0eef)
INFO:jobflow.core.job:Finished job - Forcefield MD (040866d1-fbcb-4e0b-9044-0

ed3cf9d0eef)
2024-05-12 14:43:58,710 INFO Finished executing jobs locally
INFO:jobflow.managers.local:Finished executing jobs locally
{’energy’: -2262.60595703125, ’n_steps’: 1001}
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Action:
‘‘‘json
{
"action": "Final Answer",
"action_input": "The molecular dynamics simulation was successfully completed. The

final energy of the system after 1001 steps is -2262.60595703125 eV."
}
‘‘‘Action:
‘‘‘json
{
"action": "Final Answer",
"action_input": "The molecular dynamics simulation was successfully completed. The

final energy of the system after 1001 steps is -2262.60595703125 eV."
}
‘‘‘

> Finished chain.
{’input’: ’{"structure_path": "supercell.vasp", "forcefield": "MACE", "

simulation_type": "NVT", "temperature_schedule": [300, 800, 300], "
simulation_time": 2, "timestep": 2, "trajectory_file": "trajectory.traj"}’, ’
output’: ’The molecular dynamics simulation was successfully completed. The
final energy of the system after 1001 steps is -2262.60595703125 eV.’}Do I need
to use a tool? Yes

Action: Python_REPL
Action Input:

import matplotlib.pyplot as plt
from ase.io import read

# Load the trajectory
trajectory = read(’trajectory.traj’, index=’:’)

# Extract temperatures and time steps
temperatures = [step.get_temperature() for step in trajectory]
time_steps = [i * 2 for i in range(len(temperatures))] # Calculate time steps

manually since each step is 2 fs

# Plotting
plt.figure(figsize=(10, 5))
plt.plot(time_steps, temperatures, label=’Temperature␣(K)’, marker=’o’)
plt.title(’Temperature␣vs␣Time␣during␣MD␣Simulation’)
plt.xlabel(’Time␣(fs)’)
plt.ylabel(’Temperature␣(K)’)
plt.grid(True)
plt.legend()
plt.savefig(’temperature_vs_time.png’)
plt.show()
print({"temperature_vs_time_plot": "temperature_vs_time.png"})

31



1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

Under review as a conference paper at ICLR 2025

C.2 SIMULATION CODE GENERATION AND EXECUTION

Below we present how LLaMP can generate, self-correct, and execute ASE simulation code to cal-
culate the bulk modulus of aluminum.

Generate a script and run ASE EMT calculator to relax 2x2x2 Al supercell and
calculate its bulk modulus

# Entering new AgentExecutor chain...
To generate a script and run the ASE (Atomic Simulation Environment) EMT (Effective

Medium Theory) calculator to relax a 2x2x2 Al supercell and calculate its bulk
modulus, we need to write a Python script that uses ASE’s functionalities. Here
’s a step-by-step breakdown of what the script will do:

1. Import necessary modules from ASE.
2. Create an aluminum (Al) supercell.
3. Set up the EMT calculator.
4. Relax the structure using the EMT calculator.
5. Calculate the bulk modulus.

Let’s write the script:

from ase import Atoms
from ase.build import bulk
from ase.calculators.emt import EMT
from ase.constraints import StrainFilter, ExpCellFilter
from ase.optimize import BFGS
from ase.eos import EquationOfState

# Create an Al supercell
al = bulk(’Al’, ’fcc’, a=4.05, cubic=True)
al = al.repeat((2, 2, 2)) # Repeat the unit cell to create a 2x2x2 supercell

# Set up the EMT calculator
al.set_calculator(EMT())

# Relax the structure
strain_filter = StrainFilter(al)
optimizer = BFGS(strain_filter)
optimizer.run(fmax=0.01)

# Calculate the bulk modulus

32



1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592

Under review as a conference paper at ICLR 2025

volumes = []
energies = []
for x in [0.98, 0.99, 1.00, 1.01, 1.02]:

al_copy = al.copy()
al_copy.set_calculator(EMT())
cell = al_copy.get_cell()
al_copy.set_cell(cell * x, scale_atoms=True)
volumes.append(al_copy.get_volume())
energies.append(al_copy.get_potential_energy())

eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit()
eos.plot(’al-eos.png’)

print(f’Bulk␣modulus:␣{B␣/␣kJ}␣GPa’)

Now, let’s execute this script using the Python\_REPL tool.

Action: Python\_REPL
Action Input:

from ase import Atoms
from ase.build import bulk
from ase.calculators.emt import EMT
from ase.constraints import StrainFilter, ExpCellFilter
from ase.optimize import BFGS
from ase.eos import EquationOfState
from ase.units import kJ

# Create an Al supercell
al = bulk(’Al’, ’fcc’, a=4.05, cubic=True)
al = al.repeat((2, 2, 2)) # Repeat the unit cell to create a 2x2x2 supercell

# Set up the EMT calculator
al.set_calculator(EMT())

# Relax the structure
strain_filter = StrainFilter(al)
optimizer = BFGS(strain_filter)
optimizer.run(fmax=0.01)

# Calculate the bulk modulus
volumes = []
energies = []
for x in [0.98, 0.99, 1.00, 1.01, 1.02]:

al_copy = al.copy()
al_copy.set_calculator(EMT())
cell = al_copy.get_cell()
al_copy.set_cell(cell * x, scale_atoms=True)
volumes.append(al_copy.get_volume())
energies.append(al_copy.get_potential_energy())

eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit()

print(f’Bulk␣modulus:␣{B␣/␣kJ}␣GPa’)
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Step Time Energy fmax
BFGS: 0 01:37:31 -0.048066 8.967521
BFGS: 1 01:37:31 1.542253 33.456077
BFGS: 2 01:37:31 -0.154186 1.250352
BFGS: 3 01:37:31 -0.156157 0.259261
BFGS: 4 01:37:31 -0.156246 0.000522
Bulk modulus: 3.923492594026645e-23 GPa

The output of the bulk modulus calculation seems to be incorrect because the value
is extremely small and not in the expected range for aluminum. This is likely
due to a unit conversion error. The ASE package uses eV and Angstroms for
energy and length, respectively, and the bulk modulus should be in units of eV/
Angstromˆ3, which can be converted to GPa. The conversion factor from eV/
Angstromˆ3 to GPa is approximately 160.21766208. Let’s correct the script to
include the proper conversion factor and rerun the calculation.

Action: Python\_REPL
Action Input:

from ase import Atoms
from ase.build import bulk
from ase.calculators.emt import EMT
from ase.constraints import StrainFilter, ExpCellFilter
from ase.optimize import BFGS
from ase.eos import EquationOfState
from ase.units import kJ

# Create an Al supercell
al = bulk(’Al’, ’fcc’, a=4.05, cubic=True)
al = al.repeat((2, 2, 2)) # Repeat the unit cell to create a 2x2x2 supercell

# Set up the EMT calculator
al.set_calculator(EMT())

# Relax the structure
strain_filter = StrainFilter(al)
optimizer = BFGS(strain_filter)
optimizer.run(fmax=0.01)

# Calculate the bulk modulus
volumes = []
energies = []
for x in [0.98, 0.99, 1.00, 1.01, 1.02]:

al_copy = al.copy()
al_copy.set_calculator(EMT())
cell = al_copy.get_cell()
al_copy.set_cell(cell * x, scale_atoms=True)
volumes.append(al_copy.get_volume())
energies.append(al_copy.get_potential_energy())

eos = EquationOfState(volumes, energies)
v0, e0, B = eos.fit()

# Convert the bulk modulus from eV/Angstromˆ3 to GPa
B_GPa = B * 160.21766208

print(f’Bulk␣modulus:␣{B_GPa}␣GPa’)
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Step Time Energy fmax
BFGS: 0 01:37:48 -0.048066 8.967521
BFGS: 1 01:37:48 1.542253 33.456077
BFGS: 2 01:37:48 -0.154186 1.250352
BFGS: 3 01:37:48 -0.156157 0.259261
BFGS: 4 01:37:48 -0.156246 0.000522
Bulk modulus: 39.23492594026644 GPa

Do I need to use a tool? No
Final Answer: The corrected bulk modulus of the relaxed 2x2x2 Al supercell

calculated using the ASE EMT calculator is approximately 39.23 GPa.
# Finished chain.
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