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Unified and Generalizable Reinforcement Learning for Facility
Location Problems on Graphs

Anonymous Author(s)∗

Abstract
Facility location problems on graphs are ubiquitous in the real
world and hold significant importance, yet their resolution is often
impeded by NP-hardness. MIP solvers can find the optimal solutions
but fail to handle large instances, while algorithm efficiency has a
higher priority in cases of emergency. Recently, machine learning
methods have been proposed to tackle such classical problems with
fast inference, but they are limited to the myopic constructive pat-
tern and only consider simple cases in Euclidean space. This paper
introduces a unified and generalizable approach to tackle facility
location problems on weighted graphs with deep reinforcement
learning, demonstrating a keen awareness of complex graph struc-
tures. Striking a harmonious balance between solution quality and
running time, our method stands out with superior efficiency and
steady performance. Our model trained on small graphs is highly
scalable and consistently generates high-quality solutions, achiev-
ing a speedup of more than 2000 times to Gurobi on instances with
1000 nodes. The experiments on Shanghai road networks further
demonstrate its practical value in solving real-world problems.

CCS Concepts
• Networks→ Network design and planning algorithms; •
Computing methodologies→ Reinforcement learning.

Keywords
Facility location problems, Graphs and networks, Combinatorial
optimization, Deep reinforcement learning
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1 Introduction
Facility location problems (FLPs) study optimizing the placement
of a set of facilities to meet customer demands and minimize some
objective function. Various models are employed to address specific
requirements, including single/multiple facility problems, median
location problems, dynamic location problems, etc [4]. According
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to Farahani and Hekmatfar [10], there are four essential compo-
nents defining location problems: customers, facilities to be located,
a space in which customers and facilities are located, and a dis-
tance metric between customers and facilities. Among the distance
metrics used, routing distance in networks is notable, wherein cus-
tomers and facilities are positioned on the nodes of a graph. To
address optimization problems in non-Euclidean spaces, one ap-
proach involves computing the pairwise distance matrix between
all nodes and reformulating the problem into a general framework.
Figure 1 illustrates the process of solving real-world facility location
problems on graphs. Initially, real-world networks from diverse
domains are abstracted into graphs. The demands at each node
and the pairwise distances between nodes are utilized to encode
problems as mathematical optimization models. This quantitative
representation, along with specific constraints inherent to various
problem types, is then input into solvers for final solutions.

Among various concrete problems of facility location problems
in networks, we focus on two of them, namely the 𝑝-median prob-
lem (PMP) and the facility relocation problem (FRP). PMP is a
crucial branch of facility location problems that seeks to minimize
the weighted sum of distance costs between facilities and demand
points, with fixed costs for opening facilities and a predefined num-
ber of facilities 𝑝 . It finds applications in various fields, including
designing electric charging station networks [13], establishing pub-
lic services such as schools [26], and siting shared bicycles [7].
While the 𝑝-median model proves effective in static scenarios, it
encounters limitations in dynamic and constrained environments.
Take urban infrastructure constructed during a city’s early devel-
opment stages. The dynamic and evolving population in this area
over time leads to a mismatch between actual demands and the out-
dated facility layout. Under such circumstances, it becomes more
pragmatic to relocate facilities rather than plan anew, especially
given economic constraints limiting the number of relocations. An-
other pertinent example involves the short-term need to rebalance
a bicycle-sharing system to adjust to the frequent redistribution of
bikes due to user usage patterns. These scenarios give rise to the
second problem of interest: improving the existing facility layout
within a constrained number of relocation steps, known as the facil-
ity relocation problem. For FLPs in case of emergency [19, 32] and
scenarios with frequent demand shifts, there are higher require-
ments for algorithm efficiency and they often prioritize running
time over optimality.

Many heuristics and meta-heuristics have been devised to solve
FLPs. From the perspective of how the solution evolves as the
algorithm progresses, they can be categorized into two genres: con-
structive methods and improving methods. Constructive methods
start with an empty set of facilities and build the solution incremen-
tally. In contrast, improving heuristics aim to enhance a feasible
solution through modifications. Constructive methods typically
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Figure 1: The general pipeline of solving real-world facility locations problems on graphs. Real-world networks are converted
into abstract graph representations. The demands of each node and pairwise distances are used to encode the problems as
mathematical optimization models. This quantitative representation along with problem constraints is fed into constraint
solvers, yielding the final solutions for various FLPs.

exhibit myopic behavior by not altering or undoing chosen facili-
ties. Empirical results corroborate this observation, indicating that
interchange algorithms achieve lower optimality gaps [16], albeit
at the expense of increased runtime.

The recent advancement in machine learning, particularly deep
learning, offers an alternative perspective on solving these classical
problems. Compared to general-purpose constraint programming
solvers, the strong expressiveness and rapid inference capabilities
of neural networks make them powerful tools for tackling com-
plex combinatorial optimization problems [2]. This is particularly
advantageous in times of emergency that demand real-time re-
sponses to large-scale problems. However, previous works in this
field predominantly follow the constructive approach of creating
solutions [18, 21, 23, 30]. Moreover, previous studies are limited to a
simplified geometrical setting without considering graph structures.
In many scenarios, such as urban planning and network routing,
graph distances can portray actual traveling costs more accurately
than straight-line distance [29].

To address these limitations, we propose a highly scalable swap-
based approach to solve facility location problems in combination
with reinforcement learning. Ourmodel demonstrates a keen aware-
ness of the complex graph structures of the instances and the solving
states, enabling it to make improvement decisions effectively and
efficiently. Experiments reveal that our improving-style method
demonstrates stronger generalizability compared to constructive-
style peer methods with deep learning.

In conclusion, the main contributions of this paper are as follows:

• Unified approach: We introduce a unified algorithm capa-
ble of simultaneously solving two FLPs, i.e. the relocation
problem and the 𝑝-median problem.

• Generalizability: The novel improving-style algorithm show-
cases superior generalizability across varying graph sizes
and facility numbers. It has more steady performance and
is less sensitive to instance parameters.

• Performance and scalability: Our method makes rapid re-
sponses to large instances up to thousands of nodes within

seconds, yielding high-quality solutions and making signif-
icant acceleration to peer methods.

• Complexity handling: Through delicately designed features,
our model can handle FLPs with complex structures and
graph distances.

2 Related Work
We consider facility location problems in discrete solution spaces,
categorizing them as combinatorial optimization (CO) problems.
The survey [2] provides a comprehensive review of the intersection
of machine learning and combinatorial optimization.

2.1 Machine Learning for Facility Location
Problems

Several works have explored solving PMP with machine learning
techniques. Most of these approaches formulate the solution con-
struction scheme as a Markov decision process and build solutions
step-by-step. For the 𝑝-median problem, Wang et al. [30] first pro-
pose to solve the uncapacitated 𝑝-median problem in the Euclidean
space with reinforcement learning and graph attention networks.
They use the REINFORCE [33] algorithm to choose the next facil-
ity in the solution. Zhao et al. [36] use DQN [24] to address the
capacitated 𝑝-median problem. Matis and Tarábek [23] solve the
weighted 𝑝-median problem with reinforcement learning and con-
volutional neural networks. [18] is a recent work that approaches
a line of spatial optimization problems with an encoder–decoder
structure called SpoNet. The above formulation has been adapted
to other FLPs, including the maximal covering location problem
(MCLP) [28], 𝑝-center problem (PC) [6], etc. As for FRP, Luo et al.
[21] address the facility relocation problem with a twofold objective
of facility exposure and user convenience. They use a reinforcement
learning module as an assistive component to a greedy algorithm
that maximizes the single-step reward.

Our work is the first machine learning method that addresses the
FLPs from an improving perspective and handles complex graph
structures of instances. Our agent exhibits a much higher level

2
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of autonomy compared to [21], as it can choose which facility to
relocate and its destination.

2.2 Machine Learning for Solution
Improvement

Though most machine learning solutions to CO problems build
solutions incrementally, there are some works exploring general
improvement-style algorithms in a broader scope. The pioneering
work of Chen and Tian [5] introduces NeuRewriter, a reinforce-
ment learning model that learns region-picking and rewriting-rule
policies. This model is applied to expression simplification, job
scheduling, and capacitated vehicle routing problems. In Lu et al.
[20], the focus is on enhancing solutions to the capacitated vehi-
cle routing problem, incorporating perturbation operators for a
larger search space. Additionally, Wu et al. [34] consider improving
heuristics for two routing problems using a compatibility layer
computed based on query and key from self-attention layers. Sum-
marizing three intervention points of meta-heuristics, Falkner et al.
[9] design a policy model based on graph neural networks to assist
local search, conducting experiments on job shop scheduling and
capacitated vehicle routing problems. Garmendia et al. [12] com-
bine graph neural networks with hill-climbing-based algorithms
to improve solutions for preference ranking problem, traveling
salesman problem, and the graph partitioning problem. Zhang et al.
[35] propose a RL-guided improvement heuristic for solving job-
shop scheduling problems. It’s noteworthy that most works in this
domain primarily focus on routing problems, which are sensitive
to the sequential order of nodes, with objective functions solely
defined by adjacent nodes in the solution sequence. The different
problem structure of FLP introduces more complexity and poses
unique challenges.

3 Preliminaries and Formulation
In this section, we formally define two typical types of FLPs on
undirected weighted graphs.

3.1 P-median Problem
We study the 𝑝-median problem defined on a graph 𝐺 (𝑉 , 𝐸), given
coordinates (𝑥𝑖 , 𝑦𝑖 ) and demand 𝑝𝑖 for each node 𝑖 ∈ 𝑉 . The edges
𝐸 represent available routes for traveling between nodes, and the
traveling costs are determined by the lengths of the shortest paths
rather than straight-line distances. Assuming each facility possesses
infinite capacity and one node can only accommodate one facility,
the objective of PMP on 𝐺 is to select a facility set 𝐹 ⊆ 𝑉 of the
predefined size 𝑝 to minimize the overall traveling cost. This cost
is defined as the weighted sum of costs from nodes to their nearest
facilities. Let 𝑛 = |𝑉 | denote the number of nodes. The traveling
cost between nodes is defined by the shortest paths on𝐺 , expressed
through the distance matrix 𝐷 ∈ R+𝑛×𝑛 , where 𝑑𝑖 𝑗 signifies the
distance between nodes 𝑖 and 𝑗 . The distance matrix can be con-
veniently computed offline using Dijkstra’s algorithm Dijkstra [8].
Formally, the objective function O(𝐹 ) and the optimal facility set

Algorithm 1: A general swap framework for facility relo-
cation problem
Parameters : iteration number 𝑇 , swapping model 𝑎𝑔𝑒𝑛𝑡
Input: graph 𝐺 , existing facilities 𝐹0, relocation budget 𝑘
Output: relocation pair (𝑅𝑘 , 𝐼𝑘 ), new facility set 𝐹

1 Function SwapRelocate(𝑇, 𝑎𝑔𝑒𝑛𝑡,𝐺, 𝐹0, 𝑘)
2 𝑅𝑘 , 𝐼𝑘 , 𝐹𝑘 ← ∅, ∅, 𝐹0;
3 for 𝑖 ← 1 to 𝑇 do
4 𝑅, 𝐼, 𝐹 ← ∅, ∅, 𝐹0; // removed, inserted &

current facilities

5 for 𝑗 ← 1 to 𝑘 do
6 (𝑢1, 𝑢2) ← 𝑎𝑔𝑒𝑛𝑡 .act(𝐺 , 𝐹 );
7 𝑅, 𝐼, 𝐹 ← 𝑅 ∪ {𝑢1}, 𝐼 ∪ {𝑢2}, 𝐹 \ {𝑢1} ∪ {𝑢2};
8 if O(𝐹 ) < O(𝐹𝑘 ) then
9 𝑅𝑘 , 𝐼𝑘 , 𝐹𝑘 ← 𝑅, 𝐼, 𝐹 ;

10 return (𝑅𝑘 , 𝐼𝑘 ), 𝐹 ;

𝐹 ∗ are articulated as follows:

O(𝐹 ) =
∑︁
𝑖∈𝑉

𝑝𝑖 min
𝑗∈𝐹

𝑑𝑖 𝑗 , s.t. 𝐹 ⊆ 𝑉 , |𝐹 | = 𝑝. (1)

𝐹 ∗ = argmin
𝐹

O(𝐹 ) . (2)

3.2 Facility Relocation Problem
Different from the classical 𝑝-median model, the facility relocation
problem considers a dynamic demand changed over time and the fa-
cilities should be relocated correspondingly to meet people’s needs.
For example, in urban areas, the population density may shift due to
new residential developments or changes in public transportation
routes, leading to varying demands. For a predefined set of facilities
𝐹0 ⊂ 𝑉 and a limited budget 𝑘 , we study the improvement achieved
by moving at most 𝑘 ≤ |𝐹0 | facilities within 𝐹0. This relocation is
represented by a pair of sets (𝑅𝑘 , 𝐼𝑘 ). The updated facility set is
defined as 𝐹 = 𝐹0∪ 𝐼𝑘 \𝑅𝑘 . The fundamental assumptions regarding
traveling costs and demands remain consistent with the 𝑝-median
model. Formally, the objective of relocation problem O𝑘 (𝑅𝑘 , 𝐼𝑘 |𝐹0)
is defined based on (1):

O𝑘 (𝑅𝑘 , 𝐼𝑘 |𝐹0) = O(𝐹0 ∪ 𝐼𝑘 \ 𝑅𝑘 ), (3)
s.t. 𝑅𝑘 ⊆ 𝐹0, 𝐼𝑘 ⊆ 𝑉 \ 𝐹0, |𝑅𝑘 | = |𝐼𝑘 | ≤ 𝑘. (4)

We further define the improvement ratio 𝑄 of a relocation set pair
as the ratio of decreased cost to original cost before relocation:

𝑄 (𝑅𝑘 , 𝐼𝑘 |𝐹0) =
O(𝐹0) − O𝑘 (𝑅𝑘 , 𝐼𝑘 |𝐹0)

O(𝐹0)
. (5)

4 Methods
We start with a general swap-based framework for solving the
facility relocation problem, as shown in Algorithm 1. This frame-
work presents the high-level logic of an improving-style algorithm.
Given the set of existing facilities 𝐹0 and the maximum number
of relocation 𝑘 , it incrementally builds the relocation set pair with
the instructions of the given agent. The agent selects a removed
facility 𝑢1 and an inserted facility 𝑢2 for 𝑘 iterations, and the best

3
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Figure 2: The model architecture of PPO-swap for solving facility location problems. Node features include static attributes
and dynamic states of solutions. We use graph neural networks (GNN) for node embeddings and integrate attention layers to
generate two-step actions. The critic evaluates the states based on the global graph context. The training process is powered by
the PPO algorithm.

solution is updated if a lower objective is achieved. This framework
is flexible and compatible with various algorithms, including classi-
cal handcrafted heuristics. Apart from solving FRP independently,
Algorithm 1 also serves as a functional module for solving PMP
from scratch, as discussed in Section 4.5.

4.1 Reinforcement Learning Formulation for
Facility Relocation

Wemodel the relocation pair selection as aMarkov decision process,
with key components of reinforcement learning defined as follows.
The states encompass static attributes of the instances, such as
node coordinates and demands, along with the dynamic statistics
associated with the current feasible solution (see Section 4.3 for
details). Let 𝑅 be the current set of removed facilities and 𝐼 the
inserted facilities during exploration (consistent with Algorithm 1).
The action space is 𝐹 × (𝑉 \ 𝐹 ), one facility to be removed and one
to be inserted. Let (𝑢𝑖1, 𝑢

𝑖
2) be the relocation pair at the 𝑖-th step.

The corresponding reward 𝑟𝑖 is defined as the improvement ratio
gained from step 𝑖 , namely

𝑟𝑖 (𝑢𝑖1, 𝑢
𝑖
2) = 𝑄 (𝑅 ∪ {𝑢

𝑖
1}, 𝐼 ∪ {𝑢

𝑖
2}|𝐹0) −𝑄 (𝑅, 𝐼 |𝐹0) . (6)

4.2 PPO-swap: a Learning-based Interchange
Algorithm

As an instantiation of Algorithm 1, we employ the proximal policy
optimization (PPO) algorithm [27] to train an intelligent agent
named PPO-swap, designed to learn relocation strategies. PPO-
swap adopts an actor-critic network architecture. The actor consists

of 𝐿1 graph convolutional layers for node embedding, 𝐿2 multi-
layer perceptrons (MLP) layers for scoring, and an extra attention
layer to choose node pairs conditionally. The critic has a similar
structure except for the last attention layer. The overall architecture
is depicted in Figure 2. The integration of PPO and GNN equips our
model to extract crucial features from complex graph structures,
empowering it to make effective decisions.

4.3 Voronoi-aware Graph Feature Extractor
We now introduce the node features and graph embeddings of our
model, used in both actor and critic. For an input problem instance,
the basic attributes of nodes remain unchanged during the solving
process, including node coordinates (𝑥𝑖 , 𝑦𝑖 ) and node demand 𝑝𝑖 .
Dynamic features of the states are crucial for identifying benefi-
cial relocation pairs since the improving algorithm continuously
modifies the current solution. For each node, we utilize a binary
variable indicating whether the node is selected as a facility and its
traveling cost as features.

Moreover, the Voronoi cells associated with the facility set are
natural structures formed in FLPs on a plane, providing inspiration
for our approach. The 2D plane can be divided into 𝑝 regions cor-
responding to a set of 𝑝 facilities. Each region, termed a Voronoi
cell, comprises points closest to the respective facility compared to
others. Let𝑉𝑟 denote the 𝑟 -th Voronoi cell (associated with the 𝑟 -th
facility). We exploit additional information from the Voronoi cell
created by each facility. Specifically, we compute two cell-based
features for facility 𝑓 (𝑟 ): the sum of demands in cell

∑
𝑢∈𝑃 (𝑉𝑟 ) 𝑝𝑢

4
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Algorithm 2: Swap algorithm for 𝑝-median problem
Parameters : iteration number 𝑇 , swap trials 𝐾 , swap

budget 𝑆 , swapping model 𝑎𝑔𝑒𝑛𝑡
Input: graph 𝐺 , facility number 𝑝
Output: facility set 𝐹

1 Function SwapLocate(𝑇, 𝐾, 𝑆, 𝑝, 𝑎𝑔𝑒𝑛𝑡)
2 𝐹 ∗ ← ∅;
3 for 𝑖 ← 1 to 𝑇 do
4 𝐹 ← an initial set of 𝑝 facilities;
5 (𝐹𝑘 , 𝐽𝑘 ), 𝐹 ← SwapRelocate(𝐾, 𝑎𝑔𝑒𝑛𝑡,𝐺, 𝐹, 𝑆);
6 if O(𝐹 ) < O(𝐹 ∗) then
7 𝐹 ∗ ← 𝐹 ;

8 return 𝐹 ∗;

and the total traveling cost in cell
∑
𝑢∈𝑃 (𝑉𝑟 ) 𝑝𝑢𝑑𝑓 (𝑟 )𝑢 . The facil-

ity features are padded with zero for non-facility nodes. Ablation
experiments in Section 5.2 prove that Voronoi cells provide valu-
able insights into the quality of facility placement and guide the
relocation process effectively. For node embedding, the concatena-
tion of the aforementioned features serves as initial node features
and is fed into GNN. The initial edge embeddings are the lengths
of the edges. Let h𝐿1

𝑖
denote the node embedding of node 𝑖 after

the GNN module. Wedefine a global embedding for the graph by
w(𝐺) = (mean_pooling𝑉𝑖=1 (h

𝐿1
𝑖
)∥max_pooling𝑉𝑖=1 (h

𝐿1
𝑖
)), where ∥

stands for vector concatenation. The critic MLP takesw(𝐺) as input
and yields a scalar to score the current state.

4.4 Attention-based Relocation Pair Selection
The action space for one relocation involves choosing two nodes:
the facility to remove 𝑢1 and the new facility to insert 𝑢2, As the ac-
tion space is quadratic to the number of nodes (𝑢1, 𝑢2) ∈ 𝐹 × (𝑉 \𝐹 ),
we break down the target into a two-stage task, i.e. 𝑃 (𝑢1, 𝑢2 |ΘA ) =
𝑃 (𝑢1 |ΘA )𝑃 (𝑢2 |ΘA , 𝑢1), where ΘA denotes the learnable parame-
ters of the actor.

After the GNNmodule extracts an embedding h𝐿1
𝑖

for each node 𝑖 ,
a global embedding can be expressed by h = mean_pooling𝑉𝑖=1 (h

𝐿1
𝑖
).

Given the global context and node embeddings, subsequent 𝐿2
layers of MLPs evaluate the priority of removing node (facility) 𝑖 by

g𝐿2𝑖 = MLP(h𝐿1𝑖 ∥ℎ), (7)

which yields the final probability distribution of removing 𝑖:

𝑃− (𝑖 |ΘA ) = 𝜎 (𝑙𝑜𝑔𝑖𝑡1 (𝑖)), 𝑙𝑜𝑔𝑖𝑡1 (𝑖) =
{
g𝐿2
𝑖
, 𝑖 ∈ 𝐹

−∞, 𝑖 ∉ 𝐹
, (8)

where 𝜎 represents the Softmax function.
Let 𝑢1 be the removed node sampled from 𝑃− . Next, we consider

choosing the new facility 𝑢2 given node embeddings and 𝑢1. This
is implemented by an attention layer

f𝑗 = Att(h𝐿1
𝑗
) = (h𝐿1

𝑗
)⊤tanh(Linear(h𝐿1𝑢1 )), (9)

𝑃+ ( 𝑗 |ΘA , 𝑢1) = 𝜎 (𝑙𝑜𝑔𝑖𝑡2 ( 𝑗)), 𝑙𝑜𝑔𝑖𝑡2 ( 𝑗) =
{ f𝑗 , 𝑗 ∈ 𝑉 \ 𝐹
−∞, 𝑗 ∉ 𝑉 \ 𝐹 .

(10)

The inserted facility 𝑢2 is sampled from 𝑃+, completing the reloca-
tion pair (𝑢1, 𝑢2) ∈ 𝐹 × (𝑉 \ 𝐹 ).

4.5 From Relocation to Location
One advantage of Algorithm 1 is its versatility, allowing it to solve
not only the facility relocation problem but also to extend seam-
lessly to the 𝑝-median problem. Algorithm 2 demonstrates how
Algorithm 1 can be integrated as a subroutine within an interchange
framework to address PMP. By introducing a hyper-parameter 𝑆
that controls the number of swaps, we can utilize the function
SwapRelocate following the initial setup. The best solution ob-
tained over 𝑇 trials is then returned as the final solution. Inter-
estingly, employing a greedy agent for SwapRelocate results in
the classical exchange algorithm [14], a well-studied heuristic for
solving PMP [1].

5 Experiments
Previous works in the field often lack rigorous experimental setups,
either not using separate test data [23] or evaluating models only
on small instances [30], resulting in limited assessments of model
performance. In contrast, our evaluation thoroughly assesses the
efficiency and effectiveness of our algorithm for solving both FRP
and PMP on complex graph data sets. Our model achieves a speedup
of more than 2000 times to Gurobi on large instances while provid-
ing competitive solutions. Additional experiments show how our
improving-style algorithm generalizes better than the constructive
paradigm. Furthermore, the experiment on Shanghai road networks
showcases how our method readily solves problems in real-world
scenarios.

5.1 Solving Facility Relocation Problem on
Weighted Graphs

Facility relocation is a useful modeling of problems that requires
making limited modifications to an existing plan. For example, the
bicycle-sharing system needs timely rebalancing to match users’
traveling demands. To simulate the complex urban road networks,
we construct a synthetic weighted graph data set based on Gabriel
graphs [11], a type of planar graph that captures the geometric prox-
imity of nodes. Node coordinates are generated with a bivariate
normal distribution in [0, 1]2. The demand for each node is gener-
ated randomly with the total demand controlled around 3,000,000.

5.1.1 Baselines. We implement two variants of Algorithm 1, namely
Random-swap and Greedy-swap. Random-swap randomly selects
relocation pairs and updates the solution if the new objective value
is improved, representing the gain of relocation out of pure “luck”.
Greedy-swap always chooses the optimal swap at each step, select-
ing the pair that results in the greatest reduction in the objective
function among all possible pairs. Furthermore, we compare two
state-of-the-art heuristics for solving the facility relocation problem:
the BestResponse algorithm from [21] based on Nash equilibrium
and FR2FP from [31]. The BestResponse algorithm is adapted to
align with our settings (see Appendix for details). The optimal
solutions are computed by Gurobi [15] by setting MIPGap=0.
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Table 1: Results of Facility Relocation Problem

Methods 𝑛 = 100 𝑛 = 200 𝑛 = 500 𝑛 = 1000

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 51.77 0.00 0.15 51.90 0.00 0.94 63.39 0.00 12.15 70.09 0.00 128.20
Greedy-swap 51.26 1.09 1.67 51.37 1.15 6.50 62.76 1.83 30.08 69.60 1.80 99.52
Random-swap 25.22 72.86 0.04 25.54 68.46 0.04 31.49 100.63 0.07 36.80 125.76 0.08
BestResponse 49.21 6.27 1.49 49.36 6.37 4.60 61.32 6.04 21.89 68.89 4.22 68.77

FR2FP 46.53 10.87 0.11 46.18 13.22 0.24 59.54 10.77 0.86 66.78 11.21 3.42
PPO-swap 47.68 8.92 0.13 48.05 8.24 0.14 60.76 7.63 0.15 67.80 7.84 0.16
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Figure 3: FRP results on different scales.

5.1.2 Settings. To assess the efficacy and scalability of different
methods, we conduct experiments with varying graph sizes, specifi-
cally 𝑛 ∈ [100, 200, 500, 1000]. We generate 10 graphs of each graph
size as our test set and evaluate the performance under various
values of 𝑝 , ranging from 5 to 40. For each instance, a random
set of 𝑝 nodes is designated as the initial facility set, and the relo-
cation budget is set to ⌊𝑝/2⌋. Each undetermined algorithm runs
for 𝑇 = 20 iterations and records the best solution. PPO-swap is
trained on 1000 graphs of size 100. The average results over 𝑝 are
reported in Table 1, including improvement ratio 𝑄 (defined in (5)),
the optimality gap, and running time. The optimality gap of an
improvement ratio 𝑄1 is defined as 𝑄0−𝑄1

𝑄0
× 100%, where 𝑄0 is the

optimal improvement ratio. Higher 𝑄-s and lower gaps are better.

5.1.3 Efficiency and Effectiveness Analysis. Figure 3 visualizes the
results in Table 1, with bars representing improvement ratios𝑄 and
lines indicating the running times (in log scale). Greedy-swap is a
strong heuristic and generates near-optimal solutions. However, it
suffers rapid increases in computational overhead as the instance
size and facility number grow, as it must iterate over an action space
of size 𝑝 × (𝑛 − 𝑝) at each step, which scales quadratically with the
instance size. The BestResponse algorithm is also based on greedy
strategies and has similar time complexity with slight speedup. The
FR2FP algorithm falls in the middle with lower improvement ratios
and higher efficiency.

PPO-swap stands out from peer methods with remarkable scal-
ability and generalizability. Even if it was only trained on small
instances, PPO-swap yields competitive solutions steadily for vari-
ous graph sizes. Moreover, it performs fast inference and actions,
taking under 0.2 seconds in all cases, with only slightly increasing
running time for large instances. PPO-swap achieves a speedup
of over 2000 compared to Gurobi when 𝑛 = 1000, stressing its
value in making real-time responses in times of emergency. The
results of Random-swap, on the other hand, represent how much
improvement comes from random swapping decisions, showcasing
our model’s ability to make wise choices.

5.2 Solving P-Median Problem on Weighted
Graphs

This section evaluates the performance of PPO-swap on the 𝑝-
median problem, wherewe choose 𝑝 facilities tominimize the global
objective. We compare our method against established baselines
on graph data sets. The evaluation focuses on solution quality and
computational efficiency, highlighting the robustness of PPO-swap
across different facility numbers.

5.2.1 Baselines. As described in Section 4.5, three swap-based
methods can be transplanted to solve PMP: Random-swap, Greedy-
swap (essentially the interchange algorithm [14]), and PPO-swap.
Additionally, we compare with a heuristic Maranzana [22] and a
meta-heuristic simulated annealing (SA). We further introduce a
variant of PPO-swap, namely PPO-no-vor, by replacing the Voronoi-
based facility features introduced in Section 4.3 with zeros. This
design of ablation is intended to prove the effectiveness of the
features we have devised with domain knowledge. The optimal
solution is computed by Gurobi [15] by setting MIPGap=0.

5.2.2 Settings. The graph data sets replicate those in Section 5.1.
Default hyper-parameters are set as follows: iteration number𝑇 = 5,
swap trial 𝐾 = 20, and swap budget 𝑆 = 𝑝 . SA runs for 1000
iterations. The average results over 𝑝 for different graph sizes are
reported in Table 2, including the optimality gap and running time.
The optimality gap of an objective 𝑥 and optimal objective 𝑦 is
defined as 𝑥−𝑦

𝑦 × 100%. Lower gaps are better.

5.2.3 Efficiency and Effectiveness Analysis. Figure 4 illustrates five
algorithms, with bars representing optimality gaps and lines in-
dicating the running times (in log scale). Similarly, Gurobi and
Greedy-swap produce high-quality solutions, but their running
time grows exponentially with 𝑛, becoming intolerable for large
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Table 2: Results of P-median Problem

Methods 𝑛 = 100 𝑛 = 200 𝑛 = 500 𝑛 = 1000

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 0.14 0.00 0.88 0.00 13.43 0.00 126.40
Greedy-swap 0.07 10.04 0.09 48.69 0.10 234.92 0.11 733.11
Random-swap 25.94 0.33 27.41 0.39 27.62 0.60 26.97 0.84

SA 25.66 0.13 15.21 0.16 15.33 0.24 20.68 0.37
Maranzana 42.71 0.52 43.83 0.97 59.24 2.54 65.03 7.52
PPO-swap 6.36 1.33 8.35 1.38 8.87 1.40 10.16 1.53
PPO-no-vor 10.24 1.30 13.27 1.34 12.28 1.36 14.73 1.48
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Figure 4: PMP results on different scales.

graphs. PPO-swap, on the other hand, excels in generating stable
and superior solutions even when faced with instances ten times
larger than the training data. Its ability to maintain near-constant
running times highlights its superior scalability compared to other
heuristics, which often exhibit degraded performance and increased
runtime as the problem size grows. The trade-off between solution
quality and computational time favors PPO-swap in many cases,
making it especially suitable for scenarios like emergency facility
selection, where both rapid response and good solutions are cru-
cial. By comparing PPO-no-vor and PPO-swap, we conclude that
the Voronoi-based features indeed enhance both performance and
stability, validating our model design.

5.3 Generalizability of Improving Algorithms
SpoNet is a latest model proposed by Liang et al. [18] that solves
FLP with deep learning models in a constructive way. To compare
the generalizability of two algorithm paradigms, we align with the
PMP experiments in [18] and compare the optimality gaps of the
two methods.

5.3.1 Settings. Each instance comprises 100 nodes with 2D coor-
dinates uniformly distributed in the range [0, 1]2. Nodes are con-
nected if their distance is within a radius of 0.16. Given that [18]
exclusively handles unweighted problems, we set the node demands
to 1. The number of facilities is fixed at 𝑝 = 15. PPO-swap is trained
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Figure 5: SpoNet_pub vs. PPO-swap on plane graphs.

on 1000 graphs following the same distribution, with 10 new graphs
reserved for testing. We use the published model1 from [18] for
evaluation and denote it as SpoNet_pub. SpoNet_pub samples with
a beam search width of 1280, and PPO-swap has the same hyper-
parameters as outlined in Section 5.2.

5.3.2 Results and Analysis. Figure 5 depicts the optimality gaps
observed in SpoNet_pub and PPO-swap across the test data. No-
tably, while both models are trained with a fixed facility number 𝑝 ,
SpoNet’s constructive solving approach exhibits a greater depen-
dency on this parameter. Consequently, it struggles to generalize
effectively when this parameter changes. In contrast, PPO-swap
demonstrates a smoother performance curve, indicating its supe-
rior adaptability to varying problem settings, a critical aspect of
generalizability inherent in our improving-style algorithm.

5.4 Tackling Graph Complexity
In addressing the complexity of graph-based facility location prob-
lems, prior approaches [18, 30] rely on simplified graph construc-
tions from 2D coordinates using Euclidean distances, while our
method natively supports graph structures as direct input and in-
corporates non-Euclidean graph metrics. In these graphs, edges
represent more complex metrics, such as shortest paths or travel
times, reflecting real-world transportation networks with spatial

1https://github.com/CO-RL/SpoNet
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Figure 6: PMP solutions of different methods on Shanghai road networks. The gray layer represents the urban road networks.
The size of red circles is proportional to the regional population. Blue crosses stands for suggested locations for facilities.
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Figure 7: SpoNet vs. PPO-swap on unweighted graphs.

constraints. We devise the following experiments to demonstrate
the non-triviality of this advance.

5.4.1 Settings. To demonstrate our method’s effectiveness on com-
plex graphs, we compared it against two variants of SpoNet [18].
The first one is SpoNet_pub as mentioned in Section 5.3, with its
Euclidean distance matrix substituted with a pairwise shortest path
matrix during inference. The second version SpoNet is trained by
using the shortest path matrix as the cost matrix for various values
of 𝑝 incrementally since it has to be trained with fixed 𝑝 . We use
unweighted graphs for training and testing since SpoNet does not
support weighted graphs.

5.4.2 Results and Analysis. As illustrated in Figure 7, SpoNet achieves
acceptable gaps when 𝑝 is small, but the performance declines as
𝑝 increases even with incremental training. For SpoNet_pub, its
performance is consistent with the fact that it was trained with
fixed 𝑝 = 15. PPO-swap outperforms both versions of SpoNet sig-
nificantly across different 𝑝 . This experiment reveals the intrinsic
advantage of our model, as it learns a general strategy to swap on
complex graph data in spite of changes in instance parameters. This
capability allows our method to capture richer graph-based infor-
mation in applications, particularly when the objective is influenced
by travel cost, a key factor in many road network applications.

5.5 Placing Facilities on Urban Road Networks
Besides the experiments on synthetic graphs, we demonstrate how
PPO-swap can solve facility location problems in real-world sce-
narios. We use the road networks and population data of Shanghai
to construct a city data set. Specifically, graph nodes consist of ag-
gregated 5000m grids, and edges are connected based on the shape
of the road network. For model training, we disturb the original
population and generate 1000 sets of node weights. Other settings
for inference are identical to Section 5.2.

Figure 6 illustrates the solutions of three methods on the city
data set for 𝑝 = 20, where the size of red circles denotes the amount
of population and blue crosses are suggested locations to place
facilities. Compared to SA, PPO-swap achieves lower costs and
places facilities in a more efficient manner. As observed, PPO-swap
increases the density of facilities in high-population areas, which
reduces average travel distances for the population. Additionally,
the spatial distribution of the PPO-swap solution is closer to that
of the Gurobi solver, making it a practical and scalable solution for
large-scale urban applications, especially for real-time deployment.

6 Conclusion
In conclusion, our work provides a novel and robust solution to
facility location problems on graphs. We introduce a versatile swap-
based framework addressing both the 𝑝-median problem and facility
relocation on graphs, achieving a commendable balance between
solution quality and running time. Extensive experiments on syn-
thetic and real-world data sets show that it is capable of producing
high-quality solutions on large graphs with fast inference.

Our work has certain limitations that warrant consideration
for future research. First, there is room for improvement in per-
formance, which could be achieved through the exploration of
more intricate model architectures. Second, while our approach
demonstrates competitive performance, the computation of node
features may require acceleration to ensure that the model remains
competitive with heuristics on small instances. Addressing these
limitations could further enhance the applicability and efficiency
of our approach in real-world settings.

In summary, our work contributes significantly to the field of
facility location optimization, providing a robust framework that
addresses complex challenges.
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A Implementation Details
A.1 Implementation of PPO-swap
All experiments are conducted on an Intel Xeon Gold 6226R CPU
with 64 cores and NVIDIA GeForce RTX 3090 GPU. The CPU oper-
ates on x86-64 architecture and the GPUs run CUDA version 12.1.
For experiments on Gabriel graphs, we generate 1000 graphs with
100 nodes as training data set. We use the GNN implementation
from Morris et al. [25]. It has 𝐿1 = 3 layers with hidden size of 128.
The edge embedding size is 1 and attention head is 1. For the MLP
module, it has 𝐿2 = 3 layers with hidden size of 128. We use PPO
algorithm for reinforcement learning and Adam optimizer with
learning rate of 0.005 and exponential decay rate of 0.995. The PPO
training hyper-parameters are listed in Table 3.
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Table 3: Hyper-parameters for training PPO-swap

Hyper-parameters Value

PPO gamma 0.9
GAE lambda 0.95
Batch size 64

Steps per epoch 1024
Optimization iterations 4

Clip ratio 0.1
Clip decay 0.998

Entropy loss weight 0.01
Critic loss weight 0.5
Gradient clipping 1
Number of epochs 300

A.2 Implementation of BestResponse
We use the BestResponse algorithm from [21] as a baseline for
FRP with reasonable modification to align with our experiments.
Since [21] optimizes a twofold objective of facility exposure and
user convenience, it is slightly different to the setting of our work.
We modify the BestResponse algorithm to optimize the global user-
facility cost in Eqs. (3,4). We notice that BestResponse reaches com-
parable results with the RL method in [21] when considering single
objective, and it should serve as a competitive baseline. Another dif-
ference in problem setting is that [21] does not limit the relocation
budget, so we add this constraint to line 1.2 in the BestResponse
algorithm. For a fair comparison, we choose relocated facilities
randomly (in line 1.3) and run Best Response for 20 iterations (the
same as other baselines).

A.3 Implementation of SpoNet
The SpoNet [18] in Section 5.4 is modified to align with our settings.
. First, we use the shortest path as the cost matrix in the model.
Second, we trained SpoNet incrementally for varying values of the
parameter 𝑝 (in range(5, 41, 5), each for 25 epochs, batch_size=64,
and epoch_size=1024). These hyperparameters are aligned with
PPO-swap.

B Additional Experiment Results
B.1 Grid Search results for GNN Architectures
We perform grid search over three hyperparameters concerning
the GNN architectures: the types of GNN layer, the number of
hidden size and the number of GNN layers. All combinations are
trained while other hyperparameters are fixed. Table 4 reports
the improvement ratio 𝑄 of each model on the test set for facility
relocation problem, where the combination (GraphConv, 128, 3)
performs best.

B.2 Experiments for FRP on Various Scales
The detailed results for 𝑛 = 100, 200, 500, 1000 solving FRP are
shown in Table 5,6,7,8. The model used for PPO-swap is trained on
graphs with 𝑛 = 100 only.

B.3 Experiments for PMP on Various Scales
The detailed results for 𝑛 = 100, 200, 500, 1000 solving PMP are
shown in Table 9,10,11,12. The model used for PPO-swap is trained
on graphs with 𝑛 = 100 only.
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Table 4: Grid search of GNN architecture hyperparamters

layer_name (32, 2) (32, 3) (32, 4) (64, 2) (64, 3) (64, 4) (128, 2) (128, 3) (128, 4)

GATv2Conv [3] 46.58 46.30 44.01 45.57 46.10 45.13 46.81 45.73 44.60
GCNConv [17] 45.73 44.58 42.88 45.84 44.25 43.20 45.01 43.87 43.24
GraphConv [25] 46.85 46.77 47.01 46.17 47.41 47.10 42.03 47.44 47.18

Table 5: Results of FRP, 𝑛 = 100

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 39.70 ± 11.19 0.00 ± 0.00 0.33 ± 0.04 42.16 ± 9.44 0.00 ± 0.00 0.36 ± 0.17 47.36 ± 9.11 0.00 ± 0.00 0.36 ± 0.14 47.33 ± 9.66 0.00 ± 0.00 0.47 ± 0.30
Greedy-swap 39.00 ± 10.70 1.44 ± 2.80 0.11 ± 0.03 41.23 ± 9.67 1.57 ± 1.39 0.41 ± 0.09 47.12 ± 9.12 0.48 ± 0.42 0.91 ± 0.25 46.91 ± 9.67 0.81 ± 0.89 1.69 ± 0.29
Random-swap 29.92 ± 12.39 17.04 ± 11.85 0.01 ± 0.00 22.72 ± 8.14 36.33 ± 21.99 0.03 ± 0.01 27.44 ± 7.12 40.59 ± 19.41 0.04 ± 0.01 21.54 ± 8.47 52.11 ± 22.77 0.05 ± 0.02
BestResponse 38.92 ± 10.51 1.63 ± 2.62 0.28 ± 0.02 40.29 ± 9.84 3.23 ± 2.13 0.59 ± 0.06 44.94 ± 8.97 4.79 ± 1.47 0.79 ± 0.07 44.86 ± 10.05 4.71 ± 2.01 1.15 ± 0.12
FR2FP 33.93 ± 12.59 9.69 ± 6.28 0.02 ± 0.00 34.86 ± 11.34 12.61 ± 5.96 0.07 ± 0.01 39.56 ± 8.95 15.42 ± 6.09 0.10 ± 0.01 41.73 ± 11.51 10.44 ± 3.94 0.13 ± 0.02
PPO-swap 38.38 ± 11.35 2.21 ± 1.80 0.03 ± 0.00 37.68 ± 11.60 7.32 ± 3.52 0.06 ± 0.00 42.62 ± 10.35 8.89 ± 2.32 0.09 ± 0.00 42.53 ± 11.17 8.90 ± 3.95 0.12 ± 0.00

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 54.65 ± 13.45 0.00 ± 0.00 0.34 ± 0.09 54.91 ± 12.81 0.00 ± 0.00 0.34 ± 0.09 61.67 ± 12.70 0.00 ± 0.00 0.30 ± 0.09 66.36 ± 11.38 0.00 ± 0.00 0.26 ± 0.03
Greedy-swap 54.07 ± 13.64 1.24 ± 0.84 2.58 ± 0.54 54.41 ± 12.83 1.30 ± 1.00 3.76 ± 0.87 61.30 ± 12.73 1.06 ± 0.79 9.86 ± 2.28 66.07 ± 11.48 0.85 ± 0.67 12.60 ± 3.33
Random-swap 25.96 ± 8.72 77.02 ± 51.62 0.06 ± 0.01 23.81 ± 10.06 86.46 ± 69.85 0.07 ± 0.01 27.04 ± 9.07 116.43 ± 94.27 0.14 ± 0.06 26.88 ± 8.80 156.17 ± 126.53 0.16 ± 0.07
BestResponse 51.64 ± 13.67 7.23 ± 2.49 1.36 ± 0.21 51.39 ± 13.27 8.45 ± 3.17 1.76 ± 0.18 57.72 ± 12.87 11.65 ± 5.24 3.14 ± 0.27 63.57 ± 11.90 9.15 ± 2.93 3.71 ± 0.36
FR2FP 49.75 ± 14.97 10.53 ± 4.05 0.19 ± 0.04 51.21 ± 13.75 8.51 ± 3.06 0.25 ± 0.04 57.93 ± 13.56 10.05 ± 3.08 0.31 ± 0.05 63.22 ± 12.25 9.68 ± 4.17 0.47 ± 0.06
PPO-swap 50.01 ± 16.00 9.62 ± 4.17 0.14 ± 0.00 48.80 ± 15.46 12.98 ± 4.26 0.18 ± 0.00 56.68 ± 15.00 12.38 ± 3.93 0.20 ± 0.00 60.65 ± 13.50 16.79 ± 2.44 0.23 ± 0.00

Table 6: Results of FRP, 𝑛 = 200

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 39.70 ± 11.19 0.00 ± 0.00 0.15 ± 0.01 42.16 ± 9.44 0.00 ± 0.00 0.16 ± 0.07 47.36 ± 9.11 0.00 ± 0.00 0.15 ± 0.05 47.33 ± 9.66 0.00 ± 0.00 0.19 ± 0.11
Greedy-swap 39.00 ± 10.70 1.44 ± 2.80 0.06 ± 0.00 41.23 ± 9.67 1.57 ± 1.39 0.27 ± 0.01 47.12 ± 9.12 0.48 ± 0.42 0.52 ± 0.01 46.91 ± 9.67 0.81 ± 0.89 0.97 ± 0.01
Random-swap 26.63 ± 12.25 22.42 ± 8.50 0.01 ± 0.00 24.11 ± 8.95 32.80 ± 13.82 0.02 ± 0.00 25.91 ± 6.07 43.42 ± 17.40 0.02 ± 0.00 21.46 ± 7.13 52.46 ± 21.96 0.03 ± 0.00
BestResponse 38.72 ± 10.48 1.97 ± 2.58 0.28 ± 0.01 40.50 ± 9.66 2.88 ± 1.65 0.55 ± 0.02 45.72 ± 9.00 3.28 ± 1.63 0.75 ± 0.03 44.67 ± 9.41 5.30 ± 2.35 1.10 ± 0.07
FR2FP 33.93 ± 12.59 9.69 ± 6.28 0.01 ± 0.00 34.86 ± 11.34 12.61 ± 5.96 0.04 ± 0.01 39.56 ± 8.95 15.42 ± 6.09 0.07 ± 0.01 41.73 ± 11.51 10.44 ± 3.94 0.09 ± 0.01
PPO-swap 38.89 ± 11.09 1.44 ± 1.24 0.03 ± 0.00 38.54 ± 11.91 5.73 ± 3.49 0.06 ± 0.00 43.38 ± 10.28 7.45 ± 2.34 0.09 ± 0.00 43.06 ± 10.26 8.17 ± 2.27 0.12 ± 0.00

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 54.65 ± 13.45 0.00 ± 0.00 0.14 ± 0.04 54.91 ± 12.81 0.00 ± 0.00 0.16 ± 0.04 61.67 ± 12.70 0.00 ± 0.00 0.13 ± 0.04 66.36 ± 11.38 0.00 ± 0.00 0.11 ± 0.01
Greedy-swap 54.07 ± 13.64 1.24 ± 0.84 1.42 ± 0.02 54.41 ± 12.83 1.30 ± 1.00 2.07 ± 0.02 61.30 ± 12.73 1.06 ± 0.79 3.54 ± 0.03 66.07 ± 11.48 0.85 ± 0.67 4.53 ± 0.02
Random-swap 25.83 ± 7.43 80.08 ± 64.70 0.04 ± 0.00 23.12 ± 12.24 83.51 ± 51.26 0.05 ± 0.00 24.77 ± 7.41 123.80 ± 99.09 0.06 ± 0.00 29.93 ± 9.71 144.37 ± 121.66 0.07 ± 0.00
BestResponse 51.28 ± 13.31 8.31 ± 3.57 1.29 ± 0.10 51.95 ± 12.95 7.33 ± 3.57 1.66 ± 0.09 58.10 ± 12.98 10.08 ± 3.99 3.01 ± 0.14 62.77 ± 12.26 10.97 ± 3.69 3.27 ± 0.25
FR2FP 49.75 ± 14.97 10.53 ± 4.05 0.09 ± 0.01 51.21 ± 13.75 8.51 ± 3.06 0.12 ± 0.01 57.93 ± 13.56 10.05 ± 3.08 0.15 ± 0.01 63.22 ± 12.25 9.68 ± 4.17 0.27 ± 0.01
PPO-swap 49.84 ± 15.53 10.34 ± 3.15 0.14 ± 0.00 49.09 ± 15.15 12.34 ± 4.17 0.18 ± 0.00 57.07 ± 14.42 11.66 ± 2.83 0.20 ± 0.00 61.58 ± 12.98 14.25 ± 2.86 0.23 ± 0.00

Table 7: Results of FRP, 𝑛 = 500

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 48.50 ± 13.98 0.00 ± 0.00 11.99 ± 2.66 64.63 ± 12.62 0.00 ± 0.00 14.28 ± 3.81 56.32 ± 7.58 0.00 ± 0.00 13.14 ± 4.16 62.43 ± 8.36 0.00 ± 0.00 12.08 ± 3.38
Greedy-swap 47.88 ± 13.86 1.35 ± 2.28 0.61 ± 0.02 64.04 ± 12.58 1.92 ± 1.39 3.91 ± 0.04 55.48 ± 7.76 1.96 ± 1.38 8.86 ± 0.54 62.00 ± 8.50 1.11 ± 0.90 18.01 ± 1.52
Random-swap 30.37 ± 16.18 37.61 ± 19.98 0.01 ± 0.00 43.27 ± 16.34 64.14 ± 19.09 0.03 ± 0.01 27.66 ± 12.67 66.15 ± 16.40 0.04 ± 0.01 27.30 ± 9.32 99.90 ± 32.44 0.06 ± 0.01
BestResponse 47.88 ± 13.85 1.34 ± 2.28 2.36 ± 0.06 63.51 ± 12.94 3.24 ± 1.34 7.90 ± 0.21 53.95 ± 8.18 5.41 ± 1.76 11.77 ± 0.16 59.98 ± 9.22 6.28 ± 2.35 18.09 ± 1.16
FR2FP 43.77 ± 17.26 8.55 ± 9.10 0.10 ± 0.02 62.18 ± 13.18 7.24 ± 3.29 0.28 ± 0.02 52.43 ± 8.62 8.84 ± 2.91 0.44 ± 0.03 58.57 ± 9.13 10.50 ± 3.55 0.69 ± 0.03
PPO-swap 47.38 ± 14.85 1.90 ± 1.49 0.03 ± 0.00 62.41 ± 12.89 6.93 ± 4.18 0.07 ± 0.01 53.82 ± 7.87 5.83 ± 2.12 0.10 ± 0.01 59.37 ± 9.08 8.11 ± 2.61 0.14 ± 0.01

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 69.79 ± 9.18 0.00 ± 0.00 10.73 ± 1.77 67.09 ± 10.91 0.00 ± 0.00 10.90 ± 1.62 67.69 ± 10.55 0.00 ± 0.00 11.73 ± 1.66 70.63 ± 7.22 0.00 ± 0.00 12.35 ± 2.67
Greedy-swap 69.14 ± 9.16 2.34 ± 0.99 27.33 ± 0.35 66.43 ± 11.04 2.25 ± 1.43 43.43 ± 0.77 67.02 ± 10.79 2.06 ± 0.67 58.20 ± 1.34 70.12 ± 7.35 1.69 ± 1.19 80.30 ± 1.27
Random-swap 33.80 ± 13.32 127.94 ± 37.46 0.08 ± 0.01 34.18 ± 16.16 110.38 ± 36.87 0.10 ± 0.02 27.39 ± 12.62 140.11 ± 49.90 0.11 ± 0.02 27.95 ± 6.91 158.78 ± 57.72 0.13 ± 0.02
BestResponse 67.87 ± 9.75 6.32 ± 2.39 23.09 ± 1.23 64.76 ± 11.42 7.42 ± 2.83 31.47 ± 3.52 64.65 ± 11.68 9.34 ± 2.51 37.53 ± 7.21 67.96 ± 7.96 8.94 ± 2.28 42.89 ± 3.46
FR2FP 66.24 ± 10.07 11.95 ± 2.86 0.89 ± 0.10 63.27 ± 11.89 11.90 ± 3.34 1.17 ± 0.04 63.36 ± 12.08 13.36 ± 5.11 1.45 ± 0.09 66.50 ± 8.52 13.82 ± 3.47 1.85 ± 0.14
PPO-swap 67.08 ± 10.05 8.89 ± 1.43 0.17 ± 0.01 63.50 ± 12.51 10.47 ± 3.17 0.21 ± 0.01 64.68 ± 11.96 8.98 ± 2.19 0.23 ± 0.01 67.85 ± 7.65 9.95 ± 5.17 0.27 ± 0.01
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Table 8: Results of FRP, 𝑛 = 1000

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 59.87 ± 13.91 0.00 ± 0.00 111.32 ± 45.98 70.22 ± 6.15 0.00 ± 0.00 151.85 ± 50.54 65.89 ± 10.45 0.00 ± 0.00 141.85 ± 51.53 70.11 ± 8.34 0.00 ± 0.00 130.52 ± 33.89
Greedy-swap 59.70 ± 13.92 0.46 ± 0.65 3.56 ± 0.62 69.42 ± 6.22 2.75 ± 1.18 19.23 ± 3.32 65.63 ± 10.31 1.02 ± 0.96 42.08 ± 8.54 69.52 ± 8.37 2.17 ± 1.39 87.70 ± 14.86
Random-swap 34.74 ± 18.20 69.63 ± 36.49 0.02 ± 0.00 41.11 ± 9.27 103.30 ± 40.54 0.04 ± 0.00 39.24 ± 16.04 82.27 ± 20.70 0.06 ± 0.00 37.07 ± 14.90 115.85 ± 26.77 0.08 ± 0.01
BestResponse 59.70 ± 13.92 0.46 ± 0.65 11.87 ± 3.50 69.38 ± 6.26 2.88 ± 1.15 33.09 ± 8.01 65.05 ± 10.62 2.60 ± 0.90 50.37 ± 11.15 68.94 ± 8.57 4.09 ± 1.29 77.60 ± 18.87
FR2FP 56.35 ± 16.37 7.52 ± 5.96 0.30 ± 0.08 68.80 ± 6.19 4.94 ± 3.56 1.16 ± 0.23 62.95 ± 11.04 8.71 ± 2.89 1.85 ± 0.44 66.83 ± 9.46 10.89 ± 4.33 2.65 ± 0.68
PPO-swap 58.84 ± 14.26 2.54 ± 3.28 0.03 ± 0.00 68.54 ± 6.61 5.51 ± 1.77 0.07 ± 0.00 63.85 ± 10.84 6.26 ± 2.13 0.10 ± 0.00 67.15 ± 9.64 9.40 ± 2.98 0.14 ± 0.00

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 72.62 ± 8.58 0.00 ± 0.00 109.81 ± 24.68 75.36 ± 7.77 0.00 ± 0.00 122.62 ± 25.28 70.10 ± 9.14 0.00 ± 0.00 124.17 ± 34.47 76.59 ± 8.40 0.00 ± 0.00 133.45 ± 39.36
Greedy-swap 71.93 ± 8.77 2.56 ± 1.44 134.23 ± 18.64 74.90 ± 8.04 1.73 ± 0.67 206.06 ± 32.79 69.48 ± 9.40 2.01 ± 1.17 129.97 ± 15.11 76.20 ± 8.53 1.72 ± 0.97 173.33 ± 26.67
Random-swap 38.06 ± 12.30 135.29 ± 35.62 0.10 ± 0.01 39.43 ± 12.47 154.94 ± 36.73 0.13 ± 0.01 27.79 ± 12.09 155.49 ± 50.42 0.10 ± 0.00 36.96 ± 13.11 189.31 ± 61.93 0.12 ± 0.00
BestResponse 71.03 ± 9.26 5.59 ± 1.56 93.43 ± 17.85 74.13 ± 8.49 4.68 ± 1.81 132.85 ± 23.07 67.81 ± 10.21 7.23 ± 3.14 68.51 ± 5.31 75.13 ± 8.98 6.21 ± 1.81 82.45 ± 7.32
FR2FP 69.18 ± 9.95 12.20 ± 2.85 3.72 ± 0.89 71.84 ± 9.40 13.79 ± 5.49 5.16 ± 1.34 65.13 ± 10.54 16.89 ± 3.54 5.70 ± 1.49 73.16 ± 9.51 14.73 ± 2.76 6.83 ± 1.42
PPO-swap 70.06 ± 9.83 8.92 ± 2.61 0.17 ± 0.00 72.79 ± 8.91 10.07 ± 3.89 0.22 ± 0.00 67.18 ± 10.53 9.32 ± 3.09 0.24 ± 0.00 73.98 ± 9.49 10.74 ± 1.99 0.28 ± 0.02

Table 9: Results of PMP, 𝑛 = 100

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 0.16 ± 0.05 0.00 ± 0.00 0.15 ± 0.03 0.00 ± 0.00 0.15 ± 0.04 0.00 ± 0.00 0.16 ± 0.07
Greedy-swap 0.00 ± 0.00 0.71 ± 0.04 0.02 ± 0.06 2.32 ± 0.22 0.01 ± 0.03 4.87 ± 0.68 0.18 ± 0.28 7.19 ± 1.19
Random-swap 10.92 ± 3.78 0.08 ± 0.00 14.66 ± 3.25 0.14 ± 0.01 18.06 ± 4.30 0.16 ± 0.00 22.01 ± 3.07 0.22 ± 0.00
SA 8.14 ± 3.81 0.15 ± 0.01 8.62 ± 3.15 0.11 ± 0.00 11.72 ± 3.36 0.10 ± 0.00 15.00 ± 6.20 0.10 ± 0.00
Maranzana 5.68 ± 3.24 0.26 ± 0.01 15.55 ± 12.05 0.29 ± 0.03 21.65 ± 17.27 0.36 ± 0.07 30.53 ± 17.63 0.44 ± 0.09
PPO-swap 3.81 ± 2.01 0.31 ± 0.01 7.24 ± 2.56 0.60 ± 0.01 6.18 ± 1.93 0.90 ± 0.01 5.64 ± 2.21 1.19 ± 0.02
PPO-no-vor 5.34 ± 2.43 0.31 ± 0.01 8.47 ± 2.66 0.59 ± 0.01 10.46 ± 2.06 0.88 ± 0.01 10.76 ± 2.80 1.16 ± 0.02

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 0.12 ± 0.01 0.00 ± 0.00 0.14 ± 0.04 0.00 ± 0.00 0.13 ± 0.04 0.00 ± 0.00 0.10 ± 0.00
Greedy-swap 0.14 ± 0.29 10.29 ± 1.93 0.07 ± 0.11 12.09 ± 2.53 0.06 ± 0.18 20.56 ± 4.69 0.08 ± 0.18 22.30 ± 4.93
Random-swap 30.87 ± 4.92 0.28 ± 0.00 32.95 ± 5.02 0.35 ± 0.01 36.15 ± 7.07 0.68 ± 0.01 41.90 ± 7.92 0.75 ± 0.01
SA 19.88 ± 4.99 0.11 ± 0.00 42.40 ± 53.01 0.11 ± 0.00 41.75 ± 32.80 0.20 ± 0.00 57.74 ± 33.02 0.20 ± 0.01
Maranzana 44.54 ± 34.59 0.49 ± 0.08 55.04 ± 40.54 0.54 ± 0.13 73.15 ± 60.72 0.73 ± 0.10 95.54 ± 90.67 1.05 ± 0.43
PPO-swap 7.34 ± 1.38 1.48 ± 0.02 6.94 ± 2.02 1.78 ± 0.03 7.45 ± 1.31 2.04 ± 0.03 6.32 ± 1.39 2.34 ± 0.03
PPO-no-vor 12.05 ± 2.41 1.45 ± 0.02 11.35 ± 2.77 1.74 ± 0.02 11.08 ± 3.35 1.98 ± 0.03 12.40 ± 4.48 2.27 ± 0.03
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Table 10: Results of PMP, 𝑛 = 200

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 1.12 ± 0.49 0.00 ± 0.00 0.87 ± 0.20 0.00 ± 0.00 1.00 ± 0.38 0.00 ± 0.00 0.86 ± 0.23
Greedy-swap 0.13 ± 0.21 1.79 ± 0.14 0.15 ± 0.25 6.93 ± 0.21 0.03 ± 0.06 14.72 ± 1.27 0.04 ± 0.09 39.85 ± 10.06
Random-swap 9.00 ± 4.99 0.08 ± 0.00 20.45 ± 2.88 0.15 ± 0.00 25.20 ± 3.93 0.23 ± 0.00 26.95 ± 5.94 0.34 ± 0.00
SA 4.69 ± 1.78 0.13 ± 0.00 8.47 ± 3.58 0.14 ± 0.00 11.01 ± 4.08 0.14 ± 0.00 13.45 ± 5.29 0.16 ± 0.01
Maranzana 7.42 ± 4.50 0.37 ± 0.02 14.81 ± 8.35 0.59 ± 0.08 27.47 ± 17.96 0.72 ± 0.11 37.67 ± 21.65 0.97 ± 0.17
PPO-swap 4.48 ± 1.46 0.33 ± 0.01 6.97 ± 2.19 0.63 ± 0.01 8.69 ± 2.68 0.93 ± 0.01 9.21 ± 2.26 1.23 ± 0.02
PPO-no-vor 6.56 ± 5.07 0.33 ± 0.01 11.69 ± 4.52 0.62 ± 0.01 13.29 ± 2.38 0.91 ± 0.02 13.91 ± 2.40 1.21 ± 0.02

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 0.79 ± 0.29 0.00 ± 0.00 0.76 ± 0.22 0.00 ± 0.00 0.84 ± 0.36 0.00 ± 0.00 0.81 ± 0.33
Greedy-swap 0.12 ± 0.18 53.52 ± 13.38 0.07 ± 0.11 74.56 ± 19.60 0.03 ± 0.06 93.46 ± 20.31 0.14 ± 0.17 104.71 ± 30.22
Random-swap 30.57 ± 4.01 0.44 ± 0.00 31.89 ± 3.82 0.54 ± 0.00 36.33 ± 7.88 0.61 ± 0.00 38.87 ± 8.94 0.72 ± 0.00
SA 16.67 ± 6.98 0.16 ± 0.00 17.76 ± 6.74 0.17 ± 0.00 21.38 ± 9.29 0.17 ± 0.00 28.23 ± 20.58 0.17 ± 0.00
Maranzana 48.25 ± 39.37 1.07 ± 0.24 62.09 ± 52.38 1.33 ± 0.27 72.72 ± 58.88 1.36 ± 0.24 80.21 ± 63.38 1.36 ± 0.28
PPO-swap 8.63 ± 2.97 1.54 ± 0.02 9.59 ± 2.33 1.86 ± 0.03 9.30 ± 1.68 2.11 ± 0.03 9.94 ± 2.22 2.42 ± 0.03
PPO-no-vor 15.19 ± 2.68 1.50 ± 0.02 14.35 ± 3.22 1.80 ± 0.04 15.31 ± 2.80 2.05 ± 0.03 15.87 ± 3.05 2.34 ± 0.04

Table 11: Results of PMP, 𝑛 = 500

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 13.93 ± 2.09 0.00 ± 0.00 12.94 ± 3.66 0.00 ± 0.00 13.26 ± 3.26 0.00 ± 0.00 15.83 ± 7.39
Greedy-swap 0.03 ± 0.06 6.98 ± 0.32 0.08 ± 0.16 42.38 ± 9.96 0.12 ± 0.16 90.33 ± 18.50 0.16 ± 0.26 158.10 ± 42.65
Random-swap 12.48 ± 3.20 0.11 ± 0.00 23.03 ± 4.86 0.24 ± 0.02 21.28 ± 3.80 0.36 ± 0.00 27.96 ± 5.83 0.50 ± 0.00
SA 6.04 ± 3.31 0.20 ± 0.02 9.84 ± 2.11 0.23 ± 0.03 9.77 ± 1.96 0.23 ± 0.01 11.94 ± 4.48 0.24 ± 0.00
Maranzana 13.02 ± 6.42 0.85 ± 0.02 21.53 ± 5.18 1.85 ± 0.32 32.53 ± 13.36 2.28 ± 0.38 49.62 ± 23.42 2.45 ± 0.38
PPO-swap 3.54 ± 1.81 0.34 ± 0.00 6.89 ± 3.09 0.64 ± 0.00 9.22 ± 2.26 0.95 ± 0.00 8.77 ± 2.33 1.25 ± 0.00
PPO-no-vor 5.17 ± 2.91 0.35 ± 0.02 10.38 ± 2.87 0.65 ± 0.04 13.07 ± 3.44 0.95 ± 0.07 12.79 ± 2.25 1.22 ± 0.02

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 12.24 ± 4.69 0.00 ± 0.00 12.88 ± 2.59 0.00 ± 0.00 15.51 ± 4.73 0.00 ± 0.00 10.85 ± 2.49
Greedy-swap 0.03 ± 0.06 244.44 ± 55.16 0.15 ± 0.14 327.94 ± 59.99 0.10 ± 0.18 455.31 ± 89.73 0.16 ± 0.19 553.84 ± 113.75
Random-swap 30.67 ± 7.03 0.65 ± 0.00 31.33 ± 7.01 0.84 ± 0.07 37.15 ± 9.91 0.96 ± 0.00 37.08 ± 6.86 1.13 ± 0.00
SA 14.98 ± 4.48 0.25 ± 0.01 16.65 ± 6.79 0.26 ± 0.00 21.02 ± 10.72 0.27 ± 0.01 32.36 ± 17.15 0.28 ± 0.01
Maranzana 62.48 ± 35.66 2.93 ± 0.57 77.45 ± 39.77 3.13 ± 0.57 97.59 ± 53.10 3.35 ± 0.50 119.68 ± 67.72 3.46 ± 0.71
PPO-swap 10.43 ± 2.47 1.56 ± 0.00 9.13 ± 2.40 1.87 ± 0.00 10.39 ± 2.80 2.14 ± 0.00 12.62 ± 2.61 2.43 ± 0.01
PPO-no-vor 13.58 ± 2.94 1.51 ± 0.01 14.12 ± 2.41 1.80 ± 0.03 14.27 ± 2.57 2.06 ± 0.04 14.84 ± 2.98 2.36 ± 0.05
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Table 12: Results of PMP, 𝑛 = 1000

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 148.46 ± 56.19 0.00 ± 0.00 138.54 ± 34.88 0.00 ± 0.00 139.57 ± 47.67 0.00 ± 0.00 124.04 ± 31.42
Greedy-swap 0.05 ± 0.14 37.32 ± 9.10 0.19 ± 0.23 148.49 ± 32.82 0.11 ± 0.16 335.14 ± 79.21 0.13 ± 0.13 577.60 ± 89.65
Random-swap 15.13 ± 5.75 0.17 ± 0.00 20.55 ± 4.65 0.35 ± 0.01 22.86 ± 5.26 0.55 ± 0.01 26.16 ± 3.47 0.76 ± 0.03
SA 5.86 ± 1.91 0.32 ± 0.05 10.21 ± 4.04 0.32 ± 0.02 11.02 ± 4.01 0.38 ± 0.08 17.66 ± 6.68 0.38 ± 0.06
Maranzana 14.38 ± 4.62 2.56 ± 0.76 27.24 ± 10.14 5.04 ± 1.41 39.07 ± 9.93 6.89 ± 1.63 50.53 ± 13.16 7.80 ± 1.51
PPO-swap 2.59 ± 1.39 0.37 ± 0.01 7.23 ± 2.41 0.70 ± 0.01 8.43 ± 1.79 1.04 ± 0.01 11.22 ± 1.81 1.37 ± 0.01
PPO-no-vor 6.62 ± 3.62 0.36 ± 0.01 9.17 ± 2.83 0.68 ± 0.02 13.58 ± 3.89 1.00 ± 0.02 15.19 ± 4.15 1.33 ± 0.02

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 113.52 ± 21.09 0.00 ± 0.00 120.08 ± 42.90 0.00 ± 0.00 110.02 ± 30.12 0.00 ± 0.00 117.00 ± 34.36
Greedy-swap 0.04 ± 0.06 894.52 ± 137.87 0.10 ± 0.14 1278.23 ± 131.81 0.12 ± 0.16 1183.25 ± 179.11 0.11 ± 0.13 1410.36 ± 257.62
Random-swap 29.48 ± 7.10 0.99 ± 0.02 32.57 ± 4.74 1.28 ± 0.01 34.80 ± 5.06 1.22 ± 0.03 34.20 ± 5.22 1.40 ± 0.03
SA 20.91 ± 4.47 0.41 ± 0.07 27.87 ± 12.02 0.46 ± 0.10 32.97 ± 10.51 0.34 ± 0.01 38.94 ± 20.99 0.35 ± 0.02
Maranzana 72.42 ± 23.02 8.68 ± 1.74 88.34 ± 29.81 8.42 ± 1.49 101.03 ± 38.90 10.00 ± 2.67 127.20 ± 48.11 10.78 ± 3.06
PPO-swap 11.31 ± 2.23 1.70 ± 0.01 12.91 ± 2.22 2.05 ± 0.02 14.24 ± 2.52 2.33 ± 0.01 13.39 ± 2.37 2.65 ± 0.02
PPO-no-vor 16.48 ± 4.43 1.65 ± 0.03 19.16 ± 3.86 1.98 ± 0.03 18.64 ± 3.71 2.26 ± 0.03 19.03 ± 2.61 2.57 ± 0.02
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