
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Unified and Generalizable Reinforcement Learning for Facility
Location Problems on Graphs

Anonymous Author(s)∗

Abstract
Facility location problems on graphs are ubiquitous in the real
world and hold significant importance, yet their resolution is often
impeded by NP-hardness. MIP solvers can find the optimal solutions
but fail to handle large instances, while algorithm efficiency has a
higher priority in cases of emergency. Recently, machine learning
methods have been proposed to tackle such classical problems with
fast inference, but they are limited to the myopic constructive pat-
tern and only consider simple cases in Euclidean space. This paper
introduces a unified and generalizable approach to tackle facility
location problems on weighted graphs with deep reinforcement
learning, demonstrating a keen awareness of complex graph struc-
tures. Striking a harmonious balance between solution quality and
running time, our method stands out with superior efficiency and
steady performance. Our model trained on small graphs is highly
scalable and consistently generates high-quality solutions, achiev-
ing a speedup of more than 2000 times to Gurobi on instances with
1000 nodes. The experiments on Shanghai road networks further
demonstrate its practical value in solving real-world problems.

CCS Concepts
• Networks→ Network design and planning algorithms; •
Computing methodologies→ Reinforcement learning.

Keywords
Facility location problems, Graphs and networks, Combinatorial
optimization, Deep reinforcement learning

ACM Reference Format:
Anonymous Author(s). 2018. Unified and Generalizable Reinforcement
Learning for Facility Location Problems on Graphs. In Proceedings of Make
sure to enter the correct conference title from your rights confirmation emai
(Conference acronym ’XX). ACM, New York, NY, USA, 14 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Facility location problems (FLPs) study optimizing the placement
of a set of facilities to meet customer demands and minimize some
objective function. Various models are employed to address specific
requirements, including single/multiple facility problems, median
location problems, dynamic location problems, etc [4]. According

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

to Farahani and Hekmatfar [10], there are four essential compo-
nents defining location problems: customers, facilities to be located,
a space in which customers and facilities are located, and a dis-
tance metric between customers and facilities. Among the distance
metrics used, routing distance in networks is notable, wherein cus-
tomers and facilities are positioned on the nodes of a graph. To
address optimization problems in non-Euclidean spaces, one ap-
proach involves computing the pairwise distance matrix between
all nodes and reformulating the problem into a general framework.
Figure 1 illustrates the process of solving real-world facility location
problems on graphs. Initially, real-world networks from diverse
domains are abstracted into graphs. The demands at each node
and the pairwise distances between nodes are utilized to encode
problems as mathematical optimization models. This quantitative
representation, along with specific constraints inherent to various
problem types, is then input into solvers for final solutions.

Among various concrete problems of facility location problems
in networks, we focus on two of them, namely the 𝑝-median prob-
lem (PMP) and the facility relocation problem (FRP). PMP is a
crucial branch of facility location problems that seeks to minimize
the weighted sum of distance costs between facilities and demand
points, with fixed costs for opening facilities and a predefined num-
ber of facilities 𝑝 . It finds applications in various fields, including
designing electric charging station networks [13], establishing pub-
lic services such as schools [26], and siting shared bicycles [7].
While the 𝑝-median model proves effective in static scenarios, it
encounters limitations in dynamic and constrained environments.
Take urban infrastructure constructed during a city’s early devel-
opment stages. The dynamic and evolving population in this area
over time leads to a mismatch between actual demands and the out-
dated facility layout. Under such circumstances, it becomes more
pragmatic to relocate facilities rather than plan anew, especially
given economic constraints limiting the number of relocations. An-
other pertinent example involves the short-term need to rebalance
a bicycle-sharing system to adjust to the frequent redistribution of
bikes due to user usage patterns. These scenarios give rise to the
second problem of interest: improving the existing facility layout
within a constrained number of relocation steps, known as the facil-
ity relocation problem. For FLPs in case of emergency [19, 32] and
scenarios with frequent demand shifts, there are higher require-
ments for algorithm efficiency and they often prioritize running
time over optimality.

Many heuristics and meta-heuristics have been devised to solve
FLPs. From the perspective of how the solution evolves as the
algorithm progresses, they can be categorized into two genres: con-
structive methods and improving methods. Constructive methods
start with an empty set of facilities and build the solution incremen-
tally. In contrast, improving heuristics aim to enhance a feasible
solution through modifications. Constructive methods typically

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Graph representationRoad networks

Supply chain networks

Facility location problems

Demands & distances

Heuristics & models

AbstractionReal networks

Figure 1: The general pipeline of solving real-world facility locations problems on graphs. Real-world networks are converted
into abstract graph representations. The demands of each node and pairwise distances are used to encode the problems as
mathematical optimization models. This quantitative representation along with problem constraints is fed into constraint
solvers, yielding the final solutions for various FLPs.

exhibit myopic behavior by not altering or undoing chosen facili-
ties. Empirical results corroborate this observation, indicating that
interchange algorithms achieve lower optimality gaps [16], albeit
at the expense of increased runtime.

The recent advancement in machine learning, particularly deep
learning, offers an alternative perspective on solving these classical
problems. Compared to general-purpose constraint programming
solvers, the strong expressiveness and rapid inference capabilities
of neural networks make them powerful tools for tackling com-
plex combinatorial optimization problems [2]. This is particularly
advantageous in times of emergency that demand real-time re-
sponses to large-scale problems. However, previous works in this
field predominantly follow the constructive approach of creating
solutions [18, 21, 23, 30]. Moreover, previous studies are limited to a
simplified geometrical setting without considering graph structures.
In many scenarios, such as urban planning and network routing,
graph distances can portray actual traveling costs more accurately
than straight-line distance [29].

To address these limitations, we propose a highly scalable swap-
based approach to solve facility location problems in combination
with reinforcement learning. Ourmodel demonstrates a keen aware-
ness of the complex graph structures of the instances and the solving
states, enabling it to make improvement decisions effectively and
efficiently. Experiments reveal that our improving-style method
demonstrates stronger generalizability compared to constructive-
style peer methods with deep learning.

In conclusion, the main contributions of this paper are as follows:

• Unified approach: We introduce a unified algorithm capa-
ble of simultaneously solving two FLPs, i.e. the relocation
problem and the 𝑝-median problem.

• Generalizability: The novel improving-style algorithm show-
cases superior generalizability across varying graph sizes
and facility numbers. It has more steady performance and
is less sensitive to instance parameters.

• Performance and scalability: Our method makes rapid re-
sponses to large instances up to thousands of nodes within

seconds, yielding high-quality solutions and making signif-
icant acceleration to peer methods.

• Complexity handling: Through delicately designed features,
our model can handle FLPs with complex structures and
graph distances.

2 Related Work
We consider facility location problems in discrete solution spaces,
categorizing them as combinatorial optimization (CO) problems.
The survey [2] provides a comprehensive review of the intersection
of machine learning and combinatorial optimization.

2.1 Machine Learning for Facility Location
Problems

Several works have explored solving PMP with machine learning
techniques. Most of these approaches formulate the solution con-
struction scheme as a Markov decision process and build solutions
step-by-step. For the 𝑝-median problem, Wang et al. [30] first pro-
pose to solve the uncapacitated 𝑝-median problem in the Euclidean
space with reinforcement learning and graph attention networks.
They use the REINFORCE [33] algorithm to choose the next facil-
ity in the solution. Zhao et al. [36] use DQN [24] to address the
capacitated 𝑝-median problem. Matis and Tarábek [23] solve the
weighted 𝑝-median problem with reinforcement learning and con-
volutional neural networks. [18] is a recent work that approaches
a line of spatial optimization problems with an encoder–decoder
structure called SpoNet. The above formulation has been adapted
to other FLPs, including the maximal covering location problem
(MCLP) [28], 𝑝-center problem (PC) [6], etc. As for FRP, Luo et al.
[21] address the facility relocation problem with a twofold objective
of facility exposure and user convenience. They use a reinforcement
learning module as an assistive component to a greedy algorithm
that maximizes the single-step reward.

Our work is the first machine learning method that addresses the
FLPs from an improving perspective and handles complex graph
structures of instances. Our agent exhibits a much higher level

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Unified and Generalizable Reinforcement Learning for Facility Location Problems on Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

of autonomy compared to [21], as it can choose which facility to
relocate and its destination.

2.2 Machine Learning for Solution
Improvement

Though most machine learning solutions to CO problems build
solutions incrementally, there are some works exploring general
improvement-style algorithms in a broader scope. The pioneering
work of Chen and Tian [5] introduces NeuRewriter, a reinforce-
ment learning model that learns region-picking and rewriting-rule
policies. This model is applied to expression simplification, job
scheduling, and capacitated vehicle routing problems. In Lu et al.
[20], the focus is on enhancing solutions to the capacitated vehi-
cle routing problem, incorporating perturbation operators for a
larger search space. Additionally, Wu et al. [34] consider improving
heuristics for two routing problems using a compatibility layer
computed based on query and key from self-attention layers. Sum-
marizing three intervention points of meta-heuristics, Falkner et al.
[9] design a policy model based on graph neural networks to assist
local search, conducting experiments on job shop scheduling and
capacitated vehicle routing problems. Garmendia et al. [12] com-
bine graph neural networks with hill-climbing-based algorithms
to improve solutions for preference ranking problem, traveling
salesman problem, and the graph partitioning problem. Zhang et al.
[35] propose a RL-guided improvement heuristic for solving job-
shop scheduling problems. It’s noteworthy that most works in this
domain primarily focus on routing problems, which are sensitive
to the sequential order of nodes, with objective functions solely
defined by adjacent nodes in the solution sequence. The different
problem structure of FLP introduces more complexity and poses
unique challenges.

3 Preliminaries and Formulation
In this section, we formally define two typical types of FLPs on
undirected weighted graphs.

3.1 P-median Problem
We study the 𝑝-median problem defined on a graph 𝐺 (𝑉 , 𝐸), given
coordinates (𝑥𝑖 , 𝑦𝑖) and demand 𝑝𝑖 for each node 𝑖 ∈ 𝑉 . The edges
𝐸 represent available routes for traveling between nodes, and the
traveling costs are determined by the lengths of the shortest paths
rather than straight-line distances. Assuming each facility possesses
infinite capacity and one node can only accommodate one facility,
the objective of PMP on 𝐺 is to select a facility set 𝐹 ⊆ 𝑉 of the
predefined size 𝑝 to minimize the overall traveling cost. This cost
is defined as the weighted sum of costs from nodes to their nearest
facilities. Let 𝑛 = |𝑉 | denote the number of nodes. The traveling
cost between nodes is defined by the shortest paths on𝐺 , expressed
through the distance matrix 𝐷 ∈ R+𝑛×𝑛 , where 𝑑𝑖 𝑗 signifies the
distance between nodes 𝑖 and 𝑗 . The distance matrix can be con-
veniently computed offline using Dijkstra’s algorithm Dijkstra [8].
Formally, the objective function O(𝐹) and the optimal facility set

Algorithm 1: A general swap framework for facility relo-
cation problem
Parameters : iteration number 𝑇 , swapping model 𝑎𝑔𝑒𝑛𝑡
Input: graph 𝐺 , existing facilities 𝐹0, relocation budget 𝑘
Output: relocation pair (𝑅𝑘 , 𝐼𝑘), new facility set 𝐹

1 Function SwapRelocate(𝑇, 𝑎𝑔𝑒𝑛𝑡,𝐺, 𝐹0, 𝑘)
2 𝑅𝑘 , 𝐼𝑘 , 𝐹𝑘 ← ∅, ∅, 𝐹0;
3 for 𝑖 ← 1 to 𝑇 do
4 𝑅, 𝐼, 𝐹 ← ∅, ∅, 𝐹0; // removed, inserted &

current facilities

5 for 𝑗 ← 1 to 𝑘 do
6 (𝑢1, 𝑢2) ← 𝑎𝑔𝑒𝑛𝑡 .act(𝐺 , 𝐹);
7 𝑅, 𝐼, 𝐹 ← 𝑅 ∪ {𝑢1}, 𝐼 ∪ {𝑢2}, 𝐹 \ {𝑢1} ∪ {𝑢2};
8 if O(𝐹) < O(𝐹𝑘) then
9 𝑅𝑘 , 𝐼𝑘 , 𝐹𝑘 ← 𝑅, 𝐼, 𝐹 ;

10 return (𝑅𝑘 , 𝐼𝑘), 𝐹 ;

𝐹 ∗ are articulated as follows:

O(𝐹) =
∑︁
𝑖∈𝑉

𝑝𝑖 min
𝑗∈𝐹

𝑑𝑖 𝑗 , s.t. 𝐹 ⊆ 𝑉 , |𝐹 | = 𝑝. (1)

𝐹 ∗ = argmin
𝐹

O(𝐹) . (2)

3.2 Facility Relocation Problem
Different from the classical 𝑝-median model, the facility relocation
problem considers a dynamic demand changed over time and the fa-
cilities should be relocated correspondingly to meet people’s needs.
For example, in urban areas, the population density may shift due to
new residential developments or changes in public transportation
routes, leading to varying demands. For a predefined set of facilities
𝐹0 ⊂ 𝑉 and a limited budget 𝑘 , we study the improvement achieved
by moving at most 𝑘 ≤ |𝐹0 | facilities within 𝐹0. This relocation is
represented by a pair of sets (𝑅𝑘 , 𝐼𝑘). The updated facility set is
defined as 𝐹 = 𝐹0∪ 𝐼𝑘 \𝑅𝑘 . The fundamental assumptions regarding
traveling costs and demands remain consistent with the 𝑝-median
model. Formally, the objective of relocation problem O𝑘 (𝑅𝑘 , 𝐼𝑘 |𝐹0)
is defined based on (1):

O𝑘 (𝑅𝑘 , 𝐼𝑘 |𝐹0) = O(𝐹0 ∪ 𝐼𝑘 \ 𝑅𝑘), (3)
s.t. 𝑅𝑘 ⊆ 𝐹0, 𝐼𝑘 ⊆ 𝑉 \ 𝐹0, |𝑅𝑘 | = |𝐼𝑘 | ≤ 𝑘. (4)

We further define the improvement ratio 𝑄 of a relocation set pair
as the ratio of decreased cost to original cost before relocation:

𝑄 (𝑅𝑘 , 𝐼𝑘 |𝐹0) =
O(𝐹0) − O𝑘 (𝑅𝑘 , 𝐼𝑘 |𝐹0)

O(𝐹0)
. (5)

4 Methods
We start with a general swap-based framework for solving the
facility relocation problem, as shown in Algorithm 1. This frame-
work presents the high-level logic of an improving-style algorithm.
Given the set of existing facilities 𝐹0 and the maximum number
of relocation 𝑘 , it incrementally builds the relocation set pair with
the instructions of the given agent. The agent selects a removed
facility 𝑢1 and an inserted facility 𝑢2 for 𝑘 iterations, and the best

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

GNN Layers

GNN Layers

Figure 2: The model architecture of PPO-swap for solving facility location problems. Node features include static attributes
and dynamic states of solutions. We use graph neural networks (GNN) for node embeddings and integrate attention layers to
generate two-step actions. The critic evaluates the states based on the global graph context. The training process is powered by
the PPO algorithm.

solution is updated if a lower objective is achieved. This framework
is flexible and compatible with various algorithms, including classi-
cal handcrafted heuristics. Apart from solving FRP independently,
Algorithm 1 also serves as a functional module for solving PMP
from scratch, as discussed in Section 4.5.

4.1 Reinforcement Learning Formulation for
Facility Relocation

Wemodel the relocation pair selection as aMarkov decision process,
with key components of reinforcement learning defined as follows.
The states encompass static attributes of the instances, such as
node coordinates and demands, along with the dynamic statistics
associated with the current feasible solution (see Section 4.3 for
details). Let 𝑅 be the current set of removed facilities and 𝐼 the
inserted facilities during exploration (consistent with Algorithm 1).
The action space is 𝐹 × (𝑉 \ 𝐹), one facility to be removed and one
to be inserted. Let (𝑢𝑖1, 𝑢

𝑖
2) be the relocation pair at the 𝑖-th step.

The corresponding reward 𝑟𝑖 is defined as the improvement ratio
gained from step 𝑖 , namely

𝑟𝑖 (𝑢𝑖1, 𝑢
𝑖
2) = 𝑄 (𝑅 ∪ {𝑢

𝑖
1}, 𝐼 ∪ {𝑢

𝑖
2}|𝐹0) −𝑄 (𝑅, 𝐼 |𝐹0) . (6)

4.2 PPO-swap: a Learning-based Interchange
Algorithm

As an instantiation of Algorithm 1, we employ the proximal policy
optimization (PPO) algorithm [27] to train an intelligent agent
named PPO-swap, designed to learn relocation strategies. PPO-
swap adopts an actor-critic network architecture. The actor consists

of 𝐿1 graph convolutional layers for node embedding, 𝐿2 multi-
layer perceptrons (MLP) layers for scoring, and an extra attention
layer to choose node pairs conditionally. The critic has a similar
structure except for the last attention layer. The overall architecture
is depicted in Figure 2. The integration of PPO and GNN equips our
model to extract crucial features from complex graph structures,
empowering it to make effective decisions.

4.3 Voronoi-aware Graph Feature Extractor
We now introduce the node features and graph embeddings of our
model, used in both actor and critic. For an input problem instance,
the basic attributes of nodes remain unchanged during the solving
process, including node coordinates (𝑥𝑖 , 𝑦𝑖) and node demand 𝑝𝑖 .
Dynamic features of the states are crucial for identifying benefi-
cial relocation pairs since the improving algorithm continuously
modifies the current solution. For each node, we utilize a binary
variable indicating whether the node is selected as a facility and its
traveling cost as features.

Moreover, the Voronoi cells associated with the facility set are
natural structures formed in FLPs on a plane, providing inspiration
for our approach. The 2D plane can be divided into 𝑝 regions cor-
responding to a set of 𝑝 facilities. Each region, termed a Voronoi
cell, comprises points closest to the respective facility compared to
others. Let𝑉𝑟 denote the 𝑟 -th Voronoi cell (associated with the 𝑟 -th
facility). We exploit additional information from the Voronoi cell
created by each facility. Specifically, we compute two cell-based
features for facility 𝑓 (𝑟): the sum of demands in cell

∑
𝑢∈𝑃 (𝑉𝑟) 𝑝𝑢

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Unified and Generalizable Reinforcement Learning for Facility Location Problems on Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 2: Swap algorithm for 𝑝-median problem
Parameters : iteration number 𝑇 , swap trials 𝐾 , swap

budget 𝑆 , swapping model 𝑎𝑔𝑒𝑛𝑡
Input: graph 𝐺 , facility number 𝑝
Output: facility set 𝐹

1 Function SwapLocate(𝑇, 𝐾, 𝑆, 𝑝, 𝑎𝑔𝑒𝑛𝑡)
2 𝐹 ∗ ← ∅;
3 for 𝑖 ← 1 to 𝑇 do
4 𝐹 ← an initial set of 𝑝 facilities;
5 (𝐹𝑘 , 𝐽𝑘), 𝐹 ← SwapRelocate(𝐾, 𝑎𝑔𝑒𝑛𝑡,𝐺, 𝐹, 𝑆);
6 if O(𝐹) < O(𝐹 ∗) then
7 𝐹 ∗ ← 𝐹 ;

8 return 𝐹 ∗;

and the total traveling cost in cell
∑
𝑢∈𝑃 (𝑉𝑟) 𝑝𝑢𝑑𝑓 (𝑟)𝑢 . The facil-

ity features are padded with zero for non-facility nodes. Ablation
experiments in Section 5.2 prove that Voronoi cells provide valu-
able insights into the quality of facility placement and guide the
relocation process effectively. For node embedding, the concatena-
tion of the aforementioned features serves as initial node features
and is fed into GNN. The initial edge embeddings are the lengths
of the edges. Let h𝐿1

𝑖
denote the node embedding of node 𝑖 after

the GNN module. Wedefine a global embedding for the graph by
w(𝐺) = (mean_pooling𝑉𝑖=1 (h

𝐿1
𝑖
)∥max_pooling𝑉𝑖=1 (h

𝐿1
𝑖
)), where ∥

stands for vector concatenation. The critic MLP takesw(𝐺) as input
and yields a scalar to score the current state.

4.4 Attention-based Relocation Pair Selection
The action space for one relocation involves choosing two nodes:
the facility to remove 𝑢1 and the new facility to insert 𝑢2, As the ac-
tion space is quadratic to the number of nodes (𝑢1, 𝑢2) ∈ 𝐹 × (𝑉 \𝐹),
we break down the target into a two-stage task, i.e. 𝑃 (𝑢1, 𝑢2 |ΘA) =
𝑃 (𝑢1 |ΘA)𝑃 (𝑢2 |ΘA , 𝑢1), where ΘA denotes the learnable parame-
ters of the actor.

After the GNNmodule extracts an embedding h𝐿1
𝑖

for each node 𝑖 ,
a global embedding can be expressed by h = mean_pooling𝑉𝑖=1 (h

𝐿1
𝑖
).

Given the global context and node embeddings, subsequent 𝐿2
layers of MLPs evaluate the priority of removing node (facility) 𝑖 by

g𝐿2𝑖 = MLP(h𝐿1𝑖 ∥ℎ), (7)

which yields the final probability distribution of removing 𝑖:

𝑃− (𝑖 |ΘA) = 𝜎 (𝑙𝑜𝑔𝑖𝑡1 (𝑖)), 𝑙𝑜𝑔𝑖𝑡1 (𝑖) =
{
g𝐿2
𝑖
, 𝑖 ∈ 𝐹

−∞, 𝑖 ∉ 𝐹
, (8)

where 𝜎 represents the Softmax function.
Let 𝑢1 be the removed node sampled from 𝑃− . Next, we consider

choosing the new facility 𝑢2 given node embeddings and 𝑢1. This
is implemented by an attention layer

f𝑗 = Att(h𝐿1
𝑗
) = (h𝐿1

𝑗
)⊤tanh(Linear(h𝐿1𝑢1)), (9)

𝑃+ (𝑗 |ΘA , 𝑢1) = 𝜎 (𝑙𝑜𝑔𝑖𝑡2 (𝑗)), 𝑙𝑜𝑔𝑖𝑡2 (𝑗) =
{ f𝑗 , 𝑗 ∈ 𝑉 \ 𝐹
−∞, 𝑗 ∉ 𝑉 \ 𝐹 .

(10)

The inserted facility 𝑢2 is sampled from 𝑃+, completing the reloca-
tion pair (𝑢1, 𝑢2) ∈ 𝐹 × (𝑉 \ 𝐹).

4.5 From Relocation to Location
One advantage of Algorithm 1 is its versatility, allowing it to solve
not only the facility relocation problem but also to extend seam-
lessly to the 𝑝-median problem. Algorithm 2 demonstrates how
Algorithm 1 can be integrated as a subroutine within an interchange
framework to address PMP. By introducing a hyper-parameter 𝑆
that controls the number of swaps, we can utilize the function
SwapRelocate following the initial setup. The best solution ob-
tained over 𝑇 trials is then returned as the final solution. Inter-
estingly, employing a greedy agent for SwapRelocate results in
the classical exchange algorithm [14], a well-studied heuristic for
solving PMP [1].

5 Experiments
Previous works in the field often lack rigorous experimental setups,
either not using separate test data [23] or evaluating models only
on small instances [30], resulting in limited assessments of model
performance. In contrast, our evaluation thoroughly assesses the
efficiency and effectiveness of our algorithm for solving both FRP
and PMP on complex graph data sets. Our model achieves a speedup
of more than 2000 times to Gurobi on large instances while provid-
ing competitive solutions. Additional experiments show how our
improving-style algorithm generalizes better than the constructive
paradigm. Furthermore, the experiment on Shanghai road networks
showcases how our method readily solves problems in real-world
scenarios.

5.1 Solving Facility Relocation Problem on
Weighted Graphs

Facility relocation is a useful modeling of problems that requires
making limited modifications to an existing plan. For example, the
bicycle-sharing system needs timely rebalancing to match users’
traveling demands. To simulate the complex urban road networks,
we construct a synthetic weighted graph data set based on Gabriel
graphs [11], a type of planar graph that captures the geometric prox-
imity of nodes. Node coordinates are generated with a bivariate
normal distribution in [0, 1]2. The demand for each node is gener-
ated randomly with the total demand controlled around 3,000,000.

5.1.1 Baselines. We implement two variants of Algorithm 1, namely
Random-swap and Greedy-swap. Random-swap randomly selects
relocation pairs and updates the solution if the new objective value
is improved, representing the gain of relocation out of pure “luck”.
Greedy-swap always chooses the optimal swap at each step, select-
ing the pair that results in the greatest reduction in the objective
function among all possible pairs. Furthermore, we compare two
state-of-the-art heuristics for solving the facility relocation problem:
the BestResponse algorithm from [21] based on Nash equilibrium
and FR2FP from [31]. The BestResponse algorithm is adapted to
align with our settings (see Appendix for details). The optimal
solutions are computed by Gurobi [15] by setting MIPGap=0.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Results of Facility Relocation Problem

Methods 𝑛 = 100 𝑛 = 200 𝑛 = 500 𝑛 = 1000

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 51.77 0.00 0.15 51.90 0.00 0.94 63.39 0.00 12.15 70.09 0.00 128.20
Greedy-swap 51.26 1.09 1.67 51.37 1.15 6.50 62.76 1.83 30.08 69.60 1.80 99.52
Random-swap 25.22 72.86 0.04 25.54 68.46 0.04 31.49 100.63 0.07 36.80 125.76 0.08
BestResponse 49.21 6.27 1.49 49.36 6.37 4.60 61.32 6.04 21.89 68.89 4.22 68.77

FR2FP 46.53 10.87 0.11 46.18 13.22 0.24 59.54 10.77 0.86 66.78 11.21 3.42
PPO-swap 47.68 8.92 0.13 48.05 8.24 0.14 60.76 7.63 0.15 67.80 7.84 0.16

100 200 500 1000
Graph size n

40

45

50

55

60

65

70

75

80

Im
pr

ov
em

en
t r

at
io

 Q
 (%

)

10 1

100

101

102

Ti
m

e
(s

)

Gurobi
Greedy-swap
BestResponse
PPO-swap
FR2FP

Figure 3: FRP results on different scales.

5.1.2 Settings. To assess the efficacy and scalability of different
methods, we conduct experiments with varying graph sizes, specifi-
cally 𝑛 ∈ [100, 200, 500, 1000]. We generate 10 graphs of each graph
size as our test set and evaluate the performance under various
values of 𝑝 , ranging from 5 to 40. For each instance, a random
set of 𝑝 nodes is designated as the initial facility set, and the relo-
cation budget is set to ⌊𝑝/2⌋. Each undetermined algorithm runs
for 𝑇 = 20 iterations and records the best solution. PPO-swap is
trained on 1000 graphs of size 100. The average results over 𝑝 are
reported in Table 1, including improvement ratio 𝑄 (defined in (5)),
the optimality gap, and running time. The optimality gap of an
improvement ratio 𝑄1 is defined as 𝑄0−𝑄1

𝑄0
× 100%, where 𝑄0 is the

optimal improvement ratio. Higher 𝑄-s and lower gaps are better.

5.1.3 Efficiency and Effectiveness Analysis. Figure 3 visualizes the
results in Table 1, with bars representing improvement ratios𝑄 and
lines indicating the running times (in log scale). Greedy-swap is a
strong heuristic and generates near-optimal solutions. However, it
suffers rapid increases in computational overhead as the instance
size and facility number grow, as it must iterate over an action space
of size 𝑝 × (𝑛 − 𝑝) at each step, which scales quadratically with the
instance size. The BestResponse algorithm is also based on greedy
strategies and has similar time complexity with slight speedup. The
FR2FP algorithm falls in the middle with lower improvement ratios
and higher efficiency.

PPO-swap stands out from peer methods with remarkable scal-
ability and generalizability. Even if it was only trained on small
instances, PPO-swap yields competitive solutions steadily for vari-
ous graph sizes. Moreover, it performs fast inference and actions,
taking under 0.2 seconds in all cases, with only slightly increasing
running time for large instances. PPO-swap achieves a speedup
of over 2000 compared to Gurobi when 𝑛 = 1000, stressing its
value in making real-time responses in times of emergency. The
results of Random-swap, on the other hand, represent how much
improvement comes from random swapping decisions, showcasing
our model’s ability to make wise choices.

5.2 Solving P-Median Problem on Weighted
Graphs

This section evaluates the performance of PPO-swap on the 𝑝-
median problem, wherewe choose 𝑝 facilities tominimize the global
objective. We compare our method against established baselines
on graph data sets. The evaluation focuses on solution quality and
computational efficiency, highlighting the robustness of PPO-swap
across different facility numbers.

5.2.1 Baselines. As described in Section 4.5, three swap-based
methods can be transplanted to solve PMP: Random-swap, Greedy-
swap (essentially the interchange algorithm [14]), and PPO-swap.
Additionally, we compare with a heuristic Maranzana [22] and a
meta-heuristic simulated annealing (SA). We further introduce a
variant of PPO-swap, namely PPO-no-vor, by replacing the Voronoi-
based facility features introduced in Section 4.3 with zeros. This
design of ablation is intended to prove the effectiveness of the
features we have devised with domain knowledge. The optimal
solution is computed by Gurobi [15] by setting MIPGap=0.

5.2.2 Settings. The graph data sets replicate those in Section 5.1.
Default hyper-parameters are set as follows: iteration number𝑇 = 5,
swap trial 𝐾 = 20, and swap budget 𝑆 = 𝑝 . SA runs for 1000
iterations. The average results over 𝑝 for different graph sizes are
reported in Table 2, including the optimality gap and running time.
The optimality gap of an objective 𝑥 and optimal objective 𝑦 is
defined as 𝑥−𝑦

𝑦 × 100%. Lower gaps are better.

5.2.3 Efficiency and Effectiveness Analysis. Figure 4 illustrates five
algorithms, with bars representing optimality gaps and lines in-
dicating the running times (in log scale). Similarly, Gurobi and
Greedy-swap produce high-quality solutions, but their running
time grows exponentially with 𝑛, becoming intolerable for large

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Unified and Generalizable Reinforcement Learning for Facility Location Problems on Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Results of P-median Problem

Methods 𝑛 = 100 𝑛 = 200 𝑛 = 500 𝑛 = 1000

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 0.14 0.00 0.88 0.00 13.43 0.00 126.40
Greedy-swap 0.07 10.04 0.09 48.69 0.10 234.92 0.11 733.11
Random-swap 25.94 0.33 27.41 0.39 27.62 0.60 26.97 0.84

SA 25.66 0.13 15.21 0.16 15.33 0.24 20.68 0.37
Maranzana 42.71 0.52 43.83 0.97 59.24 2.54 65.03 7.52
PPO-swap 6.36 1.33 8.35 1.38 8.87 1.40 10.16 1.53
PPO-no-vor 10.24 1.30 13.27 1.34 12.28 1.36 14.73 1.48

100 200 500 1000
Graph size n

0

10

20

30

40

50

60

Op
tim

al
ity

 g
ap

 (%
)

10 1

100

101

102

103

Ti
m

e
(s

)

Gurobi
Greedy-swap
PPO-swap
SA
Maranzana

Figure 4: PMP results on different scales.

graphs. PPO-swap, on the other hand, excels in generating stable
and superior solutions even when faced with instances ten times
larger than the training data. Its ability to maintain near-constant
running times highlights its superior scalability compared to other
heuristics, which often exhibit degraded performance and increased
runtime as the problem size grows. The trade-off between solution
quality and computational time favors PPO-swap in many cases,
making it especially suitable for scenarios like emergency facility
selection, where both rapid response and good solutions are cru-
cial. By comparing PPO-no-vor and PPO-swap, we conclude that
the Voronoi-based features indeed enhance both performance and
stability, validating our model design.

5.3 Generalizability of Improving Algorithms
SpoNet is a latest model proposed by Liang et al. [18] that solves
FLP with deep learning models in a constructive way. To compare
the generalizability of two algorithm paradigms, we align with the
PMP experiments in [18] and compare the optimality gaps of the
two methods.

5.3.1 Settings. Each instance comprises 100 nodes with 2D coor-
dinates uniformly distributed in the range [0, 1]2. Nodes are con-
nected if their distance is within a radius of 0.16. Given that [18]
exclusively handles unweighted problems, we set the node demands
to 1. The number of facilities is fixed at 𝑝 = 15. PPO-swap is trained

5 10 15 20 25 30 35 40
Facility number p

0

20

40

60

80

Op
tim

al
ity

 g
ap

 (%
)

SpoNet_pub
PPO-swap

Figure 5: SpoNet_pub vs. PPO-swap on plane graphs.

on 1000 graphs following the same distribution, with 10 new graphs
reserved for testing. We use the published model1 from [18] for
evaluation and denote it as SpoNet_pub. SpoNet_pub samples with
a beam search width of 1280, and PPO-swap has the same hyper-
parameters as outlined in Section 5.2.

5.3.2 Results and Analysis. Figure 5 depicts the optimality gaps
observed in SpoNet_pub and PPO-swap across the test data. No-
tably, while both models are trained with a fixed facility number 𝑝 ,
SpoNet’s constructive solving approach exhibits a greater depen-
dency on this parameter. Consequently, it struggles to generalize
effectively when this parameter changes. In contrast, PPO-swap
demonstrates a smoother performance curve, indicating its supe-
rior adaptability to varying problem settings, a critical aspect of
generalizability inherent in our improving-style algorithm.

5.4 Tackling Graph Complexity
In addressing the complexity of graph-based facility location prob-
lems, prior approaches [18, 30] rely on simplified graph construc-
tions from 2D coordinates using Euclidean distances, while our
method natively supports graph structures as direct input and in-
corporates non-Euclidean graph metrics. In these graphs, edges
represent more complex metrics, such as shortest paths or travel
times, reflecting real-world transportation networks with spatial

1https://github.com/CO-RL/SpoNet

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 6: PMP solutions of different methods on Shanghai road networks. The gray layer represents the urban road networks.
The size of red circles is proportional to the regional population. Blue crosses stands for suggested locations for facilities.

5 10 15 20 25 30 35 40
Facility number p

10
20
30
40
50
60
70

Op
tim

al
ity

 g
ap

 (%
)

SpoNet
SpoNet_pub
PPO-swap

Figure 7: SpoNet vs. PPO-swap on unweighted graphs.

constraints. We devise the following experiments to demonstrate
the non-triviality of this advance.

5.4.1 Settings. To demonstrate our method’s effectiveness on com-
plex graphs, we compared it against two variants of SpoNet [18].
The first one is SpoNet_pub as mentioned in Section 5.3, with its
Euclidean distance matrix substituted with a pairwise shortest path
matrix during inference. The second version SpoNet is trained by
using the shortest path matrix as the cost matrix for various values
of 𝑝 incrementally since it has to be trained with fixed 𝑝 . We use
unweighted graphs for training and testing since SpoNet does not
support weighted graphs.

5.4.2 Results and Analysis. As illustrated in Figure 7, SpoNet achieves
acceptable gaps when 𝑝 is small, but the performance declines as
𝑝 increases even with incremental training. For SpoNet_pub, its
performance is consistent with the fact that it was trained with
fixed 𝑝 = 15. PPO-swap outperforms both versions of SpoNet sig-
nificantly across different 𝑝 . This experiment reveals the intrinsic
advantage of our model, as it learns a general strategy to swap on
complex graph data in spite of changes in instance parameters. This
capability allows our method to capture richer graph-based infor-
mation in applications, particularly when the objective is influenced
by travel cost, a key factor in many road network applications.

5.5 Placing Facilities on Urban Road Networks
Besides the experiments on synthetic graphs, we demonstrate how
PPO-swap can solve facility location problems in real-world sce-
narios. We use the road networks and population data of Shanghai
to construct a city data set. Specifically, graph nodes consist of ag-
gregated 5000m grids, and edges are connected based on the shape
of the road network. For model training, we disturb the original
population and generate 1000 sets of node weights. Other settings
for inference are identical to Section 5.2.

Figure 6 illustrates the solutions of three methods on the city
data set for 𝑝 = 20, where the size of red circles denotes the amount
of population and blue crosses are suggested locations to place
facilities. Compared to SA, PPO-swap achieves lower costs and
places facilities in a more efficient manner. As observed, PPO-swap
increases the density of facilities in high-population areas, which
reduces average travel distances for the population. Additionally,
the spatial distribution of the PPO-swap solution is closer to that
of the Gurobi solver, making it a practical and scalable solution for
large-scale urban applications, especially for real-time deployment.

6 Conclusion
In conclusion, our work provides a novel and robust solution to
facility location problems on graphs. We introduce a versatile swap-
based framework addressing both the 𝑝-median problem and facility
relocation on graphs, achieving a commendable balance between
solution quality and running time. Extensive experiments on syn-
thetic and real-world data sets show that it is capable of producing
high-quality solutions on large graphs with fast inference.

Our work has certain limitations that warrant consideration
for future research. First, there is room for improvement in per-
formance, which could be achieved through the exploration of
more intricate model architectures. Second, while our approach
demonstrates competitive performance, the computation of node
features may require acceleration to ensure that the model remains
competitive with heuristics on small instances. Addressing these
limitations could further enhance the applicability and efficiency
of our approach in real-world settings.

In summary, our work contributes significantly to the field of
facility location optimization, providing a robust framework that
addresses complex challenges.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Unified and Generalizable Reinforcement Learning for Facility Location Problems on Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala,

and Vinayaka Pandit. 2001. Local Search Heuristic for K-Median and Facility
Location Problems. In Proceedings of the Thirty-Third Annual ACM Symposium
on Theory of Computing. ACM, Hersonissos Greece, 21–29. https://doi.org/10.
1145/380752.380755

[2] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. 2021. Machine learning for
combinatorial optimization: A methodological tour d’horizon. European Journal
of Operational Research 290, 2 (2021), 405–421. https://doi.org/10.1016/j.ejor.
2020.07.063

[3] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph At-
tention Networks?. In The Tenth International Conference on Learning Repre-
sentations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net. https:
//openreview.net/forum?id=F72ximsx7C1

[4] Derya Celik Turkoglu and Mujde Erol Genevois. 2020. A Comparative Survey of
Service Facility Location Problems. Annals of Operations Research 292, 1 (2020),
399–468. https://doi.org/10.1007/s10479-019-03385-x

[5] Xinyun Chen and Yuandong Tian. 2019. Learning to Perform Local Rewriting
for Combinatorial Optimization. In Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

[6] Xu Chen, Shaohua Wang, Huilai Li, Haojian Liang, Ziqiong Li, and Hao Lu.
2023. An attention model with multiple decoders for solving p-Center problems.
International Journal of Applied Earth Observation and Geoinformation 125 (2023),
103526. https://doi.org/10.1016/j.jag.2023.103526

[7] C. Cintrano, F. Chicano, and E. Alba. 2020. Using metaheuristics for the location
of bicycle stations. Expert Systems with Applications 161 (2020), 113684. https:
//doi.org/10.1016/j.eswa.2020.113684

[8] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer.
Math. 1, 1 (1959), 269–271. https://doi.org/10.1007/BF01386390

[9] Jonas K. Falkner, Daniela Thyssens, Ahmad Bdeir, and Lars Schmidt-Thieme. 2023.
Learning to Control Local Search for Combinatorial Optimization. In Machine
Learning and Knowledge Discovery in Databases, Massih-Reza Amini, Stéphane
Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, and Grigorios Tsoumakas
(Eds.). Vol. 13717. Springer Nature Switzerland, Cham, 361–376. https://doi.org/
10.1007/978-3-031-26419-1_22

[10] Reza Zanjirani Farahani and Masoud Hekmatfar. 2009. Facility Location: Concepts,
Models, Algorithms and Case Studies. Springer Science & Business Media.

[11] K Ruben Gabriel and Robert R Sokal. 1969. A new statistical approach to geo-
graphic variation analysis. Systematic zoology 18, 3 (1969), 259–278.

[12] Andoni I. Garmendia, Josu Ceberio, and Alexander Mendiburu. 2023. Neural
Improvement Heuristics for Graph Combinatorial Optimization Problems. IEEE
Transactions on Neural Networks and Learning Systems (2023), 1–0. https://doi.
org/10.1109/TNNLS.2023.3314375

[13] Haris Gavranović, Alper Barut, Gürdal Ertek, Orkun Berk Yüzbaşıoğlu, Osman
Pekpostalcı, and Önder Tombuş. 2014. Optimizing the Electric Charge Station
Network of EŞARJ. Procedia Computer Science 31 (2014), 15–21. https://doi.
org/10.1016/j.procs.2014.05.240 2nd International Conference on Information
Technology and Quantitative Management, ITQM 2014.

[14] Michael F Goodchild and Valerian T Noronha. 1983. Location-allocation for
small computers. Number 8 in Monograph (University of Iowa. Department of
Geography). Department of Geography, University of Iowa.

[15] Gurobi Optimization, LLC. 2024. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

[16] Harsha Gwalani, Chetan Tiwari, and Armin R. Mikler. 2021. Evaluation of
Heuristics for the P-Median Problem: Scale and Spatial Demand Distribution.
Computers, Environment and Urban Systems 88 (2021), 101656. https://doi.org/
10.1016/j.compenvurbsys.2021.101656

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations. https://openreview.net/forum?id=SJU4ayYgl

[18] Haojian Liang, Shaohua Wang, Huilai Li, Liang Zhou, Hechang Chen, Xueyan
Zhang, and Xu Chen. 2024. Sponet: solve spatial optimization problem using
deep reinforcement learning for urban spatial decision analysis. International
Journal of Digital Earth 17, 1 (2024), 2299211. https://doi.org/10.1080/17538947.
2023.2299211

[19] Yang Liu, Yun Yuan, Jieyi Shen, and Wei Gao. 2021. Emergency response facility
location in transportation networks: A literature review. Journal of Traffic
and Transportation Engineering (English Edition) 8, 2 (2021), 153–169. https:
//doi.org/10.1016/j.jtte.2021.03.001 Transportation Planning and Operations for
COVID-19 Epidemic and Other Emergencies.

[20] Hao Lu, Xingwen Zhang, and Shuang Yang. 2019. A Learning-Based Iterative
Method for Solving Vehicle Routing Problems. In International Conference on
Learning Representations.

[21] Hui Luo, Zhifeng Bao, J. Shane Culpepper, Mingzhao Li, and Yanchang Zhao.
2023. Facility Relocation Search For Good: When Facility Exposure Meets
User Convenience. In Proceedings of the ACM Web Conference 2023 (WWW

’23). Association for Computing Machinery, New York, NY, USA, 3937–3947.
https://doi.org/10.1145/3543507.3583859

[22] FE Maranzana. 1964. On the location of supply points to minimize transport
costs. Journal of the Operational Research Society 15, 3 (1964), 261–270.

[23] Dávid Matis and Peter Tarábek. 2023. Reinforcement Learning for Weighted
P-Median Problem. In 2023 International Conference on Information and Digital
Technologies (IDT). 293–298. https://doi.org/10.1109/IDT59031.2023.10194404

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[25] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:
Higher-order graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence, Vol. 33. 4602–4609.

[26] Fagueye Ndiaye, Babacar Mbaye Ndiaye, and Idrissa Ly. 2012. Application of
the P-Median Problem in School Allocation. American Journal of Operations
Research 02, 02 (2012), 253–259. https://doi.org/10.4236/ajor.2012.22030

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[28] Shaohua Wang, Haojian Liang, Yang Zhong, Xueyan Zhang, and Cheng Su.
2023. DeepMCLP: Solving the MCLP with Deep Reinforcement Learning for
Urban Facility Location Analytics. Spatial Data Science Symposium 2023 (2023).
https://doi.org/10.25436/E2KK5V

[29] Dimitrios Tsiotas and Serafeim Polyzos. 2017. The Topology of Urban Road
Networks and Its Role to Urban Mobility. Transportation Research Procedia 24
(2017), 482–490. https://doi.org/10.1016/j.trpro.2017.05.087

[30] Chenguang Wang, Congying Han, Tiande Guo, and Man Ding. 2022. Solving
Uncapacitated P-Median Problem with Reinforcement Learning Assisted by
Graph Attention Networks. Applied Intelligence (2022). https://doi.org/10.1007/
s10489-022-03453-z

[31] Hu Wang, Hui Li, Meng Wang, and Jiangtao Cui. 2023. Toward Balancing the
Efficiency and Effectiveness in K-Facility Relocation Problem. ACM Transactions
on Intelligent Systems and Technology 14, 3 (2023), 1–24. https://doi.org/10.1145/
3587039

[32] Wei Wang, Shining Wu, Shuaian Wang, Lu Zhen, and Xiaobo Qu. 2021. Emer-
gency facility location problems in logistics: Status and perspectives. Trans-
portation Research Part E: Logistics and Transportation Review 154 (2021), 102465.
https://doi.org/10.1016/j.tre.2021.102465

[33] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8 (1992), 229–256.

[34] YaoxinWu,Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. 2022. Learning
Improvement Heuristics for Solving Routing Problems. IEEE Transactions on
Neural Networks and Learning Systems 33, 9 (2022), 5057–5069. https://doi.org/
10.1109/TNNLS.2021.3068828

[35] Cong Zhang, Zhiguang Cao, Wen Song, Yaoxin Wu, and Jie Zhang. 2024. Deep
Reinforcement Learning Guided Improvement Heuristic for Job Shop Scheduling.
In The Twelfth International Conference on Learning Representations. https:
//openreview.net/forum?id=jsWCmrsHHs

[36] Zhonghao Zhao, Carman K.M. Lee, Xiaoyuan Yan, and Haonan Wang. 2023.
A Deep Reinforcement Learning Framework for Capacitated Facility Location
Problems with Discrete Expansion Sizes. In 2023 IEEE International Conference on
Industrial Engineering and Engineering Management (IEEM). 0640–0644. https:
//doi.org/10.1109/IEEM58616.2023.10406899

A Implementation Details
A.1 Implementation of PPO-swap
All experiments are conducted on an Intel Xeon Gold 6226R CPU
with 64 cores and NVIDIA GeForce RTX 3090 GPU. The CPU oper-
ates on x86-64 architecture and the GPUs run CUDA version 12.1.
For experiments on Gabriel graphs, we generate 1000 graphs with
100 nodes as training data set. We use the GNN implementation
from Morris et al. [25]. It has 𝐿1 = 3 layers with hidden size of 128.
The edge embedding size is 1 and attention head is 1. For the MLP
module, it has 𝐿2 = 3 layers with hidden size of 128. We use PPO
algorithm for reinforcement learning and Adam optimizer with
learning rate of 0.005 and exponential decay rate of 0.995. The PPO
training hyper-parameters are listed in Table 3.

9

https://doi.org/10.1145/380752.380755
https://doi.org/10.1145/380752.380755
https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2020.07.063
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1
https://doi.org/10.1007/s10479-019-03385-x
https://doi.org/10.1016/j.jag.2023.103526
https://doi.org/10.1016/j.eswa.2020.113684
https://doi.org/10.1016/j.eswa.2020.113684
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/978-3-031-26419-1_22
https://doi.org/10.1007/978-3-031-26419-1_22
https://doi.org/10.1109/TNNLS.2023.3314375
https://doi.org/10.1109/TNNLS.2023.3314375
https://doi.org/10.1016/j.procs.2014.05.240
https://doi.org/10.1016/j.procs.2014.05.240
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1016/j.compenvurbsys.2021.101656
https://doi.org/10.1016/j.compenvurbsys.2021.101656
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1080/17538947.2023.2299211
https://doi.org/10.1080/17538947.2023.2299211
https://doi.org/10.1016/j.jtte.2021.03.001
https://doi.org/10.1016/j.jtte.2021.03.001
https://doi.org/10.1145/3543507.3583859
https://doi.org/10.1109/IDT59031.2023.10194404
https://doi.org/10.4236/ajor.2012.22030
https://doi.org/10.25436/E2KK5V
https://doi.org/10.1016/j.trpro.2017.05.087
https://doi.org/10.1007/s10489-022-03453-z
https://doi.org/10.1007/s10489-022-03453-z
https://doi.org/10.1145/3587039
https://doi.org/10.1145/3587039
https://doi.org/10.1016/j.tre.2021.102465
https://doi.org/10.1109/TNNLS.2021.3068828
https://doi.org/10.1109/TNNLS.2021.3068828
https://openreview.net/forum?id=jsWCmrsHHs
https://openreview.net/forum?id=jsWCmrsHHs
https://doi.org/10.1109/IEEM58616.2023.10406899
https://doi.org/10.1109/IEEM58616.2023.10406899

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 3: Hyper-parameters for training PPO-swap

Hyper-parameters Value

PPO gamma 0.9
GAE lambda 0.95
Batch size 64

Steps per epoch 1024
Optimization iterations 4

Clip ratio 0.1
Clip decay 0.998

Entropy loss weight 0.01
Critic loss weight 0.5
Gradient clipping 1
Number of epochs 300

A.2 Implementation of BestResponse
We use the BestResponse algorithm from [21] as a baseline for
FRP with reasonable modification to align with our experiments.
Since [21] optimizes a twofold objective of facility exposure and
user convenience, it is slightly different to the setting of our work.
We modify the BestResponse algorithm to optimize the global user-
facility cost in Eqs. (3,4). We notice that BestResponse reaches com-
parable results with the RL method in [21] when considering single
objective, and it should serve as a competitive baseline. Another dif-
ference in problem setting is that [21] does not limit the relocation
budget, so we add this constraint to line 1.2 in the BestResponse
algorithm. For a fair comparison, we choose relocated facilities
randomly (in line 1.3) and run Best Response for 20 iterations (the
same as other baselines).

A.3 Implementation of SpoNet
The SpoNet [18] in Section 5.4 is modified to align with our settings.
. First, we use the shortest path as the cost matrix in the model.
Second, we trained SpoNet incrementally for varying values of the
parameter 𝑝 (in range(5, 41, 5), each for 25 epochs, batch_size=64,
and epoch_size=1024). These hyperparameters are aligned with
PPO-swap.

B Additional Experiment Results
B.1 Grid Search results for GNN Architectures
We perform grid search over three hyperparameters concerning
the GNN architectures: the types of GNN layer, the number of
hidden size and the number of GNN layers. All combinations are
trained while other hyperparameters are fixed. Table 4 reports
the improvement ratio 𝑄 of each model on the test set for facility
relocation problem, where the combination (GraphConv, 128, 3)
performs best.

B.2 Experiments for FRP on Various Scales
The detailed results for 𝑛 = 100, 200, 500, 1000 solving FRP are
shown in Table 5,6,7,8. The model used for PPO-swap is trained on
graphs with 𝑛 = 100 only.

B.3 Experiments for PMP on Various Scales
The detailed results for 𝑛 = 100, 200, 500, 1000 solving PMP are
shown in Table 9,10,11,12. The model used for PPO-swap is trained
on graphs with 𝑛 = 100 only.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Unified and Generalizable Reinforcement Learning for Facility Location Problems on Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 4: Grid search of GNN architecture hyperparamters

layer_name (32, 2) (32, 3) (32, 4) (64, 2) (64, 3) (64, 4) (128, 2) (128, 3) (128, 4)

GATv2Conv [3] 46.58 46.30 44.01 45.57 46.10 45.13 46.81 45.73 44.60
GCNConv [17] 45.73 44.58 42.88 45.84 44.25 43.20 45.01 43.87 43.24
GraphConv [25] 46.85 46.77 47.01 46.17 47.41 47.10 42.03 47.44 47.18

Table 5: Results of FRP, 𝑛 = 100

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 39.70 ± 11.19 0.00 ± 0.00 0.33 ± 0.04 42.16 ± 9.44 0.00 ± 0.00 0.36 ± 0.17 47.36 ± 9.11 0.00 ± 0.00 0.36 ± 0.14 47.33 ± 9.66 0.00 ± 0.00 0.47 ± 0.30
Greedy-swap 39.00 ± 10.70 1.44 ± 2.80 0.11 ± 0.03 41.23 ± 9.67 1.57 ± 1.39 0.41 ± 0.09 47.12 ± 9.12 0.48 ± 0.42 0.91 ± 0.25 46.91 ± 9.67 0.81 ± 0.89 1.69 ± 0.29
Random-swap 29.92 ± 12.39 17.04 ± 11.85 0.01 ± 0.00 22.72 ± 8.14 36.33 ± 21.99 0.03 ± 0.01 27.44 ± 7.12 40.59 ± 19.41 0.04 ± 0.01 21.54 ± 8.47 52.11 ± 22.77 0.05 ± 0.02
BestResponse 38.92 ± 10.51 1.63 ± 2.62 0.28 ± 0.02 40.29 ± 9.84 3.23 ± 2.13 0.59 ± 0.06 44.94 ± 8.97 4.79 ± 1.47 0.79 ± 0.07 44.86 ± 10.05 4.71 ± 2.01 1.15 ± 0.12
FR2FP 33.93 ± 12.59 9.69 ± 6.28 0.02 ± 0.00 34.86 ± 11.34 12.61 ± 5.96 0.07 ± 0.01 39.56 ± 8.95 15.42 ± 6.09 0.10 ± 0.01 41.73 ± 11.51 10.44 ± 3.94 0.13 ± 0.02
PPO-swap 38.38 ± 11.35 2.21 ± 1.80 0.03 ± 0.00 37.68 ± 11.60 7.32 ± 3.52 0.06 ± 0.00 42.62 ± 10.35 8.89 ± 2.32 0.09 ± 0.00 42.53 ± 11.17 8.90 ± 3.95 0.12 ± 0.00

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 54.65 ± 13.45 0.00 ± 0.00 0.34 ± 0.09 54.91 ± 12.81 0.00 ± 0.00 0.34 ± 0.09 61.67 ± 12.70 0.00 ± 0.00 0.30 ± 0.09 66.36 ± 11.38 0.00 ± 0.00 0.26 ± 0.03
Greedy-swap 54.07 ± 13.64 1.24 ± 0.84 2.58 ± 0.54 54.41 ± 12.83 1.30 ± 1.00 3.76 ± 0.87 61.30 ± 12.73 1.06 ± 0.79 9.86 ± 2.28 66.07 ± 11.48 0.85 ± 0.67 12.60 ± 3.33
Random-swap 25.96 ± 8.72 77.02 ± 51.62 0.06 ± 0.01 23.81 ± 10.06 86.46 ± 69.85 0.07 ± 0.01 27.04 ± 9.07 116.43 ± 94.27 0.14 ± 0.06 26.88 ± 8.80 156.17 ± 126.53 0.16 ± 0.07
BestResponse 51.64 ± 13.67 7.23 ± 2.49 1.36 ± 0.21 51.39 ± 13.27 8.45 ± 3.17 1.76 ± 0.18 57.72 ± 12.87 11.65 ± 5.24 3.14 ± 0.27 63.57 ± 11.90 9.15 ± 2.93 3.71 ± 0.36
FR2FP 49.75 ± 14.97 10.53 ± 4.05 0.19 ± 0.04 51.21 ± 13.75 8.51 ± 3.06 0.25 ± 0.04 57.93 ± 13.56 10.05 ± 3.08 0.31 ± 0.05 63.22 ± 12.25 9.68 ± 4.17 0.47 ± 0.06
PPO-swap 50.01 ± 16.00 9.62 ± 4.17 0.14 ± 0.00 48.80 ± 15.46 12.98 ± 4.26 0.18 ± 0.00 56.68 ± 15.00 12.38 ± 3.93 0.20 ± 0.00 60.65 ± 13.50 16.79 ± 2.44 0.23 ± 0.00

Table 6: Results of FRP, 𝑛 = 200

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 39.70 ± 11.19 0.00 ± 0.00 0.15 ± 0.01 42.16 ± 9.44 0.00 ± 0.00 0.16 ± 0.07 47.36 ± 9.11 0.00 ± 0.00 0.15 ± 0.05 47.33 ± 9.66 0.00 ± 0.00 0.19 ± 0.11
Greedy-swap 39.00 ± 10.70 1.44 ± 2.80 0.06 ± 0.00 41.23 ± 9.67 1.57 ± 1.39 0.27 ± 0.01 47.12 ± 9.12 0.48 ± 0.42 0.52 ± 0.01 46.91 ± 9.67 0.81 ± 0.89 0.97 ± 0.01
Random-swap 26.63 ± 12.25 22.42 ± 8.50 0.01 ± 0.00 24.11 ± 8.95 32.80 ± 13.82 0.02 ± 0.00 25.91 ± 6.07 43.42 ± 17.40 0.02 ± 0.00 21.46 ± 7.13 52.46 ± 21.96 0.03 ± 0.00
BestResponse 38.72 ± 10.48 1.97 ± 2.58 0.28 ± 0.01 40.50 ± 9.66 2.88 ± 1.65 0.55 ± 0.02 45.72 ± 9.00 3.28 ± 1.63 0.75 ± 0.03 44.67 ± 9.41 5.30 ± 2.35 1.10 ± 0.07
FR2FP 33.93 ± 12.59 9.69 ± 6.28 0.01 ± 0.00 34.86 ± 11.34 12.61 ± 5.96 0.04 ± 0.01 39.56 ± 8.95 15.42 ± 6.09 0.07 ± 0.01 41.73 ± 11.51 10.44 ± 3.94 0.09 ± 0.01
PPO-swap 38.89 ± 11.09 1.44 ± 1.24 0.03 ± 0.00 38.54 ± 11.91 5.73 ± 3.49 0.06 ± 0.00 43.38 ± 10.28 7.45 ± 2.34 0.09 ± 0.00 43.06 ± 10.26 8.17 ± 2.27 0.12 ± 0.00

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 54.65 ± 13.45 0.00 ± 0.00 0.14 ± 0.04 54.91 ± 12.81 0.00 ± 0.00 0.16 ± 0.04 61.67 ± 12.70 0.00 ± 0.00 0.13 ± 0.04 66.36 ± 11.38 0.00 ± 0.00 0.11 ± 0.01
Greedy-swap 54.07 ± 13.64 1.24 ± 0.84 1.42 ± 0.02 54.41 ± 12.83 1.30 ± 1.00 2.07 ± 0.02 61.30 ± 12.73 1.06 ± 0.79 3.54 ± 0.03 66.07 ± 11.48 0.85 ± 0.67 4.53 ± 0.02
Random-swap 25.83 ± 7.43 80.08 ± 64.70 0.04 ± 0.00 23.12 ± 12.24 83.51 ± 51.26 0.05 ± 0.00 24.77 ± 7.41 123.80 ± 99.09 0.06 ± 0.00 29.93 ± 9.71 144.37 ± 121.66 0.07 ± 0.00
BestResponse 51.28 ± 13.31 8.31 ± 3.57 1.29 ± 0.10 51.95 ± 12.95 7.33 ± 3.57 1.66 ± 0.09 58.10 ± 12.98 10.08 ± 3.99 3.01 ± 0.14 62.77 ± 12.26 10.97 ± 3.69 3.27 ± 0.25
FR2FP 49.75 ± 14.97 10.53 ± 4.05 0.09 ± 0.01 51.21 ± 13.75 8.51 ± 3.06 0.12 ± 0.01 57.93 ± 13.56 10.05 ± 3.08 0.15 ± 0.01 63.22 ± 12.25 9.68 ± 4.17 0.27 ± 0.01
PPO-swap 49.84 ± 15.53 10.34 ± 3.15 0.14 ± 0.00 49.09 ± 15.15 12.34 ± 4.17 0.18 ± 0.00 57.07 ± 14.42 11.66 ± 2.83 0.20 ± 0.00 61.58 ± 12.98 14.25 ± 2.86 0.23 ± 0.00

Table 7: Results of FRP, 𝑛 = 500

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 48.50 ± 13.98 0.00 ± 0.00 11.99 ± 2.66 64.63 ± 12.62 0.00 ± 0.00 14.28 ± 3.81 56.32 ± 7.58 0.00 ± 0.00 13.14 ± 4.16 62.43 ± 8.36 0.00 ± 0.00 12.08 ± 3.38
Greedy-swap 47.88 ± 13.86 1.35 ± 2.28 0.61 ± 0.02 64.04 ± 12.58 1.92 ± 1.39 3.91 ± 0.04 55.48 ± 7.76 1.96 ± 1.38 8.86 ± 0.54 62.00 ± 8.50 1.11 ± 0.90 18.01 ± 1.52
Random-swap 30.37 ± 16.18 37.61 ± 19.98 0.01 ± 0.00 43.27 ± 16.34 64.14 ± 19.09 0.03 ± 0.01 27.66 ± 12.67 66.15 ± 16.40 0.04 ± 0.01 27.30 ± 9.32 99.90 ± 32.44 0.06 ± 0.01
BestResponse 47.88 ± 13.85 1.34 ± 2.28 2.36 ± 0.06 63.51 ± 12.94 3.24 ± 1.34 7.90 ± 0.21 53.95 ± 8.18 5.41 ± 1.76 11.77 ± 0.16 59.98 ± 9.22 6.28 ± 2.35 18.09 ± 1.16
FR2FP 43.77 ± 17.26 8.55 ± 9.10 0.10 ± 0.02 62.18 ± 13.18 7.24 ± 3.29 0.28 ± 0.02 52.43 ± 8.62 8.84 ± 2.91 0.44 ± 0.03 58.57 ± 9.13 10.50 ± 3.55 0.69 ± 0.03
PPO-swap 47.38 ± 14.85 1.90 ± 1.49 0.03 ± 0.00 62.41 ± 12.89 6.93 ± 4.18 0.07 ± 0.01 53.82 ± 7.87 5.83 ± 2.12 0.10 ± 0.01 59.37 ± 9.08 8.11 ± 2.61 0.14 ± 0.01

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 69.79 ± 9.18 0.00 ± 0.00 10.73 ± 1.77 67.09 ± 10.91 0.00 ± 0.00 10.90 ± 1.62 67.69 ± 10.55 0.00 ± 0.00 11.73 ± 1.66 70.63 ± 7.22 0.00 ± 0.00 12.35 ± 2.67
Greedy-swap 69.14 ± 9.16 2.34 ± 0.99 27.33 ± 0.35 66.43 ± 11.04 2.25 ± 1.43 43.43 ± 0.77 67.02 ± 10.79 2.06 ± 0.67 58.20 ± 1.34 70.12 ± 7.35 1.69 ± 1.19 80.30 ± 1.27
Random-swap 33.80 ± 13.32 127.94 ± 37.46 0.08 ± 0.01 34.18 ± 16.16 110.38 ± 36.87 0.10 ± 0.02 27.39 ± 12.62 140.11 ± 49.90 0.11 ± 0.02 27.95 ± 6.91 158.78 ± 57.72 0.13 ± 0.02
BestResponse 67.87 ± 9.75 6.32 ± 2.39 23.09 ± 1.23 64.76 ± 11.42 7.42 ± 2.83 31.47 ± 3.52 64.65 ± 11.68 9.34 ± 2.51 37.53 ± 7.21 67.96 ± 7.96 8.94 ± 2.28 42.89 ± 3.46
FR2FP 66.24 ± 10.07 11.95 ± 2.86 0.89 ± 0.10 63.27 ± 11.89 11.90 ± 3.34 1.17 ± 0.04 63.36 ± 12.08 13.36 ± 5.11 1.45 ± 0.09 66.50 ± 8.52 13.82 ± 3.47 1.85 ± 0.14
PPO-swap 67.08 ± 10.05 8.89 ± 1.43 0.17 ± 0.01 63.50 ± 12.51 10.47 ± 3.17 0.21 ± 0.01 64.68 ± 11.96 8.98 ± 2.19 0.23 ± 0.01 67.85 ± 7.65 9.95 ± 5.17 0.27 ± 0.01

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 8: Results of FRP, 𝑛 = 1000

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 59.87 ± 13.91 0.00 ± 0.00 111.32 ± 45.98 70.22 ± 6.15 0.00 ± 0.00 151.85 ± 50.54 65.89 ± 10.45 0.00 ± 0.00 141.85 ± 51.53 70.11 ± 8.34 0.00 ± 0.00 130.52 ± 33.89
Greedy-swap 59.70 ± 13.92 0.46 ± 0.65 3.56 ± 0.62 69.42 ± 6.22 2.75 ± 1.18 19.23 ± 3.32 65.63 ± 10.31 1.02 ± 0.96 42.08 ± 8.54 69.52 ± 8.37 2.17 ± 1.39 87.70 ± 14.86
Random-swap 34.74 ± 18.20 69.63 ± 36.49 0.02 ± 0.00 41.11 ± 9.27 103.30 ± 40.54 0.04 ± 0.00 39.24 ± 16.04 82.27 ± 20.70 0.06 ± 0.00 37.07 ± 14.90 115.85 ± 26.77 0.08 ± 0.01
BestResponse 59.70 ± 13.92 0.46 ± 0.65 11.87 ± 3.50 69.38 ± 6.26 2.88 ± 1.15 33.09 ± 8.01 65.05 ± 10.62 2.60 ± 0.90 50.37 ± 11.15 68.94 ± 8.57 4.09 ± 1.29 77.60 ± 18.87
FR2FP 56.35 ± 16.37 7.52 ± 5.96 0.30 ± 0.08 68.80 ± 6.19 4.94 ± 3.56 1.16 ± 0.23 62.95 ± 11.04 8.71 ± 2.89 1.85 ± 0.44 66.83 ± 9.46 10.89 ± 4.33 2.65 ± 0.68
PPO-swap 58.84 ± 14.26 2.54 ± 3.28 0.03 ± 0.00 68.54 ± 6.61 5.51 ± 1.77 0.07 ± 0.00 63.85 ± 10.84 6.26 ± 2.13 0.10 ± 0.00 67.15 ± 9.64 9.40 ± 2.98 0.14 ± 0.00

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s) 𝑄 (%) Gap (%) Time (s)

Gurobi 72.62 ± 8.58 0.00 ± 0.00 109.81 ± 24.68 75.36 ± 7.77 0.00 ± 0.00 122.62 ± 25.28 70.10 ± 9.14 0.00 ± 0.00 124.17 ± 34.47 76.59 ± 8.40 0.00 ± 0.00 133.45 ± 39.36
Greedy-swap 71.93 ± 8.77 2.56 ± 1.44 134.23 ± 18.64 74.90 ± 8.04 1.73 ± 0.67 206.06 ± 32.79 69.48 ± 9.40 2.01 ± 1.17 129.97 ± 15.11 76.20 ± 8.53 1.72 ± 0.97 173.33 ± 26.67
Random-swap 38.06 ± 12.30 135.29 ± 35.62 0.10 ± 0.01 39.43 ± 12.47 154.94 ± 36.73 0.13 ± 0.01 27.79 ± 12.09 155.49 ± 50.42 0.10 ± 0.00 36.96 ± 13.11 189.31 ± 61.93 0.12 ± 0.00
BestResponse 71.03 ± 9.26 5.59 ± 1.56 93.43 ± 17.85 74.13 ± 8.49 4.68 ± 1.81 132.85 ± 23.07 67.81 ± 10.21 7.23 ± 3.14 68.51 ± 5.31 75.13 ± 8.98 6.21 ± 1.81 82.45 ± 7.32
FR2FP 69.18 ± 9.95 12.20 ± 2.85 3.72 ± 0.89 71.84 ± 9.40 13.79 ± 5.49 5.16 ± 1.34 65.13 ± 10.54 16.89 ± 3.54 5.70 ± 1.49 73.16 ± 9.51 14.73 ± 2.76 6.83 ± 1.42
PPO-swap 70.06 ± 9.83 8.92 ± 2.61 0.17 ± 0.00 72.79 ± 8.91 10.07 ± 3.89 0.22 ± 0.00 67.18 ± 10.53 9.32 ± 3.09 0.24 ± 0.00 73.98 ± 9.49 10.74 ± 1.99 0.28 ± 0.02

Table 9: Results of PMP, 𝑛 = 100

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 0.16 ± 0.05 0.00 ± 0.00 0.15 ± 0.03 0.00 ± 0.00 0.15 ± 0.04 0.00 ± 0.00 0.16 ± 0.07
Greedy-swap 0.00 ± 0.00 0.71 ± 0.04 0.02 ± 0.06 2.32 ± 0.22 0.01 ± 0.03 4.87 ± 0.68 0.18 ± 0.28 7.19 ± 1.19
Random-swap 10.92 ± 3.78 0.08 ± 0.00 14.66 ± 3.25 0.14 ± 0.01 18.06 ± 4.30 0.16 ± 0.00 22.01 ± 3.07 0.22 ± 0.00
SA 8.14 ± 3.81 0.15 ± 0.01 8.62 ± 3.15 0.11 ± 0.00 11.72 ± 3.36 0.10 ± 0.00 15.00 ± 6.20 0.10 ± 0.00
Maranzana 5.68 ± 3.24 0.26 ± 0.01 15.55 ± 12.05 0.29 ± 0.03 21.65 ± 17.27 0.36 ± 0.07 30.53 ± 17.63 0.44 ± 0.09
PPO-swap 3.81 ± 2.01 0.31 ± 0.01 7.24 ± 2.56 0.60 ± 0.01 6.18 ± 1.93 0.90 ± 0.01 5.64 ± 2.21 1.19 ± 0.02
PPO-no-vor 5.34 ± 2.43 0.31 ± 0.01 8.47 ± 2.66 0.59 ± 0.01 10.46 ± 2.06 0.88 ± 0.01 10.76 ± 2.80 1.16 ± 0.02

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 0.12 ± 0.01 0.00 ± 0.00 0.14 ± 0.04 0.00 ± 0.00 0.13 ± 0.04 0.00 ± 0.00 0.10 ± 0.00
Greedy-swap 0.14 ± 0.29 10.29 ± 1.93 0.07 ± 0.11 12.09 ± 2.53 0.06 ± 0.18 20.56 ± 4.69 0.08 ± 0.18 22.30 ± 4.93
Random-swap 30.87 ± 4.92 0.28 ± 0.00 32.95 ± 5.02 0.35 ± 0.01 36.15 ± 7.07 0.68 ± 0.01 41.90 ± 7.92 0.75 ± 0.01
SA 19.88 ± 4.99 0.11 ± 0.00 42.40 ± 53.01 0.11 ± 0.00 41.75 ± 32.80 0.20 ± 0.00 57.74 ± 33.02 0.20 ± 0.01
Maranzana 44.54 ± 34.59 0.49 ± 0.08 55.04 ± 40.54 0.54 ± 0.13 73.15 ± 60.72 0.73 ± 0.10 95.54 ± 90.67 1.05 ± 0.43
PPO-swap 7.34 ± 1.38 1.48 ± 0.02 6.94 ± 2.02 1.78 ± 0.03 7.45 ± 1.31 2.04 ± 0.03 6.32 ± 1.39 2.34 ± 0.03
PPO-no-vor 12.05 ± 2.41 1.45 ± 0.02 11.35 ± 2.77 1.74 ± 0.02 11.08 ± 3.35 1.98 ± 0.03 12.40 ± 4.48 2.27 ± 0.03

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Unified and Generalizable Reinforcement Learning for Facility Location Problems on Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 10: Results of PMP, 𝑛 = 200

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 1.12 ± 0.49 0.00 ± 0.00 0.87 ± 0.20 0.00 ± 0.00 1.00 ± 0.38 0.00 ± 0.00 0.86 ± 0.23
Greedy-swap 0.13 ± 0.21 1.79 ± 0.14 0.15 ± 0.25 6.93 ± 0.21 0.03 ± 0.06 14.72 ± 1.27 0.04 ± 0.09 39.85 ± 10.06
Random-swap 9.00 ± 4.99 0.08 ± 0.00 20.45 ± 2.88 0.15 ± 0.00 25.20 ± 3.93 0.23 ± 0.00 26.95 ± 5.94 0.34 ± 0.00
SA 4.69 ± 1.78 0.13 ± 0.00 8.47 ± 3.58 0.14 ± 0.00 11.01 ± 4.08 0.14 ± 0.00 13.45 ± 5.29 0.16 ± 0.01
Maranzana 7.42 ± 4.50 0.37 ± 0.02 14.81 ± 8.35 0.59 ± 0.08 27.47 ± 17.96 0.72 ± 0.11 37.67 ± 21.65 0.97 ± 0.17
PPO-swap 4.48 ± 1.46 0.33 ± 0.01 6.97 ± 2.19 0.63 ± 0.01 8.69 ± 2.68 0.93 ± 0.01 9.21 ± 2.26 1.23 ± 0.02
PPO-no-vor 6.56 ± 5.07 0.33 ± 0.01 11.69 ± 4.52 0.62 ± 0.01 13.29 ± 2.38 0.91 ± 0.02 13.91 ± 2.40 1.21 ± 0.02

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 0.79 ± 0.29 0.00 ± 0.00 0.76 ± 0.22 0.00 ± 0.00 0.84 ± 0.36 0.00 ± 0.00 0.81 ± 0.33
Greedy-swap 0.12 ± 0.18 53.52 ± 13.38 0.07 ± 0.11 74.56 ± 19.60 0.03 ± 0.06 93.46 ± 20.31 0.14 ± 0.17 104.71 ± 30.22
Random-swap 30.57 ± 4.01 0.44 ± 0.00 31.89 ± 3.82 0.54 ± 0.00 36.33 ± 7.88 0.61 ± 0.00 38.87 ± 8.94 0.72 ± 0.00
SA 16.67 ± 6.98 0.16 ± 0.00 17.76 ± 6.74 0.17 ± 0.00 21.38 ± 9.29 0.17 ± 0.00 28.23 ± 20.58 0.17 ± 0.00
Maranzana 48.25 ± 39.37 1.07 ± 0.24 62.09 ± 52.38 1.33 ± 0.27 72.72 ± 58.88 1.36 ± 0.24 80.21 ± 63.38 1.36 ± 0.28
PPO-swap 8.63 ± 2.97 1.54 ± 0.02 9.59 ± 2.33 1.86 ± 0.03 9.30 ± 1.68 2.11 ± 0.03 9.94 ± 2.22 2.42 ± 0.03
PPO-no-vor 15.19 ± 2.68 1.50 ± 0.02 14.35 ± 3.22 1.80 ± 0.04 15.31 ± 2.80 2.05 ± 0.03 15.87 ± 3.05 2.34 ± 0.04

Table 11: Results of PMP, 𝑛 = 500

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 13.93 ± 2.09 0.00 ± 0.00 12.94 ± 3.66 0.00 ± 0.00 13.26 ± 3.26 0.00 ± 0.00 15.83 ± 7.39
Greedy-swap 0.03 ± 0.06 6.98 ± 0.32 0.08 ± 0.16 42.38 ± 9.96 0.12 ± 0.16 90.33 ± 18.50 0.16 ± 0.26 158.10 ± 42.65
Random-swap 12.48 ± 3.20 0.11 ± 0.00 23.03 ± 4.86 0.24 ± 0.02 21.28 ± 3.80 0.36 ± 0.00 27.96 ± 5.83 0.50 ± 0.00
SA 6.04 ± 3.31 0.20 ± 0.02 9.84 ± 2.11 0.23 ± 0.03 9.77 ± 1.96 0.23 ± 0.01 11.94 ± 4.48 0.24 ± 0.00
Maranzana 13.02 ± 6.42 0.85 ± 0.02 21.53 ± 5.18 1.85 ± 0.32 32.53 ± 13.36 2.28 ± 0.38 49.62 ± 23.42 2.45 ± 0.38
PPO-swap 3.54 ± 1.81 0.34 ± 0.00 6.89 ± 3.09 0.64 ± 0.00 9.22 ± 2.26 0.95 ± 0.00 8.77 ± 2.33 1.25 ± 0.00
PPO-no-vor 5.17 ± 2.91 0.35 ± 0.02 10.38 ± 2.87 0.65 ± 0.04 13.07 ± 3.44 0.95 ± 0.07 12.79 ± 2.25 1.22 ± 0.02

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 12.24 ± 4.69 0.00 ± 0.00 12.88 ± 2.59 0.00 ± 0.00 15.51 ± 4.73 0.00 ± 0.00 10.85 ± 2.49
Greedy-swap 0.03 ± 0.06 244.44 ± 55.16 0.15 ± 0.14 327.94 ± 59.99 0.10 ± 0.18 455.31 ± 89.73 0.16 ± 0.19 553.84 ± 113.75
Random-swap 30.67 ± 7.03 0.65 ± 0.00 31.33 ± 7.01 0.84 ± 0.07 37.15 ± 9.91 0.96 ± 0.00 37.08 ± 6.86 1.13 ± 0.00
SA 14.98 ± 4.48 0.25 ± 0.01 16.65 ± 6.79 0.26 ± 0.00 21.02 ± 10.72 0.27 ± 0.01 32.36 ± 17.15 0.28 ± 0.01
Maranzana 62.48 ± 35.66 2.93 ± 0.57 77.45 ± 39.77 3.13 ± 0.57 97.59 ± 53.10 3.35 ± 0.50 119.68 ± 67.72 3.46 ± 0.71
PPO-swap 10.43 ± 2.47 1.56 ± 0.00 9.13 ± 2.40 1.87 ± 0.00 10.39 ± 2.80 2.14 ± 0.00 12.62 ± 2.61 2.43 ± 0.01
PPO-no-vor 13.58 ± 2.94 1.51 ± 0.01 14.12 ± 2.41 1.80 ± 0.03 14.27 ± 2.57 2.06 ± 0.04 14.84 ± 2.98 2.36 ± 0.05

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 12: Results of PMP, 𝑛 = 1000

Methods 𝑝 = 5 𝑝 = 10 𝑝 = 15 𝑝 = 20

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 148.46 ± 56.19 0.00 ± 0.00 138.54 ± 34.88 0.00 ± 0.00 139.57 ± 47.67 0.00 ± 0.00 124.04 ± 31.42
Greedy-swap 0.05 ± 0.14 37.32 ± 9.10 0.19 ± 0.23 148.49 ± 32.82 0.11 ± 0.16 335.14 ± 79.21 0.13 ± 0.13 577.60 ± 89.65
Random-swap 15.13 ± 5.75 0.17 ± 0.00 20.55 ± 4.65 0.35 ± 0.01 22.86 ± 5.26 0.55 ± 0.01 26.16 ± 3.47 0.76 ± 0.03
SA 5.86 ± 1.91 0.32 ± 0.05 10.21 ± 4.04 0.32 ± 0.02 11.02 ± 4.01 0.38 ± 0.08 17.66 ± 6.68 0.38 ± 0.06
Maranzana 14.38 ± 4.62 2.56 ± 0.76 27.24 ± 10.14 5.04 ± 1.41 39.07 ± 9.93 6.89 ± 1.63 50.53 ± 13.16 7.80 ± 1.51
PPO-swap 2.59 ± 1.39 0.37 ± 0.01 7.23 ± 2.41 0.70 ± 0.01 8.43 ± 1.79 1.04 ± 0.01 11.22 ± 1.81 1.37 ± 0.01
PPO-no-vor 6.62 ± 3.62 0.36 ± 0.01 9.17 ± 2.83 0.68 ± 0.02 13.58 ± 3.89 1.00 ± 0.02 15.19 ± 4.15 1.33 ± 0.02

Methods 𝑝 = 25 𝑝 = 30 𝑝 = 35 𝑝 = 40

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Gurobi 0.00 ± 0.00 113.52 ± 21.09 0.00 ± 0.00 120.08 ± 42.90 0.00 ± 0.00 110.02 ± 30.12 0.00 ± 0.00 117.00 ± 34.36
Greedy-swap 0.04 ± 0.06 894.52 ± 137.87 0.10 ± 0.14 1278.23 ± 131.81 0.12 ± 0.16 1183.25 ± 179.11 0.11 ± 0.13 1410.36 ± 257.62
Random-swap 29.48 ± 7.10 0.99 ± 0.02 32.57 ± 4.74 1.28 ± 0.01 34.80 ± 5.06 1.22 ± 0.03 34.20 ± 5.22 1.40 ± 0.03
SA 20.91 ± 4.47 0.41 ± 0.07 27.87 ± 12.02 0.46 ± 0.10 32.97 ± 10.51 0.34 ± 0.01 38.94 ± 20.99 0.35 ± 0.02
Maranzana 72.42 ± 23.02 8.68 ± 1.74 88.34 ± 29.81 8.42 ± 1.49 101.03 ± 38.90 10.00 ± 2.67 127.20 ± 48.11 10.78 ± 3.06
PPO-swap 11.31 ± 2.23 1.70 ± 0.01 12.91 ± 2.22 2.05 ± 0.02 14.24 ± 2.52 2.33 ± 0.01 13.39 ± 2.37 2.65 ± 0.02
PPO-no-vor 16.48 ± 4.43 1.65 ± 0.03 19.16 ± 3.86 1.98 ± 0.03 18.64 ± 3.71 2.26 ± 0.03 19.03 ± 2.61 2.57 ± 0.02

14

	Abstract
	1 Introduction
	2 Related Work
	2.1 Machine Learning for Facility Location Problems
	2.2 Machine Learning for Solution Improvement

	3 Preliminaries and Formulation
	3.1 P-median Problem
	3.2 Facility Relocation Problem

	4 Methods
	4.1 Reinforcement Learning Formulation for Facility Relocation
	4.2 PPO-swap: a Learning-based Interchange Algorithm
	4.3 Voronoi-aware Graph Feature Extractor
	4.4 Attention-based Relocation Pair Selection
	4.5 From Relocation to Location

	5 Experiments
	5.1 Solving Facility Relocation Problem on Weighted Graphs
	5.2 Solving P-Median Problem on Weighted Graphs
	5.3 Generalizability of Improving Algorithms
	5.4 Tackling Graph Complexity
	5.5 Placing Facilities on Urban Road Networks

	6 Conclusion
	References
	A Implementation Details
	A.1 Implementation of PPO-swap
	A.2 Implementation of BestResponse
	A.3 Implementation of SpoNet

	B Additional Experiment Results
	B.1 Grid Search results for GNN Architectures
	B.2 Experiments for FRP on Various Scales
	B.3 Experiments for PMP on Various Scales

