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Abstract

Domain shifts limit the generalisation of deep learning
models for skin cancer detection, particularly when trained
on dermoscopic images but deployed on clinical images.
This study evaluates supervised and unsupervised domain
adaptation techniques to improve model performance on
a diverse set of clinical images. We introduce the IMPS
dataset, a varied collection of clinical skin lesion images,
to assess robustness under real-world conditions. Ex-
perimental results show that unsupervised methods, par-
ticularly Domain-Adversarial Neural Networks (DANN),
provide better generalisation than supervised approaches.
These findings suggest that evaluating models on limited
datasets may give an incomplete picture of their reliabil-
ity. Future research should test these approaches on addi-
tional clinical datasets that were not part of this study to
better assess their suitability for real-world applications.
Our GitHub repository contains the IMPS dataset and im-
age IDs referencing the original dataset sources: https:
//github.com/mmu—dermatology—research/
sl_domain_adaptation

1. Introduction

Skin cancer is the third most common human malignancy
and rising globally at an alarming rate [19]. For many years,
researchers have been working to develop deep learning
models that can effectively detect skin cancer in its early
stages. While many Convolutional Neural Network (CNN)
models have demonstrated superior performance in skin
cancer classification compared to dermatologists in exper-
imental settings, their generalisation issues have prevented
their implementation in clinics [14]. The performance dif-
ference mainly arises due to machine learning models as-
sumption that the training dataset and test dataset share the
same data distribution [21]. However, in real-world scenar-
ios, models often encounter different types of images than
those they were trained on or evaluated with. The predic-
tion on unseen data can be less accurate or unreliable due
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to even a small-scale deviation from the distribution of the
training domain [54], [38], [48].

This differing distribution of the training dataset and the
real-world dataset has been a major obstacle to skin cancer
classification. The three primary imaging modalities used
to diagnose skin diseases are clinical images, dermoscopic
images, and histopathological images [52]. Clinical images
are pictures of skin problems taken by doctors with their
phones to examine them and keep them in patients’ files
[18]. Dermoscopic images, on the other hand, are taken by
using a dermoscope, which is a non-invasive handheld skin
imaging device that uses optical magnification and cross-
polarised lighting [55]. They are ideal for computer-aided
diagnosis of skin lesions due to their clear, well-lit close-
up views with minimal background interference [45]. This
makes them easier to process for computer vision analysis
compared to traditional clinical images. However, in sit-
uations where access to a dermoscope is limited, doctors
rely on images taken by their mobile phones for an initial
assessment. These images have different angles, lighting,
colour brightness, and many other variations compared to
dermoscopic images. This deviation between datasets is
commonly referred to as a domain shift [5]. Neural net-
works excel at fitting data but struggle with generalisation
to unseen data, particularly when differences in image ac-
quisition between medical centers, are present [43]. Maron
et al. [35] establish a benchmark to assess the robustness of
classifiers against out-of-distribution data and their findings
indicate the vulnerabilities of CNN to these challenges.

Researchers have tried to address the issue of domain
shifting using techniques such as domain adaptation. Do-
main adaptation tackles challenges where training data
(source domain) differs from real-world application (target
domain). It bridges this gap by aligning the data distribu-
tions so that the trained model performs well in the target
domain [13]. However, to properly assess the effective-
ness of domain adaptation, the selection criteria for source
and target domains are crucial. Chamarthi et al. [4] exam-
ined technical and biological shifts between source and tar-
get datasets in applying domain adaptation methods in skin
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cancer classification. Others have used different datasets
as different domains to experiment domain adaptation [50],
[14], [20]. However, there is a gap in the research regard-
ing how domain adaptation techniques can enhance models
trained on the widely available modality, dermoscopic im-
ages, and improve model generalisation on datasets from
other modalities and multiple sources which reflect real-
world variations.

Our primary contribution is a systematic comparison of
state-of-the-art supervised and unsupervised domain adap-
tation methods for skin cancer classification under real-
world conditions. In most studies, the target domain is
usually not significantly more diverse than the source. In
contrast, we examine not only a standard source—target sce-
nario but also a target domain deliberately constructed to
be more heterogeneous than the source, allowing us to as-
sess generalisation under more realistic conditions. This de-
sign mirrors the practical scenario in which models trained
on carefully controlled (dermoscopic) data must handle a
wider range of clinical images. It also exposes how as-
sessments conducted on less diverse target sets may over-
estimate model robustness, thereby emphasising the critical
importance of evaluating under realistic conditions.

Our second contribution is the curation of a diverse
dataset to use as the target domain. We aim to evaluate the
effectiveness of domain adaptation in skin cancer classifi-
cation models when the distribution of the target domain is
more varied than that of the source domain. Our source do-
main consists of dermoscopic images from the International
Skin Imaging Collaboration (ISIC) archive. To ensure our
target domain mimics real-world scenarios, we created a
new dataset named IMPS by combining clinical images
from SD198 [45], ISIC Archive Gallery [28], MED-NODE
[16], and PAD-UFES-20 [39]. These sources were care-
fully selected to ensure significant variation in demograph-
ics, lighting conditions, and image acquisition techniques.
For instance, SD198 consists of images downloaded from
DermQuest, recognised and labeled by experts, reflecting
real-world variations in colour, exposure, and illumination.
MED-NODE includes images taken with digital cameras,
introducing variability in image quality and conditions,
which mirrors practical clinical challenges. PAD-UFES-20
features images from the Dermatological and Surgical As-
sistance Program at the Federal University of Espirito Santo
in Brazil, representing different demographic backgrounds.
By ensuring a significant difference between source and tar-
get domains, we carried out cross-domain evaluation exper-
iments where we trained deep learning models on dermo-
scopic images and evaluated their performance on the IMPS
dataset. This serves as a benchmark for the performance of
the models in more diverse scenarios.
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2. Related Work
2.1. Supervised Domain Adaptation Methods

Early supervised domain adaptation (SDA) methods of-
ten require a small number of labelled target samples to
guide the alignment of feature distributions across source
and target domains. Tzeng et al. [46] addressed domain
bias by proposing a CNN architecture that reduces marginal
distribution discrepancies and preserves class relationships
via a label distribution matching loss. Although they
also explored semi-supervised settings, their main approach
demonstrates how some target labels can improve transfer,
using Office and Caltech-256 datasets. Their target sets do
not necessarily exceed the diversity of their source sets, but
the method scales to multi-domain benchmarks.

Goetz et al. [17] tackled sparse annotations in MRI brain
tumour segmentation (the “target”), relying on reweighting
to counter sampling bias. Although their target data were
not necessarily more diverse than the source, it exemplifies
how even limited labelled target samples can suffice under
a supervised paradigm. Likewise, Liu et al. [34] combined
image and feature adaptation in a supervised framework
for cross-domain change detection in bi-temporal remote-
sensing images, aligning labelled pre- and post-event im-
ages. Their target datasets (e.g. CDD) vary in conditions
(seasonal and illumination changes), but both source and
target contain labelled images.

Hedegaard et al. [25] approached SDA by framing it
as a Graph Embedding problem (DAGE), using labelled
source and target samples to learn a domain-invariant latent
space with improved generalisation in Office31, Digits, and
VisDA. Motiian et al. [36] proposed a Siamese-network-
based Classification and Contrastive Semantic Alignment
(CCSA) loss, also requiring a few labelled target samples,
tested on Office31, MNIST-USPS, and VLCS. Although
these works do not explicitly focus on a target domain that
is more diverse than the source, they do show that even
a small subset of labelled target data can significantly im-
prove transfer performance.

In the medical domain, Carretero et al. [1] developed a
Supervised Contrastive Domain Adaptation (SCDA) strat-
egy for histopathological images. They used labelled sam-
ples from multiple hospitals, thus dealing with multi-centre
data shifts. Although each hospital domain contains simi-
lar types of lesions, consolidating them can lead to a target
domain that is arguably more heterogeneous than a single-
hospital source. Their results showed a notable jump in bal-
anced accuracy even with as few as 8—10 labelled slides per
class.

While Huang et al. [27] focused on comparing semi-
supervised and self-supervised learning in medical imaging,
their semi-supervised methods (e.g. MixMatch) effectively
treat labelled and unlabelled data within the target domain.



Strictly speaking, these approaches still benefit from par-
tial supervision on the target side, fitting within the broader
scope of supervised or semi-supervised domain adaptation.

2.2. Unsupervised Domain Adaptation Methods

Unsupervised domain adaptation (UDA) methods do not
require target labels, making them attractive in scenarios
where annotation is prohibitively expensive. Early seminal
approaches include the Gradient Reversal Layer of Ganin
and Lempitsky [15] and ADDA by Tzeng et al. [47], both
aligning feature distributions adversarially. Sun and Saenko
[44] introduced Deep CORAL to match second-order statis-
tics, while Xie et al. [53] proposed MSTN to align semantic
representations. These methods mostly focus on balanced
source—target domains (Office, MNIST, etc.) rather than a
target domain that is strictly more diverse.

In medical imaging, many UDA works tackle settings
where target labels are unavailable or scarce. Chen et al.
[6] used Generative Adversarial Networks to bridge CT and
MR images in cross-modality segmentation (SIFA). Hou et
al. [26] proposed DASQE for quality enhancement without
reference images, while Omidi et al. [37] applied adversar-
ial methods to adapt adult MRI skull-stripping models to
neonatal data—here, the neonatal target domain is distinct
but not necessarily “larger” or “more diverse.” De Bel et al.
[11] addressed stain variation in renal histopathology by un-
paired image-to-image translation, showing how even small
shifts in domain can degrade performance without adapta-
tion.

Several studies on skin lesion classification employed
UDA to handle domain shifts caused by different acquisi-
tion devices or patient populations [3, 14, 49]. Chamarthi
et al. [3] benchmarked multiple UDA methods on eleven
dermoscopic datasets, noting improvements when the tar-
get domain differs in both technical and biological factors.
In some instances, the target domain (e.g. images from new
hospitals or novel imaging devices) turned out to be more
variable than the limited source set, mirroring the real-world
scenario of encountering diverse clinical images after train-
ing on controlled data. Wang et al. [49] further explored
multi-source UDA for fairer skin lesion classification across
demographic groups, emphasising how combining various
source domains can help accommodate an even broader tar-
get.

Methods such as CODA [24] or DCAN [32] similarly
show large performance gains under shifting imaging con-
ditions without labelled target data. CODA, for instance,
adapts a feature extractor online to out-of-domain samples
in High Content Imaging; while the source set is care-
fully controlled, the unlabelled target data come from mul-
tiple pharmaceutical labs with disparate equipment, thus
more diverse. Similarly, DCAN [32] introduced domain-
conditioned channel attention and feature correction blocks
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to tackle large-scale domain shifts in Office-Home and Do-
mainNet. These examples highlight that, when the tar-
get domain has greater variability (e.g. multiple labs, more
patient demographics), carefully designed adversarial and
alignment strategies are especially beneficial.

Other notable UDA approaches include source-free
adaptation [31] (where the original source data cannot be
shared for privacy reasons) and multi-source methods [42],
which exploit multiple pre-trained source models. Surveys
by Kumari and Singh [30] and Guan and Liu [22] provide
broader overviews, categorising UDA approaches into fea-
ture alignment, image translation, disentangled represen-
tations, self-supervised methods, and more. A recurring
theme is that the more diverse the unlabelled target domain,
the greater the benefit from robust feature-invariance strate-
gies and regularisation to handle out-of-distribution sam-
ples.

3. Methodology

3.1. Dataset

In this study, we used ISIC Curated Balanced Dataset [2],
[23], 18], [7], [9], [41] as the source domain. This dataset
includes 9810 dermoscopic images, with 7848 images in
the training set (3924 melanoma and 3924 other cases)
and 1962 images in the validation set (981 melanoma and
981 other). However, for clinical images of skin lesions,
there is currently no dataset with diverse scenes. Therefore,
we built the IMPS dataset, comprising 1,657 images (828
melanoma and 830 other skin conditions), which is divided
into training (1,159), validation (129), and test (249) sets.
This collection integrates several datasets: SD198, ISIC
(clinical), MED-NODE and PAD-UFES-20. The SD198
dataset focuses on malignant melanoma and lentigo malig-
nant melanoma (combined into a single class "Melanoma”)
and various other skin cancers. Hence, we collected 373
melanoma and 375 other images from SD198. ISIC clin-
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Figure 1. The image compares two domains of skin lesion imaging
datasets: dermoscopic images from the ”Curated Balanced ISIC
Dataset” (left) showing magnified, specialized views of lesions,
and clinical images (right) from four different datasets (SD198,
ISIC-Clinical, MED-NODE, and PAD) representing standard clin-
ical photography of various skin lesions with different appearances
and characteristics.

ical images, from which 512 images were curated out of
530 images. MED-NODE, with 170 images across two
classes (melanoma and other). PAD-UFES-20, from which



52 (melanoma) images and 280 (other) images from five
other skin cancer classes were selected using stratified sam-
pling. The source and composition of IMPS dataset will be
made available upon request.

Figure 1 shows the example images from each domain
and Figure 2 illustrates distinct differences in pixel inten-
sity distributions between dermoscopic images from the Cu-
rated balanced ISIC dataset and clinical images from the
IMPS dataset. Dermoscopic images exhibit a wider range
of pixel intensities, suggesting richer colour detail and en-
hanced diagnostic potential. In contrast, clinical images
show narrower intensity distributions, indicative of color
loss and diminished image detail.
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Figure 2. The histograms display the pixel intensity distributions
across red, green, and blue channels for 100 images each from the
dermoscopic and clinical domains. The dermoscopy images are
represented by solid colours, and the clinical images, which un-
dergo artificial degradation to simulate domain shift, are shown
with outlined bars. Each histogram ranges from 0 to 1, represent-
ing normalized pixel values. This visualization facilitates a com-
parative analysis of colour profiling between the two domains.

Table 1. Description of the IMPS dataset and its source clinical
images from the SD198 [45], ISIC [28], MED-NODE [16], and
PAD-UFES-20 [39]. Diversity: variations in colour brightness,
picture angles, demographics, skin tones, and image acquisition
conditions, all of which underscore its real-world heterogeneity
and applicability.

Dataset Diversity Total Number | Total Class | Tools Used

SD198 Comprehensive 6,584 198 Images collected from DermQuest

ISIC High 530 4 Digital Cameras

MED-NODE Limited 170 2 DSLR (Nikon D3 & D1x)

PAD-UFES-20 | Moderate 2,298 7 Smartphone

IMPS High 1657 2 Smartphone and Digital Cameras
Table | summarises the proposed IMPS dataset, which

exhibits exceptional diversity as its images are captured
across different regions using a variety of devices.This re-
sults in notable variations in colour brightness, image an-
gles, and acquisition conditions, and the dataset also en-
compasses a wide range of demographic attributes reflect-
ing diverse skin tones and age groups which collectively
enhance its heterogeneity and real-world relevance. As il-
lustrated in Figure 3, all four t-SNE plots show that each
dataset occupies a distinct region in feature space, despite
representing the same broader clinical domain. The den-
sity, spread, and relative clustering of Melanoma (red) vs.
Other (blue) points vary considerably, suggesting that these
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datasets differ in ways that could affect classification con-
sistency.

It is noteworthy to mention that the images are prepro-
cessed by resizing them while maintaining their aspect ratio,
specifically shortening the side to fit within a 224 x224 res-
olution. All images are checked for duplicates and removed
during the curation process. The IMPS classes Melanoma
(mel”) and Other ("oth”) are taken to resemble the Bal-
anced dataset classes. The IMPS dataset is balanced based
on the total number of “mel” and “oth” images. As previ-

t-SNE Visualization of MED-NODE LSNE Visualization of PAD-UFES
100

Figure 3. From left to right, the t-SNE plots for (SD198, ISIC-
Clinical, MED-NODE, and PAD-UFES) clinical dataset, illustrate
the distribution of extracted features. Red points correspond to
Melanoma, and blue points denote Other skin lesions, highlighting
the distinct clustering patterns across each dataset.

ously discussed, we selected the source and target datasets
in a way that ensures a difference in their distributions. To
confirm the statistical significance of the difference, we con-
ducted a Kolmogorov—Smirnov test [12] under the null hy-
pothesis that both the target and source datasets are drawn
from the same distribution. We found the p-value to be
1.54 x 10713, which is much smaller than any commonly
used significance level. Therefore, we conclude that there
is a significant difference between the source and target do-
mains.

3.2. Method

Base Model: We employ EfficientNet-B2 as the backbone
for our base model, selected for its state-of-the-art per-
formance and favourable computational efficiency in im-
age classification tasks. EfficientNet models use a com-
pound scaling approach to optimise depth, width, and res-
olution, enhancing feature extraction for medical imaging.
This makes them well-suited for handling variations in tex-
ture, colour, and structure, which are critical for accurate
diagnosis. Their balanced architecture improves precision
while maintaining computational efficiency, outperform-
ing traditional CNNs in both accuracy and resource usage
[29]. The model is trained on a balanced ISIC dermoscopic
dataset—leveraging high-quality labels—to learn discrimi-
native feature representations, and is then evaluated on the
IMPS dataset as well as on each subset (I, M, P, S) sepa-
rately to establish baseline performance metrics.
Supervised Domain Adaptation (SDA): SDA adapts
a model from a labelled source domain to a labelled tar-
get domain by leveraging labels from both domains for im-
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Figure 4. We begin by training EfficientNet-B2 on a balanced ISIC dermoscopic dataset as the source domain (Base Model), then evaluate
on IMPS ( clinical dataset) and each of its constituent subsets (I, M, P, S). For Supervised Domain Adaptation (SDA), we employ ATDOC
and LIC, using the same balanced dermoscopic data as source alongside labelled and clinical data from IMPS to learn domain-invariant
representations. For Unsupervised Domain Adaptation (UDA), we adopt DANN and ADDA, again with the balanced dermoscopic data as
source but unlabelled clinical images as target. All methods share the same training and evaluation protocol, facilitating a direct comparison
of SDA and UDA performance across IMPS and its individual subsets.

proved performance. Unlike Unsupervised Domain Adap-
tation (UDA), which relies only on unlabelled target data,
SDA enables direct learning from target labels while retain-
ing knowledge from the source [10].

The Auxiliary Target Domain-Oriented Classifier
(ATDOC) is a Supervised Domain Adaptation (SDA)
method designed to reduce classifier bias when adapting
from a source to a target domain. It introduces an auxil-
iary classifier for target data, generating unbiased pseudo
labels through non-parametric classifiers: the Nearest Cen-
troid Classifier (NC) and Neighborhood Aggregation (NA).
NC assigns labels using class centroids stored in a mem-
ory bank, while NA refines labels using nearest neighbours.
The final confidence-weighted pseudo-labeling loss is de-
fined as:
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where §; g, is the confidence-weighted pseudo-label and
Di,y, 1s the predicted probability [33].

Supervised Adapters for Domain Adaptation in
Learned Image Compression (LIC) introduce domain-
specific adapters at the decoder, each dedicated to a tar-
get domain along with one for the source. A gate network
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predicts domain probabilities and blends adapter outputs to
enhance reconstruction without modifying the pre-trained
model. The training optimises the following loss:

L =~ - MSE(xy, &) + CE(dy, v) )

where MSE(z¢, Z;) minimises reconstruction error, and
CE(d:,v) ensures accurate domain classification by the
gate. This approach improves rate-distortion performance
while preventing catastrophic forgetting of the source do-
main [40].

Unsupervised Domain Adaptation (UDA): UDA
transfers knowledge from a labelled source domain to an
unlabelled target domain, reducing the need for target la-
bels [51]. It aligns feature distributions using adversarial
training and feature transformation. This research employs
DANN [15] and ADDA [48], two widely used UDA meth-
ods.

Domain-Adversarial Neural Network (DANN) inte-
grates a Gradient Reversal Layer (GRL) to align feature
distributions between source and target domains. It consists
of shared feature extraction layers and two classifiers: one
for label prediction and another for domain discrimination.
The training objective minimises the label prediction loss
while maximising domain confusion through GRL, enforc-
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ing domain-invariant feature extraction. The loss function
is:

L=1L,—\Lg 3)

where L, is the label prediction loss, L is the domain clas-
sification loss, and A controls the adversarial effect of GRL.
This encourages the model to learn features that minimise
classification error while preventing domain discrimination
[15].

Adversarial Discriminative Domain Adaptation
(ADDA) employs separate mappings for source and target
domains with untied network weights. The target model
is initialized from the pre-trained source model, enabling
domain-specific feature extraction. ADDA aligns feature
distributions by minimizing the distance between source
and target embeddings. The objective function is:

L=Ls+AD(F,, F}) “4)

where L, is the source classification loss, D(Fy, F}) is
the discrepancy between source and target feature distribu-
tions, and A controls adaptation strength. This iterative pro-
cess refines target representations while preserving source
knowledge [48].

4. Experiments

4.1. Implementation Details

Base Model: EfficientNet-B2, pretrained on ImageNet, is
fine-tuned on a balanced, curated ISIC dermoscopic dataset.
The trained model is evaluated on the IMPS dataset a com-
bination of clinical images as well as on each individual
subset (I, M, P, S).

SDA: For SDA, we implement ATDOC and LIC, using
the balanced dermoscopic dataset as the source and labelled
clinical images from IMPS(and its individual subsets) as the
target. EfficientNet-B2 is used as the feature extractor in all
cases.

UDA: For UDA, we employ DANN and ADDA, with
EfficientNet-B2 as the shared feature extractor for both
source and target. In these experiments, the source domain
consists of the balanced dermoscopic dataset with labels,
while the target domain comprises unlabelled clinical im-
ages from IMPS (and its individual subsets). DANN utilises
a gradient reversal layer for domain-invariant feature learn-
ing, whereas ADDA trains a separate target feature extrac-
tor, initialised from the source model, to align the target
representation.

Common Training Settings: All experiments are
trained with a batch size of 16 and a learning rate of le-
4. Each model is independently trained three times, and the
final performance metrics are reported as the mean + stan-
dard deviation across these runs.
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4.2. Evaluation Metrics

For balanced dermoscopic datasets, accuracy is a reliable
measure, but for imbalanced clinical datasets, AUROC,
precision, recall, and F1 score provide a better assess-
ment. AUROC accounts for class imbalance, precision pre-
vents excessive false positives, and recall ensures critical
melanoma cases are detected. F1 score balances these fac-
tors, making it suitable for imbalanced distributions. The
average metric summarises overall performance, ensuring
robust evaluation across cross-domain and domain adapta-
tion settings.

4.3. Results and Discussion

This section evaluates the performance of our baseline
model (EfficientNet-B2 trained on dermoscopic images)
relative to the same architecture augmented with either su-
pervised (ATDOC, LIC) or unsupervised (DANN, ADDA)
domain adaptation. We also examine how the use of a more
diverse target domain (IMPS) compares to evaluating on
smaller, single-source subsets (I, M, P, S).

4.3.1. Supervised vs. Unsupervised Domain Adaptation
Performance

Tables 3 and Table 4 summarise results for supervised do-
main adaptation (SDA) using ATDOC and LIC, respec-
tively. Although these methods exhibit modest gains over
the baseline on certain subsets, their improvements on
the composite IMPS dataset remain constrained. For in-
stance, ATDOC (Table 3) increases accuracy on IMPS from
58.55% (baseline in Table 2) to 68.55%, yet recall remains
only 34.60% and F1 stands at 48.20%. Similarly, LIC (Ta-
ble 4) yields 60.15% accuracy and an F1 of 48.18% on
IMPS, which is better than the baseline’s 41.25% F1 but
still relatively modest for a supervised technique leveraging
labelled target data. The subsets can offer more optimistic
metrics—for example, LIC boosts accuracy on the MED-
NODE subset to 81.40% yet even there, the gains are not
always dramatic.

By contrast, unsupervised domain adaptation (UDA)
with DANN (Table 5) achieves more pronounced improve-
ments without requiring any target labels. On IMPS, DANN
attains 68.10% accuracy, 63.45% F1, and 65.30% recall,
comfortably surpassing both supervised approaches. More-
over, DANN significantly alleviates the baseline’s difficulty
in recognising melanoma on subsets such as PAD-UFES,
boosting F1 to 74.32% from a baseline of 16.29%. ADDA
(Table 6) shows sporadic successes such as higher recall
on certain subsets but displays greater instability overall,
particularly on PAD-UFES, where precision collapses to
5.20%. In general, DANN provides the most consistent ben-
efits across multiple measures and domains, often outper-
forming the supervised methods. One reason why DANN



Table 2. Performance metrics for Base model (EfficientnetB2) on IMPS and (I,M,P,S) individually. Source is (Dermoscopic) and Target is

(Clinical).
Setting | Dataset AUROC Accuracy Precision Recall F1 Score Average
B—IMPS | 88.60+0.02 | 58.55£0.01 | 72.05+£0.02 | 29.4040.04 | 41.254+0.01 | 57.97+0.01
B—S 71.30£0.02 | 64.19£0.01 | 68.1040.03 | 53.154+0.01 | 60.28+0.03 | 63.40+0.01
Base B—I 62.37£0.03 | 47.24£0.05 | 78.3040.05 | 24.184+0.01 | 37.4410.08 | 49.91+£0.02
B—M 84.45+0.02 | 77.75+£0.04 | 78.50+0.01 | 65.084+0.09 | 70.47+0.07 | 75.25+0.02
B—P 77.344+0.02 | 90.26+0.02 | 10.36£0.05 | 37.10+£0.04 | 16.294+0.01 | 46.2740.01

Table 3. Performance metrics for SDA (ATDOC) on and (I, M, P, S) individually. Source

: Dermoscopic, Target: Clinical.

Setting | Dataset AUROC Accuracy Precision Recall F1 Score Average
B—IMPS | 61.75+0.02 | 68.55+0.05 | 75.50+0.04 | 34.60+0.03 | 48.20+0.02 | 57.724+0.02
ATDOC B—S 63.82+0.06 | 60.554+0.04 | 62.10+0.02 | 48.36+0.03 | 54.28+0.02 | 57.82+0.02
(SDA) B—l1 61.60+0.02 | 50.65+0.01 | 82.244+0.05 | 32.05+0.03 | 45.48+0.03 | 54.40+0.01
B—M 85.35+0.02 | 77.68+£0.01 | 74.46+0.02 | 71.25+0.03 | 72.154+0.01 | 76.18+0.01
B—P 68.601+0.01 | 72.44+0.02 | 4.604+0.04 | 48.58+0.05 | 8.36+0.03 | 40.524+0.01

Table 4. Performance metrics for SDA (LIC) on and (I, M, P, S) individually. Source: Dermoscopic, Target: Clinical.

Setting | Dataset AUROC Accuracy Precision Recall F1 Score Average
B—IMPS | 70.65+£0.05 | 60.15+0.03 | 73.08+0.03 | 32.294+0.02 | 48.184+0.01 | 56.87+0.01
LIC B—S 70.20+0.03 | 63.60+0.04 | 72.38+0.05 | 44.264+0.05 | 56.10+0.02 | 61.314+0.02
(SDA) B—l1 71.10+0.02 | 48.044+0.03 | 85.03+0.01 | 22.454+0.04 | 35.41+0.06 | 52.41+0.02
B—M 85.30+0.01 | 81.40+0.02 | 75.604+0.03 | 77.20+£0.02 | 77.37+0.02 | 79.37+0.01
B—P 68.7740.07 | 82.30+0.02 | 7.584+0.04 | 46.60+0.03 | 12.374+0.05 | 43.524+0.02

may perform better is that it does not use target labels, so
it may avoid overfitting to a small amount of labelled data.
Potentially, it learns to match features between the two do-
mains, which can help the model work better on different
types of clinical images.

4.3.2. Performance on Diverse vs.
mains

Single-Target Do-

A key part of our contribution is evaluating under two target
scenarios: a single-target domain (I, M, P, or S) versus the
more diverse IMPS dataset. Observing the baseline (Table
2), we see that it achieves 77.75% accuracy and a 70.47%
F1 on MED-NODE, which might suggest decent generalis-
ability. However, once tested on IMPS, the same model’s
accuracy drops to 58.55% and F1 to 41.25%. This contrast
underscores how using narrower target domains can mask
real-world challenges. A model might appear effective on
a single dataset but struggle under larger variations in light-
ing, imaging devices, and demographic factors.

Similarly, ATDOC and LIC can reach respectable results
on certain subsets yet underperform on IMPS, revealing the
difficulty of fully capturing the multi-source variability in-
herent in the combined domain. DANN’s improvements on
IMPS highlight its robustness in handling this additional
diversity. Nonetheless, even DANN shows a dip in per-
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formance on IMPS compared to certain individual subsets,
suggesting that each method’s true stress test emerges only
when evaluated on wide-ranging data.

4.3.3. Baseline vs. Adapted Models: Impact of Domain
Shift

The disparity between baseline and adapted results confirms
the substantial effect of domain shift between dermoscopic
(source) and clinical (target) images. Table 2 shows how the
baseline often yields high accuracy but low F1 and recall
when tested on new clinical domains. On PAD-UFES, for
instance, the baseline’s accuracy is 90.26%, yet F1 is merely
16.29%, implying it is heavily biased toward the majority
(benign) class. Both SDA (Tables 3 and Table 4) and UDA
(Tables 5 and Table 6) mitigate this bias by aligning fea-
ture distributions in different ways. DANN stands out in its
ability to remedy imbalanced predictions: on PAD-UFES,
it raises F1 to 74.32% by improving recall and precision
simultaneously.

This pattern repeats across other subsets. On ISIC (clin-
ical) images (B—1), the baseline yields only 24.18% recall,
whereas DANN raises it to 48.35%, and even ATDOC sur-
passes 30%. Although supervised approaches also yield no-
ticeable improvements, the gains with DANN are typically
larger. These findings suggest that unsupervised alignment



Table 5. Performance metrics for UDA (DANN) on and (I, M, P, S) individually. Source: Dermoscopic, Target: Clinical.

Setting | Dataset AUROC Accuracy Precision Recall F1 Score Average
B—IMPS | 60.40£0.04 | 68.10+£0.02 | 60.33+0.04 | 65.304+0.04 | 63.454+0.10 | 63.52+0.02
DANN B—S 66.20+£0.01 | 61.30+£0.02 | 58.4040.02 | 72.254+0.11 | 66.25+0.12 | 64.88+0.03
(UDA) B—I 66.20£0.05 | 56.38+0.09 | 78.4040.02 | 48.354+0.01 | 61.224+0.05 | 62.11£0.02
B—M 87.30+0.02 | 79.40+0.03 | 72.10+0.02 | 79.164+0.01 | 74.654+0.02 | 78.52+0.01
B—P 53.604+0.06 | 59.30+£0.01 | 95.20+0.08 | 60.284+0.07 | 74.324+0.06 | 68.54+0.03

Table 6. Performance metrics for UDA (ADDA) on and (I, M, P, S) individually. Source

: Dermoscopic, Target: Clinical.

Setting | Dataset AUROC Accuracy Precision Recall F1 Score Average
B—IMPS | 46.40£0.09 | 50.40+0.04 | 50.10+0.02 | 80.054+0.11 | 65.33£0.07 | 58.46+0.03
ADDA B—S 49.70+£0.03 | 48.47+0.08 | 50.254+0.06 | 80.10+0.46 | 67.40+0.04 | 59.18+0.09
(UDA) B—lI 67.28+£0.05 | 57.15£0.07 | 65.2440.08 | 95.704+0.02 | 79.12+0.03 | 72.90+0.02
B—M 42.364+0.07 | 38.50+£0.10 | 42.38+0.05 | 1.00£0.02 | 58.394+0.08 | 36.534+0.03
B—P 25.56+0.40 | 48.70+0.37 | 5.20£0.21 | 90.454+0.33 | 0.07+0.41 | 34.00£0.16

can be particularly powerful when the target domain’s dis-
tribution is significantly different or insufficiently captured
by the limited labelled target data in SDA.

4.3.4. Overestimation of Robustness in Narrow Evalua-
tions

Finally, the results show that restricting evaluation to a sin-
gle or less varied target domain can overestimate model
robustness. The baseline’s performance on MED-NODE
alone appears moderately successful, but this success does
not transfer to the multi-faceted IMPS dataset. Likewise,
its ostensibly high accuracy on PAD-UFES conceals an in-
ability to detect melanoma. Had this paper confined itself
to only one or two target sets, it might have overlooked
these shortcomings. Instead, combining multiple clinical
image sources into the IMPS dataset reveals the model’s
real fragility and the importance of applying domain adapta-
tion methods capable of handling broad distributional shifts.
Hence, models validated solely on limited data may be in-
adequately tested for real-world conditions, and the results
here underscore the need for diverse clinical evaluations to
avoid inflated expectations of robustness.

5. Limitations

While our results demonstrate that domain adaptation can
substantially improve generalisation when clinical images
are more diverse than the training domain, our conclusions
would be more robust if we could evaluate the models on
an entirely separate set of unseen clinical images not used
for any phase of training. Such a cross-domain test could in-
volve both less diverse and more extensively varied distribu-
tions, enabling a finer-grained analysis of model robustness
under different clinical settings. However, the limited pub-
lic availability of large-scale, heterogeneous clinical skin
cancer datasets currently hinders more exhaustive experi-

3449

mentation, leaving an important avenue for future work. All
experiments were done using EfficientNet-B2 due to its ef-
fectiveness and efficiency in image classification tasks. Ex-
periments with other models will be explored in the future.

6. Conclusion

This study demonstrates the importance of addressing do-
main shifts in skin cancer classification. Our findings show
that unsupervised domain adaptation, particularly DANN,
improves generalisation more effectively than supervised
methods. The diverse IMPS dataset exposed model weak-
nesses that narrower evaluations did not capture, emphasis-
ing the need for comprehensive testing. While our results
confirm the benefits of domain adaptation, the study is lim-
ited by dataset availability. Future research should evaluate
these methods on additional clinical datasets that were not
part of this study to better assess their applicability in real-
world settings.
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