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Figure 1: We deploy the policy trained by our method to real robots. Whether in quadrupedal or
bipedal states, the robots successfully resist disturbances under various conditions.

Abstract:
Stable locomotion in precipitous environments is an essential task for quadruped
robots, requiring the ability to resist various external disturbances. Recent neu-
ral policies enhance robustness against disturbances by learning to resist external
forces sampled from a fixed distribution in the simulated environment. However,
the force generation process doesn’t consider the robot’s current state, making it
difficult to identify the most effective direction and magnitude that can push the
robot to the most unstable but recoverable state. Thus, challenging cases in the
buffer are insufficient to optimize robustness. In this paper, we propose to model
the robust locomotion learning process as an adversarial interaction between the
locomotion policy and a learnable disturbance that is conditioned on the robot
state to generate appropriate external forces. To make the joint optimization sta-
ble, our novel H8 constraint mandates the bound of the ratio between the cost (a
measurement for performance drop) and the intensity of the external forces. We
verify the robustness of our approach in both simulated environments and real-
world deployment, on quadrupedal locomotion tasks and a more challenging task
where the quadruped performs locomotion merely on hind legs. Please refer to
our project page for videos of real-world deployment.

1 Introduction

Recent end-to-end learning-based quadruped controllers exhibit various capabilities during deploy-
ment in real-world settings [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Moreover, the
learning-based approach enables skills beyond locomotion including target tracking in a bipedal
manner [17, 18], manipulation using front legs [19], jumping over obstacles [17] and parkour [20].
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Successful real-world deployment requires the control policy to be able to resist various distur-
bances like strong wind and falling debris. Previous learning-based controllers acquire this ability
with domain randomization [21, 22] where environment parameters like external forces [23, 24]
are randomly sampled and exerted on the robot trunk during training. However, this method is
not efficient enough to generate high-quality disturbance-resisting training samples and hinders the
policy from acquiring adequate robustness. To be specific, excessively severe disturbances in early
training procedures could undermine the training, whereas insufficiently challenging disturbances in
late training stages may hinder the robot from developing a more resilient policy. The preliminary
experiments in Appendix A provide evidence of this hypothesis.

For generating more effective training samples, an ideal external force sampler is supposed to affect
the policy to the extent that the agent experiences an obvious performance drop but is still able to
recover from the disturbance, which guarantees not only the training feasibility but the weakness
of the policy is attacked precisely. To this end, we introduce a disturber network conditioned on
the current states of the robot to generate adaptive external forces. Compared to the actor that
aims to maximize the cumulative discounted overall reward, the disturber is modeled as a separate
learnable module to maximize the cumulative discounted error between the task reward and its
upper bound. To ensure stable optimization between the actor and the disturber, we implement an
additional learning objective derived from the constraint inspired by the classical H8 theory [25,
26, 27], which mandates the bound of the ratio between the cost and the intensity of external forces
generated by the disturber. Following this constraint, we naturally derive an upper bound for the cost
function with respect to a certain intensity of external forces, which is equivalent to a performance
lower bound for the actor with a theoretical guarantee.

We train our method in Isaac Gym simulator [28] and utilize dual gradient descent method [29] for
joint optimization. We evaluate our locomotion policy by comparing it against baseline approaches
in terms of their command-tracking ability under various types of disturbances and terrains. We also
train policies with baseline methods and our method in the non-stationary bipedal walking setting
and measure their abilities to resist collision. In all evaluations, our method outperforms the baseline
method, suggesting the effectiveness and superiority of our method. We deploy the learned policy
on Unitree Aliengo robot and Unitree A1 robot in real-world settings. As shown in Fig. 1, the
robot manages to traverse planes, slopes, stairs, high platforms, and greasy surfaces whether
the external force is applied to the trunk or legs. The robot can even walk with its hind legs
while withstanding the impact from heavy objects.

2 Related Work

Quadruped robots are expected to stabilize themselves in face of noisy observations and external
forces. While large quantities of research have been carried out to resolve the former issue either
by modeling observation noises explicitly during training procedure [9, 24] or introducing visual
inputs by depth images to robots [3, 20], few works shed light on confronting potential physical
interruptions. While some works claim to achieve robust performance during real-world deployment
[7], they fail to model external forces as learnable modules and introduce extreme disruptions to
either training or real-world deployment, resulting in vulnerability to harsher conditions.

However, simply modeling external forces as a learnable module causes the problem to fall into the
setting of adversarial reinforcement learning, which is a particular case of multi-agent reinforcement
learning. One critical challenge in this field is training instability. During training, each agent’s pol-
icy changes over time, which results in the environment becoming non-stationary from the view of
any individual agent. Directly applying single-agent algorithm will lead to the non-stationary prob-
lem. For example, Lowe et al. [30] found that the variance of the policy gradient grows exponentially
when the number of agents increases. Although following works utilized centralized critic [30, 31]
which can stabilize training, the learned policy may be sensitive to its training parameters and con-
verge to a poor local optimal. This problem is more severe for competitive environments because if
the opponents change their policies, the learned policy may perform even worse [32].
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There exist some previous works on adversarial reinforcement learning aiming to enhance robustness
of control policy. For instance, Gleave et al. [33] constructed an adversarial agent that produced ef-
fective attack on the actor, but did not proceed to refine the actor for more robust performance. Pinto
et al. [34] and Pan et al. [35] drew inspiration from H-infinity theory and adopted an adversarial RL
framework. However, the former modeled the problem as a zero-sum game while our method does
not mandate this setting. The latter averted risk by lowering the variance of multiple value functions
while our approach introduces explicit estimation of performance drop through cost value networks.
Besides, they both failed to regulate the ratio between output error and disturbance norm as stated in
H-infinity theory, granting no performance lower bound for the actor in face of disturbances. Sim-
ilar to [34], Rigter et al. [36] modeled a zero-sum game for model-based offline RL. Besides, they
constructed worst-case scenario for the actor by tuning the model to predict transitions with the most
unpromising next-state value, but an explicit disturbance was absent.

In light of that, we introduce a novel training framework for quadruped locomotion by modeling an
external disturber explicitly, which is the first attempt to do so as far as we are concerned. Based
on the classic H8 method from control theory [25, 26, 27], we devise a brand-new training pipeline
where the external disturber and the actor of the robot can be jointly optimized in an adversarial
manner. With more experience of physical disturbance in training, quadruped robots acquire more
robustness against external forces in real-world deployment.

3 Preliminaries

Figure 2: Illustration of the classic
H8 control theory.

Classic H8 control [37] deals with a system where disturbance
is involved. We denote G as the plant, K as the controller,
u as the control input, y as the measurement available to the
controller, w as an unknown disturbance, and z as the error
output which is expected to be minimized. In general, we wish
the controller to stabilize the closed-loop system based on a
model of the plant G. As shown in Fig. 2, the goal of H8

control is to design a controller K that minimizes the error
z while minimizing the H8 norm of the closed-loop transfer
function Tzw from the disturbance w to the error z.

However, minimizing }Tzw}8 is usually challenging. In prac-
tice, we instead wish to find an acceptable η ą 0 and a con-
troller K satisfying }Tzw}8 ă η, which is called suboptimal
H8 control. We denote this type of controller as η-optimal in

this paper. According to Morimoto and Doya [25], if }Tzw}8 ă η, it is guaranteed that the system
will remain stabilized for any disturbance mapping d : z ÞÑ w with }d}8 ă 1

η .

Finding a η-optimal H8 controller is modeled as a min-max problem. We consider a plant G with
dynamics given by

9x “ fpx,u,wq,

where x P X Ă Rn is the state, u P U Ă Rm is the control input, and w P W Ă Rl is the
disturbance input. Then, the H8 control problem can be viewed as finding a controller that satisfies:

}Tzw}
2
8 “ sup

w

}z}22

}w}22
ă η2, (1)

where z is the error output. Given that the Euclidean norms }z}2 and }w}2 are defined as:

}z}22 “

ż 8

0

zT ptqzptq dt, }w}22 “

ż 8

0

wT ptqwptq dt

Our goal, hereby, is to find a control input u satisfying:

V “

ż 8

0

pzT ptqzptq ´ η2wT ptqwptqqdt ă 0, (2)
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Figure 3: Overview of H8 locomotion control method. At every time step during the training
process, we perform a simulation step based on the robot’s action and the external force generated
by the disturber. The agent thus moves towards the rewarded direction and resists the disturbance.
During the optimization process, values are calculated for batched training samples and carry out
H8 policy gradient by optimizing the PPO loss of the actor while taking into consideration the novel
constraint LHinf . Value estimators (Critic) are also updated to approximate the state value.

where w is any possible disturbance and the state vector x satisfies zero initialization (xp0q “ 0).
By solving the following min-max game, we can find the best control input u while the worst
disturbance w is chosen to maximize V :

V ˚ “ min
u

max
w

ż 8

0

pzT ptqzptq ´ η2wT ptqwptqqdt ă 0. (3)

4 Learning H8 Locomotion Control

In this section, we first give the definition of the robust locomotion problem. After that, we describe
our method in detail and give a practical implementation.

4.1 Problem Definition

As described in the former sections, we wish the disturber to learn more effective disturbances.
We model it as a one-step decision problem. Given a Markov Decision Process (MDP) M “

tS,A, T,R, γu, we define the disturbance policy to be a function d : S Ñ D Ă R3, which maps
observations to forces. Let C : SˆAˆD Ñ R` be a cost function that measures the gap between
current performance and the best performance in theory measured by reward.

Additionally, Cd
πpsq ” Epa,dq„pπpsq,dpsqqCps, a, dq denotes the gap between expected performance

and actual performance given policy π and disturber d. Similar to Sec. 3, for a given η ą 0, we wish
to find an admissible policy π such that

lim
TÑ8

T
ÿ

t“0

EstpCd
πpstq ´ η}dt}2q ă 0, (4)

We define a policy π satisfying the above condition as η-optimal. More intuitively, if a policy is
η-optimal, then an external force f can get a performance decay up to η}f}2. Additionally, we wish
the disturbances to be effective, which means that it can maximize the cost of policy with limited
intensity. Therefore, for a policy π, and a discount factor 0 ď γ2 ă 1, the target of d is to maximize:

Edr

8
ÿ

t“0

γt
2pCd

πpstq ´ η}dt}2qs (5)
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4.2 Method

In reinforcement learning-based locomotion control, the reward functions are usually complicated
[5, 23, 1, 7]. Some of them guide the policy to complete the task, and some of them act as regu-
larization to the policy. In our work, we divide the reward functions into two categories, the task
rewards and the auxiliary rewards. The former part leads the policy to achieve command tracking,
maintain good orientation and stay at desired base height, while the latter part leads the policy to
satisfy the physical constraints of robot and give smoother control. We present the details of our
reward functions in Table 1 and 2, which can be found in Appendix C.1.

Now we denote the rewards from each part as task rewards Rtask and auxiliary rewards Raux re-
spectively, and the overall reward as R. Firstly, we assume that the task reward has an upper bound
Rtask

max, and the cost can be formulated as C “ Rtask
max ´ Rtask. With R and C, we can get value

functions for overall reward and cost, denoted as V and V cost. We adopt PPO [38] as our basic
policy optimization method. Then the goal of the actor at each iteration is to solve:

maximize
π

Et

”

πpat|stq

πold pat|stq
Apstq

ı

subject to Et rKL rπold p¨ | stq , π p¨ | stqss ď δ
Et

“

η}dt}2 ´ Cd
πpstq

‰

ą 0,

(6)

where A is the advantage function [39]. As PPO [38] is used to optimize the disturber as well, the
goal of the disturber at each iteration is to solve:

maximize
d

Et

”

dpdt|stq

dold pdt|stq
Acostpstq

ı

subject to Et rKL rdold p¨ | stq ,d p¨ | stqss ď δ,
(7)

However, requiring a high-frequency controller to be strictly robust in every time step is unpractical,
so we replace the constraint Et

“

η}dpstq}2 ´ Cd
πpstq

‰

ą 0 with a more flexible substitute:

Et

“

η}dt}2 ´ Cd
πpstq ` V costpstq ´ V costpst`1q

‰

ą 0, (8)

where V cost is the value function of the disturber. Intuitively, if the policy guides the robot to a
better state, the constraint will be slackened, otherwise the constraint will be tightened. We will
show that using this constraint, the actor is also guaranteed to be η-optimal.

We follow PPO to deal with the KL divergence part and use dual gradient decent method [29] to deal
with the extra constraint, denoted as LHinf pπq fi Etrη}dt}2´Cd

πpstq`V costpstq´V costpst`1qs ą

0, then the update process of policy can be described as:

π “ argmax
π

LPPO
actorpπq ` λ ˚ LHinf pπq

d “ argmax
d

Ldisturberpdq

λ “ λ ´ α ˚ LHinf pπq,

(9)

where LPPO
actorpπq is the PPO objective function for the actor, Ldisturberpdq is the objective function

for disturber with a similar form as PPO objective function, λ is the Lagrangian multiplier of the
proposed constraint, and α is the step-size of updating λ. An overview of our method is in Fig. 3.

4.3 η-optimality

We assume that 0 ď Cps, aq ď Cmax where Cmax ă 8 is a constant, and there is a value function
V cost
π such that 0 ď V cost

π psq ď V cost
max for any s P S, where V cost

max ă 8. Besides, we denote
βt
πpsq “ P pst “ s|s0, πq, where s0 is sampled from initial states, assuming that the limit of distri-

bution under policy π is βπpsq “ limtÑ8 βt
πpsq and it exists. Then we have the following theorem:

Theorem 1. If Cd
πpsq ´ η}dpsq}2 ă Es1„P p¨|π,sqpV cost

π psq ´ V cost
π ps1qq for s P S with βπpsq ą 0,

the policy π is η-optimal.

Detailed derivation of Theorem 1 can be found in Appendix B.
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4.4 Practical Implementations

We use Isaac Gym [28, 40] with 4096 parallel environments and a rollout length of 100 time steps.
Our training platform is RTX 3090. During training, we randomize ground friction, restitution
coefficients, motor strength, joint-level PD gains, system delay and initial joint positions in each
episode. The randomization ranges for each parameter are detailed in Table 3 in Appendix C.2. The
algorithm is summarized in Algorithm 1 in Appendix C.3.

5 Experimental Results

In this section, we conduct experiments to show the effectiveness of our method. We use the lat-
est non-visual locomotion method [9] as our baseline which is trained with continuous stochastic
disturbances drawn from a uniform distribution. By changing the disturbance sampling strategy to
ours and its ablated versions, we can show to what extent our method exceeds the baseline and the
effectiveness of specific modules of our methods. Our experiments aim to answer these questions:

1. Can our method and its variants handle continuous disturbances as well as the baseline?
2. Can all methods handle the challenges of sudden extreme disturbances?
3. Can all methods resist deliberate disturbances that intentionally attack the policy?
4. Is our method applicable to other tasks that require stronger robustness?
5. Can our method be deployed to real robots?

Specifically, we design four different training settings for comparison studies. First, we train a
policy in complete settings where both H-infinity loss and a disturber network are exploited, which
we refer to as ours. We clip the external forces to have an intensity of no more than 100N for
sake of robot capability. Next, we remove the H-infinity loss from the training pipeline and obtain
another policy, which we refer to as ours without hinf loss. Then, we keep the H-infinity loss
but remove the disturber network from ours and replace it with a 1disturbance curriculum whose
largest intensity grows linearly from 0N to 100N with the training process and whose direction is
sampled uniformly. We call this policy ours without learnable disturber. Finally, we train a vanilla
policy without both H-infinity loss and disturber network, which also experiences random external
forces with curriculum disturbance as described above. We refer to this policy as baseline. All four
policies are trained on the same set of terrains (Stairs, Slopes, and Discrete heightfield) as is shown
in Appendix C.2. The training process for all policies lasts 5000 epochs.

After obtaining the well-trained 4 policies, we evaluate them on 3 terrains with 3 types of distur-
bances (continuous disturbance, sudden force, and deliberate attack) and measure their command-
tracking performance. For each evaluation, we repeat the rollout 32 times with different seeds and
report the average performance with a 95% confidence interval.

5.1 Can our method and its variants handle continuous disturbances as well as the baseline?

To answer question 1, we test all policies with random continuous disturbances which are drawn
from a uniform distribution ranging from 0-100N with the same frequency as controllers. It is the
same type of disturbance experienced by the baseline at the final training stage. We command the
robot to move forward with a velocity of 1.0 m/s. The tracking curves in Fig. 4 show that our
method has the same capability of dealing with continuous disturbances on rough slopes as baseline
methods and it even performs better on discrete height fields, and stairs. In an overall sense, our
method can achieve comparable or even better performance against the baseline method in
the continuous disturbance setting, even if the baseline methods have been trained with the
same type of disturbances. Also, the policy trained without H-infinity loss fails immediately
regardless of the terrain, demonstrating that vanilla adversarial training doesn’t work well,
highlighting the effectiveness of the novel H-infinity loss.

1Without the curriculum scheme, the training will collapse as large force may be sampled in the early
training phase, which is also confirmed by our preliminary experiments in A.
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Figure 4: Tracking curve of our method and baselines under continuous random forces.

Figure 5: Tracking curve of our method and baselines under sudden large forces.

5.2 Can all methods handle the challenges of sudden extreme disturbances?

To answer question 2, we evaluate all policies by applying sudden large external forces on the trunk
of robots. We apply identical forces to all robots with an intensity of 150N and a random direction
sampled uniformly. The external forces are applied every 4 seconds and last 0.5 seconds. In Fig. 5,
a spike or pit appears at the moment the force is applied, indicating the robot is trying to
offset the external force. Robot controlled by our policy shows better precision in tracking the
command and the ability to recover from sudden force, especially on stairs and heightfields.

Figure 6: Tracking curve for all methods tested with disturbers trained to intentionally attack them.
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5.3 Can all methods resist deliberate disturbances that intentionally attack the policy?

To answer question 3, we freeze the parameters of four well-trained policies and train a disturber
from scratch for each policy using our method. By doing this, each disturber is optimized to discover
the weakness of the corresponding policy and try to undermine its performance as much as possible.
We perform the disturber training for 500 epochs and examine the tracking performance of the four
policies on different terrains with the specifically trained adversarial disturber. The disturbance are
applied continuously as well. The results shown in Fig. 6 suggest disturbers can identify the
weakness for other policies immediately, and these policies fail upon encountering the attach
for the first time, whereas our method can withstand the deliberate disturbance many times
across three challenging terrains, especially on slopes and discrete heightfields.

5.4 Is our method applicable to other tasks that require stronger robustness?

Figure 7: Comparison between the baseline and our method
in terms of the number of falls.

To answer question 5, we train the
robot to walk with two hind legs and
test the policy by exerting intermit-
tent large external forces. We train
the policy for 10000 epochs for the
sake of stronger demands of this task.
Identical to the quadrupedal locomo-
tion task, the baseline bipedal pol-
icy is trained with a normal random
disturber while our method is trained
with the proposed adaptive disturber.
Both disturbers have the same sam-
ple space ranging from 0N to 50N.
To evaluate the performance of both
methods, we count the total times of falls in one episode when external forces are exerted. Each
evaluation episode lasts 20 seconds. Every 5 seconds, the robot receives a large external force with
an intensity of 100N to 150N that lasts 0.2 seconds. We carry out two different experiments where
the directions of the forces are set to x, y axes respectively. For each method, the evaluation runs
32 times repeatedly and we report the average number of falls. As shown in Fig. 7, our method
outperforms the baseline policy by a large margin no matter the force comes from x or y axes.

5.5 Can our method be deployed to real robots?

To answer question 4, we train our policy with the learnable disturber with a force limit of 100 N and
deploy trained policies on Unitree Aliengo quadrupedal robots in the wild. As shown in Fig. 1, it
can traverse various terrains such as staircases, high platforms, slopes, and slippery surfaces,
withstand pulling on the trunk, legs, and even arbitrary kicking, and accomplish different
tasks such as sprinting. In addition, We deploy the bipedal walking policy to the Unitree A1 robot.
As shown in Fig. 1, the standing policy is able to withstand collisions with heavy objects and
random pushes on its body while retaining a standing posture.

6 Conclusion

In this work, we propose H8 learning framework for quadruped locomotion control. Unlike pre-
vious works where the external force is drawn from a fixed distribution, we propose to train an
adversarial disturber to generate external force dynamically. To stabilize the learning process, we
introduce a novel H8 constraint to policy optimization, providing a guarantee for the actor’s perfor-
mance lower bound in face of external forces with a certain intensity. We demonstrate our method
achieves notable improvement in robustness in both locomotion and standing tasks and can be de-
ployed in real-world settings. To inspire further research, all code and checkpoints are made public.
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Appendix

A Preliminary Experiments

Figure 8: Preliminary experiment compar-
ing policies trained with fixed disturber and
our method.

To verify the necessity of having an adaptive disturber,
we conduct a preliminary experiment. The most com-
mon disturber for legged locomotion randomly samples
external forces from r0, 30s N [28]. We increase the up-
per bound of the uniform distribution to 100 N and get
the Baseline method. As shown in Fig. 8, the training
of Baseline collapses under external forces with the ex-
tremely large upper bound (100N ). Although another
method, Baseline-C, overcomes this by curriculum learn-
ing where the upper bound of the forces linearly increases
throughout the training, the trained policy fails to achieve
comparable final performance against our method, as
the training samples generated may be not challenging
enough in the late training stage in terms of not only the
magnitude but the direction of the force. However, our
method keeps optimizing for better adversarial perfor-
mance and producing valid training samples throughout
the training.

B Proof of Theorem 1

Proof.

lim
TÑ8

1

T

T
ÿ

t“0

EstpCd
πpstq ´ η}dt}2q

ă lim
TÑ8

1

T

T
ÿ

t“0

EstpEst`1„P p¨|π,stqpV cost
π pstq ´ V cost

π pst`1qqq (Hypothesis of the theorem)

“ lim
TÑ8

1

T

T
ÿ

t“0

ż

S

βt
πpstq

ż

S

P pst`1|st, πqpV cost
π pstq ´ V cost

π pst`1qqdst`1dst (Based on the definition of βt
πpstq)

“ lim
TÑ8

1

T

T
ÿ

t“0

ż

S

βt
πpstqV

cost
π pstqdst

´

ż

S

βt
πpstq

ż

S

P pst`1|st, πqV cost
π pst`1qdst`1dst

“ lim
TÑ8

1

T

T
ÿ

t“0

pEstV
cost
π pstq

´

ż

S

ż

S

βt
πpstqP pst`1|st, πqdstV

cost
π pst`1qdst`1q(Dominated convergence theorem)

“ lim
TÑ8

1

T

T
ÿ

t“0

pEstV
cost
π pstq ´ Est`1

V cost
π pst`1qq

“ lim
TÑ8

1

T
pEs0V

cost
π ps0q ´ EsT`1

V cost
π psT`1qq

ď lim
TÑ8

1

T
pV cost

max ´ 0q “ 0 (Given V cost
max ă 8)
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Table 1: Reward functions for Unitree A1 standing task

Term (˚ indicates Rtask) Calculation Scale

linear velocity tracking˚ expp´}vxy ´ vcmd
xy }2{σtrackq rori 1.0

angular velocity tracking˚ expp´}ωz ´ ωcmd
z }2{σtrackq rori 0.5

joint velocities } 9q}2 ´2e´4

joint accelerations }:q}2 ´2.5e´7

action rate }at`1 ´ at}
2 ´0.01

joint position limits 1rq R pqmin, qmaxqs ´10.0

joint velocity limits 1r 9q R p 9qmin, 9qmaxqs ´10.0

torque limits 1rτ R pτmin, τmaxqs ´10.0

collision
ř

jPP jcontact{|P | ´1.0

extra collision
ř

jPEp
jcontact{|Ep| ´1.0

front feet contact 1r
ř

fPrFL,FRs f
contact ““ 0s 1.0

orientation rori p0.5 ˚ cos pvf ¨ v̂˚q ` 0.5q2 1.0

root height minpeh, 0.55q 1.0

Therefore we obtain lim
TÑ8

1
T

T
ř

t“0
EstpCd

πpstq ´ η}dt}2q ă 0, and thus, the following inequality is

derived:

lim
TÑ8

T
ÿ

t“0

EstpCd
πpstq ´ η}dt}2q ă 0 (10)

C Training details

C.1 Reward function scales for Unitree Aliengo locomotion task and Unitree A1 standing
task

Detailed reward functions are shown in Table 1 and Table 2. To clarify the meaning of some symbols
used in the reward functions, P denotes the set of all joints whose collisions with the ground are
penalized, and Ep denotes the set of joints with stronger penalization. f contact stands for whether
foot f has contact with the ground. Moreover, g denotes the projection of gravity onto the local
frame of the robot, and h denotes the base height of the robot. In the standing task particularly, we
define an ideal orientation v˚ for the robot base, which we assign the value v˚ “ p0.2, 0.0, 1.0q,
and accordingly define the unit ideal orientation v̂˚ “ v˚

}v˚}
. We expect the local x´axis of the

robot, which we denote as vf , to be aligned to v̂˚, and thus adopt cosine similarity as a metric for
the orientation reward. Besides, we scale the tracking rewards by the orientation reward rori in the
standing task because we expect the robot to stabilize itself in a standing pose before going on to
follow tracking commands.

C.2 Terrains and domain randomization details

We exploit three different types of terrains, slopes, stairs, and discrete height fields during the train-
ing procedure, as is presented in Fig. 9. We also introduce terrain curriculum strategy, where the
level of terrain difficulty is dynamically adjusted according to the distance that the robot can travel
during a fixed duration. Besides, we exploit domain randomization for some simulation parameters,
as is shown in Table 3.
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Table 2: Reward functions for Unitree Aliengo locomotion task

Term (˚ indicates Rtask) Calculation Scale

linear velocity tracking˚ expp´}vxy ´ vcmd
xy }2{σtrackq 1.0

angular velocity tracking˚ expp´}ωz ´ ωcmd
z }2{σtrackq 0.5

z-axis linear velocity v2z ´2.0

roll-pitch angular velocity }ωxy}2 ´0.05

joint power
ř

|τ | d | 9q| ´2e´5

joint power distribution Varr|τ | d | 9q|s ´1e´5

joint accelerations }:q}2 ´2.5e´7

action rate }at ´ at´1}2 ´0.01

smoothness }at ´ 2at´1 ` at´2}2 ´0.01

joint position limits 1rq R pqmin, qmaxqs ´5.0

joint velocity limits 1r 9q R p 9qmin, 9qmaxqs ´5.0

torque limits 1rτ R pτmin, τmaxqs ´5.0

orientation }gxy}2 ´0.2

base height }h ´ htarget}2 ´1.0

(a) Slopes (b) Stairs (c) Discrete height fields

Figure 9: Demonstration of different terrains used in simulated training environments

Table 3: Domain Randomizations and their Respective Range

Parameters Range[Min, Max] Unit

Ground Friction r0.2, 2.75s -
Ground Restitution r0.0, 1.0s -
Joint Kp r0.8, 1.2s ˆ 20 -
Joint Kd r0.8, 1.2s ˆ 0.5 -
Initial Joint Positions r0.5, 1.5sˆ nominal value rad
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C.3 Pseudo code for H8 locomotion control

Algorithm 1: Learning H8 Locomotion Control
Input: Initial actor π0, disturber d0, overall value function V0, task value function V cost

0 , initial
guess η0, initial multiplier β0, upper bound of task reward Rcost

max
Output: policy π, disturber d
πold “ π0, dold “ d0, Vold “ V0, V cost

old “ V cost
0

for iteration = 1, 2, ¨ ¨ ¨ ,max iteration do
Run policy πold in environment for T time steps
Compute values of each states with Vold

Compute cost values of each states with V cost
old

Compute costs Ct “ Rtask
max ´ Rt

Compute advantage estimation At

Optimize π with LPPO
actor ` λ ˚ LHinf

Optimize d with Ldisturber

λ “ λ ´ α ˚ LHinf

η “ 0.9 ˚ η ` 0.1 ˚

řT
t“1 Ct

řT
t“1 }dold}2

πold “ π
end

D Limitations

Although our method is able to enhance the robustness of control policy across various robots and
different tasks, it still suffers from a few limitations. First, task reward functions need to be defined
for different embodiments and tasks. Besides, in order to generalize to other robotic systems such as
robot arms, our method requires new definitions of ”disturbances”, other than external force. Future
works can be carried out to resolve the aforementioned issues.
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