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Abstract

Many robots (e.g., iRobot’s Roomba) operate based on visual observations from live video
streams, and such observations may inadvertently include privacy-sensitive objects, such as
personal identifiers. Existing approaches for preserving privacy rely on deep learning models,
differential privacy, or cryptography. They lack guarantees for the complete concealment
of all sensitive objects. Guaranteeing concealment requires post-processing techniques and
thus is inadequate for real-time video streams. We develop a method for privacy-constrained
video streaming, PCVS, that conceals sensitive objects within real-time video streams. PCVS
takes a logical specification constraining the existence of privacy-sensitive objects, e.g., never
show faces when a person exists. It uses a detection model to evaluate the existence of these
objects in each incoming frame. Then, it blurs out a subset of objects such that the existence
of the remaining objects satisfies the specification. We then propose a conformal prediction
approach to (i) establish a theoretical lower bound on the probability of the existence of these
objects in a sequence of frames satisfying the specification and (ii) update the bound with
the arrival of each subsequent frame. Quantitative evaluations show that PCVS achieves over
95 percent specification satisfaction rate in multiple datasets, significantly outperforming
other methods. The satisfaction rate is consistently above the theoretical bounds across
all datasets, indicating that the established bounds hold. Additionally, we deploy PCVS on
robots in real-time operation and show that the robots operate normally without being
compromised when PCVS conceals objects.

1 Introduction

While robots utilize visual observations from video streams during operational routines for decision-making
purposes, recording and disseminating such videos potentially exposes private information (Kuehne et al.,
2011), raising ethical and legal concerns. These concerns include risks of the inadvertent capture of sensitive
personal data, unauthorized access, and misuse of recorded footage. A recent story highlighting a Roomba
taking images of a person in a toilet room attests to the legitimacy of privacy concerns during robotic
operations (Guo, 2024).

Existing approaches protect privacy by concealing sensitive objects, but they either fail to guarantee complete
concealment or cannot process real-time video streams. While concealing sensitive objects requires detecting
and locating such objects, existing works rely on deep-learning models for object detection (Padmanabhan
et al., 2023; Sugianto et al., 2024; Kagan et al., 2023). However, due to their black-box nature, deep-learning
models cannot provide theoretical guarantees on the correctness of the detection results. On the other hand,
formal methods techniques, such as model checking, can guarantee that a given video adheres to privacy
concerns (Umili et al., 2022; Yang et al., 2023; Choi et al., 2024). However, the computational complexity
of formal methods techniques grows with the video length, hence they are incapable of being applied to
real-time video streams.

We develop a method to conceal privacy-sensitive objects in real-time video streams from robot cameras.
The method takes a logical specification constraining the existence of sensitive objects. The specifications
allow users to describe complex privacy requirements with conjunctions, disjunctions, implications, etc. For
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Figure 1: Pipeline of Privacy-Constrained Video Streaming: (Step 1) Given a privacy specification
Φ, we define a set AP of atomic propositions describing privacy-sensitive objects. (Step 2) Given an
incoming frame Fk from the video, the method uses an object detection model to detect sensitive objects in
the frame. Each detection is associated with a confidence score from the object detection model. The method
calibrates a confidence score to a per-frame probability bound for correct detection via a calibration function
fC , as in Equation 1. (Step 3) The method builds an abstract model Ak representing object detections and
their probability bounds in the frame sequence F1, ...,Fk via Algorithm 1. Then, it computes a theoretical
bound for the probability of Ak satisfying Φ, i.e., a probabilistic guarantee PGk(Ak |= Φ) using Equation
3. (Step 4) If PGk(Ak |= Φ) is below a user-given privacy threshold λ, the method removes a subset of
sensitive objects and goes back to Step 2 to recompute a guarantee. (Step 5) If PGk(Ak |= Φ) is above λ,
the method adds Fk back to the stream and proceeds to Step 1 with the next incoming frame. We number
each step in blue.

each incoming frame from the video streams, the method first uses an object detection model to detect and
locate all sensitive objects. Next, it removes a subset of objects (adds Gaussian blurs or blackout) so that
the existence of the remaining objects satisfies the specification.

We then establish a theoretical bound on the probability of complete concealment of sensitive objects in a
video stream. As deep learning models are typically over-confident in detecting objects, we use conformal
prediction to calibrate the model’s confidence to a probability of correct detection. Next, we express the
specification as a temporal logic formula and build a finite automaton representing the object detections in
a sequence of frames and the probabilities of correct detections. Then, we compute the probability that this
automaton satisfies the specification (i.e., the video frames encountered so far preserve privacy).

We develop a video abstraction algorithm that allows us to optimize the computational complexity involved
with the arrival of each subsequent frame from the video stream. This abstraction is key to our method
achieving real-time performance, updating the probability with each frame arrival. This probability acts as
a metric and helps users determine whether to use the video based on their privacy tolerance.

We evaluate the method over two large-scale datasets and present real-robot examples for real-time privacy
protection. The method achieves 80 to 97 percent specification satisfaction rates in various scenarios, sig-
nificantly outperforming existing automated solutions. Meanwhile, the method preserves all non-sensitive
information. By seamlessly integrating concealment capabilities into the robot’s visual perception system,
we prevent potential privacy leakage from the robot. Simultaneously, this integration ensures the unhindered
functionality of the robot’s control policies, enabling it to operate normally without compromise.
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2 Related Work

Deep Learning for Video Privacy Privacy preservation in real-time video analytics has been the focus of
several recent methods (Padmanabhan et al., 2023; Sugianto et al., 2024; Kagan et al., 2023; Chu et al., 2013;
Wickramasuriya et al., 2005; Wang et al., 2017; Neff et al., 2019; Yuan et al., 2020; Upmanyu et al., 2009).
However, they rely solely on deep learning models for object detection, i.e., detecting and blurring privacy-
sensitive entities in video. Due to the black-box nature of neural networks and the lack of statistical/formal
analysis, these methods lack a quantitative guarantee.

Formal Methods for Video Privacy To this end, formal verification approaches have guaranteed that
a given complete video adheres to privacy safety concerns formulated as temporal logical specifications.
For example, recent works (Umili et al., 2022; Yang et al., 2023; Choi et al., 2024; Cheng et al., 2014;
Sharan et al., 2024; Yang et al., 2024) construct a finite automaton representing video frame sequences and
verify this automaton against temporal logical specifications. However, their approaches do not account for
uncertainties related to the vision-based detection algorithms (Bhatt et al., 2024). Moreover, the construction
and verification of automatons cannot be done in real-time.

Mathematical Approaches for Privacy Preservation A parallel line of works use differential privacy
or cryptography to provide theoretical guarantees without deep learning models. For instance, Cangialosi
et al. (2022) developed a differential privacy mechanism to protect video privacy, and Rahman et al. (2012)
proposed a cryptographic approach for video privacy. However, such methods require an exhaustive de-
scription of all privacy specifications beforehand, and thus do not generalize well for real-world applications,
where previously undefined privacy-sensitive objects may emerge in the future. Such a capability cannot
occur without some degree of integration with deep learning models to allow open-set detection. In contrast,
our method enforces the video to satisfy any complex privacy requirements expressed in logic formulas by
developing efficient formal method abstraction techniques capable of real-time deployment and integrating
them with off-the-shelf deep learning models for enhanced generalization capabilities.

3 Problem Formulation

A video V is a sequence of frames F1, ...,Fk where each Fk ∈ RC×W×H is an RGB image with C channels,
W width, and H height. A video can be prerecorded or live-streamed from sources such as autonomous
vehicles or security cameras.

We define a privacy specification Φ as a temporal logic formula (Rescher & Urquhart, 2012) constraining
the appearance of privacy-sensitive objects. Since we want to preserve privacy at all times, we express
a privacy specification as Φ = □(Φ̃), where □ represents the “ALWAYS" temporal operation and Φ̃ is a
first-order logic formula (Barwise, 1977). The presence of privacy-sensitive objects is constrained by Φ.

We define a set of atomic propositions AP , where each proposition pi ∈ AP is a textual description of a
privacy-sensitive object. Then, we use an object detection model (ODM), Mobj , to detect these objects.
Mobj : RC×W×H × AP → [0, 1] takes a frame Fk ∈ RC×W×H and a proposition pi ∈ AP as inputs, and
returns a confidence score c ∈ [0, 1], denoted as c = Mobj(Fk, pi). However, deep learning models are often
overconfident, and their detection accuracy cannot be guaranteed. Therefore, we calibrate the confidence
using conformal prediction (Shafer & Vovk, 2008), which provides a lower bound for the probability of
correctly detecting privacy-sensitive objects in every frame, considering the inherent uncertainty in deep
learning model predictions.

However, traditional conformal prediction approaches focus on post-processing and do not account for tem-
poral events. Therefore, we use calibrated confidence to detect and constrain privacy-sensitive objects over
time and provide a probabilistic guarantee on a sequence of frames.

To achieve this, we develop an algorithm VA that takes a sequence of k frames and returns a formally
verifiable video abstraction Ak encoding the object detection across the sequence: VA([F1, ...,Fk]) = Ak.
The video abstraction Ak is represented as a labeled Markov chain, detailed rigorously in Section 4 as
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it requires extensive background and mathematical notation. This provides a probabilistic guarantee on a
frame sequence via formal verification (Woodcock et al., 2009).
Definition 1 (Probabilistic Guarantee on a Frame Sequence). Given a sequence of frames F1, ...,Fk, a
privacy specification Φ, and a video abstraction Ak at the kth frame, a probabilistic guarantee PGk(Ak |= Φ)
on the frame sequence F1, ...,Fk represents the theoretical minimum probability that the presence of privacy-
sensitive objects in the frame F1 through Fk adheres to Φ.

Problem 1 (Real-Time Video Privacy Preservation). Given a frame sequence F1, ...,Fk−1, an in-
coming frame Fk from a video stream, a privacy specification Φ, and an algorithm VA that builds a
video abstraction from the frame sequence, we aim to remove privacy-sensitive objects in Fk such that
Ak = VA([F1, ...,Fk]) satisfies Φ with a probability at least PGk(Ak |= Φ).

4 Privacy-Constrained Video Streaming

We develop privacy-constrained video streaming (PCVS), a method to enforce live video streams that satisfy
a user-given privacy specification with a probabilistic guarantee. The overall pipeline for PCVS is illustrated
in fig. 1.

Real-Time Video Privacy Preservation Framework We explain our framework with a running ex-
ample in a real-time video stream from a real robot (see Figure 2). We aim to hide human faces so that no
personal identity will be revealed in vision-based robot operations. Therefore, the privacy specification is
Φ = □person → ¬face, where → and ¬ mean “implies” and “not”, respectively. We detect humans and faces
at every frame via the ODM. Subsequently, we use conformal prediction to obtain a calibrated confidence
score for the detection in the current frame. We build a video abstraction Ak to represent the detection
results for humans and faces across a sequence of frames and utilize it to obtain a probabilistic guarantee
on Φ being satisfied. We then verify if the guarantee is above the user-given privacy threshold λ ∈ [0, 1]. If
this threshold is not met, we iteratively remove the detected faces and update the guarantee PGk(Ak |= Φ)
until the threshold is met.

4.1 Probabilistic Guarantee on Video Privacy

Given a sequence of k frames and a privacy specification Φ, we compute a probabilistic guarantee PGk(Ak |=
Φ). This guarantee is updated at each incoming frame. We use formal methods to prove that the guarantee
holds.
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Figure 2: A running example on how to compute the
probabilistic guarantee via video abstraction.

Confidence Calibration via Conformal Pre-
diction Recall that an ODM Mobj(xi, yi) = c re-
ceives an image xi and a textual object label yi as a
prompt and returns a confidence score c ∈ [0, 1].
Given the ODM Mobj and a labeled calibration
dataset that is distributed identically to the task
domain, using conformal prediction (Shafer & Vovk,
2008), we learn a calibration function fC : [0, 1] 7→
[0, 1] that maps a confidence score, c ∈ [0, 1] to a
lower bound for the probability of correct detection.

We first collect a calibration set {(xi, yi)}mi=1 con-
sisting of m (image, ground truth text label) tuples.
Then, we apply Mobj to detect the privacy-sensitive
objects in the images {xi}mi=1 and get a set of non-
conformity scores: {1 − Mobj(xi, yi)}mi=1. A non-
conformity score is the sum of confidence scores of
wrong detections. Next, we estimate a probability
density function of these scores, denoted as fnc(z),
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where z is a nonconformity score. Then, we use Theorem 1 to establish a theoretical lower bound for the
probability of the correct detection. The objective of confidence calibration is specifically to establish a the-
oretical bound on the privacy-preservation success ratio, rather than directly enhancing performance. This
calibration provides rigorous privacy assessments in real-time streaming scenarios, especially when ground
truth data is unavailable to the user.
Theorem 1 (Shafer & Vovk (2008), Section 4). Let ϵ ∈ [0, 1] be a pre-defined error bound and xn be an image
outside the calibration set. We define a prediction band as Ĉ(xn) = {pi : Mobj(xn, pi) ≥ 1 − c∗, pi ∈ AP}.
Then, according to conformal prediction, there exists a confidence c∗ such that ϵ = 1 −

∫ c∗

0 fnc(z)dz satisfies
P

[
yn ∈ Ĉ(xn)

]
≥ 1 − ϵ, where yn is the ground truth label for xn. The proof is in Section 4, Shafer & Vovk

(2008).

Note that Mobj(xi, pi) returns a single confidence score indicating whether pi exists in xi. By the theory
of conformal prediction, 1 − ϵ is a theoretical lower bound for the probability of the ground truth label
belonging to the prediction band Ĉ(xn). If Mobj(xi, pi) > 0.5, we provide a lower bound for the probability
of the existence of pi. Otherwise, if Mobj(xi, pi) ≤ 0.5, we bound the probability of non-existence. Hence,
we get a calibration function

fC(c) =
{∫ c

0 fnc(z)dz, if c > 0.5∫ 1−c
0 fnc(z)dz, otherwise.

(1)

Video Abstraction For verifying a real-time video stream against the privacy specification Φ, a key
challenge is to verify the temporal behaviors of all the previously received frames plus the current frame.
This makes verification space- and time-inefficient because we must repeatedly verify previous frames for
each new incoming frame. To overcome this challenge, we build an abstraction for the video stream, which
enables real-time verification.
Definition 2 (Video Abstraction). A video abstraction is a labeled Markov chain (S, s0, P, L), where S
is a set of states, each state corresponds to a conjunction of atomic propositions, s0 ∈ S is the initial state,
P : S × S → [0, 1] is a transition function. P (s, s′) represents the probability of transition from a state s to
a state s′ and

∑
s′∈S P (s, s′) = 1. L : S → 2AP is a labelling function.

Algorithm 1: Real-Time Video Abstraction
Require: object detection modelMobj , calibration functionfC ,

propositions set AP, specification Φ, probability pk−1
of previous frames satisfyingΦ, incoming frame Fk

1: Sobs, P, L = {}, {}, {} ▷ Initialize the abstraction
2: Sobs.add(0), Sobs.add(1), Sobs.add(2) ▷ We represent each state with an Arabic numeral
3: L(1) = false, L(2) = true
4: P (0, 1) = 1 − pk−1, P (0, 2) = pk−1 ▷ Add transitions to indicate the probability of previous frames

satisfying Φ
5: i = 3 ▷ Initialize a indexer representing states
6: for σ in 2AP do ▷ σ is a conjunction of atomic propositions
7: prob =

∏
p∈σ fC(Mobj(Fk, p)) ▷ Get a lower bound for a detection result

8: if prob > 0 then ▷ Add a state to represent the detection with the lower bound
9: Sobs.add(i), L(i) = σ, P (1, i) = prob, P (2, i) = prob, i = i+ 1

10: end if
11: end forreturn Sobs, s0 = 0, P, L

We propose Algorithm 1 to build video abstractions. We demonstrate it through an example in fig. 2. First,
we add an initial state (State 0 in fig. 2), a state representing the event that all previous frames (if they
exist) satisfy Φ (State 1), and a state representing the event that previous frames fail Φ (State 2), as in lines
1-3. Next, we add transitions from State 0 to State 1 and to State 2 with the probability of previous frames
satisfying Φ as in line 4. Then, we detect objects in the incoming frame Fk and get the probability bound

5



Under review as submission to TMLR

for correct detection. For each conjunction of propositions (e.g., person=true and face=false), we build a
state and add transitions to this state with the probability bound of correctly detecting objects described in
this conjunction, as in lines 6-9. Hence, we obtain the video abstraction Ak (e.g., fig. 2).

Following Algorithm 1, we incrementally add new states to the abstraction (rather than build a new one)
with the arrival of each new incoming frame and check it against Φ. Hence, this abstraction can be used
to check video streams efficiently. Then, we theoretically prove that the probabilistic guarantee obtained
through this abstraction holds.

Probabilistic Guarantees for Frame Sequence Given a video abstraction A = (S, s0, P, L), we define
a path π as a sequence of states starting from s0. The states evolve according to the transition function P .
A prefix is a finite path fragment starting from s0. We define a trace as ψ = trace(π) = L(s0)L(s1)L(s2) . . . ,
where s0, s1, s2, ... ∈ π. Traces(A) denotes the set of all traces from A. Each trace ψ = L(s0)L(s1)L(s2) . . .
is associated with a probability P(ψ) = P (s0, s1) × P (s1, s2)×...

The privacy specification is in the form of □ Φ̃. Hence, a privacy specification describes a safety property
(Baier & Katoen, 2008).
Definition 3 (Safety Property). A safety property Psafe is a set of traces in (2AP )ω (ω indicates infinite
repetitions) such that for all traces ψ ∈ (2AP )ω\Psafe, there exists a finite prefix ψ̂ of ψ such that Psafe ∩{ψ′ ∈
(2AP )ω| ψ̂ is a prefix of ψ′} = Φ. ψ̂ is a bad prefix and BadPref(Psafe) is the set of all bad prefixes with respect
to Psafe.

A video satisfies the privacy specification if its abstract representation A satisfies the safety property Psafe,
i.e., Traces(A) ⊆ Psafe. The probability that a video satisfies the specification is

P[A is safe] = P[π ∈ path(s0) | trace(π) ∈ Psafe] =
∑

ψ∈Traces(A)∩Psafe

P(ψ). (2)

Note that this probability is a probabilistic guarantee on a sequence of frames. According to the definition
of safety property, we derive the following theorem:
Theorem 2. Consider a set of prefixes Ψ̂ such that P{ψ̂ ∈ Ψ̂ | ψ̂ /∈ BadPref(Psafe)} ≥ α. Let S̄ ⊂ S be
a subset of states in A such that P{ψ̂L(s) /∈ BadPref(Psafe) | ψ̂ /∈ BadPref(Psafe) and s ∈ S̄} ≥ β. Then,
P{ψ̂L(s) /∈ BadPref(Psafe) | s ∈ S̄ and ψ̂ ∈ Ψ̂} ≥ αβ.

Proof. Let A = {ψ̂L(s) /∈ BadPref(Psafe) | s ∈ S̄ ∩ ψ̂ ∈ Ψ̂} and B = {ψ̂ /∈ BadPref(Psafe) | ψ̂ ∈ Ψ̂}. Then,
A|B = {ψ̂L(s) /∈ BadPref(Psafe) | s ∈ S̄ ∩ ψ̂L(s) /∈ BadPref(Psafe)} and P(A) = P(A|B) · P(B) ≥ αβ.

From Theorem 2, we can compute a new probabilistic guarantee on a sequence of frames after each incoming
frame. However, the length of the abstraction’s prefixes increases as the stream continues, leading to high
complexity. Therefore, we derive the following proposition to show that Theorem 2 holds even if we fix the
length of the prefixes (proof of the proposition is in the Appendix):
Proposition 1. Let ψ̂T and ψ̂F be single element prefixes whose corresponding paths only consist of one state
such that ψ̂T /∈ BadPref(Psafe) and ψ̂F ∈ BadPref(Psafe). Let P(ψ̂T ) = α, P(ψ̂F ) = 1 − α, Ψ′ = {ψT , ψF },
then if we replace Ψ̂ with Ψ′ in Theorem 2, the Theorem still holds.

Proof. Since P(ψ̂T ) = α and P(ψ̂F ) = 1 − α, P{ψ̂ ∈ Ψ′|ψ̂ /∈ BadPref(Psafe)} = α. The replacement of Ψ̂
with Ψ′ does not affect P{ψ̂L(s) /∈ BadPref(Psafe) | ψ̂ /∈ BadPref(Psafe) ∩ s ∈ S̄}. Thus, the conditions of
Theorem 2 are satisfied, and P{ψ̂L(s) /∈ BadPref(Psafe) |s ∈ S̄ ∩ ψ̂ ∈ Ψ′} ≥ αβ.

From Theorem 2 and Proposition 1, we can compute PGk(Ak |= Φ) as follows:

PGk(Ak |= Φ) = PGk−1(Ak−1 |= Φ) ×

 ∑
σ|=Φ̃

∏
p∈σ

fC(Mobj(Fk, p))

 (3)
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Figure 3: We present demonstrations for indoor robot navigation (top left), ground robot navigation (top
right), and urban drone monitoring (bottom left). The indoor and ground robots are shown in the bottom
right. Scenes with an ‘x’ in a red circle contain privacy-sensitive objects, and our method successfully
conceals them. All demonstrations effectively maintain privacy above the user-given privacy threshold of
0.80, denoted as PGk(Φ) > 0.80.

The video abstraction captures all previous frames in only two states (States 1 and 2 in fig. 2) instead of
accumulating states for every frame in the sequence. Thus, we can efficiently update the guarantee through
a single computation. In fig. 2, PGk(Ak |= Φ) = 0.8 × 0.7 = 0.56.

5 Robot Demonstrations

Our experiments assess our method in two areas: (i) its ability to protect privacy, and (ii) its efficiency in
preserving other features for vision-based robot tasks.

We demonstrate our approach on a Jackal ground robot for autonomous driving, an indoor robot for in-house
navigation and service, and a drone for urban monitoring (see Figure 3). Given video streams from robot
cameras, we aim to execute actions based on the control policy (π). Our approach effectively preserves
privacy with formal guarantees without compromising performance in the real-time robot operation. We use
YOLOv9 (Wang et al., 2025) in our method for all demonstrations.

q0start

q1 q2

q3

reach

intersection

stop ∧ observe

¬
car ∧¬

person,

turn right

car ∨ person,
stop

car ∨ person,
stop

move forward

Figure 4: A sample control policy for the
ground robot. Each transition is associated
with an (input, output) tuple.

Indoor Navigation In the first demonstration, we deploy
PCVS to an indoor navigation robot to protect user privacy.
We ground the robot in a private residence for in-house ser-
vices such as transporting objects and house cleaning. While
the robot perceives the environment through visual observa-
tions, we aim to preserve the privacy within such observations.
The privacy specification is Φ1 = □ (¬ laptop∧¬ medication∧
¬ person), which requires hiding all people, laptops, and med-
ications appearing in the scenes. Figure 3 (top left) demon-
strates how our method performs to conceal the sensitive ob-
jects such that the video satisfies the privacy specification. The
probabilistic guarantee of privacy preservation throughout the
complete operation is 0.81.

Ground Robot Driving We deploy the control policy on the ground robot for five driving tasks, such
as turning right at a stop sign (as presented in fig. 4). We embed PCVS in the robot’s camera to conceal
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(a) (b)

Figure 5: PCVS effectively maintains privacy in long-horizon videos and complex privacy specifi-
cations. In fig. 5a, PCVS consistently preserves privacy, achieving an average Privacy Preservation Success
Ratio of 0.97 across various video lengths. In fig. 5b, we show that PCVS consistently upholds privacy re-
gardless of the complexity of specifications with an average Privacy Preservation Success Ratio of 0.94.

sensitive objects during real-time operation. In the driving example, we define a set of privacy specifications:

Φ2 = □ ¬ road sign,
Φ3 = □ ((bicycle → ¬ person) ∨ (person → ¬ face)),
Φ4 = □ ((bus ∨ car) → ¬ plate).

Intuitively, we want to conceal privacy-sensitive objects such as road name signs, car plates, and human
faces. Figure 3 (top right) presents an example of how our method conceals sensitive objects to satisfy the
specifications. The driving operation has a probabilistic guarantee of privacy preservation at 0.84, i.e., at
least 84 percent of satisfying the specifications.

Figure 6: The comparisons between our method and other bench-
marks and the comparisons between our method under different
object detection models.

When concealing sensitive objects, it is
crucial to ensure that such concealment
does not adversely impact the robot’s
decision-making processes. For instance,
the robot should still be capable of de-
tecting and avoiding pedestrians even af-
ter their faces have been obscured. More
precisely, consider a safety specification
Φ5 = □ ((car ∨ person) → X stop,
which necessitates that the robot comes
to a stop if cars or pedestrians are
present ahead. In the demonstration, the
robot performs identically regardless of
whether our method is deployed, and in
both cases, it satisfies the safety specifi-
cations. Hence, we show that our privacy
protection will not over-conceal non-sensitive objects and negatively impact the decision-making procedure
in driving scenarios.

Urban Drone Monitoring We demonstrate the applicability and effectiveness of our method in urban
drone monitoring scenarios. The privacy specification is Φ6 = □ ((bicycle → ¬person) ∧ (car ∨ bus →
¬ person)), which requires hiding all cars, buses, bicycles, and persons appearing in the scenes. Figure 3
(bottom left) demonstrates the successful performance of our method in concealing objects that are irrelevant
to the monitoring task, yet require privacy preservation. The demonstration also indicates the real-time
capability of our method to be seamlessly migrated to real-world drone applications.
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Figure 7: Demonstrations on our method concealing license plates in the driving scenes from the UFPR-
ALPR dataset.

6 Quantitative Analyses

We present quantitative analyses in two areas: preserving privacy and preserving non-private visual features.
We use YOLOv9 (Wang et al., 2025) on large-scale image datasets—ImageNet (Deng et al., 2009) and MS
COCO (Lin et al., 2014)—and a real-world driving dataset—UFPR-ALPR (Laroca et al., 2018). We choose
foundation models over conventional object detectors such as Faster-RCNN due to their inherent ability
to handle temporal reasoning across frame sequences, essential for robust privacy-preservation in streaming
applications.

Our analyses show PCVS can preserve privacy even for long-horizon videos with complex privacy specifications.
We define the complexity of specifications, ϕ, as the number of propositions in Φ. For instance, the
complexity of a specification Φ = □(¬p1 ∧ ¬p2 ∨ ¬p3) with propositions AP = {p1, p2, p3} is ϕ = 3.

Evaluation Dataset I (ED 1): We focus on the presence of “person" in videos. We select images of a person
from the ImageNet dataset and randomly insert these images at various positions for each video duration,
filling any remaining slots with random images. We produce five different video lengths: 10, 25, 50, 100, and
200, with 25 video samples for each duration, resulting in 125 video samples overall.

Evaluation Dataset II (ED 2): We use the MS COCO dataset to evaluate our method at different complexities
of specifications because it has multiple labels per image. Each level of specification complexity consists
of 20 video samples, with an average of 50 frames per sample, resulting in a total of 160 videos. This
dataset was developed using the same process as the ED1 dataset, with modifications made to accommodate
the complexity of the specifications. For example, if ϕ = 3, the privacy specification for the dataset is
Φ = ¬p1 ∧ ¬p2 ∧ ¬p3, where p1, p2, and p3 are the ground truth labels of the selected image. These images
are then randomly placed within the dataset, and the remaining slots are filled with random images.

Evaluation Dataset III (ED 3): We randomly select a subset of images from the UFPR-ALPR dataset
(Laroca et al., 2018) to generate videos with lengths 10, 25, 50, 100, and 200. Each length has 200 video
samples (a total of 1000 videos). The dataset consists of labeled images that include driving-related objects
such as vehicles, license plates, etc. We form a video by integrating a sequence of images from the dataset.

Benchmarks: To assess the ability of PCVS to detect privacy violations based on a given privacy specification,
we use GPT-4 Vision (OpenAI, 2023) and Video LLaVA (Lin et al., 2023) as benchmarks. This is because
both benchmark methods can process a sequence of images from a video alongside a privacy specification.

6.1 Privacy Preservation

We quantitatively evaluate the performance of privacy preservation across varying video lengths and spec-
ification complexities. For this evaluation, we define a metric representing the success ratio of privacy
preservation as follows:

Privacy Preservation Success Ratio = Number of pi ∈ AP detected or concealed
Total number of private pi ∈ AP within V

.

PCVS counts the number of concealed objects, while the benchmark counts the number of detected objects,
as the benchmark does not natively conceal those objects. We assume that if those objects are detected,
they can be concealed by other methods, such as Gaussian concealing. During the concealment process,
the user-defined privacy specifications determine the privacy-sensitive objects to be concealed. For instance,
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in the paper, Φ1 − Φ4, define the combination of privacy-sensitive objects to be concealed. It is important
to note that in our experiments, all privacy specifications are prioritized equally, and the propositions are
defined so that non-private visual features are unaffected.

Figure 8: Effective privacy preservation in real-
world driving scenes. We apply PCVS to driving
scenes from the UFPR-ALPR dataset and conceal
privacy-sensitive objects such as license plates. The
privacy preservation success ratio of PCVS is consis-
tently above 0.8.

Comparison by video length Our method en-
sures privacy preservation in live video streams,
which means that the video length can be infinite.
Hence, it is crucial to assess whether privacy is main-
tained as video streams become longer. To this end,
we test PCVS on videos with various lengths from ED
1. We find that PCVS consistently maintains perfor-
mance in preserving privacy, in contrast to bench-
mark methods that exhibit degraded performance
as the length of videos increases (see fig. 5a).

We also examine how the underlying vision model
ability affects the privacy preservation ratio. We
repeat the experiment on ED 1 while using differ-
ent detection models: Yolov9e (Wang et al., 2025),
Yolov8x-worldv2 (Cheng et al., 2024), and Faster-
RCNN (Ren et al., 2016), all with default param-
eters. We present the privacy preservation success
ratio of our method using different detection models
versus video lengths in fig. 6. The results show that our method is sensitive to the detection model quality.
Our method outperforms the benchmarks (GPT4-Vision and Video-LLaVA) at every video length when
using the mainstream detection models.

To further demonstrate the real-world applicability of our method, we apply it to ED 3 and evaluate the
privacy preservation success ratio across different video lengths. Recall that ED 3 consists of images collected
from vehicle dash cameras. Figure 8 shows our method’s high privacy preservation success ratio—consistently
above 0.8 regardless of length. We present some demonstration figures in Figure 7. The results indicate the
applicability of our method to real-world tasks such as autonomous driving.

Figure 9: Preserving non-private visual features
for vision-based robot operation. Our method
can detect non-private objects after concealing private
objects specified in Φ. However, performance degrades
from ϕ = 5 because more private objects get concealed
indirectly masking out other objects.

Comparison by specification complexities
Next, we assess PCVS based on the complexity of
specifications. This comparison is important be-
cause a privacy specification can be intricate, in-
volving more than just two or three propositions.
For example, a specification might require the detec-
tion and concealment of multiple privacy-sensitive
objects within the same video, such as faces, license
plates, and specific types of clothing. Our method
significantly outperforms benchmark methods (see
Figure 5b) regardless of the complexity of specifi-
cations. We demonstrate that PCVS can effectively
handle highly complex privacy compositions in real-
time video streams, ensuring robust privacy protec-
tion.

6.2 Non-private Visual Feature Preservation

Preserving non-private visual features is crucial for vision-based robot operation, as it relies on visual obser-
vation for control policies. In our demonstration (as presented in fig. 3), the ground robot must be capable of
identifying people from privacy-constrained video footage to make appropriate decisions, such as stopping.
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(b)

P(playing harmonica) = 0.88 P(playing harmonica) = 0.90

P(person) = 0.95 P(person) = 0.95

P(playing harmonica) = 0.89

P(person) = 0.95 P(person) = 0.92 P(person) = 0.93P(person) = 0.94

ℱ⊧14(Φ 𝒫 𝒢) > .80 ℱ⊧15(Φ 𝒫 𝒢) > .80 ℱ⊧17(Φ 𝒫 𝒢) > .80

(a)

Figure 10: (a) result for □(person ∧ playing harmonica); the object and activity are not concealed for
demonstration purposes. (b) failure cases from the UFPR-ALPR dataset.

We analyze how our method preserves non-private visual features using ED2 in fig. 9. We define a metric
that represents the success ratio of preserving non-private visual features as follows:

Non-Private Feature Preservation Success Ratio = Number of χ detected after concealing pi∈AP
Total number of χ within V ,

where χ is a non-private target object for detection. In our evaluation, non-private visual features remain
preserved and detectable even after the concealment of privacy-sensitive objects as defined in the privacy
specifications. However, the success ratio of non-private preservation decreases as the complexity of these
specifications increases. This is because PCVS conceals a larger image area as the number of privacy-sensitive
objects increases.

6.3 Computational Complexity

Figure 11: Comparison between the verification
time with and without model abstraction. Our
model abstraction significantly reduces the la-
tency and maintains a constant latency when the
proposition number increases.

Model checking often incurs significant computational
overhead, particularly as the state space size increases
with the number of video frames, which limits its capa-
bility in real-time applications. Hence, we develop an
abstraction method to resolve this limitation.

Figure 11 shows the verification time versus the frame
number under different numbers of atomic propositions.
The experiments are performed using the video collected
by the ground robot with an Apple M2 CPU. As the frame
number increases, the verification time without our video
abstraction method grows linearly, while the time with
abstraction remains constant.

Furthermore, we tested our method with YOLOv9 on
both Intel Xeon Gold CPU and Nvidia A5000 GPU. The
average runtimes for processing one proposition in one
image frame (1600×900 pixels) using CPU and GPU are
159 milliseconds and 69 milliseconds. Therefore, a robot with a CPU can also preserve privacy in real-time
at an approximate six frames per second (fps) frequency, and a robot with a GPU is capable of videos with
14 fps. We present more details in fig. 12.

6.4 Ablation Studies

Action-Based Privacy Constraints We deploy a Video MAE activity recognition model replacing the
object detection model to show the capability of our framework in detecting action-based privacy (See fig. 10
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(a)). The experiment demonstrates how privacy considerations can go beyond static object detection and
account for dynamic behaviors or activities that may be sensitive, such as gestures or interactions that reveal
identity, intent, or context. Integrating an activity recognition model allows the proposed method to support
fine-grained control over temporal privacy, healthcare, or smart home environments where actions can be
private even when identities are anonymized.

Figure 12: Latency comparison in each
stage of our method to process one frame.
Object detection takes up the majority of
the time, and the time required grows lin-
early as the number of propositions in-
creases. The time for other stages is neg-
ligible or remains constant across different
numbers of propositions.

Failure Cases & Stress Testing We conduct an evalua-
tion of failure cases and stress test the system to assess its
robustness. The 5 percent failure cases are marginal errors in-
herent to the neural network (i.e., object detection models).
An additional experiment in fig. 10 (b) shows that most failure
cases involve motorcycle license plates due to the poor perfor-
mance of the detection model. This underscores the importance
of domain-specific training, particularly for small or occluded
objects that differ significantly in shape or layout from more
commonly detected categories (e.g., car plates). These fail-
ures highlight potential areas for improving detection robust-
ness, such as augmenting the dataset with diverse examples or
integrating ensemble models. Moreover, stress testing reveals
that the system maintains reliability under typical variance but
is susceptible to degradation in edge scenarios—an important
consideration for real-world deployment.

7 Conclusion

Summary We propose PCVS, a novel method for enforcing privacy in live video streams, particularly those
generated by robotic systems or consumed by robot learning algorithms. PCVS provides a probabilistic guar-
antee that user-defined privacy specifications are satisfied, offering a principled and flexible approach to
privacy preservation in dynamic environments. Our method significantly outperforms state-of-the-art base-
lines on both short and long video sequences regarding accuracy, efficiency, and adaptability. In addition,
we demonstrate the real-time performance and practical utility of PCVS across three distinct robotic appli-
cations, highlighting its robustness and applicability in real-world scenarios such as autonomous navigation,
human-robot interaction, and manipulation tasks. These results establish PCVS as a promising solution for
privacy-aware robotics and embodied AI.

Limitations and Future Work While PCVS demonstrates strong performance and real-time capability,
it remains limited by the representational and reasoning capacity of the underlying object detection model.
This affects the range and precision of privacy specifications that can be effectively interpreted and enforced,
especially in cases requiring understanding context or abstract concepts. Another limitation is the reliance
on pre-defined privacy specifications, which may not fully capture evolving or user-specific privacy concerns
in dynamic environments. As a future direction, we aim to extend our framework to support more expressive
and generalized privacy specifications, moving beyond safety properties to include formal notions such as
liveness (ensuring events eventually occur) and fairness (ensuring unbiased treatment across individuals or
groups). Such extensions would improve the flexibility, interpretability, and applicability of PCVS in broader
autonomous and interactive system settings.

Broader Impact Statement

This work introduces a method to enforce privacy constraints in real-time video streams from robot cameras,
ensuring sensitive objects are concealed based on predefined logical specifications. Unlike existing approaches,
it offers theoretical guarantees and works in live deployments without degrading robots’ visual performance.
By enabling privacy-aware AI systems, this method facilitates the ethical use of robotics in privacy-sensitive
environments, such as homes, hospitals, and workplaces.

12



Under review as submission to TMLR

References
Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

Jon Barwise. An introduction to first-order logic. In Studies in Logic and the Foundations of Mathematics,
volume 90, pp. 5–46. Elsevier, 1977.

Neel P Bhatt, Yunhao Yang, Rohan Siva, Daniel Milan, Ufuk Topcu, and Zhangyang Wang. Know where
you’re uncertain when planning with multimodal foundation models: A formal framework. arXiv preprint
arXiv:2411.01639, 2024.

Frank Cangialosi, Neil Agarwal, Venkat Arun, Srinivas Narayana, Anand Sarwate, and Ravi Netravali.
Privid: practical,{Privacy-Preserving} video analytics queries. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pp. 209–228, 2022.

Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world: Real-time
open-vocabulary object detection. arXiv preprint arXiv:, 2024.

Yu Cheng, Quanfu Fan, Sharath Pankanti, and Alok Choudhary. Temporal sequence modeling for video
event detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2227–2234, 2014.

Minkyu Choi, Harsh Goel, Mohammad Omama, Yunhao Yang, Sahil Shah, and Sandeep Chinchali. Neuro-
symbolic video search. arXiv preprint arXiv:2403.11021, 2024.

Kuan-Yu Chu, Yin-Hsi Kuo, and Winston H Hsu. Real-time privacy-preserving moving object detection in
the cloud. In Proceedings of the 21st ACM international conference on Multimedia, pp. 597–600, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Eileen Guo. A roomba recorded a woman on the toilet. how did screenshots end up on facebook?, Mar 2024.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international conference
on pattern recognition, pp. 2366–2369. IEEE, 2010.

Dima Kagan, Galit Fuhrmann Alpert, and Michael Fire. Zooming into video conferencing privacy. IEEE
Transactions on Computational Social Systems, 2023.

Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso A. Poggio, and Thomas Serre. HMDB:
A large video database for human motion recognition. In Dimitris N. Metaxas, Long Quan, Alberto
Sanfeliu, and Luc Van Gool (eds.), IEEE International Conference on Computer Vision, pp. 2556–2563.
IEEE Computer Society, 2011.

R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves, W. R. Schwartz, and D. Menotti. A
robust real-time automatic license plate recognition based on the YOLO detector. In International Joint
Conference on Neural Networks (IJCNN), pp. 1–10, July 2018. doi: 10.1109/IJCNN.2018.8489629.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
visual representation by alignment before projection, 2023.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro
Perona, Deva Ramanan, Piotr Doll’a r, and C. Lawrence Zitnick. Microsoft COCO: common objects in
context. CoRR, abs/1405.0312, 2014. URL http://arxiv.org/abs/1405.0312.

Christopher Neff, Matías Mendieta, Shrey Mohan, Mohammadreza Baharani, Samuel Rogers, and Hamed
Tabkhi. Revamp 2 t: real-time edge video analytics for multicamera privacy-aware pedestrian tracking.
IEEE Internet of Things Journal, 7(4):2591–2602, 2019.

13

http://arxiv.org/abs/1405.0312


Under review as submission to TMLR

OpenAI. Gpt-4 vision system card. https://cdn.openai.com/papers/GPTV_System_Card.pdf, 2023. Ac-
cessed: [insert date of access].

Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh Ananthanarayanan, Yuanchao Shu, Nikolaos Kar-
ianakis, Guoqing Harry Xu, and Ravi Netravali. Gemel: Model merging for {Memory-Efficient},{Real-
Time} video analytics at the edge. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pp. 973–994, 2023.

Sk Md Mizanur Rahman, M Anwar Hossain, Hussein Mouftah, Abdulmotaleb El Saddik, and Eiji Okamoto.
Chaos-cryptography based privacy preservation technique for video surveillance. Multimedia systems, 18:
145–155, 2012.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6):
1137–1149, 2016.

Nicholas Rescher and Alasdair Urquhart. Temporal logic, volume 3. Springer Science & Business Media,
2012.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning Research,
9(3), 2008.

S. P. Sharan, Minkyu Choi, Sahil Shah, Harsh Goel, Mohammad Omama, and Sandeep Chinchali. Neuro-
symbolic evaluation of text-to-video models using formal verification, 2024. URL https://arxiv.org/
abs/2411.16718.

Nehemia Sugianto, Dian Tjondronegoro, Rosemary Stockdale, and Elizabeth Irenne Yuwono. Privacy-
preserving ai-enabled video surveillance for social distancing: Responsible design and deployment for
public spaces. Information Technology & People, 37(2):998–1022, 2024.

Elena Umili, Roberto Capobianco, Giuseppe De Giacomo, et al. Grounding ltlf specifications in images. In
Proceedings of the 16th International Workshop on Neural-Symbolic Learning and Reasoning, pp. 45–63,
2022.

Maneesh Upmanyu, Anoop M Namboodiri, Kannan Srinathan, and CV Jawahar. Efficient privacy preserving
video surveillance. In 2009 IEEE 12th international conference on computer vision, pp. 1639–1646. IEEE,
2009.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn using
programmable gradient information. In European Conference on Computer Vision, pp. 1–21. Springer,
2025.

Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and Mahadev Satya-
narayanan. A scalable and privacy-aware iot service for live video analytics. In Proceedings of the 8th
ACM on Multimedia Systems Conference, pp. 38–49, 2017.

Jehan Wickramasuriya, Mohanned Alhazzazi, Mahesh Datt, Sharad Mehrotra, and Nalini Venkatasubra-
manian. Privacy-protecting video surveillance. In Real-Time Imaging IX, volume 5671, pp. 64–75. SPIE,
2005.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal methods: Practice and
experience. ACM Comput. Surv., 41(4), oct 2009. ISSN 0360-0300. doi: 10.1145/1592434.1592436. URL
https://doi.org/10.1145/1592434.1592436.

Yunhao Yang, Jean-Raphaël Gaglione, Sandeep Chinchali, and Ufuk Topcu. Specification-driven video search
via foundation models and formal verification. arXiv preprint arXiv:2309.10171, 2023.

Yunhao Yang, Neel P Bhatt, Tyler Ingebrand, William Ward, Steven Carr, Atlas Wang, and Ufuk Topcu.
Fine-tuning language models using formal methods feedback: A use case in autonomous systems. Pro-
ceedings of Machine Learning and Systems, 6:339–350, 2024.

14

https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://arxiv.org/abs/2411.16718
https://arxiv.org/abs/2411.16718
https://doi.org/10.1145/1592434.1592436


Under review as submission to TMLR

Meng Yuan, Seyed Yahya Nikouei, Alem Fitwi, Yu Chen, and Yunxi Dong. Minor privacy protection
through real-time video processing at the edge. In 2020 29th International Conference on Computer
Communications and Networks (ICCCN), pp. 1–6. IEEE, 2020.

A Additional Experimental Settings and Results

A.1 Benchmark Model Prompts

Recall that we use GPT-4 Vision and Video LLaVA as the benchmarks for quantitative analysis. These
benchmark models require natural language input prompts to guide object detection and long-horizon object
analysis.

We use the prompt below to measure how well vision-language foundation models understand the privacy
specification and detect private objects or behaviors.

Video LLaVA Since Video LLaVA processes a sequence of frames, we pass a video clip along with the
privacy specification.

Does this video satisfy the <Privacy Specification>?
You must answer only YES or NO. For example: ‘YES’
or ‘NO’

GPT-4 Vision We pass a single frame with the prompt to the GPT-4 Vision model to identify private
information specified in the privacy specification.

Does this image satisfy the <Privacy
Specification>?
You must answer only YES or NO. For example: ‘YES’
or ‘NO’

Threshold Iterations Latency per frame (sec.) PSNR
0.50 31 ± 16 0.28 ± 0.18 30.50 ± 0.02
0.60 32 ± 16 0.29 ± 0.18 30.52 ± 0.01
0.70 33 ± 16 0.30 ± 0.18 30.53 ± 0.01
0.80 34 ± 16 0.31 ± 0.18 30.55 ± 0.00

Table 1: The number of iterations, latency, and PSNR remain nearly identical for different thresholds. We
use an identical experimental setup as shown in Fig. 5. However, we restrict the frame length to 10.

A.2 Privacy Threshold vs Visual Quality

Based on our experimental results, summarized in Table 1, the number of iterations and latency increase
with an increase in the privacy threshold, which is a logical tradeoff. However, the visual quality, measured
by the peak signal-to-noise ratio (PSNR) (Hore & Ziou, 2010), remains unaffected by the privacy threshold.
This confirms that our concealment process is targeted and does not affect the overall quality of the image.
The invariance in PSNR suggests that the concealment operates locally and selectively, avoiding unnecessary
alterations to non-sensitive regions. This property is crucial for real-world applications where maintaining
visual integrity is essential, such as in media publishing, video conferencing, or autonomous systems, en-
suring privacy protection without compromising usability or scene comprehension. Moreover, this finding
highlights the efficiency of our framework in scaling privacy protections based on user-defined thresholds
while preserving the visual consistency necessary for downstream tasks.
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