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Abstract

While classifier-free guidance (CFG) is essential for conditional diffusion models, it doubles the
number of neural function evaluations (NFEs) per inference step. To mitigate this inefficiency,
we introduce adapter guidance distillation (AGD), a novel approach that simulates CFG in
a single forward pass. AGD leverages lightweight adapters to approximate CFG, effectively
doubling the sampling speed while maintaining or even improving sample quality. Unlike
prior guidance distillation methods that tune the entire model, AGD keeps the base model
frozen and only trains minimal additional parameters (~2%) to significantly reduce the
resource requirement of the distillation phase. Additionally, this approach preserves the
original model weights and enables the adapters to be seamlessly combined with other
checkpoints derived from the same base model. We also address a key mismatch between
training and inference in existing guidance distillation methods by training on CFG-guided
trajectories instead of standard diffusion trajectories. Through extensive experiments, we
show that AGD achieves comparable or superior FID to CFG across multiple architectures
with only half the NFEs. Notably, our method enables the distillation of large models (~2.6B
parameters) on a single consumer GPU with 24 GB of VRAM, making it more accessible
than previous approaches that require multiple high-end GPUs. We will publicly release the
implementation of our method.

1 Introduction

Score-based diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020b) are a family
of generative models that learn the data distribution by reversing a forward process that progressively
corrupts the data until it becomes indistinguishable from pure Gaussian noise. Theoretically, running the
reverse diffusion process should enable accurate sampling from the data distribution, assuming access to the
ground truth score function. However, in practice, unguided sampling from diffusion models often produces
low-quality images that fail to align well with the given input condition due to optimization errors (Karras
et al., 2024a). Accordingly, CFG (Ho & Salimans, 2022) has become a crucial technique in modern conditional
diffusion models to enhance both generation quality and alignment to conditioning signals—though this
comes at the expense of reduced sample diversity (Ho & Salimans, 2022; Sadat et al., 2024).

CFG is an inference method that enhances generation quality by leveraging the difference between conditional
and unconditional model predictions at each inference step. This difference serves as an update direction to
improve both quality and alignment with the target condition. However, CFG requires two forward passes
per inference step, resulting in twice the sampling cost compared to unguided sampling. This increased cost
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Diffusion Transformer

Figure 1: Generated samples using adapter guidance distillation (AGD) applied to various models. By
efficiently baking classifier-free guidance (CFG) into the base diffusion model, AGD generates high-quality
samples with only a single forward pass per inference step, which results in doubling the sampling speed
compared to standard CFG.

introduces a significant computational overhead, especially when sampling from large-scale diffusion models
or employing these pretrained models for tasks such as score distillation (Poole et al., 2023).

In this paper, we aim to double the sampling speed of CFG by training a small set of adapters to integrate
the CFG behavior directly into the model. Our method, called AGD, learns to replicate the CFG-guided
output at each inference step using a single forward pass while preserving the original diffusion model weights.
These lightweight adapters add only 1-5% more parameters to the base model and introduce negligible
latency overhead during inference. Since the base model remains frozen during training, and only the adapter
parameters are updated, AGD is computationally efficient and can be trained on a single consumer GPU
with 24 GB of VRAM, even for large models like Stable Diffusion XL (SDXL). Furthermore, AGD allows the
trained adapters to be seamlessly integrated with other checkpoints originating from the same base model,
such as IP-adapters (Ye et al., 2023). We demonstrate that our approach maintains or improves generation
quality compared to standard CFG and outperforms existing methods such as guidance distillation (GD)
(Meng et al., 2023), all while significantly reducing resource requirements during training.

Moreover, we identify and address a mismatch between training and inference trajectories in prior guidance
distillation methods. We argue that effective guidance distillation requires training on CFG-guided trajectories
computed by running the sampling process with CFG, as these differ significantly from standard diffusion
trajectories obtained by adding noise to the training data. Furthermore, training on guided trajectories
eliminates the need to load a teacher model during distillation, thus reducing memory requirements when
training AGD. Another advantage is that the distillation can be performed entirely on the synthetic data
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(a) Trajectory collection. (b) Training on collected trajectories. (c) Inference with adapters.

Figure 2: High-level overview of AGD components. (a) Instead of training on diffusion trajectories, we first
run the sampling process with classifier-free guidance (CFG) and use the resulting guided trajectories (i.e.,
intermediate predictions at each time step ¢) as our training dataset. (b) We then introduce small adapters
to the base model and train them to replicate the CFG-guided predictions from (a) while keeping the base
model frozen. (c) During inference, the base model combined with the trained adapter produces guided
predictions in a single forward pass, effectively doubling the sampling speed compared to CFG.

generated by the teacher model without needing any real dataset in advance. Our experiments demonstrate that
training on CFG-guided trajectories enhances performance compared with training on diffusion trajectories.

Figure 2 gives an overview of different components in AGD. In summary, our primary contributions are:

1. We introduce AGD, an efficient method for simulating CFG in a single forward pass by training
lightweight adapters alongside a frozen base diffusion model, eliminating the need to fine-tune the
entire model.

2. We propose training AGD on CFG-guided trajectories instead of diffusion trajectories, reducing the
mismatch between training and inference and improving performance.

3. We demonstrate the resource efficiency of AGD by successfully distilling SDXL (2.6B parameters) on
a single RTX 4090 GPU with 24 GB of VRAM.

4. Through extensive experiments, we show that AGD matches or surpasses CFG in performance across
various models such as Diffusion Transformer and Stable Diffusion while doubling the sampling speed
compared to CFG.

2 Related work

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2020a;b; Ho et al., 2020) have
emerged as a leading approach for generative modeling across various domains, including images (Ramesh
et al., 2022; Rombach et al., 2022; Dai et al., 2023; Saharia et al., 2022), text (Hoogeboom et al., 2021; Li
et al., 2022; Austin et al., 2021), audio (Evans et al., 2024), and molecular generation (Hoogeboom et al.,
2022). Since the introduction of DDPM (Ho et al., 2020), significant progress has been made in multiple
aspects, such as refining network architectures (Hoogeboom et al., 2023; Karras et al., 2024b; Peebles &
Xie, 2023; Dhariwal & Nichol, 2021), developing more efficient sampling methods (Song et al., 2020a; Karras
et al., 2022; Liu et al., 2022; Lu et al., 2022; Salimans & Ho, 2022b), and introducing novel training strategies
(Nichol & Dhariwal, 2021; Song et al., 2020b; Salimans & Ho, 2022a; Rombach et al., 2022; Karras et al.,
2022; 2024b). Nevertheless, various guidance techniques (Dhariwal & Nichol, 2021; Ho & Salimans, 2022;
Karras et al., 2024a; Sadat et al., 2025b) have remained essential for enhancing generation quality and the
alignment between conditioning inputs and generated outputs (Nichol et al., 2022), though they lead to
increased sampling time (Ho & Salimans, 2022), reduced diversity (Sadat et al., 2024; Kynkéédnniemi et al.,
2024), and excessive oversaturation (Sadat et al., 2025a).

Several works have recently explored modifying the weight schedule of CFG by applying guidance only at
certain sampling steps (Castillo et al., 2023; Wang et al., 2024; Kynk&dnniemi et al., 2024), primarily to
balance diversity and quality in generation. However, these methods still require two NFEs for most steps
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and therefore cannot fully double the inference speed. Additionally, our approach is orthogonal to these
methods, as the distilled model can be used for the steps where CFG is applied in the above works.

Alternatively, Meng et al. (2023) introduced guidance distillation (GD), which fine-tunes a diffusion model
to generate guided predictions in a single forward pass. However, fully fine-tuning the base model is often
inefficient and unstable for large models, overwrites the original model weights, and demands high-end GPUs
with substantial memory for training. To improve efficiency of GD, Hsiao et al. (2024) introduced plug-
and-play diffusion distillation (PPDD), which injects residuals via an auxiliary model. However, their most
accurate variant (requiring approximately 42% additional parameters) still underperforms CFG by roughly
14% in FID. To address these limitations, we propose a more efficient distillation method using adapters, which
achieves substantially better performance while remaining significantly more parameter-efficient. Moreover,
both Meng et al. (2023) and Hsiao et al. (2024) trained their models on standard diffusion trajectories, which
we show to be less effective than training the distillation process on CFG-guided trajectories.

Finally, adapters (Houlsby et al., 2019) have emerged as a parameter-efficient solution for fine-tuning large-
scale diffusion models, mainly for integrating image conditions into pretrained text-to-image models (Mou
et al., 2024; Ye et al., 2023). In contrast, we leverage adapters to inject guided predictions directly into the
model’s forward pass. Notably, we demonstrate that adapters not only require significantly fewer training
resources but also slightly outperform full fine-tuning.

3 Background

In this section, we provide a concise overview of diffusion models. Consider a data point x ~ pgata and noise
€ ~ N(0,I), and let the forward diffusion process be defined as x; = x + o(t)€, where noise is gradually
introduced over time ¢t € [0,7]. The function o(t) serves as the noise schedule, determining the extent of
perturbation at each step, with ¢(0) = 0 and o(T) = omax. As shown by Karras et al. (2022), this process
can be described by the following ordinary differential equation (ODE):

dx; = —&(t)o(t) Vx, log pr(x;)dt, (1)

where p; is the marginal distribution of the noisy data at time step ¢, transitioning from the original data
distribution pg = pgata to a Gaussian prior pr = N (0,02, 1).

Assuming access to the time-dependent score function Vy, log p:(x;), one can solve this ODE in reverse, i.e.,
from t = T to t = 0, to generate new samples from pgata. The unknown score function Vy, logp:(x;) is
typically learned using a neural denoiser Dg(x¢,t), which is trained to recover clean samples x from their
noisy counterparts x;. Additionally, conditional generation can be achieved by extending the denoiser to
Dg(x¢,t,c), where ¢ represents auxiliary conditioning information, such as class labels or text.

Training Following (Ho et al., 2020), the denoiser Dg(x¢,t) is commonly parameterized as
Dg(x¢,t) = x¢ — o(t)ea(x¢, t), (2)
and is trained by predicting the added noise € in x;, that is by solving

0" € argminEy [||eg(xt,t) — eHQ}. (3)
0

After training, the score function can be approximated via

Vi, log pi(x¢) =~ 2o ():(’5)2_ == ‘ee:((;)’ ), (4)

Classifier-free guidance CFG is an inference technique aimed at improving the quality of generated
samples by blending the outputs of a conditional and an unconditional model (Ho & Salimans, 2022).
Specifically, CFG adjusts the denoiser’s output at each sampling step according to

€o(x4,t,c,w) = weg (x4, t,¢) — (w — 1)eg(xy, t, 0), (5)
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Algorithm 1 Trajectory collection for AGD.

Require: Set of conditions C, Guidance scale range [Wmin,Wmax), Pretrained diffusion model eg
1. Q= @
2: for ce C do
3: w ~ Unif ([Wmin, Wmax))
Run the reverse diffusion process from Equation (1) using €g with w and ¢ in N steps
Cache (x¢,t, c,w) and the CFG-guided prediction ég(x:,t,c,w) at each sampling step:
Q+— QU{(x4,t, c,w, & (xs, t,c,w)) Y,
6: end for

Algorithm 2 Adapter training for AGD.

Require: Trajectory dataset () from Algorithm 1, Model with adapters €[g ], Loss function ¢
1: while not converged do
2: (xt,t, c,w, €) ~ Unif(Q)
3: L = L(E, €g ) (Xt, 1, c,w))
4: Update @ with gradient step on £
5: end while

where w = 1 corresponds to unguided sampling, and ¢ = () represents the unconditional prediction. The
unconditional model eg(xy,t,0) is typically trained by randomly replacing the conditioning input with
¢ = () during training. Alternatively, a dedicated denoiser can be trained separately to approximate the
unconditional score (Karras et al., 2024b). CFG is known to significantly improve generation quality, though
it comes at the cost of doubling the sampling time (Ho & Salimans, 2022).

4 Adapter guidance distillation

We now introduce our method, adapter guidance distillation (AGD), for doubling the sampling speed of CFG.
As shown in Figure 2, AGD counsists of two main components: (1) training on CFG-guided trajectories instead
of standard diffusion trajectories, and (2) training lightweight adapters to distill CFG instead of fine-tuning
the full model. Below, we discuss each component in detail, with Algorithms 1 and 2 also providing the
training details of AGD.

4.1 Training on CFG-guided trajectories

Prior guidance distillation methods are trained on standard diffusion trajectories, where noise is added to the
training data, and the CFG prediction is matched at each inference step (Meng et al., 2023). However, since
CFG modifies the reverse process of diffusion models, guided trajectories differ significantly from standard
diffusion trajectories, as shown in Figure 3. We argue that training directly on CFG-guided trajectories
enhances guidance distillation by exposing the model to regions in space that the guided reverse process
will follow. To bridge the gap between training and inference, we thus train AGD directly on CFG-guided
trajectories. We generate guided trajectories as outlined in Algorithm 1, which are then used to train AGD.
Since these trajectories can be cached, the teacher model does not need to be loaded during training, freeing
up VRAM. Moreover, because this method only depends on generated samples from the teacher model,
it does not require an external dataset for training. Additionally, the trajectory dataset only needs to be
collected once, enabling efficient hyperparameter tuning for the adapters.

4.2 Efficient guidance distillation with adapters

For more efficient training, AGD only uses small learnable modules, or adapters (Houlsby et al., 2019), to
replicate the effect of CFG. Unlike tuning the whole diffusion network as in GD (Meng et al., 2023), we freeze
the original model weights, ensuring that the base model is still available after training. This also allows
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(a) Visualizing the marginal densities of the diffusion pro-
cess with a mixture of Gaussians as the data distribution.
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(b) Ilustration of the distribution mismatch between
conditional diffusion (blue) and classifier-free guidance
(red) trajectories during the reverse diffusion process.
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Figure 3: One-dimensional illustration of the mis-
match between standard diffusion trajectories used
for training in existing guidance distillation methods
(such as GD (Meng et al., 2023)) and the actual
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Figure 4: Visual illustration of the trainable adapters
alongside the frozen base model. The adapters are
typically integrated with attention layers (either self-
attention or cross-attention), and their outputs are

CFG-guided trajectories followed during inference. added to those of the frozen attention blocks.

us to use the learned adapters with other checkpoints that are obtained from the same base model, such as
IP-adapters (Ye et al., 2023). The details of the adapters used in AGD are given below.

Adapter formulation Let fg denote an intermediate layer in the network with Z € REL*? being its
upstream input. Further, fg receives the time step ¢ and the condition embedding c¢ as input. An adapter
gy With parameters v is a layer that combines fg with encodings of the guidance scale w, and the input
conditions (¢, ¢) via residual connection:

flo.w)(Z,w,t,c) = fo(Z,t,c) + gy(Z,w,t,c). (6)

This architecture is illustrated in Figure 4. During training, the model weights @ are kept frozen and only the
adapter parameters 1 are optimized to match the CFG step based on the trajectory dataset, as introduced
in Section 4.1, i.e.,

1/’* € argmin E [6(6[0,1&] (xt7 t, & w)v é@(xtv ta & CU))} ’ (7)
P

where €g(x¢,t, ¢, w) denotes a CFG step with guidance scale w, €[g,4](X¢,t, ¢, w) is the output of the model
with the adapters, and ¢ is the loss function.

Adapter architecture We mainly experiment with two adapter architectures: (1) cross-attention adapters,
and (2) offset adapters. Let C = [cy, ..., c¢c| represent the matrix containing all conditioning embeddings

(e.g., guidance scale, prompt embeddings, etc.), linearly projected to the same dimensionality via a learned
projection. Akin to IP-adapter (Ye et al., 2023), the cross-attention adapter formulates g, as

KT
gyp(Z,w,t,c) = Sof’crrlam(Q\/g)V7 (8)

where Q = ZW,, K = CW, and V = CW,,. The offset adapter formulates g, as

C
gy(Z,w,t,¢) = MLP (Z ci> (9)
i=1
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We found that offset adapters perform better for simpler models like DiT, whereas cross-attention adapters
are more effective for text-to-image models. Several ablations on other adapter design space are provided in
Appendix B.

Implementation details We embed the guidance scale w via a Fourier feature encoder (Tancik et al.,
2020) followed by na multi-layer perceptron (MLP). We also extract the text or class embeddings from the
base model (e.g., CLIP embeddings) and linearly project them into the same dimensionality as the guidance
scale embedding. In DiT (Peebles & Xie, 2023), we place an adapter in each transformer block after the
self-attention mechanism. For text-to-image models such as Stable Diffusion 2.1 (SD2.1) (Rombach et al.,
2022) and SDXL (Podell et al., 2024), we place the adapters in conjunction with the cross-attention layers,
since the text prompt is only used in these blocks.

Efficiency Since the adapters introduce only 1-5% additional parameters relative to the base model, their
computational overhead remains negligible during both training and inference. Furthermore, unlike CFG,
which requires two forward passes per diffusion step, our approach performs only one, effectively reducing the
NFEs by half. Consequently, our method achieves twice the speed of CFG when generating samples from
pretrained diffusion models.

5 Experiments and results

Setup We evaluate AGD on class-conditional generation using 256 x256 DiT-XL/2 (Peebles & Xie, 2023),
and text-to-image generation using 768x768 Stable Diffusion 2.1 (SD2.1) (Rombach et al., 2022) and
1024x1024 Stable Diffusion XL (SDXL) (Podell et al., 2024). All experiments are conducted on a single
RTX 4090 GPU (24 GB of VRAM). Training is performed using the Adam optimizer (Kingma & Ba, 2014)
without weight decay, where the learning rate follows a linear warm-up to 1 x 10™% over the first 10% of steps,
after which it decays via a cosine annealing schedule (Loshchilov & Hutter, 2016). For training adapters
on DiT, trajectories are sampled with guidance scales w ~ Unif([1, 6]), with four trajectories per class label
of ImageNet (Deng et al., 2009). For text-to-image models, we randomly select 500 captions from the
COCO-2017 training set (Lin et al., 2014), generating a single trajectory per caption with guidance scales
w ~ Unif([1,12]). Please refer to Appendix D for additional details regarding the experiments.

Evaluation metrics We mainly use FID (Heusel et al., 2017) to measure the quality and diversity of
generated images, since it closely aligns with human perception. Given FID’s sensitivity to implementation
details, we evaluate all models under identical conditions to ensure consistency. Additionally, we report
precision as a measure of quality and recall as an indicator of diversity (Kynk&dnniemi et al., 2019).

5.1 Qualitative results

We evaluate the qualitative performance of AGD and CFG in Figure 5, generating samples using the same
random seeds for both methods. Our results indicate that AGD produces images structurally similar to CFG
while being more visually appealing across multiple models and resolutions. Thus, AGD retains the quality
benefits of CFG while achieving twice the sampling speed per image.

5.2 Quantitative results

The quantitative evaluation of AGD and CFG is shown in Table 1. We observe that AGD achieves metrics
comparable to CFG, with both methods significantly outperforming the unguided sampling baseline. This
confirms that AGD enhances generation quality similarly to CFG while requiring only half the NFEs. Notably,
AGD even slightly outperforms CFG for the DiT model.

5.3 Comparing AGD with guidance distillation

We next compare our method to guidance distillation (GD) (Meng et al., 2023), which fine-tunes the entire
diffusion model to replicate guided outputs. We train AGD and GD under the same training setup using DiT
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(a) Diffusion Transformer (256x256)
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Figure 5: Qualitative comparison between AGD and CFG. AGD produces samples with comparable quality
to CFG while achieving twice the inference speed by requiring only a single forward pass through the model.
Additionally, AGD samples maintain structural similarity to CFG but often have better visual coherence.

Table 1: Quantitative comparison between AGD and CFG. AGD outperforms CFG in class-conditional
generation using DiT and performs similarly for text-to-image models (SD2.1 and SDXL). The throughput is
computed with batch size 8.

Model Guidance FID | Prec. T Recallt NFEs Steps/s
Unguided 12.57 0.67 0.74 250 15.84
DiT (Peebles & Xie, 2023) CFG 5.30 0.83 0.66 500 8.83
AGD (Ours) 5.03 0.80 0.68 250 15.50
Unguided 49.94 0.39 0.63 50 1.81
SD2.1 (Rombach et al., 2022) CFG 20.94 0.67 0.55 100 0.91
AGD (Ours) 21.09 0.66 0.55 50 1.79
Unguided 60.30 0.35 0.54 50 0.66
SDXL (Podell et al., 2024) CFG 22.82 0.66 0.52 100 0.33
AGD (Ours) 22.98 0.67 0.52 50 0.64

as the base diffusion model for class-conditional ImageNet generation. Table 2 shows that AGD outperforms
GD in FID while having significantly less trainable parameters. Thus, we conclude that GD can be made
significantly more efficient by keeping the base model frozen and only training the adapters. Moreover,
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Table 2: Comparing AGD and GD (Meng et al., 2023) Table 3: Importance of training on guided trajec-
using DiT under the same training setup. AGD slightly tories. AGD performs best when trained on CFG-
outperforms GD while only training the adapters instead guided trajectories instead of the standard diffusion
of tuning the full model. trajectories used in Meng et al. (2023).

Method Params FID | Prec. T Recall Method FID | Prec. T Recall 1
GD 676 M 5.66 0.80 0.67 CFG 5.30 0.83 0.66
AGD (Ours) 16 M 5.03 0.80 0.68 AGD (Diffusion) 5.54 0.80 0.68
AGD (Trajectory)  5.03 0.80 0.68
Image prompt CFG AGD (Ours)
GD (Meng et al., 2023) (Ours) ™

AGD

Figure 6: Comparison of AGD with guidance distil-

lation (GD) (Meng et al., 2023) for unseen guidance
scales. While GD fails completely for out-of-domain
guidance scales, AGD continues to generate mean-
ingful images. The models in this experiment were

Figure 7: Using AGD with IP-adapter (Ye et al.,
2023) and ControlNet (Zhang et al., 2023) for SDXL.
AGD can be integrated with other checkpoints de-
rived from the same base model, achieving the bene-

trained for w € [1, 6]. fits of both modules.

Figure 6 shows that GD completely fails when used with guidance scales outside the domain seen during
fine-tuning. In contrast, AGD remains robust to this issue, demonstrating better generalization across
guidance scales.

5.4 Importance of training on guided trajectories

In order to validate our claim that training on CFG-guided trajectories is beneficial, we compared AGD trained
on standard diffusion trajectories with AGD trained on guided trajectories. As shown in Table 3, training on
guided trajectories leads to a substantial improvement over training on standard diffusion trajectories. Hence,
we conclude that bridging the train-inference gap by aligning these trajectories enhances performance, as it
focuses training on regions of the space that are important for CFG.

5.5 Combining AGD with other fine-tuned checkpoints

Figure 7 shows samples generated by combining AGD with IP-Adapter (Ye et al., 2023) and ControlNet
(Zhang et al., 2023). As shown, AGD maintains high sample quality when integrated with other checkpoints
derived from the same base model, enabling controllable generation at twice the sampling speed.

5.6 Training efficiency

Table 4 compares the training speed and VRAM usage of AGD and GD (Meng et al., 2023). We note that
for larger networks like SDXL, AGD can successfully distill the model using a consumer GPU with 24 GB
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Table 4: Comparing the memory requirements and training speed of AGD and GD. AGD enables the
distillation of large models on an RTX 4090 with 24 GB of VRAM while also being significantly faster at
each training iteration.

Model Method VRAM (GB) It/s

DiT (Peebles & Xie, 2023) SgD (Ouss) }g:% 3j§§

SD2.1 (Rombach et al., 2022) SgD (Ours) %g%—ggf-memorgé.%

SDXL (Podell et al., 2024) igD (Ours) 023?}(;f'memor%_g4
Precision

|

1
1 1.5 2 2.5 3

w w w

-8~ CFG -o- AGD (Ours)

Figure 8: The performance of DiT with AGD as we increase the guidance scale. Compared to CFG, AGD
offers a better trade-off between precision and recall resulting in better FID for most guidance scales.

VRAM, whereas GD encounters out-of-memory issues. Even when VRAM is not a constraint, each training
step of AGD remains significantly more efficient than GD (~4.5x faster for DiT).

5.7 AGD and guidance scale

Figure 8 shows how the performance of AGD varies as we increase the guidance scale w. We observe that the
FID curve for CFG is more peaked, whereas the curve for AGD is relatively flatter, making it less sensitive to
the exact guidance value at inference for good performance. Additionally, we note that AGD have a more
favorable trade-off between precision and recall compared to CFG, resulting in better FID scores for most
guidance scales.

5.8 Changing the scheduler at inference time

Next, we demonstrate that AGD is robust to the choice of scheduler Table 5: Compatibility of AGD with dif-
for generating guided trajectories. In Figure 9, we show samples ferent diffusion samplers at inference.
from the DDPM algorithm Ho et al. (2020) using adapters trained
on DDIM trajectories (Song et al., 2020a). Even when a different ~_Sampler FID | Prec. T Recall
scheduler is used at inference, AGD consistently produces high- ~ DDIM 21.09 0.66 0.55
quality images. Moreover, Table 5 reports comparable FID scores =~ DDPM 22.15 0.67 0.51
for both DDIM and DDPM. Note that the slight FID advantage

of DDIM reflects its efficiency at lower sampling steps (e.g., 50), rather than any degradation in AGD.

10
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Figure 9: Samples of SD2.1 generated with AGD using the DDPM sampler, with adapters trained on DDIM
trajectories. AGD successfully generates high-quality samples when used with different schedulers at inference.

5.9 Training and inference wall-clock times

To further demonstrate the computational efficiency of our method, we compared the wall-clock training and
inference times of AGD and GD on DiT using an RTX 4090 GPU. For training, GD requires 160.3 minutes to
complete, whereas AGD achieves comparable performance in just 33.9 minutes (i.e. a 4.7x speedup). During
inference, both AGD and unguided DiT require 6.0 seconds per sample, indicating that the adapter introduces
negligible computational overhead. This confirms that the core advantage of AGD—reducing forward passes
by half compared to CFG—translates directly into inference speedup without incurring any additional per-step
costs. The combination of faster training, reduced memory usage, and accelerated inference makes AGD a
compelling alternative to both standard CFG and existing guidance distillation approaches.

6 Conclusion

This paper introduced adapter guidance distillation (AGD), an efficient approach to achieving the benefits of
classifier-free guidance at half the sampling cost. By training lightweight adapters to estimate guided outputs
and training on CFG-guided trajectories, we address both the computational overhead and the train-inference
mismatch of prior guidance distillation methods. Through extensive experiments, we showed that AGD
matches or surpasses CFG’s performance, remains robust to previously unseen guidance scales, and can be
trained on a single consumer GPU even for large models such as SDXL. Thus, we believe that AGD offers
an efficient and flexible alternative to prior guidance distillation methods while eliminating the sampling
overhead of classifier-free guidance. Future research directions could explore integrating AGD with enhanced
guidance algorithms (Kynkdanniemi et al., 2024; Karras et al., 2024a; Sadat et al., 2025a) and leveraging
adapters for other distillation techniques, e.g., adversarial distillation (Sauer et al., 2024; 2025), to further
reduce the sampling time of diffusion models.
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A Broader impact

Our method accelerates guided sampling in diffusion models, broadening accessibility to large-scale text-
to-image or class-conditional generative systems. This can reduce energy consumption and computational
barriers to use Al-generated content for various creative applications. However, while advancements in
Al-generated content have the potential to improve efficiency and stimulate creativity, it is essential to
consider the associated ethical implications. For a more in-depth exploration of ethics and creativity in
computer vision, we refer readers to Rostamzadeh et al. (2021)

B Ablation studies

This section presents our ablation studies. Unless otherwise specified, all experiments are conducted using
the DiT model for class-conditional generation. We use FID as the primary metric to determine the adapter
configuration used in the main experiments.

Adapter architecture We first examine various design choices for the adapter architecture g(Z,w,t,c).
Let C = [cy,...,cc] represent the matrix containing all conditioning embeddings. The cross-attention and
offset adapter architectures are formalized in Equations (8) and (9) respectively. We further experimented
with a gating architecture defined as

9y (Z,w,t,c) = (o(Zv) ® MLP(Z))VV7 (10)

where Z; = {zj, ZZC:1 cl}, o is the sigmoid function, and ® : RT x RT*?¢ — RT*4 gcales each d-dimensional

vector independently. Lastly, we also considered a positional encoding adapter architecture given by

gy(Z,w,t,c) = MLP(¢), (11)

where ¢; = {ej, 270:1 cl} and e; encodes the j-th attention time step. Specifically, e; is computed by a

Fourier feature encoder (Tancik et al., 2020), followed by an MLP. The performance of these architectures
using the DiT model are given in Table 6a. Note that for the DiT model, the offset architecture works the
best. However, as shown in Table 6b, the cross-attention adapter works better for text-to-image models
such as Stable Diffusion (Rombach et al., 2022). Hence, we used the offset architecture for class-conditional
generation, and the cross-attention adapter for more complex text-to-image models. We also experimented
with using dropout in the offset MLPs for further regularization but found that the model performs best
without using any dropout (see Table 7).

Adapter initialization While adapters are typically initialized with zero values such that €pg ) = € at
initialization (Houlsby et al., 2019), Table 8 shows that Xavier initialization yields better results for guidance
distillation. Therefore, we recommend avoiding zero initialization of the adapters for AGD.

Dimensionality of the adapter We now examine the impact of adapter dimensionality in Table 9. Our
results show that increasing the hidden dimension initially improves FID but eventually leads to degradation,
likely due to overfitting. Therefore, we recommend designing adapters with fewer than 5% additional
parameters w.r.t. the base model.

Training loss functions We also explored various loss functions for training AGD. Specifically, we

experimented with £ (x,y) = [|x — y||1 and a weighted f2(x,y) = A(t)||x — y||3, where A(¢) is a weighting
function depending on the time step. As shown in Table 10, the simple £5 loss with A(¢) = 1 performs best.

C Details of the evaluation samples for qualitative comparison

DiT The samples used a guidance scale of 4.
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Table 6: Ablation study on adapter architectures across different baseline models. We observe that offset
adapters perform best for class-conditional models, while cross-attention adapters are more effective for
text-to-image generation.

(a) DiT. (b) SD2.1
Architecture FID | Prec. T Recall 1 Architecture FID | Prec. T Recall 1
Cross-attention 5.49 0.83 0.65 Cross-attention 21.09 0.66 0.55
Offset 5.03 0.80 0.68 Offset 22.05 0.63 0.54
Positional encoding 5.25 0.81 0.66
Gating 5.54 0.83 0.66

Table 7: Ablation on the dropout rate using DiT. Table 8: Ablation on the initialization type of the
adapter layers.

Dropout FID | Prec. T Recall

0% 5.292 0.80 0.67 Init. scheme FID | Prec. T Recall
10% 5.27 0.82 0.67 Zero 5.24 0.81 0.68
20% 5.39 0.83 0.66 Xavier 5.03 0.80 0.68
50% 5.69 0.85 0.63

Table 9: Ablation on the hidden dimensionality of =~ Table 10: Effect of using different loss functions for

the adapters. distillation.
Dim. Params FID | Prec. 1T Recall © Loss Weight \(t) FID |
64 0.8% 5.33 0.81 0.67 2 1 9.91
128 2.5% 5.03 0.80 0.68 ly 1 5.03
256 6.1% 5.22 0.80 0.67 Uy o(t) 5.30
512 172% 526  0.81 0.67 6y 31— cos/(ég,€0)|  6.64

SD2.1 The samples used a guidance scale of 10. From left to right, the prompts used in Figure 5b were:

1. “A cat on the flower.”
2. “A close-up of a blooming flower.”
3. “A quiet beach at sunset with gentle waves.”

4. “A calm lake reflecting the blue sky.”
SDXL The samples used a guidance scale of 12. Further, the prompts used in Figure 5c were:

1. “A modern reinterpretation of a classical Renaissance painting, where futuristic elements and digital
motifs merge with traditional portraiture.”

2. “A fantastical scene of a celestial garden floating in space, featuring luminous, otherworldly flora
against a backdrop of swirling galaxies.”

3. “A hyper-realistic digital painting of a futuristic metropolis at sunset, with neon lights reflecting off
rain-soaked streets and towering holograms.”

4. “A cozy winter scene of a remote mountain village, with softly glowing windows, snow-covered
rooftops, and a star-filled night sky.”
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D Additional implementation details

Section 4.2 provides the main implementation details. The DiT-XL/2 model was trained with a batch size of
64 for 5000 gradient steps, the SD2.1 model with a batch size of 8 for 5000 gradient steps, and the SDXL
model with a batch size of 1 for 20000 gradient steps. These settings were selected based on the maximum
batch size that fits within 24,GB of VRAM. For all quantitative experiments, we set the guidance scale to
the value that achieved the best FID for each method. The AGD implementation will be publicly released to
support further research on guidance distillation.

The FID scores for class-conditional models were computed using 10k generated samples and the entire
ImageNet training set. For text-to-image models, we used the full COCO-2017 validation set as the real data.
All metrics were computed using the ADM evaluation code base (Dhariwal & Nichol, 2021) to ensure fairness
across experiments.

E Additional visual samples

Figures 10 to 21 provide additional visual samples comparing AGD and CFG across various models used in
this work. Similar to our main findings, AGD samples consistently match or surpass CFG samples in both
quality and diversity. The results are best seen when zoomed in.

AGD (Ours)

Figure 10: Uncurated samples using DiT-XL/2. Class label: “Space shuttle” (812), guidance scale: 2.

AGD (Ours)

Figure 11: Uncurated samples using DiT-XL/2. Class label: “Golden retriever” (207), guidance scale: 3.
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AGD (Ours)

Figure 12: Uncurated samples using DiT-XL/2. Class lable: “Macaw” (88), guidance scale: 3.

AGD (Ours)

Figure 13: Uncurated samples using DiT-XL/2. Class label: “Arctic fox” (279), guidance scale: 4.

CFG AGD (Ours)

Figure 14: Uncurated samples using DiT-XL/2. Class lable: “Red panda” (387), guidance scale: 5.
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Figure 15: Uncurated samples using DiT-XL/2. Class label: “Dog sled” (537), guidance scale: 6.

AGD (Ours)

Figure 16: Uncurated samples using SD2.1. Prompt: “A close up of a clear vase with flowers.”; guidance
scale: 10.

AGD (Ours)

Figure 17: Uncurated samples using SD2.1. Prompt: “A set of plush toy teddy bears sitting in a sled.”,
guidance scale: 10.
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AGD (Ours)

Figure 18: Uncurated samples using SD2.1. Prompt: “People flying kites in a park on a windy day.”, guidance
scale: 10.

CFG AGD (Ours)

Figure 19: Uncurated samples using SDXL. Prompt: “Two stuffed animals posed together in black and white.”
guidance scale: 12.

CFG AGD (Ours)

Figure 20: Uncurated samples using SDXL Prompt: “A capybara made of lego sitting in a realistic, natural
field.”, guidance scale: 12.
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CFG AGD (Ours)

Figure 21: Uncurated samples using SDXL Prompt: “A close-up of a fire spitting dragon, cinematic shot.”,
guidance scale: 12.
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