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ABSTRACT

Post-training quantization (PTQ) has emerged as a promising solution for reduc-
ing the memory and computation overhead of large language models (LLMs),
enabling efficient deployment without requiring full model retraining. However,
existing PTQ methods struggle with weight–activation joint quantization and ex-
treme weight quantization. The main challenge stems from the depth and cross-
layer dependencies of LLMs, which cause quantization errors to propagate and
accumulate across layers, leading to degraded performance. In this paper, we
present I2BQ, a simple yet effective framework that simultaneously addresses
weight–activation joint quantization and extreme weight quantization. We first
propose a granular quantization strategy that treats self-attention and feed-forward
(FFN) modules as separate quantization units with module-specific optimization
objectives. To mitigate inter-layer error accumulation, we introduce an inter-
block quantization strategy that explicitly accounts for cross-layer dependencies
by encouraging consistency between blocks. Extensive experiments across diverse
LLMs, including OPT and the LLaMA family, demonstrate that I2BQ achieves su-
perior performance under both W4A4 and highly aggressive W2 settings, while
incurring negligible additional computational overhead.

1 INTRODUCTION

Large Language Models (LLMs) have gained significant attention for their remarkable performance
across a wide range of tasks Wang et al. (2019); Adiwardana et al. (2020). However, their prac-
tical deployment remains severely constrained by their immense computational and memory re-
quirements, driven by the sheer scale of model parameters. For instance, GPT-3, with 175 billion
parameters, demands hundreds of gigabytes of memory, leading to substantial energy consumption.
Thus, reducing inference costs of LLMs has emerged as a critical and active area of research.

Model quantization offers a feasible solution to the inference inefficiencies of large models by con-
verting high-precision data types (e.g., float32) into low-bit representations such as int4. This trans-
formation can reduce the memory footprint by up to 8× and substantially improve computational
throughput. Among various quantization methods, post-training quantization (PTQ) is particularly
appealing due to its deployment efficiency. It enables lightweight adaptation of pretrained models
using only a small calibration dataset, without requiring expensive full-model retraining, thereby
making it highly practical for real-world applications.

Early PTQ methods Wu et al. (2016) are primarily developed for convolutional neural networks
(CNNs). These approaches typically use a small unlabeled dataset to determine appropriate scal-
ing factors or clipping thresholds. However, directly applying such techniques to LLMs introduces
new challenges. Unlike CNNs, LLMs exhibit systemic Dettmers et al. (2022) and extremely large
outliers (e.g., exceeding 2000) An et al. (2025). Naı̈vely clipping these outliers can lead to se-
vere degradation in accuracy as they often encode critical information for model performance. To
address this issue, a variety of LLM-specific PTQ techniques have been proposed. For example,
SmoothQuant Xiao et al. (2023) introduces a diagonal rescaling matrix to shift activation outliers
into the weight domain, thereby simplifying the activation distribution. Quarot Ashkboos et al.
(2024) utilizes Hadamard transformations to regularize activation distributions, promoting unifor-
mity and reducing quantization error. To further enhance quantization performance, subsequent
methods such as SPINQuant Liu et al. (2024) and FlatQuant Sun et al. (2024) design more sophis-
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ticated transformation strategies to better handle outlier migration. However, these methods often
incur additional computational overhead and complexity, and their performance remains limited,
especially in extreme low-bit scenarios such as 2-bit quantization (W2).

Another major challenge in LLM quantization is the cumulative nature of quantization errors across
layers. Due to their large parameter counts and deep architectures, LLMs are particularly vulnerable
to error accumulation, which can result in significant performance degradation as errors propagate
through successive layers. To solve this, OmniQuant Shao et al. (2023) proposes a block-wise
quantization error minimization strategy, which learns quantization-specific parameters to reduce
quantization-induced discrepancies. However, OmniQuant employs an indirect optimization strat-
egy to approximate the effects of quantization on weights and activations, which may lead to subop-
timal performance in certain scenarios, particularly under aggressive quantization settings.

In this paper, we first reveal the functional and distributional difference between the self-attention
and feedforward network modules, as well as the inter-block dependencies in LLMs. Motivated
by these observations, we present I2BQ, a simple yet effective framework for weight–activation
joint quantization and extreme weight quantization. Specifically, we introduce a granular quantiza-
tion strategy that treats self-attention and feed-forward modules as separate quantization units, each
optimized with module-specific objectives reflecting their distinct functional roles. To mitigate cu-
mulative quantization errors, we further propose an inter-block quantization strategy that explicitly
accounts for dependencies between Transformer blocks. This encourages consistency across layers
and effectively reduces error propagation through the network. Our main contributions are:

• We propose treating self-attention and FFN modules within each transformer block as sep-
arate quantization units to enable finer-grained control and reduce quantization errors.

• To mitigate error accumulation across blocks during quantization, we design a cross-block
error compensation mechanism that minimizes error propagation throughout the network.

• Our method consistently achieves superior quantization performance in both W4A4 and
highly aggressive W2 settings, for weights and activations, across diverse LLMs including
OPT and the LLaMA family, while incurring negligible additional computational overhead.

2 PRELIMINARIES

2.1 GENERAL QUANTIZATION STRATEGIES

Quantization techniques convert high-precision numerical formats into compact low-bit representa-
tions, enabling significant gains in memory efficiency and computational speed. According to the
quantization target, existing quantization methods for LLMs can be categorized into weight-only
quantization and joint quantization. Weight-only quantization aims to represent model weights us-
ing low-bit formats (e.g., 4-bit) while maintaining activations in full precision (typically 32-bits) Lin
et al. (2024b). In contrast, joint quantization Shao et al. (2023) compresses both weights and activa-
tions to achieve higher efficiency, albeit at the cost of potentially greater quantization errors. Based
on the optimization strategy, LLM quantization can be further classified into quantization-aware
training (QAT) Liu et al. (2023); Chen et al. (2024) and post-training quantization (PTQ) Huang
et al. (2024); Li et al. (2023). QAT involves retraining the model to learn low-precision weights
under quantization constraints, while PTQ directly quantizes pretrained weights without additional
retraining. In this work, we primarily focus on joint quantization with PTQ due to its practical-
ity. This strategy requires only minimal calibration data and significantly reduces computational
overhead compared to QAT.

2.2 BASIC QUANTIZATION PROCESS

A classical quantization approach, integer uniform quantization Jacob et al. (2018), aims to convert
floating-point values into uniformly spaced integer representations. Given a floating-point input F
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(which can be a vector or matrix), its b-bits quantized representation Fb is computed as follows:

Fb = clamp

(⌊
F

α

⌉
+ z, 0, 2b − 1

)
, (1)

α =
γmax(F)− βmin(F)

2b − 1
, (2)

z = −
⌊
βmin(F)

α

⌉
, (3)

where ⌊·⌉ denotes rounding to the nearest integer, γ and β are optional clipping coefficients that
control the influence of extreme values. The scale factor α maps the range of F to the target integer
range, while the zero-point offset z aligns the minimum scaled value with zero in the quantized
space.

In LLMs, the core architectural unit is the transformer block, which comprises several key compo-
nents including multi-head self-attention, a feedforward network (FFN), layer normalization, and
residual connections. The linear layers within self-attention and FFN modules account for the ma-
jority of memory consumption and inference latency. Consequently, most LLM quantization ap-
proaches primarily target these linear layers, while keeping non-linear operations such as Softmax
(used in attention) and activation functions like Swish in full precision to preserve numerical sta-
bility and model accuracy. Specifically, for a give layer l, its output embedding can be expressed
as Y = AW⊤, where A and W are the activation and weight matrices, respectively. In this work,
we adopt joint quantization, quantizing both A and W into b1-bits and b2-bits representations (e.g.,
W4A4 refers to 4-bit weights and activations).

2.3 ACTIVATION OUTLIERS IN LLMS

One of the most significant challenges in LLM quantization lies in the presence of activation out-
liers, which can severely degrade the performance of low-bit quantization methods Dettmers et al.
(2022). Unlike in convolutional neural networks (CNNs), where outliers can often be clipped with-
out notable performance loss Zhao et al. (2019), activation outliers in LLMs typically carry critical
information essential for maintaining model performance. These outliers not only appear in a struc-
tured pattern but also as isolated values with extreme magnitudes, making them particularly difficult
to handle in quantization. To mitigate this issue, a range of outlier-aware quantization techniques
have been proposed. For example, GPT3.int8() Dettmers et al. (2022) introduces a mixed-precision
group-wise quantization strategy that selectively applies higher precision to sensitive channels based
on outlier detection. Smoothquant Xiao et al. (2023) mitigates quantization difficulty by shifting
the burden from activations to weights via layer-wise affine transformations. Quarot Ashkboos
et al. (2024) applies learnable rotation matrices to the inputs and outputs of linear layers, aligning
activation and weight distributions to reduce quantization error. Subsequent extensions Liu et al.
(2024); Lin et al. (2024a) explore alternative transformation schemes to promote activation unifor-
mity. While these methods improve accuracy, they often incur substantial computational overhead,
limiting their practicality.

2.4 CUMULATIVE ERRORS IN QUANTIZATION

In addition to addressing activation outliers, it’s also crucial to optimize the cumulative quantization
error propagated across layers. A representative solution is BRECQ Li et al. (2021), a method
designed for CNNs that minimizes PTQ accuracy loss by performing gradient-based optimization
over weights using a small calibration set to guide optimal rounding. However, directly applying
BRECQ to LLMs is impractical due to the massive parameter scale (often billions), which results
in an overwhelming optimization space and renders weight optimization computationally infeasible.
To address this challenge, OmniQuant Shao et al. (2023) introduces a block-wise quantization error
minimization strategy, which avoids optimizing all parameters and instead focuses on learnable
quantization parameters (e.g., affine transformation parameters for each channel). These parameters
are optimized to minimize the reconstruction error within each block. Nevertheless, OmniQuant
optimizes only the quantization parameters, without directly updating the weights or activations
themselves, which may lead to suboptimal quantization performance in certain cases.
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Figure 1: Overview of the I2BQ framework within a transformer block. The module-wise opti-
mization is applied to both self-attention and feed-forward. A Hadamard-based rotation (H) is first
applied to the input and weight matrices, followed by quantization and per-module optimization.

3 METHODOLOGY

3.1 INSIGHTS WITHIN TRANSFORMER BLOCKS

Existing LLM quantization approaches usually treat the entire transformer block as the basic unit
for reconstruction, i.e., minimizing the quantization error between the outputs of the quantized and
original blocks. However, this coarse-grained reconstruction strategy can lead to sub-optimal per-
formance due to several important factors.

1 Self-attention and FFN modules serve fundamentally different functions. The self-attention mod-
ule captures cross-token dependencies by modeling contextual relationships across the sequence,
enabling global information aggregation. In contrast, the FFN module processes each token inde-
pendently to enrich its representations. These distinct roles in information processing are a hallmark
of the Transformer’s functionally specialized design. However, computing the reconstruction loss
at the level of the entire block neglects this separation of concerns, potentially undermining the
specialized modeling capacity of each module and leading to sub-optimal quantization behavior.

2 Residual connections are separately applied to self-attention and FFN. In Transformer blocks,
residual connections serve as unquantized information bypasses, helping to mitigate quantization
errors in the forward pass and preserving gradient flow during backpropagation. As illustrated in
Figure 1, these residual paths are constructed independently for the self-attention and FFN modules,
rather than built only one for each block. This architectural design enhances robustness, modularity,
and training stability. We argue that the quantization strategy should respect this modular disentan-
glement by applying reconstruction loss separately to each module, rather than enforcing a unified
loss over the entire block. Otherwise, the gradients and error signals may become entangled across
the two functionally distinct operations, thereby degrading performance.

3 Self-attention and FFN modules exhibit significant distribution differences. As shown in Figure
2 and Figure 3 (a) and (c), the activations from the self-attention and FFN modules exhibit distinct
distribution characteristics. Even after applying rotation transformation, this discrepancy persists,
as illustrated in Figures 3 (b) and (d). However, a block-level quantization strategy that treats the
entire Transformer block uniformly fails to account for this distributional divergence.
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Figure 3: Activation distribution statistics before and after applying rotation transformation to the
self-attention and FFN in Block 2 of LLaMA2-7B. The two types consistently exhibit distinct activa-
tion distributions, regardless of rotation. Each subplot visualizes the minimum/maximum, 1st/99th
percentiles, and 25th/75th percentiles across hidden dimensions.
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3.2 MODULE-WISE OPTIMIZATION
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Figure 2: Box plots of activation distributions
for the self-attention and FFN in selected trans-
former blocks of LLaMA2-7B.

Motivated by the above empirical observation
and analysis, we propose a more granular quan-
tization strategy that independently optimizes
the quantization errors for the self-attention and
feed-forward modules. Specifically, we design
module-specific optimization objectives tailored
to the distinct functional roles of each module.

For the self-attention module, we jointly opti-
mize the quantization parameters for linear lay-
ers, including the query, key, value, and output
projections, along with their corresponding acti-
vations. Given an input x, we first construct a
standard L2 reconstruction loss between outputs
of the quantized and full-precision self-attention
module fself-attn:

L1 =
∥∥∥f̃self-attn(x)− fself-attn(x)

∥∥∥2
2

(4)

where f̃self-attn denotes the corresponding quantized version of the self-attention module. To further
preserve the structural relationships captured by attention mechanisms, we introduce an attention-
preserving loss that aligns the attention maps between the quantized and full-precision models. Us-
ing Kullback–Leibler (KL) divergence, this loss encourages the quantized model to retain inter-token
dependencies:

L2 =

N∑
i=1

N∑
j=1

Mij · log

(
Mij

M̃ij + ε

)
(5)

where N is the sequence length, ε is a small constant for numerical stability, M ∈ RN×N and
M̃ ∈ RN×N represent the attention matrices computed from the full-precision and quantized query-
key interactions, respectively. By minimizing this loss, the quantized attention module is guided to
preserve the relational structure encoded by the original model, thus enhancing its fidelity under
low-bit constraints. Then, the overall quantization loss for the self-attention module Lself-attn is
formulated as a weighted combination:

Lself-attn = L1 + λL2 (6)
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Figure 4: Visualizations of the Hessian matri-
ces for the 32 self-attention components (left) and
32 FFN components (right) of LLaMA2-7B. The
blue off-diagonal regions in the inter-component
Hessian matrix indicate a strong dependency be-
tween these components.

For the FFN module, we quantize the gate,
up, and down projection layers collectively to
maintain internal consistency. Analogous to the
self-attention module, we construct an L2 re-
construction loss to minimize the quantization
error between the quantized and full-precision
outputs of the FNN module:

LFFN =
∥∥∥f̃FFN(x)− fFFN(x)

∥∥∥2
2

(7)

This loss encourages accurate approximation
of the original representations while preserving
the FFN’s token-wise transformation capability
under quantization.

3.3 INSIGHTS
ACROSS TRANSFORMER BLOCKS

LLMs are built upon the Transformer architec-
ture, which consists of a stack of Transformer blocks arranged sequentially. These blocks are often
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Table 1: Comparison of perplexity on WikiText2 (↓) and average accuracy on nine zero-shot tasks
(↑). FP16 denotes full precision. The best are bold-faced and second-best are underlined.

#Bits
W-A-KV Method

LLaMA-3 8B
0-shot Wiki

Avg.(↑) (↓)

LLaMA-3 70B
0-shot Wiki

Avg.(↑) (↓)

LLaMA-2 7B
0-shot Wiki

Avg.(↑) (↓)

LLaMA-2 13B
0-shot Wiki

Avg.(↑) (↓)

LLaMA-2 70B
0-shot Wiki

Avg.(↑) (↓)

LLaMA 7B
0-shot Wiki

Avg.(↑) (↓)

LLaMA 13B
0-shot Wiki

Avg.(↑) (↓)

16-16-16 FP16 68.09 6.14 73.81 2.86 65.21 5.47 67.61 4.88 71.59 3.32 64.48 5.68 66.67 5.09

4-16-16

RTN 63.70 8.13 31.15 1e5 61.27 7.02 60.24 6.39 69.62 3.87 62.67 7.94 63.45 8.60
SmoothQuant 62.79 8.12 67.94 6.70 58.88 8.03 62.03 5.86 65.93 5.50 62.24 7.46 62.69 18.75
GPTQ 61.03 7.43 31.45 9e3 60.86 9.84 64.71 5.79 70.96 3.94 60.15 7.93 64.36 6.58
OmniQuant 65.66 7.19 – – 63.19 5.74 66.38 5.02 71.04 3.47 63.42 5.86 66.22 5.21
AWQ 67.03 7.36 68.92 5.92 63.89 5.83 66.25 5.07 70.88 4.03 63.30 5.97 65.58 5.28
QuaRot 67.27 6.53 72.93 3.53 64.30 5.62 66.95 5.00 71.21 3.41 63.40 5.83 65.91 5.20
SpinQuant 66.54 6.49 72.90 3.49 63.59 5.58 67.14 5.00 71.12 3.43 63.94 5.76 66.32 5.16
I2BQ 67.68 6.46 73.25 3.28 64.16 5.59 67.23 4.98 71.32 3.41 64.09 5.79 66.47 5.18

4-4-16

RTN 33.42 6e2 31.21 8e3 32.44 – 30.86 8e3 30.90 7e4 32.51 7e3 31.63 3e4

SmoothQuant 33.04 103 34.67 2e2 32.13 – 34.26 103 35.86 3e2 34.42 3e2 33.29 6e2

GPTQ 32.98 5e2 31.47 4e4 32.72 – 30.11 4e3 30.86 – 32.12 103 31.51 3e3

QuaRot 61.69 8.02 65.56 6.35 61.87 6.05 65.13 5.35 69.96 3.78 61.76 6.22 64.46 5.50
SpinQuant 64.11 7.28 66.99 6.10 57.37 6.78 63.23 5.24 70.58 3.68 61.82 6.08 64.59 5.36
I2BQ 65.01 7.26 72.09 4.02 63.67 5.82 66.13 5.16 70.81 3.61 62.48 6.06 65.56 5.35

4-4-4

RTN 33.18 7e2 30.82 8e3 32.67 – 30.93 7e3 31.73 7e4 32.87 104 31.33 3e4

SmoothQuant 32.96 103 33.76 3e2 32.12 – 33.36 103 35.54 3e2 33.32 3e2 33.28 5e2

GPTQ 33.71 6e2 31.20 4e4 33.52 – 27.85 5e3 31.09 – 31.80 2e3 30.63 3e3

OmniQuant 32.33 4e2 – – 48.40 14.26 50.35 12.30 – – 48.46 11.26 45.63 10.87
QuaRot 61.38 8.18 65.33 6.60 61.48 6.11 65.16 5.39 70.30 3.80 61.22 6.26 64.59 5.53
SpinQuant 64.10 7.35 66.31 6.24 62.01 5.96 64.13 5.74 70.57 3.61 61.32 6.12 64.95 5.39
I2BQ 65.07 7.33 71.33 4.41 63.00 5.96 65.21 5.24 70.68 3.59 62.12 6.08 65.21 5.38

tightly coupled, exhibiting strong representational dependencies across their layers. Due to the in-
herently sequential and compositional structure of Transformer, quantization errors introduced in
one block can propagate through the network, potentially impacting not only that block but also
the subsequent ones. To investigate this inter-block dependency, we evaluate the similarities struc-
ture across different transformer blocks. Figure 4 illustrates the Hessian matrix computed across
32 consecutive transformer blocks, including both self-attention and FFN components. As shown,
several off-diagonal entries are notably non-zero, particularly among FFN modules, which indicates
the presence of second-order dependencies between different blocks. These inter-block relation-
ships imply that quantization-induced information loss in one block may be captured or amplified
by subsequent blocks. Therefore, when designing quantization strategies, it is important to consider
not only the local reconstruction loss within a block but also its downstream impact on later blocks.
Incorporating such cross-block effects into the optimization process can lead to more robust and
globally consistent quantization.

3.4 CROSS-BLOCK ERROR COMPENSATION

embed_tokens

LlamaDecoder

Layer 1

LlamaDecoder

Layer 2

LlamaDecoder

Layer 32

… …

self_attn
+

ffn+

self_attn+

ffn+

self_attn
+

ffn+

self_attn+

ffn+

（a） （b） （c）

Trainable Freeze

Figure 5: Illustration of cross-block error com-
pensation. (a) Structure of LLaMA2-7B; (b) ex-
isting methods optimize quantization error sepa-
rately within each decoder layer; (c) our method
performs cross-block optimization to minimize
cumulative quantization error.

Building on the above analysis and empirical
observations, we propose a cross-block opti-
mization approach to account for inter-block
dependencies during quantization. As illus-
trated in Figure 5 (b), most existing quanti-
zation methods operate in a block-wise man-
ner, quantizing each Transformer block inde-
pendently while ignoring the representational
dependencies across blocks. To address this
limitation, we introduce an inter-block quanti-
zation strategy (Figure 5 (c)), which promotes
consistency across sequential blocks and helps
mitigate the propagation of quantization errors
through the network.

Specifically, for a give input x, define the fol-
lowing loss function that measures the discrep-
ancy between the full-precision and quantized
outputs over a sequence of blocks from index i
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Table 2: Perplexity on Wiki and C4 for various quantization methods across LLaMA-1 and LLaMA-
2 models. The best results are bold-faced and the second-best results are underlined.

#Bits
W-A-KV Method LLaMA2-7B LLaMA2-13B LLaMA2-70B LLaMA1-7B LLaMA1-13B LLaMA1-30B

Wiki(↓) C4(↓) Wiki(↓) C4(↓) Wiki(↓) C4(↓) Wiki(↓) C4(↓) Wiki(↓) C4(↓) Wiki(↓) C4(↓)

16-16-16 FP 5.47 6.97 4.88 6.46 3.32 5.52 5.68 7.08 5.09 6.61 4.10 5.98

3-16-16

RTN 539.48 402.35 10.68 12.51 7.52 10.02 25.73 28.26 11.39 13.22 14.95 28.66
GPTQ 8.37 9.81 6.44 8.02 4.82 6.57 8.06 9.49 6.76 8.16 5.84 7.29
AWQ 24.00 23.85 10.45 13.07 – – 11.88 13.26 7.45 9.13 10.07 12.67
OmniQuant 6.58 8.65 5.58 7.44 3.92 6.06 6.49 8.19 5.68 7.32 4.74 6.57
QuaRot 6.09 8.69 5.37 7.70 3.71 6.12 6.25 8.46 5.47 7.48 4.60 6.69
I2BQ 5.89 7.82 5.25 7.49 3.67 6.01 6.01 8.03 5.39 7.24 4.47 6.48

2-16-16

RTN 4e4 5e4 5e4 7e4 2e4 2e4 1e5 1e5 7e4 5e4 2e4 2e4

GPTQ 7e3 – 2e3 323.12 77.95 48.82 2e3 689.13 5e3 2e3 499.75 169.80
OmniQuant 37.37 90.64 17.21 26.76 7.81 12.28 15.47 24.89 13.21 18.31 8.71 13.89
QuaRot 22.07 49.68 12.52 26.58 6.00 10.50 12.25 22.65 9.63 16.22 7.89 14.17
I2BQ 14.23 19.63 9.36 13.87 4.92 7.61 10.28 13.89 7.99 10.67 6.43 9.30

to i+ n:

min
∥∥∥fi+n ◦ · · · ◦ f̃i(x)− fi+n ◦ · · · ◦ fi(x)

∥∥∥2
2

(8)

Here, fi denotes the full-precision operation of the i-th block, and f̃i denotes its quantized counter-
part. In practice, this loss can be applied within a specific module (e.g., self-attention or FFN) by
computing the reconstruction error from the module in block i to the corresponding module in block
i+n. This approach encourages the quantized representation at earlier layers to remain aligned with
downstream full-precision computations, thus improving overall quantization fidelity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baseline. I2BQ is a flexible and generalizable quantization framework that supports arbitrary pre-
cision configurations. To comprehensively evaluate its effectiveness across diverse scenarios, we
conduct experiments under a broad spectrum of bit-width settings, including both standard and chal-
lenging low-bit regimes: W4A16KV16, W4A4KV16, W4A4KV4, W3A16KV16, W2A16A16, and
W4A8A16. For comparison, we benchmark I2BQ against a range of state-of-the-art quantization
methods, including SmoothQuant Xiao et al. (2023), GPTQ Frantar et al. (2022), OmniQuant Shao
et al. (2023), AWQ Lin et al. (2024b), QuaRot Ashkboos et al. (2024), SpinQuant Liu et al. (2024),
and CBQ Ding et al. (2023).

Models. We evaluate I2BQ on a suite of representative LLM models, covering multiple scales of
LLaMA (7B, 13B, 30B), LLaMA-2 (7B, 13B, 70B), LLaMA-3 (8B, 70B), and OPT (30B, 66B).

Datasets. Following standard protocols from prior work Shao et al. (2023); Lin et al. (2024c), we
evaluate quantized model performance on both language modeling and zero-shot reasoning tasks.
Specifically, perplexity is measured on WikiText2 Merity et al. (2016) and C4 Dodge et al. (2021),
using a context length of 2048 tokens. For zero-shot evaluation, we use nine benchmark tasks:
BoolQ Clark et al. (2019), LAMBADA Radford et al. (2019), OpenBookQA Mihaylov et al. (2018),
Social IQA (SIQA) Sap et al. (2019), PIQA Bisk et al. (2020), ARC (Challenge and Easy) Clark
et al. (2018), HellaSwag Zellers et al. (2019), and WinoGrande Sakaguchi et al. (2021).

Quantization Settings. We initialize quantization parameters using grid search on 8 samples from
the Pile dataset Gao et al. (2020), each with a sequence length of 1024 tokens. Optimization is
then performed on 512 samples from the Pile, also with 1024-token contexts. The learning rate for
quantization parameters is set to 5e-5 by default and reduced to 2e-5 for larger models (LLaMA-
1-70B, LLaMA-2-70B, and LLaMA-3-70B). We use a batch size of 4 and train for 10 epochs for
W4A4 precision and 5 epochs for W2A16. The loss balancing coefficient λ is set to 10 throughout.

4.2 VALIDATION ON 4-BIT SETTING

Table 1 provides a comparative evaluation of various PTQ methods across multiple LLaMA model
variants. Among these methods, I2BQ consistently ranks first or second in performance across all
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Table 3: Evaluation of quantization on generation datasets with perplexity (↓). Following the quan-
tization settings of the comparison methods, we employ group quantization with a group size of 128
to quantize the weights. The best results are bold-faced and the second-best results are underlined.

#Bits Methods OPT-30B OPT-66B LLaMA1-30B LLaMA1-65B
Wiki C4 Wiki C4 Wiki C4 Wiki C4

W16A16 FP 9.56 10.69 9.34 10.28 4.10 5.98 3.53 5.62

W4A16

GPTQ 9.63 10.80 9.55 10.50 4.34 6.16 3.77 5.77
OmniQuant 9.71 10.80 9.37 10.63 4.19 6.06 3.62 5.68
CBQ 9.65 10.73 9.41 10.31 4.14 6.03 3.59 5.62
I2BQ 9.59 10.72 9.37 10.32 4.13 6.02 3.40 5.62

W2A16

GPTQ 9.1e3 1.64e4 6.3e3 4.3e3 1.3e4 7.2e3 1.1e4 8.8e3
OmniQuant 11.00 12.80 10.59 12.13 7.14 9.02 6.01 7.78
CBQ 10.51 12.01 10.25 11.19 5.58 7.65 5.25 7.42
I2BQ 9.99 11.58 9.82 11.01 4.87 6.89 4.74 7.21

W4A8

OmniQuant 9.95 10.96 9.52 10.73 4.58 6.45 3.96 6.12
RPTQ 10.22 11.01 9.46 10.57 - - - -
CBQ 9.83 10.86 9.44 10.42 4.32 6.25 3.84 5.96
I2BQ 9.64 10.79 9.45 10.31 4.29 6.17 3.71 5.87

W4A4

OmniQuant 10.60 11.89 10.29 11.35 10.33 12.49 9.17 11.28
QLLM – – – – 8.37 11.51 6.87 8.89
CBQ 10.34 11.79 9.45 11.02 7.96 9.73 5.89 7.52
I2BQ 10.14 11.29 9.43 10.93 7.71 9.60 5.26 7.13

Table 4: Ablation study of I2BQ’s main components on LLaMA-2-7B under W2A16. ↓ is better for
perplexity (WikiText-2, C4), ↑ is better for downstream accuracy.

MWO CBEC BWQ Wiki(↓) C4(↓) ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg(↑)
75950 59636 21.76 26.18 25.68 1.02 52.50 51.46 29.77

✓ 14.83 20.22 26.88 45.62 64.20 44.51 64.20 59.98 50.90
✓ 16.86 22.34 25.43 56.02 40.32 31.16 66.38 54.22 45.59

✓ ✓ 14.23 19.63 30.12 61.20 63.05 37.42 70.40 60.14 53.72

models. Under the relatively mild quantization setting of W4A16A16, methods like QuaRot and
SpinQuant occasionally achieve slightly better results. However, as quantization becomes more
aggressive—particularly in configurations like W4A4KV16 and W4A4KV4—I2BQ consistently
delivers the lowest perplexity on WikiText2 and superior zero-shot reasoning performance across
nine benchmark tasks. These improvements are especially pronounced on larger models such as
LLaMA-3 70B, demonstrating the robustness of I2BQ under more challenging low-bit conditions.

4.3 VALIDATION ON EXTREME LOW-BIT SETTINGS

To further assess the robustness of I2BQ under extreme quantization, we evaluate its performance
in ultra-low-bit scenarios with 2-bit and 3-bit weights (Table 2). Even under severe compression,
I2BQ delivers state-of-the-art performance across most settings, notably outperforming others in the
W2 configuration where alternatives degrade significantly. These findings highlight I2BQ’s ability
to preserve model fidelity even under highly constrained precision.

4.4 COMPARISON WITH CROSS-BLOCK QUANTIZATION METHODS.

We further benchmark I2BQ against strong baselines, with a particular focus on CBQ—a recent
cross-block quantization method that jointly quantizes multiple transformer layers. Our evaluation
includes several large-scale models, notably OPT-30B, OPT-66B, LLaMA-1 30B, and LLaMA-
1 65B. As shown in Table 3, I2BQ consistently outperforms CBQ across nearly all settings and
datasets. These consistent performance gains highlight the robustness of I2BQ under low-bit con-
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straints. Moreover, the results validate the effectiveness of the proposed module-wise optimization
strategy and cross-block error compensation in achieving accurate and reliable quantization in large-
scale models.

4.5 ABLATION STUDIES

We conduct ablation studies to validate the contribution of each component in the I2BQ framework
(Table 4). Starting from a baseline using standard RTN quantization, we observe severe degradation
under W2A16, highlighting the challenge of ultra-low-bit quantization. Introducing our Module-
Wise Optimization (MWO) significantly improves performance, reducing WikiText2 perplexity to
14.83 and enhancing downstream accuracy. To disentangle the effect of optimization granularity,
we also evaluate the Block-wise Quantization Error Minimization (BWQ) module. While BWQ
reduces perplexity to 16.86, MWO achieves a greater improvement, demonstrating the advantage
of designing module-wise reconstruction losses for self-attention and FFN. Finally, incorporating
Cross-Block Error Compensation (CBEC) alongside MWO yields the best overall performance,
with the lowest perplexity and highest accuracies across nearly all tasks. These results confirm the
effectiveness of our full framework in mitigating quantization errors and maintaining performance
in extreme low-bit regimes.

4.6 OVERHEAD ANALYSIS

Our framework introduces negligible computational overhead during inference. Prior to quantiza-
tion, a Hadamard-based rotation is applied to both weights and activations. The rotation of weight
matrices is performed offline and fused into the model through direct weight manipulation, thereby
incurring no additional runtime cost.

For activations, the rotation is applied online during the forward pass. This operation remains highly
efficient, as the Hadamard matrix contains only binary values (±1), enabling the transformation to
be implemented via simple sign flips without requiring multiplications. As a result, the runtime over-
head is minimal in practice. Moreover, our quantization framework does not rely on any specialized
hardware, ensuring broad compatibility and ease of deployment.

5 CONCLUSION

To enable efficient deployment of large language models (LLMs), we present I2BQ, a novel
post-training quantization framework. Existing methods typically address either weight–activation
quantization or extreme weight quantization, but they often overlook the cumulative error prop-
agation in deep Transformer architectures. In contrast, our framework effectively handles both
weight–activation quantization and extreme weight quantization.

Our framework consists of two core components. First, we propose module-wise optimization,
which independently quantizes self-attention and feed-forward modules using tailored reconstruc-
tion objectives that account for their distinct computational roles and activation distributions. Sec-
ond, we introduce a cross-block error compensation mechanism that mitigates inter-layer quantiza-
tion drift by enforcing consistency across Transformer blocks.

Extensive experiments across various LLMs demonstrate that I2BQ significantly improves perplex-
ity and downstream task performance under aggressive low-bit settings (e.g., W2A16), while incur-
ring negligible inference overhead.

6 LIMITATIONS

Although I2BQ demonstrates strong performance in post-training quantization (PTQ) of LLMs,
several limitations remain. Under extremely low-bit settings, its accuracy still lags behind that of
Quantization-Aware Training (QAT) methods. Moreover, the current optimization process is time-
consuming, often taking several hours to complete. In future work, we plan to substantially reduce
this optimization time while further enhancing the effectiveness and scalability of PTQ.
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STATEMENTS

ETHICS STATEMENT

In this work, we propose a post-training quantization method for large language models (LLMs)
with the aim of improving their efficiency. All experiments are conducted on publicly available
datasets that do not contain personally identifiable information. We have carefully followed the
ethical guidelines and submission policies of ICLR and affirm that this work complies with all
applicable standards.

REPRODUCIBILITY STATEMENT

We follow the ICLR reproducibility guidelines and ensure that our work can be reproduced. All
datasets used in our experiments are publicly available. Detailed descriptions of the quantization
settings and hyperparameters are provided in the main text and Appendix. We will release our code
upon acceptance of the paper.
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A APPENDIX

A.1 MORE RESULTS

This section offers a comprehensive presentation (Table 5-11) of results across various datasets,
providing supplementary details to the Table 1.

Model #Bits
W-A-KV Method ARC-c ARC-e BoolQ HellaS. Lam. OBQA PIQA SIQA WinoG. Avg.

2-7B

16-16-16 Full Precision 46.42 74.33 77.71 75.94 73.69 44.20 79.16 45.91 69.53 65.21

4-16-16

RTN 42.15 67.59 73.06 72.34 67.18 41.80 76.50 44.11 66.69 61.27
SmoothQuant 39.59 65.19 69.82 68.84 62.27 40.20 75.95 44.17 63.85 58.88
GPTQ 42.49 69.53 61.31 73.83 67.61 42.40 77.64 44.52 68.43 60.86
Omniquant 42.49 71.00 74.34 73.85 70.70 44.00 78.40 44.93 68.82 63.19
AWQ 44.11 70.75 78.07 74.98 70.68 43.80 78.13 45.14 69.38 63.89
QuaRot 43.94 73.15 76.97 74.87 78.24 45.09 78.24 45.09 69.38 64.30
SpinQuant 43.34 72.69 73.36 75.10 73.80 43.00 77.86 45.60 67.56 63.59
I2BQ 44.37 74.86 75.26 75.19 71.81 43.90 78.62 45.64 67.83 64.16

2-7B 4-4-16

RTN 25.34 28.03 50.52 27.71 1.01 26.20 50.82 33.93 48.38 32.44
SmoothQuant 28.33 26.39 49.39 27.28 1.18 23.40 48.00 33.62 50.75 32.13
GPTQ 24.40 28.70 51.62 28.66 1.36 24.60 51.14 34.49 49.49 32.72
QuaRot 42.32 69.65 74.77 72.91 70.81 39.80 77.20 43.55 65.82 61.87
SpinQuant 37.54 62.58 71.16 70.48 67.16 34.80 75.46 39.76 60.62 57.37
I2BQ 43.89 74.36 73.62 75.01 72.24 42.80 77.95 45.02 67.98 63.67

2-7B 4-4-4

RTN 27.22 27.06 50.83 27.34 0.93 25.80 49.51 34.85 50.51 32.67
SmoothQuant 26.37 25.63 47.71 27.05 1.11 26.40 51.90 34.49 48.38 32.12
GPTQ 26.96 27.65 52.84 28.83 1.63 29.20 49.62 35.11 49.80 33.52
Omniquant 31.40 53.75 63.79 55.06 35.63 34.40 66.59 40.28 54.70 48.40
QuaRot 41.43 69.32 74.19 72.50 70.66 39.80 77.42 43.35 64.64 61.48
SpinQuant 40.44 71.08 74.40 73.51 70.66 41.80 76.88 43.50 65.82 62.01
I2BQ 40.87 74.07 74.89 74.81 70.67 43.89 76.06 44.79 67.01 63.00

Table 5: Zero-shot commonsense question answering accuracy (↑) of LLaMA2-7B using different
quantization methods and bit-width configurations across multiple datasets.

Model #Bits
W-A-KV Method ARC-c ARC-e BoolQ HellaS. Lam. OBQA PIQA SIQA WinoG. Avg.

2-13B

16-16-16 Full Precision 49.15 77.53 80.58 79.39 76.62 45.20 80.63 47.49 71.90 67.61

4-16-16

RTN 42.92 66.54 71.38 66.62 68.99 39.40 76.93 44.06 65.35 60.24
SmoothQuant 46.25 70.45 74.92 69.16 70.49 39.80 77.86 45.14 64.17 62.03
GPTQ 49.63 73.95 74.83 73.77 73.20 42.40 78.51 45.50 70.64 64.71
Omniquant 48.29 75.42 77.92 77.80 75.59 45.20 80.41 46.62 70.17 66.38
AWQ 48.63 78.16 78.81 78.48 75.20 45.00 79.54 46.21 72.45 66.25
QuaRot 49.15 76.26 80.46 78.17 76.50 45.40 80.03 45.50 71.11 66.95
SpinQuant 49.15 77.48 79.27 78.46 77.10 44.60 80.03 46.47 71.67 67.14
I2BQ 49.20 76.87 80.52 78.16 76.62 44.90 80.16 46.99 71.67 67.23

2-13B 4-4-16

RTN 27.99 26.81 38.50 26.08 0.00 23.60 48.20 34.90 51.62 30.86
SmoothQuant 24.49 35.06 47.98 30.87 3.67 26.20 55.01 35.31 49.72 34.26
GPTQ 27.82 26.77 37.92 25.67 0.00 21.80 47.77 35.11 48.15 30.11
QuaRot 46.42 73.86 78.10 75.68 74.31 43.00 79.05 44.37 71.35 65.13
SpinQuant 43.77 69.99 76.57 74.63 72.81 41.60 77.20 44.27 68.19 63.23
I2BQ 47.44 74.88 79.79 76.94 75.36 43.90 79.34 46.21 71.28 66.13

2-13B 4-4-4

RTN 27.82 26.52 38.38 26.27 0.02 26.00 49.78 34.39 49.17 30.93
SmoothQuant 24.49 33.00 45.84 30.70 2.70 23.80 53.81 34.80 51.07 33.36
GPTQ 27.90 26.39 37.95 26.16 0.00 27.00 48.26 34.39 50.43 27.85
Omniquant 32.85 55.13 64.34 60.13 42.85 33.40 68.17 39.76 56.51 50.35
QuaRot 47.27 73.91 78.41 75.33 73.53 43.80 79.27 45.85 69.06 65.16
SpinQuant 46.67 74.49 76.76 75.22 72.19 42.40 78.29 43.45 67.72 64.13
I2BQ 47.26 74.68 78.32 75.91 74.28 44.10 79.02 45.38 67.94 65.21

Table 6: Zero-shot commonsense question answering accuracy (↑) of LLaMA2-13B using different
quantization methods and bit-width configurations across multiple datasets.
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Model #Bits
W-A-KV Method ARC-c ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.

2-70B

16-16-16 Full Precision 57.42 81.02 83.79 83.81 79.60 48.80 82.70 49.18 77.98 71.59

4-16-16

RTN 55.80 79.29 81.35 81.78 75.51 47.60 81.94 46.83 76.48 69.62
SmoothQuant 50.26 76.56 81.53 67.81 73.63 44.40 81.34 44.17 73.64 65.93
GPTQ 56.91 80.81 83.24 82.47 79.06 47.80 82.75 48.06 77.51 70.96
Omniquant 57.08 80.81 82.69 83.07 79.18 47.40 83.08 48.87 77.19 71.04
AWQ 56.67 80.54 82.98 82.54 78.83 47.67 82.97 48.12 77.62 70.88
QuaRot 57.34 80.85 83.24 83.27 80.38 47.60 82.21 48.62 77.35 71.21
SpinQuant 56.91 80.60 83.18 83.06 79.16 49.00 82.75 48.31 77.11 71.12
I2BQ 57.29 80.97 83.13 83.02 80.09 48.80 82.71 48.62 77.35 71.32

2-70B 4-4-16

RTN 29.35 26.05 37.74 25.97 0.02 24.80 51.31 34.14 48.70 30.90
SmoothQuant 25.00 35.98 55.23 32.52 7.49 25.00 54.62 35.21 51.70 35.86
GPTQ 27.82 25.80 37.95 25.82 0.00 27.00 49.67 33.98 49.72 30.86
QuaRot 55.29 80.35 81.10 81.87 79.06 45.80 82.05 47.90 76.24 69.96
SpinQuant 55.38 78.96 83.36 82.54 79.00 47.80 82.10 48.67 77.43 70.58
I2BQ 56.03 80.39 83.18 82.41 79.14 47.70 82.76 48.62 77.03 70.81

2-70B 4-4-4

RTN 30.38 27.74 38.23 26.12 0.02 24.60 51.74 34.29 52.49 31.73
SmoothQuant 24.15 33.88 55.32 31.75 7.14 26.40 54.95 34.14 52.17 35.54
GPTQ 28.75 26.39 37.86 25.96 0.00 26.40 50.00 34.44 50.04 31.09
QuaRot 56.48 80.56 81.59 81.93 79.16 46.00 82.21 48.00 76.80 70.30
SpinQuant 56.31 80.64 83.55 82.36 79.41 47.20 82.21 47.29 76.16 70.57
I2BQ 56.31 80.53 83.33 82.20 79.09 47.60 82.32 48.02 76.71 70.68

Table 7: Zero-shot commonsense question answering accuracy (↑) of LLaMA2-70B using different
quantization methods and bit-width configurations across multiple datasets.

Model #Bits
W-A-KV Method ARC-c ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.

3-8B

16-16-16 Full Precision 53.50 77.74 81.10 79.18 75.74 44.80 80.63 47.08 73.01 68.09

4-16-16

RTN 48.98 73.23 72.75 75.90 63.85 43.20 78.40 43.81 73.16 63.70
SmoothQuant 47.44 72.35 72.11 74.92 62.41 43.00 77.69 43.91 71.27 62.79
GPTQ 49.74 72.52 71.28 68.34 46.69 43.60 78.78 46.47 71.82 61.03
Omniquant 50.09 74.54 79.15 76.92 70.31 43.80 79.54 44.52 71.74 65.66
AWQ 52.22 76.68 80.31 77.51 74.81 44.20 80.14 46.26 71.67 67.03
QuaRot 51.88 77.53 79.60 77.87 73.76 44.80 79.98 46.37 73.56 67.27
SpinQuant 52.13 72.28 79.20 78.40 73.76 44.80 79.98 45.50 72.77 66.54
I2BQ 52.98 78.96 80.47 78.02 75.18 42.84 80.41 46.57 73.71 67.68

3-8B 4-4-16

RTN 23.72 30.89 46.30 31.26 3.03 27.60 52.72 35.26 50.04 33.42
SmoothQuant 23.29 28.28 48.93 29.19 1.57 28.60 54.46 33.37 49.64 33.04
GPTQ 23.46 32.07 43.79 30.10 2.41 28.00 53.97 34.14 48.86 32.98
QuaRot 42.66 67.26 73.73 73.60 67.42 43.00 76.61 45.04 65.90 61.69
SpinQuant 47.35 74.12 76.36 75.98 69.88 42.46 77.37 44.47 68.98 64.11
I2BQ 47.97 74.02 78.66 76.70 70.77 43.00 79.56 45.52 68.90 65.01

3-8B 4-4-4

RTN 23.72 30.56 46.18 29.83 2.70 28.60 52.45 34.39 50.20 33.18
SmoothQuant 23.55 28.96 48.84 28.90 1.44 29.40 51.09 34.14 50.36 32.96
GPTQ 23.38 32.74 44.34 29.72 2.39 29.80 54.95 34.75 51.30 33.71
Omniquant 22.87 30.35 41.53 31.11 1.86 25.40 53.37 34.08 50.43 32.33
QuaRot 42.83 67.42 73.21 72.66 66.93 42.20 75.73 45.19 66.22 61.38
SpinQuant 46.33 73.57 76.15 75.43 71.40 41.40 79.16 44.68 68.75 64.10
I2BQ 48.09 74.20 78.36 76.28 71.86 43.10 79.16 45.64 68.96 65.07

Table 8: Zero-shot commonsense question answering accuracy (↑) of LLaMA3-8B using different
quantization methods and bit-width configurations across multiple datasets.

A.2 ADDITIONAL ABLATION STUDY

Table 12 presents additional ablation study results for LLaMA2-7B under W4A4 quantization, fur-
ther demonstrating the effectiveness of each module in our approach.

A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

A hyperparameter sensitivity analysis was conducted for λ, and the results, shown in Table 13,
indicate that setting λ = 10 provides a strong balance of performance across our evaluation metrics.
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Model #Bits
W-A-KV Method ARC-c ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.

3-70B

16-16-16 Full Precision 64.42 85.98 85.14 84.95 79.47 48.46 84.39 50.82 80.66 73.81

4-16-16

RTN 26.28 25.55 37.83 26.36 0.00 29.00 50.98 34.70 49.64 31.15
SmoothQuant 51.88 77.53 80.09 80.47 73.16 46.60 80.58 45.29 75.85 67.94
GPTQ 25.77 25.29 37.83 26.36 0.12 28.40 51.74 34.90 52.64 31.45
Omniquant 48.29 75.42 77.92 77.80 75.59 45.20 80.41 46.62 70.17 66.38
AWQ 52.26 78.95 83.24 81.52 73.05 47.67 81.25 44.43 77.98 68.93
QuaRot 62.20 83.88 85.57 84.18 79.04 48.20 83.13 50.10 80.03 72.93
SpinQuant 62.03 84.97 85.11 84.06 78.30 47.00 83.90 49.85 80.90 72.90
I2BQ 63.03 85.13 84.85 84.52 79.00 48.10 83.86 50.53 80.21 73.25

3-70B 4-4-16

RTN 27.47 25.88 37.83 26.26 0.00 27.20 51.63 35.26 49.33 31.21
SmoothQuant 25.60 34.47 50.46 32.48 1.98 30.00 54.24 33.83 48.93 34.67
GPTQ 25.77 26.09 43.64 26.42 0.00 27.40 52.01 32.55 49.33 31.47
QuaRot 50.60 73.65 77.46 77.83 71.96 43.20 78.13 45.29 71.90 65.56
SpinQuant 53.84 77.69 80.24 78.19 73.06 45.00 78.67 43.24 73.01 66.99
I2BQ 60.49 83.99 84.01 84.21 76.69 48.30 82.69 48.81 79.33 72.09

3-70B 4-4-4

RTN 27.13 25.42 37.83 26.12 0.00 26.60 50.76 35.16 48.38 30.82
SmoothQuant 23.46 31.48 48.81 29.22 4.13 28.00 52.56 34.95 51.22 33.76
GPTQ 26.11 25.17 45.17 26.07 0.00 26.40 48.86 33.88 49.17 31.20
QuaRot 49.49 74.37 79.16 77.22 71.69 42.29 78.89 43.87 71.03 65.33
SpinQuant 51.88 76.39 80.98 76.50 71.43 43.46 79.27 44.17 72.69 66.31
I2BQ 59.98 81.93 83.19 82.84 76.04 48.70 82.06 48.51 78.77 71.33

Table 9: Zero-shot commonsense question answering accuracy (↑) of LLaMA3-70B using different
quantization methods and bit-width configurations across multiple datasets.

Model #Bits
W-A-KV Method ARC-c ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.

7B

16-16-16 Full Precision 44.71 72.90 74.98 76.20 73.08 43.80 79.16 45.55 69.93 64.48

4-16-16

RTN 43.17 69.82 73.30 73.75 69.67 42.00 78.13 45.34 68.82 62.67
SmoothQuant 40.96 68.60 74.04 73.16 68.74 42.00 78.07 46.11 68.51 62.24
GPTQ 41.72 67.85 67.98 69.50 63.15 40.80 76.55 44.37 69.46 60.15
Omniquant 42.49 71.38 74.62 74.71 71.98 42.00 79.05 45.96 68.59 63.42
AWQ 43.86 70.79 74.19 75.27 69.94 43.00 78.45 45.09 69.14 63.30
QuaRot 42.75 69.99 73.30 75.13 73.55 42.00 78.35 45.14 69.61 63.40
SpinQuant 43.77 71.17 74.46 75.09 72.91 44.40 78.40 44.52 70.72 63.94
I2BQ 44.17 71.92 74.38 75.07 73.37 44.40 78.17 45.69 69.65 64.09

7B 4-4-16

RTN 23.46 29.34 45.05 29.02 1.24 26.00 52.07 35.11 51.30 32.51
SmoothQuant 25.17 31.40 51.62 29.73 5.43 28.20 54.68 34.44 49.09 34.42
GPTQ 23.89 27.74 42.87 28.49 1.28 27.40 51.00 36.23 50.20 32.12
QuaRot 40.36 67.26 73.15 72.89 70.81 42.00 77.97 44.27 67.17 61.76
SpinQuant 40.19 68.43 72.35 72.91 70.68 41.20 77.75 44.17 68.67 61.82
I2BQ 41.17 69.04 73.81 72.99 71.62 42.20 78.07 44.96 68.88 62.48

7B 4-4-4

RTN 23.89 29.59 46.67 28.37 1.13 26.40 52.99 35.21 51.54 32.87
SmoothQuant 23.38 30.18 50.03 29.67 4.89 24.60 51.74 34.75 50.67 33.32
GPTQ 23.89 27.90 43.88 27.86 1.05 26.20 51.85 34.08 49.49 31.80
Omniquant 31.40 54.84 61.80 56.98 38.29 31.80 66.59 39.30 55.17 48.46
QuaRot 40.27 67.55 72.20 72.59 70.62 39.80 77.20 44.88 65.90 61.22
SpinQuant 39.08 68.18 73.06 72.87 70.46 40.60 77.42 42.68 67.56 61.32
I2BQ 41.92 69.74 73.35 72.96 71.01 41.60 77.95 43.28 67.31 62.12

Table 10: Zero-shot commonsense question answering accuracy (↑) of LLaMA-7B using different
quantization methods and bit-width configurations across multiple datasets.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used GPT to assist with polishing the writing of this paper. The model was only used to improve
grammar, clarity, and readability; all technical content, experiments, and analyses were designed,
implemented, and verified by the authors.
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Model #Bits
W-A-KV Method ARC-c ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.

13B

16-16-16 Full Precision 47.87 74.49 77.86 79.10 76.03 44.40 80.30 46.72 73.24 66.67

4-16-16

RTN 45.56 70.66 72.45 76.06 70.58 42.00 78.84 44.93 70.01 63.45
SmoothQuant 43.86 71.21 71.62 74.19 69.34 40.00 77.80 45.45 70.72 62.69
GPTQ 45.99 72.85 73.27 75.31 70.10 44.60 79.87 46.16 71.11 64.36
Omniquant 47.01 73.86 77.22 77.95 75.59 45.00 79.87 46.88 72.61 66.22
AWQ 47.53 73.86 75.60 59.03 78.34 43.40 79.87 45.85 71.67 65.58
QuaRot 47.18 72.22 76.85 78.07 75.99 45.00 79.76 45.70 72.38 65.91
SpinQuant 47.44 74.83 77.37 78.13 75.55 45.60 79.92 46.01 72.06 66.32
I2BQ 47.41 74.72 77.72 78.08 75.92 45.70 80.22 46.15 72.31 66.47

13B 4-4-16

RTN 25.85 26.26 42.05 26.70 0.17 28.00 50.33 34.60 50.67 31.63
SmoothQuant 25.43 29.29 51.56 28.12 2.02 26.00 53.32 34.34 49.57 33.29
GPTQ 24.66 27.78 40.80 25.83 0.70 24.20 51.31 36.65 51.70 31.51
QuaRot 46.93 71.51 75.57 76.63 74.13 42.40 78.73 45.24 68.98 64.46
SpinQuant 45.73 72.56 75.38 76.86 73.28 43.60 78.89 44.63 70.40 64.59
I2BQ 47.38 73.71 77.22 76.88 74.66 44.60 78.86 45.67 71.03 65.56

13B 4-4-4

RTN 26.28 27.27 42.35 25.85 0.19 26.60 49.95 34.19 49.25 31.33
SmoothQuant 24.49 28.83 51.65 27.91 2.08 26.00 52.56 35.41 50.59 33.28
GPTQ 23.63 27.31 39.85 26.17 0.56 26.00 51.96 35.82 49.57 30.63
Omniquant 29.61 48.23 58.20 56.45 28.76 31.40 65.29 37.10 55.64 45.63
QuaRot 46.50 71.55 75.08 76.43 73.47 45.00 78.78 44.37 70.09 64.59
SpinQuant 45.99 70.71 76.51 77.16 73.63 45.60 79.00 45.65 70.32 64.95
I2BQ 46.02 73.23 77.09 76.57 74.07 45.30 78.64 45.77 70.38 65.21

Table 11: Zero-shot commonsense question answering accuracy (↑) of LLaMA-13B using different
quantization methods and bit-width configurations across multiple datasets.

MWO CBEC BWQ WikiText-2(↓) C4(↓) ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande Avg(↑)
20.11 21.02 23.89 52.53 36.60 60.18 64.53 55.09 41.74

✓ 7.01 8.58 36.43 68.73 52.75 57.25 74.43 63.46 51.78
✓ 6.23 7.87 40.53 73.48 53.86 66.63 76.17 65.19 58.84
✓ ✓ 5.96 7.52 40.87 74.07 54.81 67.07 76.06 67.01 63.32

Table 12: Ablation study of the main components of I2BQ on LLaMA-2-7B under the W4A4
setting. ↓ is better for perplexity (WikiText-2, C4), while ↑ is better for downstream task accuracy.

λ ARC-c ARC-e BoolQ HellaS. Lam. OBQA PIQA SIQA WinoG. Avg. (↑)
0.1 40.97 72.59 73.71 74.23 69.50 43.53 76.21 44.80 65.14 62.30
1 39.29 73.28 74.52 73.87 70.87 43.15 77.03 43.49 66.57 62.45

10 40.87 74.07 74.89 74.81 70.67 43.89 76.06 44.79 67.01 63.00
15 41.04 71.88 72.61 74.26 68.96 44.16 76.85 44.00 67.42 62.35
20 40.63 72.67 73.02 73.85 69.40 44.07 77.21 43.40 65.99 62.24

Table 13: Sensitivity analysis of the coefficient λ on zero-shot accuracy (↑) across multiple bench-
marks.
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