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ABSTRACT

Post-training quantization (PTQ) has emerged as a promising solution for reduc-
ing the memory and computation overhead of large language models (LLMs),
enabling efficient deployment without requiring full model retraining. However,
existing PTQ methods struggle with weight—activation joint quantization and ex-
treme weight quantization. The main challenge stems from the depth and cross-
layer dependencies of LLMs, which cause quantization errors to propagate and
accumulate across layers, leading to degraded performance. In this paper, we
present I?BQ, a simple yet effective framework that simultaneously addresses
weight—activation joint quantization and extreme weight quantization. We first
propose a granular quantization strategy that treats self-attention and feed-forward
(FFN) modules as separate quantization units with module-specific optimization
objectives. To mitigate inter-layer error accumulation, we introduce an inter-
block quantization strategy that explicitly accounts for cross-layer dependencies
by encouraging consistency between blocks. Extensive experiments across diverse
LLMs, including OPT and the LLaMA family, demonstrate that I?BQ achieves su-
perior performance under both W4A4 and highly aggressive W2 settings, while
incurring negligible additional computational overhead.

1 INTRODUCTION

Large Language Models (LLMs) have gained significant attention for their remarkable performance
across a wide range of tasks [Wang et al.| (2019); |Adiwardana et al.| (2020). However, their prac-
tical deployment remains severely constrained by their immense computational and memory re-
quirements, driven by the sheer scale of model parameters. For instance, GPT-3, with 175 billion
parameters, demands hundreds of gigabytes of memory, leading to substantial energy consumption.
Thus, reducing inference costs of LLMs has emerged as a critical and active area of research.

Model quantization offers a feasible solution to the inference inefficiencies of large models by con-
verting high-precision data types (e.g., float32) into low-bit representations such as int4. This trans-
formation can reduce the memory footprint by up to 8 x and substantially improve computational
throughput. Among various quantization methods, post-training quantization (PTQ) is particularly
appealing due to its deployment efficiency. It enables lightweight adaptation of pretrained models
using only a small calibration dataset, without requiring expensive full-model retraining, thereby
making it highly practical for real-world applications.

Early PTQ methods [Wu et al.| (2016)) are primarily developed for convolutional neural networks
(CNNs). These approaches typically use a small unlabeled dataset to determine appropriate scal-
ing factors or clipping thresholds. However, directly applying such techniques to LLMs introduces
new challenges. Unlike CNNs, LLMs exhibit systemic |Dettmers et al.| (2022)) and extremely large
outliers (e.g., exceeding 2000) |An et al.| (2025)). Naively clipping these outliers can lead to se-
vere degradation in accuracy as they often encode critical information for model performance. To
address this issue, a variety of LLM-specific PTQ techniques have been proposed. For example,
SmoothQuant |Xiao et al.| (2023)) introduces a diagonal rescaling matrix to shift activation outliers
into the weight domain, thereby simplifying the activation distribution. Quarot |Ashkboos et al.
(2024) utilizes Hadamard transformations to regularize activation distributions, promoting unifor-
mity and reducing quantization error. To further enhance quantization performance, subsequent
methods such as SPINQuant |Liu et al.| (2024) and FlatQuant |Sun et al.| (2024) design more sophis-
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ticated transformation strategies to better handle outlier migration. However, these methods often
incur additional computational overhead and complexity, and their performance remains limited,
especially in extreme low-bit scenarios such as 2-bit quantization (W2).

Another major challenge in LLM quantization is the cumulative nature of quantization errors across
layers. Due to their large parameter counts and deep architectures, LLMs are particularly vulnerable
to error accumulation, which can result in significant performance degradation as errors propagate
through successive layers. To solve this, OmniQuant [Shao et al.| (2023) proposes a block-wise
quantization error minimization strategy, which learns quantization-specific parameters to reduce
quantization-induced discrepancies. However, OmniQuant employs an indirect optimization strat-
egy to approximate the effects of quantization on weights and activations, which may lead to subop-
timal performance in certain scenarios, particularly under aggressive quantization settings.

In this paper, we first reveal the functional and distributional difference between the self-attention
and feedforward network modules, as well as the inter-block dependencies in LLMs. Motivated
by these observations, we present I°BQ, a simple yet effective framework for weight—activation
joint quantization and extreme weight quantization. Specifically, we introduce a granular quantiza-
tion strategy that treats self-attention and feed-forward modules as separate quantization units, each
optimized with module-specific objectives reflecting their distinct functional roles. To mitigate cu-
mulative quantization errors, we further propose an inter-block quantization strategy that explicitly
accounts for dependencies between Transformer blocks. This encourages consistency across layers
and effectively reduces error propagation through the network. Our main contributions are:

* We propose treating self-attention and FFN modules within each transformer block as sep-
arate quantization units to enable finer-grained control and reduce quantization errors.

 To mitigate error accumulation across blocks during quantization, we design a cross-block
error compensation mechanism that minimizes error propagation throughout the network.

* Our method consistently achieves superior quantization performance in both W4A4 and
highly aggressive W2 settings, for weights and activations, across diverse LLMs including
OPT and the LLaMA family, while incurring negligible additional computational overhead.

2 PRELIMINARIES

2.1 GENERAL QUANTIZATION STRATEGIES

Quantization techniques convert high-precision numerical formats into compact low-bit representa-
tions, enabling significant gains in memory efficiency and computational speed. According to the
quantization target, existing quantization methods for LLMs can be categorized into weight-only
quantization and joint quantization. Weight-only quantization aims to represent model weights us-
ing low-bit formats (e.g., 4-bit) while maintaining activations in full precision (typically 32-bits)|Lin
et al.| (2024b). In contrast, joint quantization Shao et al.|(2023)) compresses both weights and activa-
tions to achieve higher efficiency, albeit at the cost of potentially greater quantization errors. Based
on the optimization strategy, LLM quantization can be further classified into quantization-aware
training (QAT) |Liu et al.| (2023); |(Chen et al.| (2024) and post-training quantization (PTQ) Huang
et al.| (2024); [L1 et al.| (2023). QAT involves retraining the model to learn low-precision weights
under quantization constraints, while PTQ directly quantizes pretrained weights without additional
retraining. In this work, we primarily focus on joint quantization with PTQ due to its practical-
ity. This strategy requires only minimal calibration data and significantly reduces computational
overhead compared to QAT.

2.2 BASIC QUANTIZATION PROCESS

A classical quantization approach, integer uniform quantization |Jacob et al.|(2018), aims to convert
floating-point values into uniformly spaced integer representations. Given a floating-point input F
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(which can be a vector or matrix), its b-bits quantized representation F, is computed as follows:

Fy, = clamp (\‘z-‘ +2,0, 20— 1> , @))
vmax(F) — S min(F)
o= L. , @)
O VHHH(F)-‘ 7 3)
Q

where |-] denotes rounding to the nearest integer, v and [ are optional clipping coefficients that
control the influence of extreme values. The scale factor o maps the range of F to the target integer
range, while the zero-point offset z aligns the minimum scaled value with zero in the quantized
space.

In LLMs, the core architectural unit is the transformer block, which comprises several key compo-
nents including multi-head self-attention, a feedforward network (FFN), layer normalization, and
residual connections. The linear layers within self-attention and FFN modules account for the ma-
jority of memory consumption and inference latency. Consequently, most LLM quantization ap-
proaches primarily target these linear layers, while keeping non-linear operations such as Softmax
(used in attention) and activation functions like Swish in full precision to preserve numerical sta-
bility and model accuracy. Specifically, for a give layer [, its output embedding can be expressed
asY = AW, where A and W are the activation and weight matrices, respectively. In this work,
we adopt joint quantization, quantizing both A and W into b;-bits and b-bits representations (e.g.,
W4A4 refers to 4-bit weights and activations).

2.3 ACTIVATION OUTLIERS IN LLMsS

One of the most significant challenges in LLM quantization lies in the presence of activation out-
liers, which can severely degrade the performance of low-bit quantization methods [Dettmers et al.
(2022). Unlike in convolutional neural networks (CNNs), where outliers can often be clipped with-
out notable performance loss|Zhao et al.[(2019), activation outliers in LLMs typically carry critical
information essential for maintaining model performance. These outliers not only appear in a struc-
tured pattern but also as isolated values with extreme magnitudes, making them particularly difficult
to handle in quantization. To mitigate this issue, a range of outlier-aware quantization techniques
have been proposed. For example, GPT3.int8() Dettmers et al.|(2022) introduces a mixed-precision
group-wise quantization strategy that selectively applies higher precision to sensitive channels based
on outlier detection. Smoothquant |Xiao et al.| (2023) mitigates quantization difficulty by shifting
the burden from activations to weights via layer-wise affine transformations. Quarot |Ashkboos
et al.| (2024)) applies learnable rotation matrices to the inputs and outputs of linear layers, aligning
activation and weight distributions to reduce quantization error. Subsequent extensions [Liu et al.
(2024); Lin et al.|(2024a)) explore alternative transformation schemes to promote activation unifor-
mity. While these methods improve accuracy, they often incur substantial computational overhead,
limiting their practicality.

2.4 CUMULATIVE ERRORS IN QUANTIZATION

In addition to addressing activation outliers, it’s also crucial to optimize the cumulative quantization
error propagated across layers. A representative solution is BRECQ [Li et al.| (2021), a method
designed for CNNs that minimizes PTQ accuracy loss by performing gradient-based optimization
over weights using a small calibration set to guide optimal rounding. However, directly applying
BRECQ to LLMs is impractical due to the massive parameter scale (often billions), which results
in an overwhelming optimization space and renders weight optimization computationally infeasible.
To address this challenge, OmniQuant [Shao et al.|(2023)) introduces a block-wise quantization error
minimization strategy, which avoids optimizing all parameters and instead focuses on learnable
quantization parameters (e.g., affine transformation parameters for each channel). These parameters
are optimized to minimize the reconstruction error within each block. Nevertheless, OmniQuant
optimizes only the quantization parameters, without directly updating the weights or activations
themselves, which may lead to suboptimal quantization performance in certain cases.
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Figure 1: Overview of the I2BQ framework within a transformer block. The module-wise opti-
mization is applied to both self-attention and feed-forward. A Hadamard-based rotation (/) is first
applied to the input and weight matrices, followed by quantization and per-module optimization.

3 METHODOLOGY

3.1 INSIGHTS WITHIN TRANSFORMER BLOCKS

Existing LLM quantization approaches usually treat the entire transformer block as the basic unit
for reconstruction, i.e., minimizing the quantization error between the outputs of the quantized and
original blocks. However, this coarse-grained reconstruction strategy can lead to sub-optimal per-
formance due to several important factors.

1 Self-attention and FFN modules serve fundamentally different functions. The self-attention mod-
ule captures cross-token dependencies by modeling contextual relationships across the sequence,
enabling global information aggregation. In contrast, the FFN module processes each token inde-
pendently to enrich its representations. These distinct roles in information processing are a hallmark
of the Transformer’s functionally specialized design. However, computing the reconstruction loss
at the level of the entire block neglects this separation of concerns, potentially undermining the
specialized modeling capacity of each module and leading to sub-optimal quantization behavior.

2 Residual connections are separately applied to self-attention and FFN. In Transformer blocks,
residual connections serve as unquantized information bypasses, helping to mitigate quantization
errors in the forward pass and preserving gradient flow during backpropagation. As illustrated in
Figure[] these residual paths are constructed independently for the self-attention and FFN modules,
rather than built only one for each block. This architectural design enhances robustness, modularity,
and training stability. We argue that the quantization strategy should respect this modular disentan-
glement by applying reconstruction loss separately to each module, rather than enforcing a unified
loss over the entire block. Otherwise, the gradients and error signals may become entangled across
the two functionally distinct operations, thereby degrading performance.

3 Self-attention and FFN modules exhibit significant distribution differences. As shown in Figure
and Figure|3|(a) and (c), the activations from the self-attention and FFN modules exhibit distinct
distribution characteristics. Even after applying rotation transformation, this discrepancy persists,
as illustrated in Figures [3] (b) and (d). However, a block-level quantization strategy that treats the
entire Transformer block uniformly fails to account for this distributional divergence.
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Figure 3: Activation distribution statistics before and after applying rotation transformation to the
self-attention and FFN in Block 2 of LLaMA2-7B. The two types consistently exhibit distinct activa-
tion distributions, regardless of rotation. Each subplot visualizes the minimum/maximum, 1st/99th
percentiles, and across hidden dimensions.
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3.2 MODULE-WISE OPTIMIZATION

Motivated by the above empirical observation
and analysis, we propose a more granular quan-

tization strategy that independently optimizes 4 =-self-attn.== ffn
the quantization errors for the self-attention and
feed-forward modules. Specifically, we design g
module-specific optimization objectives tailored 3 005
to the distinct functional roles of each module. £
=
For the self-attention module, we jointly opti- £ 05
mize the quantization parameters for linear lay- <
ers, including the query, key, value, and output
projections, along with their corresponding acti- 4

vations. Given an input x, we first construct a block.8  block.11 _ block.12 __ block.14
standard Lo reconstruction loss between outputs
of the quantized and full-precision self-attention

Figure 2: Box plots of activation distributions
module f self-attn -

for the self-attention and FFN in selected trans-
former blocks of LLaMA2-7B.

L= ‘ .]?self—altn(x) — [ Self-attn(x)Hz 4

where feraun denotes the corresponding quantized version of the self-attention module. To further
preserve the structural relationships captured by attention mechanisms, we introduce an attention-
preserving loss that aligns the attention maps between the quantized and full-precision models. Us-
ing Kullback—Leibler (KL) divergence, this loss encourages the quantized model to retain inter-token
dependencies:
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where N is the sequence length, ¢ is a small constant for numerical stability, M € RY¥*¥ and
M € RY*N represent the attention matrices computed from the full-precision and quantized query-
key interactions, respectively. By minimizing this loss, the quantized attention module is guided to
preserve the relational structure encoded by the original model, thus enhancing its fidelity under
low-bit constraints. Then, the overall quantization loss for the self-attention module Lgeifawn 1S
formulated as a weighted combination:

['self»atm = £1 + )\£2 (6)
For the FFN module, we quantize the gate,
up, and down projection layers collectively to
maintain internal consistency. Analogous to the
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self-attention module, we construct an Lo re- 10 10
construction loss to minimize the quantization é;z é:z

error between the quantized and full-precision
outputs of the FNN module:
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Figure 4: Visualizations of the Hessian matri-

This loss encourages accurate approximation
of the original representations while preserving
the FFN’s token-wise transformation capability
under quantization.

3.3 INSIGHTS
ACROSS TRANSFORMER BLOCKS

LLMs are built upon the Transformer architec-

ces for the 32 self-attention components (left) and
32 FFN components (right) of LLaMA2-7B. The
blue off-diagonal regions in the inter-component
Hessian matrix indicate a strong dependency be-
tween these components.

ture, which consists of a stack of Transformer blocks arranged sequentially. These blocks are often
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Table 1: Comparison of perplexity on WikiText2 (}) and average accuracy on nine zero-shot tasks
(1). FP16 denotes full precision. The best are bold-faced and second-best are underlined.

4Bits LLaMA-38B LLaMA-370B | LLaMA-27B LLaMA-213B LLaMA-270B | LLaMA7B  LLaMA 13B
WAKY Method 0-shot Wiki 0-shot Wiki 0-shot Wiki 0-shot Wiki 0-shot Wiki 0-shot Wiki 0-shot Wiki
AvgM) D) Avg® ) | Avg® D Avge® ) Aveg® @) | Ave® ) Ave® A

16-16-16 | FP16 | 68.09 614 7381 286 | 6521 547 6761 488 7159 332 | 6448 568 66.67 5.09
RTN 6370 8.13 3115  1e® | 6127 7.02 6024 639 69.62 387 | 6267 794 6345 8.60
SmoothQuant | 62.79 8.12 6794 670 | 5888 803 62.03 586 6593 550 | 6224 746 62.69 18.75

GPTQ 61.03 743 3145 9¢* | 60.86 9.84 6471 579 7096 394 | 60.15 793 6436 6.58
OmniQuant | 65.66  7.19 - - 63.19 574 6638 502 71.04 347 | 6342 58 6622 521

4-16-16 | AWQ 67.03 736 6892 592 | 63.89 583 6625 507 7088 403 |6330 597 6558 5.8
QuaRot 6727 653 7293 353 | 6430 562 6695 500 7121 341 | 6340 583 6591 520
SpinQuant 66.54 649 7290 349 | 6359 558 67.14 500 71.12 343 | 63.94 576 6632 5.16

’BQ 67.68 646 7325 328 | 6416 559 6723 498 7132 341 | 64.09 579 6647 5.18

RTN 3342 6e* 3121 8 | 3244 - 3086 8 3090 7et | 3251 7e* 3163 3e!
SmoothQuant | 33.04 10>  34.67 2> | 3213 - 3426 10° 3586 3¢ | 3442 3¢ 3329  6e?

4416 | GPTQ 3298  5e? 3147 4e* [ 3272 - 3001 4€® 3086 - 3212 10° 3151 3€B
QuaRot 61.69 802 6556 635 | 6187 605 6513 535 6996 378 |61.76 622 6446 5.50
SpinQuant 64.11 728 6699 6.10 | 5737 678 6323 524 7058 3.68 | 6182 6.08 6459 536

’BQ 65.01 726 7209 4.02 | 6367 58 6613 516 7081 3.61 | 6248 6.06 6556 5.35

RTN 3318  7¢2 3082 8 | 32.67 - 3093 7 3173 7e* | 3287 10* 3133 3¢t
SmoothQuant | 32.96 10° 33.76 3¢ | 3212 - 3336 10° 3554  3¢* | 3332 3¢ 3328 5e?

GPTQ 3371 6e 3120 4e* | 3352 - 27.85  5¢ 31.09 - 31.80  2¢*  30.63  3¢°

4-4-4 | OmniQuant | 32.33  4e? - - 4840 1426 5035 1230 - - 4846 1126 4563 10.87
QuaRot 6138 8.8 6533 660 | 6148 611 6516 539 7030 3.80 | 6122 626 6459 553

SpinQuant 64.10 735 6631 624 | 6201 596 6413 574 7057 361 | 6132 612 6495 539

’BQ 65.07 733 7133 441 | 6300 596 6521 524 70.68 3.59 | 62.12 6.08 6521 5.38

tightly coupled, exhibiting strong representational dependencies across their layers. Due to the in-
herently sequential and compositional structure of Transformer, quantization errors introduced in
one block can propagate through the network, potentially impacting not only that block but also
the subsequent ones. To investigate this inter-block dependency, we evaluate the similarities struc-
ture across different transformer blocks. Figure []illustrates the Hessian matrix computed across
32 consecutive transformer blocks, including both self-attention and FFN components. As shown,
several off-diagonal entries are notably non-zero, particularly among FFN modules, which indicates
the presence of second-order dependencies between different blocks. These inter-block relation-
ships imply that quantization-induced information loss in one block may be captured or amplified
by subsequent blocks. Therefore, when designing quantization strategies, it is important to consider
not only the local reconstruction loss within a block but also its downstream impact on later blocks.
Incorporating such cross-block effects into the optimization process can lead to more robust and
globally consistent quantization.

3.4 CROSS-BLOCK ERROR COMPENSATION

Building on the above analysis and empirical

observations, we propose a cross-block opti- & Trainable % Freeze
mization approach to account for inter-block L'ﬂ‘;}'ﬁfg";’” 4 4
dependencies during quantization. As illus- ‘“ ffn *| *“ ffn |9‘¢
trat.ed in Figure [3] (b), most existing quanti- Llamabecoder |, {* ' +| o *| 4| it st 7] .
zation methods operate in a block-wise man- Layer 2 s T : T
ner, quantizing each Transformer block inde- LlamaDecoder [ 4 I m He
pendently while ignoring the representational Layer ‘ i
dependencies across blocks. To address this T J [ seif_atn 4] J [ seif_atn &
limitation, we introduce an inter-block quanti- — =

zation strategy (Figure [5] (c)), which promotes (@) (b) ©

consistency across sequential blocks and helps

mitigate the propagation of quantization errors Figure 5: Illustration of cross-block error com-
through the network. pensation. (a) Structure of LLaMA2-7B; (b) ex-
isting methods optimize quantization error sepa-
rately within each decoder layer; (c) our method
performs cross-block optimization to minimize
cumulative quantization error.

Specifically, for a give input x, define the fol-
lowing loss function that measures the discrep-
ancy between the full-precision and quantized
outputs over a sequence of blocks from index
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Table 2: Perplexity on Wiki and C4 for various quantization methods across LLaMA-1 and LLaMA-
2 models. The best results are bold-faced and the second-best results are underlined.

#Bits LLaMA2-7B LLaMA2-13B LLaMA2-70B LLaMA1-7B LLaMA1-13B LLaMA1-30B

W-A-KV ‘ Method Wiki(}) C4() | Wiki()) C4() | Wiki()) C4(]) | Wiki(}) C4() | Wiki()) C4() | Wiki(}) C4(})
16-16-16 | FP | 547 697 | 4.88 6.46 | 332 552 | 5.68 708 | 5.09 6.61 | 4.10 5.98
RTN 539.48  402.35 | 10.68 1251 752 1002 | 2573 2826 | 1139 1322 | 1495  28.66
GPTQ 8.37 9.81 6.44 8.02 4.82 6.57 8.06 9.49 6.76 8.16 5.84 7.29
11606 | AVQ 2400 2385 | 1045  13.07 - - 11.88 1326 | 745 9.13 | 1007  12.67
OmniQuant | 6.58 8.65 5.58 7.44 392 6.06 6.49 8.19 568 132 | 4.74 6.57
QuaRot 6.09 8.69 537 7.70 371 612 | 625 8.46 547 748 4.60 6.69
?BQ 5.89 7.82 5.25 7.49 367  6.01 6.01 8.03 539 724 4.47 6.48
RTN 4t Set Set 7et 2et 2et 1e® 1ed 7et 5et 2et 2et
GPTQ 7e3 - 2¢3 323.12 | 7795 48.82 2¢3 689.13 5¢3 2¢% | 499.75  169.80
2-16-16 | OmniQuant | 37.37  90.64 | 17.21  26.76 7.81 1228 | 1547 2489 | 1321 1831 | 8.71 13.89
QuaRot 2207  49.68 | 1252 2658 | 6.00 1050 | 1225  22.65 963 1622 | 7.89 14.17
I2BQ 1423 1963 | 936 1387 | 492 761 | 1028 1389 | 799 1067 | 643 9.30
tot+ n:
~ 2
mln‘fz‘+n0"'0fi(=’5)*fi+n0"'0fi($)H2 (8)

Here, f; denotes the full-precision operation of the i-th block, and f; denotes its quantized counter-
part. In practice, this loss can be applied within a specific module (e.g., self-attention or FFN) by
computing the reconstruction error from the module in block ¢ to the corresponding module in block
i+n. This approach encourages the quantized representation at earlier layers to remain aligned with
downstream full-precision computations, thus improving overall quantization fidelity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baseline. 1°BQ is a flexible and generalizable quantization framework that supports arbitrary pre-
cision configurations. To comprehensively evaluate its effectiveness across diverse scenarios, we
conduct experiments under a broad spectrum of bit-width settings, including both standard and chal-
lenging low-bit regimes: W4A16KV 16, W4A4KV16, W4A4KV4, W3A16KV16, W2A16A16, and
W4A8A16. For comparison, we benchmark 12BQ against a range of state-of-the-art quantization
methods, including SmoothQuant |Xiao et al.|(2023), GPTQ |Frantar et al.| (2022), OmniQuant Shao
et al.|(2023), AWQ Lin et al.| (2024b)), QuaRot |Ashkboos et al.| (2024), SpinQuant [Liu et al.| (2024),
and CBQ Ding et al.|(2023)).

Models. We evaluate I°BQ on a suite of representative LLM models, covering multiple scales of
LLaMA (7B, 13B, 30B), LLaMA-2 (7B, 13B, 70B), LLaMA-3 (8B, 70B), and OPT (30B, 66B).

Datasets. Following standard protocols from prior work |Shao et al.| (2023)); [Lin et al.| (2024c)), we
evaluate quantized model performance on both language modeling and zero-shot reasoning tasks.
Specifically, perplexity is measured on WikiText2 Merity et al.| (2016) and C4 |Dodge et al.| (2021)),
using a context length of 2048 tokens. For zero-shot evaluation, we use nine benchmark tasks:
BoolQ|Clark et al.{(2019), LAMBADA |Radford et al.[(2019)), OpenBookQA Mihaylov et al.[(2018)),
Social IQA (SIQA) [Sap et al.| (2019), PIQA [Bisk et al|(2020), ARC (Challenge and Easy) |Clark
et al. (2018)), HellaSwag Zellers et al.|(2019), and WinoGrande Sakaguchi et al.|(2021).

Quantization Settings. We initialize quantization parameters using grid search on 8 samples from
the Pile dataset |Gao et al.| (2020), each with a sequence length of 1024 tokens. Optimization is
then performed on 512 samples from the Pile, also with 1024-token contexts. The learning rate for
quantization parameters is set to Se-5 by default and reduced to 2e-5 for larger models (LLaMA-
1-70B, LLaMA-2-70B, and LLaMA-3-70B). We use a batch size of 4 and train for 10 epochs for
W4A4 precision and 5 epochs for W2A16. The loss balancing coefficient ) is set to 10 throughout.

4.2 VALIDATION ON 4-BIT SETTING

Table [T] provides a comparative evaluation of various PTQ methods across multiple LLaMA model
variants. Among these methods, I2BQ consistently ranks first or second in performance across all
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Table 3: Evaluation of quantization on generation datasets with perplexity ({). Following the quan-
tization settings of the comparison methods, we employ group quantization with a group size of 128
to quantize the weights. The best results are bold-faced and the second-best results are underlined.

#Bits | Methods OPT-30B OPT-66B | LLaMA1-30B | LLaMA1-65B
wiki C4 | Wiki C4 | Wiki C4 | Wiki C4

WI16A16 | FP | 956 10.69 | 9.34 1028 | 410 598 | 353  5.62
GPTQ 9.63 1080 | 9.55 1050 | 434  6.16 | 377 577

WaAlg | OmniQuant | 971 1080 | 937 1063 | 419 606 | 362 5.8
CBQ 9.65 1073 | 941 1031 | 414 603 | 359 5.62

I?BQ 959 1072 | 937 1032 | 413 6.02 | 340 5.62

GPTQ 9.1e3 1.64e4 | 6.3e3 43e3 | 1.3e4 7.2¢3 | lled 8.8¢3

W2Ale | OmniQuant | 11.00 1280 | 1059 1213 | 7.14 902 | 601  7.78
CBQ 1051 1201 | 1025 11.19 | 558  7.65 | 525 742

I’BQ 9.99 1158 | 982 11.01 | 487 689 | 474 721
OmniQuant | 9.95 1096 | 952 1073 | 458 645 | 3.96  6.12

waag | RPTQ 1022 1101 | 946 1057 | - - - :
CBQ 9.83 10.86 | 944 1042 | 432 625 | 3.84 596

I?BQ 9.64 1079 | 945 1031 | 429 6.7 | 371 587
OmniQuant | 10.60 11.89 | 1029 11.35 | 10.33 1249 | 9.17  11.28

Waaq | QLLM - - - - | 837 1151 | 687 889
CBQ 1034 1179 | 945 1102 | 796 973 | 589  7.52

I?BQ 1014 1129 | 943 1093 | 771 960 | 526  7.13

Table 4: Ablation study of I’BQ’s main components on LLaMA-2-7B under W2A16. | is better for
perplexity (WikiText-2, C4), 1 is better for downstream accuracy.

MWO CBEC BWQ | Wiki(]) C4(l) | ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande | Avg(t)

75950 59636 | 21.76 26.18 25.68 1.02 52.50 51.46 29.77

v 14.83 20.22 | 26.88 45.62 64.20 44.51 64.20 59.98 50.90
v 16.86 2234 | 2543 56.02 40.32 31.16 66.38 54.22 45.59

v v 14.23 19.63 30.12 61.20 63.05 37.42 70.40 60.14 53.72

models. Under the relatively mild quantization setting of W4A16A16, methods like QuaRot and
SpinQuant occasionally achieve slightly better results. However, as quantization becomes more
aggressive—particularly in configurations like W4A4KV16 and W4A4KV4—I?BQ consistently
delivers the lowest perplexity on WikiText2 and superior zero-shot reasoning performance across
nine benchmark tasks. These improvements are especially pronounced on larger models such as
LLaMA-3 70B, demonstrating the robustness of I?’BQ under more challenging low-bit conditions.

4.3  VALIDATION ON EXTREME LOW-BIT SETTINGS

To further assess the robustness of I1?’BQ under extreme quantization, we evaluate its performance
in ultra-low-bit scenarios with 2-bit and 3-bit weights (Table [2). Even under severe compression,
I?BQ delivers state-of-the-art performance across most settings, notably outperforming others in the
W2 configuration where alternatives degrade significantly. These findings highlight I?BQ’s ability
to preserve model fidelity even under highly constrained precision.

4.4 COMPARISON WITH CROSS-BLOCK QUANTIZATION METHODS.

We further benchmark 1?BQ against strong baselines, with a particular focus on CBQ—a recent
cross-block quantization method that jointly quantizes multiple transformer layers. Our evaluation
includes several large-scale models, notably OPT-30B, OPT-66B, LLaMA-1 30B, and LLaMA-
1 65B. As shown in Table [3| I?’BQ consistently outperforms CBQ across nearly all settings and
datasets. These consistent performance gains highlight the robustness of I2BQ under low-bit con-
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straints. Moreover, the results validate the effectiveness of the proposed module-wise optimization
strategy and cross-block error compensation in achieving accurate and reliable quantization in large-
scale models.

4.5 ABLATION STUDIES

We conduct ablation studies to validate the contribution of each component in the I’BQ framework
(Table[). Starting from a baseline using standard RTN quantization, we observe severe degradation
under W2A16, highlighting the challenge of ultra-low-bit quantization. Introducing our Module-
Wise Optimization (MWO) significantly improves performance, reducing WikiText2 perplexity to
14.83 and enhancing downstream accuracy. To disentangle the effect of optimization granularity,
we also evaluate the Block-wise Quantization Error Minimization (BWQ) module. While BWQ
reduces perplexity to 16.86, MWO achieves a greater improvement, demonstrating the advantage
of designing module-wise reconstruction losses for self-attention and FFN. Finally, incorporating
Cross-Block Error Compensation (CBEC) alongside MWO yields the best overall performance,
with the lowest perplexity and highest accuracies across nearly all tasks. These results confirm the
effectiveness of our full framework in mitigating quantization errors and maintaining performance
in extreme low-bit regimes.

4.6 OVERHEAD ANALYSIS

Our framework introduces negligible computational overhead during inference. Prior to quantiza-
tion, a Hadamard-based rotation is applied to both weights and activations. The rotation of weight
matrices is performed offline and fused into the model through direct weight manipulation, thereby
incurring no additional runtime cost.

For activations, the rotation is applied online during the forward pass. This operation remains highly
efficient, as the Hadamard matrix contains only binary values (£1), enabling the transformation to
be implemented via simple sign flips without requiring multiplications. As a result, the runtime over-
head is minimal in practice. Moreover, our quantization framework does not rely on any specialized
hardware, ensuring broad compatibility and ease of deployment.

5 CONCLUSION

To enable efficient deployment of large language models (LLMs), we present I2BQ, a novel
post-training quantization framework. Existing methods typically address either weight—activation
quantization or extreme weight quantization, but they often overlook the cumulative error prop-
agation in deep Transformer architectures. In contrast, our framework effectively handles both
weight—activation quantization and extreme weight quantization.

Our framework consists of two core components. First, we propose module-wise optimization,
which independently quantizes self-attention and feed-forward modules using tailored reconstruc-
tion objectives that account for their distinct computational roles and activation distributions. Sec-
ond, we introduce a cross-block error compensation mechanism that mitigates inter-layer quantiza-
tion drift by enforcing consistency across Transformer blocks.

Extensive experiments across various LLMs demonstrate that IBQ significantly improves perplex-
ity and downstream task performance under aggressive low-bit settings (e.g., W2A16), while incur-
ring negligible inference overhead.

6 LIMITATIONS

Although I?BQ demonstrates strong performance in post-training quantization (PTQ) of LLMs,
several limitations remain. Under extremely low-bit settings, its accuracy still lags behind that of
Quantization-Aware Training (QAT) methods. Moreover, the current optimization process is time-
consuming, often taking several hours to complete. In future work, we plan to substantially reduce
this optimization time while further enhancing the effectiveness and scalability of PTQ.
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STATEMENTS

ETHICS STATEMENT

In this work, we propose a post-training quantization method for large language models (LLMs)
with the aim of improving their efficiency. All experiments are conducted on publicly available
datasets that do not contain personally identifiable information. We have carefully followed the
ethical guidelines and submission policies of ICLR and affirm that this work complies with all
applicable standards.

REPRODUCIBILITY STATEMENT

We follow the ICLR reproducibility guidelines and ensure that our work can be reproduced. All
datasets used in our experiments are publicly available. Detailed descriptions of the quantization
settings and hyperparameters are provided in the main text and Appendix. We will release our code
upon acceptance of the paper.
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A APPENDIX

A.1 MORE RESULTS

This section offers a comprehensive presentation (Table [BTT) of results across various datasets,
providing supplementary details to the Table T}

#Bits

Model W-A-KV Method ARC-c ARC-e BoolQ HellaS. Lam. OBQA PIQA SIQA WinoG. Avg.
16-16-16  Full Precision  46.42 7433 7771 7594  73.69 4420 79.16 45091 69.53  65.21

RTN 42.15 67.59  73.06 7234  67.18 41.80 76.50 44.11 66.69  61.27

SmoothQuant  39.59 65.19  69.82 68.84 6227 4020 7595 44.17 63.85 58.88

2-7B GPTQ 42.49 69.53 61.31 73.83  67.61 4240 77.64 4452 6843  60.86
4-16-16 Omniquant 42.49 71.00 7434 73.85 7070 44.00 7840 4493 68.82  63.19

AWQ 44.11 70.75  78.07 7498 70.68 43.80 78.13 45.14 69.38  63.89

QuaRot 43.94 73.15 7697 74.87 7824 45.09 7824 4509 69.38  64.30

SpinQuant 43.34 72.69  73.36 75.10 73.80 43.00 77.86 4560 67.56  63.59

I’BQ 44.37 7486  75.26 75.19 7181 4390 78.62 4564 67.83 64.16

RTN 25.34 28.03  50.52 27.71 1.01 2620 50.82 3393 4838 3244

SmoothQuant  28.33 26.39  49.39 27.28 1.18 2340 48.00 33.62 50.75 3213

2B 4-4-16 GPTQ 24.40 28.70  51.62 28.66 1.36 2460 51.14 3449 4949 3272
QuaRot 42.32 69.65  74.77 7291 70.81 39.80 77.20 4355 65.82 61.87

SpinQuant 37.54 62.58  71.16 7048 67.16 3480 7546 39.76  60.62  57.37

I’BQ 43.89 7436  73.62 75.01 7224 4280 7795 4502 6798  63.67

RTN 27.22 27.06  50.83 27.34 0.93 25.80 49.51 3485 5051 32.67

SmoothQuant  26.37 25.63 4771 27.05 1.11 2640 5190 3449 4838 3212

GPTQ 26.96 27.65  52.84 28.83 1.63 2920 49.62 35.11 49.80 3352

2-7B  4-4-4 Omniquant 31.40 53.75  63.79 55.06 3563 3440 6659 4028 5470 4840
QuaRot 41.43 69.32  74.19 7250 70.66 39.80 77.42 4335 64.64 6148

SpinQuant 40.44 71.08  74.40 73.51 70.66 41.80 76.88 4350 65.82 6201

I’BQ 40.87 74.07  74.89 74.81 70.67 43.89 76.06 4479 67.01 63.00

Table 5: Zero-shot commonsense question answering accuracy (1) of LLaMA2-7B using different
quantization methods and bit-width configurations across multiple datasets.

Model W#:]:ztliV Method ARC-c  ARC-e BoolQ HellaS. Lam. OBQA PIQA SIQA WinoG. Avg.
16-16-16  Full Precision  49.15  77.53 8058 7939 7662 4520 8063 4749 7190 67.61

RTN 4292 6654 7138 6662 6899 3940 7693 4406 6535 6024

SmoothQuant 4625 7045 7492 69.16 7049 3980 77.86 4514 6417 6203

GPTQ 49.63 7395 7483 7377 7320 4240 7851 4550 7064 6471

BB e Omniqunt 4829 7542 7792 7780 7559 4520 8041 4662 7007 6638
AWQ 4863 7816 7881 7848 7520 4500 79.54 4621 7245 6625

QuaRot 49.15 7626 8046 7817 7650 4540 80.03 4550 7TLII 6695

SpinQuant  49.15 7748 7927 7846 7710 4460 80.03 4647 7167 6714

1BQ 4920 7687 80.52 7816 7662 4490 80.16 4699 7167 6723

RTN 2799 2681 3850 2608 000 2360 4820 3490 5162 3086

SmoothQuant 2449 3506 47.98 3087 367 2620 5501 3531 4972 3426

>138 aage  GPTQ 2782 2677 3792 2567 000 2180 4777 3511 4815 301
QuaRot 4642 7386 7810 7568 7431 4300 79.05 4437 7135 6513

SpinQuant 4377  69.99 7657 7463 7281 4160 7720 4427 6819 6323

1BQ 4744 7488 7979 7694 7536 4390 7934 4621 7128 6613

RTN 2782 2652 3838 2627 002 2600 4978 3439 4917  30.93

SmoothQuant 2449 3300 4584 3070 270 2380 5381 3480 5107 3336

GPTQ 2790 2639 3795 2616 000 27.00 4826 3439 5043  27.85

213B 444 Omniquant 3285 5513 6434 6013 4285 3340 6817 3976 5651 50.35
QuaRot 4727 7391 7841 7533 7353 4380 7927 4585 6906 6516

SpinQuant  46.67 7449 7676 7522 7219 4240 7829 4345 6772 6413

1BQ 4726 7468 7832 7591 7428 4410 79.02 4538 6794 6521

Table 6: Zero-shot commonsense question answering accuracy (1) of LLaMA2-13B using different
quantization methods and bit-width configurations across multiple datasets.
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Model Wi]iitliV Method ARC-c  ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.
16-16-16  Full Precision 5742 81.02 8379 8381 7960 4880 8270 49.18 7798 71.59

RTN 5580 7920 8135 8178 7551 4760 8194 4683 7648  69.62

SmoothQuant 5026 7656 8153 6781  73.63 4440 8134 4417 7364 6593

GPTQ 5691 80.81 8324 8247 7906 4780 8275 4806 77.51  70.96

2708 ilele Omnquant 5708 8081 8260 8307 7918 4740 8308 4887 7719 7104
AWQ 5667 80.54 8298 8254 7883 4767 8297 4812 77.62  70.88

QuaRot 5734 80.85 8324 8327 8038 4760 8221 4862 7735 7121

SpinQuant 5691 80.60 83.18 83.06 79.16  49.00 8275 4831 7711 7112

2BQ 5720 8097 83.03 8302  80.00 4880 8271 4862 7735 7132

RTN 2935 2605 3774 2597 002 2480 5131 3414 4870 3090

SmoothQuant  25.00 3598 5523 3252 749 2500 5462 3521 5170 3536

2708 4ate  GPTQ 2782 2580 3795 2582 000 2700 49.67 3398 4972  30.86
QuaRot 5520 8035 8110 81.87  79.06 4580 8205 4790 7624  69.96

SpinQuant 5538 7896 8336 8254 7900 4780 82.10 4867 7743  70.58

2BQ 5603 8030 8318 8241  79.14 4770 8276 4862 77.03 7081

RTN 3038 2774 3823 2612 002 2460 5174 3420 5249 3173

SmoothQuant  24.15 3388 5532 3175 714 2640 5495 3414 5217 3554

GPTQ 2875 2639 37.86 2596 000 2640 5000 3444 5004 31.09

270B  4-4-4 QuaRot 5648  80.56 8159 8193  79.16 4600 8221 4800 7680 7030
SpinQuant 5631  80.64 8355 8236 7941 4720 8221 4729 7616  70.57

2BQ 5631  80.53 8333 8220  79.09 4760 8232 4802 7671  70.68

Table 7: Zero-shot commonsense question answering accuracy (1) of LLaMA2-70B using different
quantization methods and bit-width configurations across multiple datasets.

Model Wﬁ]z{tle Method ARC-c  ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.
16-16-16  Full Precision 5350 7774 8110 7918 7574 4480 80.63 47.08 7301 68.09

RTN 4898 7323 7275 7590 6385 4320 7840 4381 7316  63.70

SmoothQuant  47.44 7235 7201 7492 6241 4300 77.60 4391 7127 6279

GPTQ 4974 7252 7128 6834 4669 4360 7878 4647 7182 6103

8B ele Ommiqunt 5000 7454 7905 7692 7031 4380 7954 4452 774 6566
AWQ 5222 7668 8031 7751 7481 4420 8014 4626 7167  67.03

QuaRot SIS 7753 79.60 7787 7376 4480 7998 4637 7356 6727

SpinQuant 5213 7228 7920 7840 7376 4480 7998 4550 7277  66.54

12BQ 5208 7896 8047 7802 7518 4284 8041 4657 7371 67.68

RTN 2372 3089 4630 3126 303 27.60 5272 3526 5004 3342

SmoothQuant 2329 2828 4893 29.19 157 2860 5446 3337 4964  33.04

288 4ane  GPTQ 2346 3207 4379 3010 241 2800 5397 3414 4886 3298
QuaRot 4266 6726 7373 7360 6742 4300 7661 4504 6590 6169

SpinQuant 4735  TAI2 7636 7598  69.88 4246 7137 4447 6898 641l

12BQ 4797 7402 7866 7670 7077 4300 7956 4552 6890 6501

RTN 2372 3056 4618 2983 270 2860 5245 3439 5020 33.8

SmoothQuant  23.55 2896 4884 2890 144 2940 5109 3414 5036  32.96

GPTQ 2338 3274 4434 2072 230 2980 5495 3475 5130 3371

3-8B  44-4  Omniquant 2287 3035 4153 3L11 186 2540 5337 3408 5043 3233
QuaRot 4283 6742 7321 7266 6693 4220 7573 4519 6622 6138

SpinQuant 4633 7357 7615 7543 7140 4140 7916 4468 6875 64.10

12BQ 4800 7420 7836 7628 7186 4310 7916 4564 6896 6507

Table 8: Zero-shot commonsense question answering accuracy (1) of LLaMA3-8B using different
quantization methods and bit-width configurations across multiple datasets.

A.2 ADDITIONAL ABLATION STUDY

Table[T2] presents additional ablation study results for LLaMA2-7B under W4A4 quantization, fur-
ther demonstrating the effectiveness of each module in our approach.

A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

A hyperparameter sensitivity analysis was conducted for A, and the results, shown in Table [13]
indicate that setting A = 10 provides a strong balance of performance across our evaluation metrics.
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Model Wi]iitliV Method ARC-c  ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.
16-16-16  Full Precision 6442 8598 8514 8495 7947 4846 8439 5082 80.66 73.81

RTN 2628 2555 3783 2636 000  29.00 5098 3470 49.64 3115

SmoothQuant  51.88 7753  80.09 8047  73.16 4660 80.58 4529 7585  67.94

GPTQ 2577 2529 3783 2636 0.2 2840 5174 3490 5264 3145

3-708 ilele Omnquant 4820 7542 7792 7780 7559 4520 8041 4662 7017 6638
AWQ 5226 7895 8324 8152 7305 4767 8125 4443 7798 6893

QuaRot 6220 83.88 8557 8418  79.04 4820 83.13 50.10 80.03  72.93

SpinQuant 6203 8497 8511 8406 7830  47.00 8390 49.85 8090 72.90

I2BQ 63.03 85.13 8485 8452 7900 48.10 83.86 50.53 8021 7325

RTN 2747 2588 3783 2626 000 2720 5163 3526 4933 3121

SmoothQuant  25.60 3447 5046 3248 198  30.00 5424 3383 4893  34.67

3708 aage  GPTQ 2577 2600 4364 2642 000 2740 5201 3255 4933 31.47
QuaRot 5060 73.65 7746 77.83 7196 4320 78.13 4529 7190  65.56

SpinQuant 5384 7769 8024 7819 7306 4500 78.67 4324 7301  66.99

2BQ 6049 8399 8401 8421 7669 4830 8269 4881 7933  72.09

RTN 2713 2542 3783 2612 000 2660 5076 35.16 4838 30.82

SmoothQuant 2346 3148 4881 2922 413 2800 5256 3495 5122 3376

GPTQ 2611 2517 4517 2607 000 2640 4886 33.88 49.17 31.20

370B  4-4-4 QuaRot 4949 7437 7916 7722 7169 4229 7889 4387 7103 6533
SpinQuant 5188 7639 8098 7650 7143 4346 7927 4417 7269  66.31

2BQ 5098 8193 8319 8284 7604 4870 8206 4851 7877 71.33

Table 9: Zero-shot commonsense question answering accuracy (1) of LLaMA3-70B using different
quantization methods and bit-width configurations across multiple datasets.

Model wﬁfﬁv Method ARC-c ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.
16-16-16  Full Precision 4471 7290 7498 7620 7308 4380 79.16 4555 6993 6448
RTN 4317 6982 7330 7375 69.67 4200 7813 4534 68.82 6267

SmoothQuant  40.96  68.60 7404 7316 6874 4200 7807 4611 6851 6224

GPTQ 4172 6785 6798 6950 6315 4080 7655 4437 6946  60.15

B il Omnaunt 4249 7138 7462 7471 7198 4200 7905 4596 6859 6342
AWQ 4386 7079 7419 7527 6994 4300 7845 4509 69.14 6330

QuaRot 4275 6999 7330 7503 7355 4200 7835 4514 69.61 6340

SpinQuant 4377 7117 7446 7509 7291 4440 7840 4452 7072 6394

I’BQ 4407 7192 7438 7507 7337 4440 7817 4569  69.65  64.09

RTN 2346 2934 4505 2002 124 2600 5207 3511 5130 3251

SmoothQuant  25.17 3140 5162 2973 543 2820 5468 3444 49.09 3442

B aage OPTQ 2389 2774 4287 2849 128 2740 5100 3623 5020 3212
QuaRot 4036 6726 7315 7280 7081 4200 7797 4427 6717 6176

SpinQuant  40.19 6843 7235 7291  70.68 4120 7775 4417 68.67 61.82

1BQ 4117 69.04 7381 7299 7162 4220 7807 4496 68.88 6248

RTN 2389 2059 4667 2837 113 2640 5299 3521 Sls4 3287

SmoothQuant 2338  30.18  50.03 2067 489 2460 5174 3475  50.67 3332

GPTQ 2380 2790 4388 2786 105 2620 5185 3408 4949  31.80

7B 444 Omniquant 3140 5484 6180 5698 3829 3180 6659 3930 5517 4846
QuaRot 4027 6755 7220 7250 70.62 3980 7720 4488 6590  61.22

SpinQuant  39.08  68.18 7306 7287 7046 4060 7742 42.68 67.56  61.32

I’BQ 4192 6974 7335 7296 7101 4160 7795 4328 6731 6212

Table 10: Zero-shot commonsense question answering accuracy (1) of LLaMA-7B using different
quantization methods and bit-width configurations across multiple datasets.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)
We used GPT to assist with polishing the writing of this paper. The model was only used to improve

grammar, clarity, and readability; all technical content, experiments, and analyses were designed,
implemented, and verified by the authors.
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#Bits

Model W-A-KV Method ARC-c  ARC-e BoolQ HellaS. LambA. OBQA PIQA SIQA WinoG. Avg.
16-16-16  Full Precision  47.87 7449  77.86  79.10 76.03 4440 80.30 46.72 7324  66.67

RTN 4556  70.66 7245  76.06 70.58 42.00 78.84 4493  70.01 6345

SmoothQuant  43.86  71.21 71.62  74.19 69.34 40.00 77.80 4545 7072  62.69

GPTQ 4599 7285 7327 7531 70.10 4460 79.87 46.16  71.11  64.36

138 4-16-16 Omniquant 47.01 7386 7722 7795 75.59 45.00 79.87 46.88  72.61  66.22
AWQ 4753 7386  75.60  59.03 78.34 4340 79.87 4585 71.67  65.58

QuaRot 4718 7222  76.85  78.07 75.99 4500 79.76 45770 7238 6591

SpinQuant 4744 7483 7737  78.13 75.55 45.60 7992 46.01 72.06 66.32

1’BQ 47.41 7472 7772 78.08 75.92 4570  80.22 46.15 7231 6647

RTN 25.85 2626  42.05  26.70 0.17 28.00 50.33 34.60 50.67 31.63

SmoothQuant 2543  29.29  51.56  28.12 2.02 26.00 53.32 3434 4957 3329

13B 4416 GPTQ 24.66 2778  40.80  25.83 0.70 2420 51.31 36.65 51.70 3151
QuaRot 4693 7151 7557  76.63 74.13 4240 7873 4524 6898  64.46

SpinQuant 4573 7256 7538  76.86 73.28 43.60 78.89 4463 7040 64.59

I’BQ 4738  73.71 7722 76.88 74.66 44.60 78.86 4567 71.03  65.56

RTN 2628 2727 4235 2585 0.19 26.60 4995 3419 4925 31.33

SmoothQuant 2449  28.83  51.65 2791 2.08 26.00 52.56 3541  50.59 3328

GPTQ 23.63 2731 3985 26.17 0.56 26.00 51.96 35.82 49.57  30.63

13B 444 Omniquant 29.61 4823 5820 5645 28.76 3140 6529 37.10 55.64  45.63
QuaRot 46.50  71.55  75.08  76.43 73.47 45.00 7878 4437  70.09  64.59

SpinQuant 4599  70.71  76.51 77.16 73.63 45.60 79.00 4565 7032  64.95

I’BQ 46.02 7323  77.09  76.57 74.07 4530 78.64 45777 7038  65.21

Table 11: Zero-shot commonsense question answering accuracy (1) of LLaMA-13B using different
quantization methods and bit-width configurations across multiple datasets.

MWO CBEC BWQ | WikiText-2(|) C4()) | ARC-C ARC-E HellaSwag LAMBADA PIQA Winogrande | Avg(1)

20.11 21.02 | 23.89 52.53 36.60 60.18 64.53 55.09 41.74

v 7.01 8.58 36.43 68.73 52.75 57.25 74.43 63.46 51.78

v 6.23 7.87 40.53 73.48 53.86 66.63 76.17 65.19 58.84
v v 5.96 7.52 40.87 74.07 54.81 67.07 76.06 67.01 63.32

Table 12: Ablation study of the main components of I?BQ on LLaMA-2-7B under the W4A4
setting. | is better for perplexity (WikiText-2, C4), while 1 is better for downstream task accuracy.

A | ARC-c ARC-e¢ BoolQ HellaS. Lam. OBQA PIQA SIQA WinoG. | Avg. (1)

0.1 | 40.97 72.59 7371 7423 6950 43,53  76.21 44.80 65.14 62.30
1 39.29 7328  74.52 73.87 70.87 43.15 77.03 43.49 66.57 62.45
10 | 40.87 74.07  74.89 74.81  70.67 43.89 76.06 44.79 67.01 63.00
15 | 41.04 71.88  72.61 7426 6896 44.16 76.85 44.00 67.42 62.35
20 | 40.63 72.67  73.02 7385 6940 44.07 7721 4340 65.99 62.24

Table 13: Sensitivity analysis of the coefficient A on zero-shot accuracy (1) across multiple bench-
marks.
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