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Abstract

Compound figures, which are multi-panel composites containing diverse subfig-
ures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction
remains largely unaddressed. Prior work on subfigure extraction has been limited
in both dataset size and generalizability, leaving a critical open question: How does
high-fidelity image—text alignment via large-scale subfigure extraction impact repre-
sentation learning in vision-language models? We address this gap by introducing
a scalable subfigure extraction pipeline based on transformer-based object detec-
tion, trained on a synthetic corpus of 500,000 compound figures, and achieving
state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks.
Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality
biomedical vision-language dataset comprising /8 million clinically relevant sub-
figure—caption pairs spanning radiology, microscopy, and visible light photography.
We train and evaluate vision-language models on our curated datasets and show
improved performance across retrieval, zero-shot classification, and robustness
benchmarks, outperforming existing baselines. We release our dataset, models,
and code to support reproducible benchmarks and further study into biomedical
vision-language modeling and representation learning.

1 Introduction

The rapid progress of general-domain vision-language models (VLM) (Radford et al.} 2021} Jia et al.|
2021} |Girdhar et al., [2023)) has sparked growing interest in building large-scale multimodal datasets
tailored to the medical domain (Zhang et al., | 2023} |Lin et al.|[2023a; |Pelka et al., 2018} Lozano et al.|
2025; |Baghbanzadeh et al.,[2025). Despite these efforts, the scale of medical datasets still lags far
behind their general-domain counterparts. While increasing dataset size continues to be a primary
goal, there is growing recognition that improving the quality and relevance of image-text pairs may
be a more effective strategy for enhancing model performance and clinical utility (Baghbanzadeh
et al.,[2025).

Biomedical figures present unique challenges: they often consist of compound layouts that combine
multiple subfigures, each potentially depicting a different imaging modality, anatomical region,
or clinical concept. Unlike dataset scale, which has received substantial attention, this structural
heterogeneity remains largely unexplored. Most of the existing biomedical VLM pipelines treat
compound figures as atomic units, pairing the entire image with a caption, without disentangling their
internal structure.

We hypothesize that such coarse image-text alignment could introduce noise into pretraining, ulti-
mately impacting the transferability and generalizability of the learned representations. While recent
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work has scaled data curation through bulk mining of PubMed Central (PMCE articles (e.g., PMC-
15M (Zhang et al.,[2023) and BIOMEDICA (Lozano et al., 20235))), these efforts still rely on noisy and
compound figures. To our knowledge, only a few prior works incorporate subfigure extraction as part
of the curation process (Pelka et al.,[2018; [Lin et al., 2023aj; Baghbanzadeh et al.| 2025)); however,
they do so at small scale. This raises an important gap in the field: how does subfigure extraction and
the resulting improvement in medical image-text alignment quality impact representation learning
at scale, particularly given the known sensitivity of contrastive objectives to both dataset size and
alignment fidelity during pretraining?

In this work, we investigate the impact of large-scale subfigure extraction on medical vision-language
representation learning. We first create a dataset of 6 million image-caption pairs by filtering out non-
medical images (e.g., charts, plots, tables) from the BIOMEDICA corpus (Lozano et al.,2025) using
a combination of label metadata and a ResNet classifier. For the subfigure extraction step, we train a
high-performance object detection model with the same architecture as DAB-DETR (Dynamic Anchor
Boxes DEtection TRansformer) (Liu et al.,|2022) on a corpus of 500,000 programmatically-created
compound figures. By decomposing compound figures with this model, we build OPEN-PMC-18M,
one of the largest and most curated collections of biomedical image-text pairs to date, consisting of
18 million subfigure-caption pairs. We then train vision and text encoders using a contrastive learning
objective and evaluate the resulting models on an extensive suite of downstream tasks, including
cross-modal retrieval and zero-shot classification across three distinct medical modalities: radiology,
microscopy, and visible light photography (VLP). We release our dataseﬂ models, and code’|to
support reproducible benchmarks and further study into biomedical VLM and representation learning.
Our contributions are as follows:

* We propose a scalable subfigure extraction pipeline using transformer-based object detection
trained on a 500,000 compound figure dataset, achieving state-of-the-art performance on
ImageCLEF 2016 (Kalpathy-Cramer et al.l 2014} |Garcia Seco de Herrera et al.,|2016) and
synthetic evaluation sets.

* We release OPEN-PMC-18M, a large-scale biomedical image-text dataset with 18 million
subfigure-caption pairs filtered for clinical relevance across radiology, microscopy, and
visible light photography.

* We provide a comprehensive evaluation of vision-language models trained on our datasets,
demonstrating improved performance in retrieval, classification, and robustness across
multiple medical benchmarks.

2 Related Work

2.1 Biomedical Vision-Language Datasets

Most efforts to date have relied on mining figures and captions from the PMC Open Access subsetE]
One of the earliest publicly available datasets is ROCO (Pelka et al., 2018]), which compiled around
80,000 radiology and 6,000 non-radiology images, enriched with metadata such as captions and
keywords. Later, Lin et al.|(2023b)) introduced PMC-OA , which includes 1.6 million image-text
pairs. Their contribution emphasized automation—proposing a pipeline to streamline the pairing
process and reduce human annotation. More recently, Zhang et al.|(2023) announced PMC-15M, a
dataset of 15 million image-text pairs. The largest released dataset to date is BIOMEDICA (Lozano
et al.| 2025)), which comprises 24 million pairs and employs clustering, vision encoders, and expert
taxonomies to assign modality labels at global and local levels. While these efforts represent major
progress in scale, recent work has emphasized that data quality is a critical factor in learning effective
and generalizable medical representations (Baghbanzadeh et al., 2025). Building on the premise of
OPEN-PMC, our work takes a quality-first approach while also significantly scaling up the dataset.

'https://pmc.ncbi.nlm.nih.gov/
Zhttps://huggingface.co/datasets/vector-institute/open-pme-18m
3https://anonymous.4open.science/r/open-pmc-18m-CE25/
*https://pmc.ncbi.nlm.nih.gov/tools/openftlist/
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2.2 Subfigure Extraction as Object Detection

Early approaches to compound figure separation relied on classical computer vision techniques, using
heuristics based on whitespace, edge detection, or layout regularity. However, these methods often
struggled to handle diverse panel styles and complex spatial arrangements. More recent work treats
subfigure extraction as an object detection problem, leveraging deep learning models. For example,
Tsutsui and Crandall| (2017)) and [Yao et al.| (2021)) used YOLO for subfigure separation. [Lin et al.
(2023a)) also uses an object detection model to extract subfigures in their pipeline. They train a DETR
(DEtection TRansformer) (Carion et al.| 2020) model on the MedICaT dataset (Subramanian et al.,
2020) containing 2069 annotated compound figures.

Data annotation for training an image decomposition model is challenging and time-consuming.
Current annotated datasets for this are small, which lead to models with suboptimal performance.
To overcome this, synthetic datasets of compound figures have been proposed, where subfigures are
programmatically composed to simulate real-world layouts. This allows training of object detection
models without relying on large-scale human-annotated data (T'sutsui and Crandall, 2017} |Yao et al.,
2021).

3 Data Composition and Curation Process

3.1 [Initial Collection and Filtering

We begin with the BIOMEDICA dataset (Lozano et al., |2025), which has been extracted from articles
in the PubMed Central Open Access Subset. BIOMEDICA contains approximately 24 million image-
caption pairs along with metadata, including global and local modality labels for each image. We
apply a filtering step using the provided labels and retain only those pairs primarily categorized as
clinical imaging, microscopy, immunoassays, or chemical structure. This yields a dataset of 6 million
pairs, which we refer to as PMC-6M in this paper.

3.2 Vision-Based Subfigure Extraction

To enable scalable extraction of subfigures from biomedical compound figures, we trained a
transformer-based object detection architecture, Dynamic Anchor Box DEtection TRansformer
(DAB-DETR) (Liu et al.}2022). Prior work of [Lin et al.|(2023a)) trained a DETR model on MedICaT
(Subramanian et al., 2020) with only 2,069 manually annotated compound figures. In contrast, we
trained our model on a large-scale synthetic dataset of 500,000 compound figures, the first of its kind
in the biomedical domain. We use DAB-DETR as it improves upon the original DETR model by
learning dynamic anchors as queries, resulting in improved localization and faster convergence (Liu
et al.,[2022).

Synthetic Data Formation. To train a subfigure extraction model at scale, we generate a synthetic
dataset by reversing the subfigure extraction process: rather than decomposing existing compound
figures, we programmatically construct new ones by composing multiple single-panel biomedical
images into compound layouts. The key advantage of this approach is the availability of ground-truth
bounding boxes for each subfigure. Our generation pipeline samples a layout template that specifies
the spatial arrangement of subfigures. Each layout is defined by a set of configurable parameters,
including:

* Grid Size: Specifies a standard m x n grid or a custom arrangement for panel placement.

* Margins: Random horizontal and vertical spacing between panels to simulate variability in
published figure layouts.

* Labeling Scheme: Determines how panels are annotated (e.g., using numerical, alphabetical,
or compound labels like "1a" or "a-1"), and whether labels appear inside or outside panel
boundaries.

» Aspect Ratio: Specifies a fixed width-to-height ratio applied uniformly to all subfigures.

Subfigures are sampled from a repository of single-panel biomedical images spanning diverse
modalities such as radiology, microscopy, pathology, etc., which we will describe below. Composite
figures may contain panels from the same modality or a heterogeneous mix, providing semantic
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Figure 1: Left Overview of our pipeline for creating synthetic compound figures used to train the
DAB-DETR model. A Sampler selects single-panel images and layout specifications from their
respective pools. A Labeler assigns subfigure labels from a predefined label pool (e.g., 1, a, al,
a-1), placing them according to the chosen scheme. Right Distribution of medical image modalities,
number of subfigures per compound figure, and caption length statistics within OPEN-PMC-18M.
The average caption contains 165.82 tokens, with a max of 7352 and almost 19.48% of captions had
more than 256 tokens.

diversity and mimicking real-world figure complexity. Figure2) illustrates the full synthetic data
pipeline.

Image Decomposition Model Training and Evaluation. We train a DAB-DETR model on the
500,000 synthetic compound figures and validate its performance on a similarly created holdout
set of 20,000 images. Source subfigures are drawn from well-known benchmark datasets such as
ROCO (Pelka et al., [2018), SICAP (Angel E. Esteban et al., [2019), HAM10000 (Tschandl et al.,
2018)), PathMNIST and RetinaMNIST from MedMNIST (Yang et al., 2021} 2023)), PAD-UFES-20
(Pacheco et al., [2020)), and PlotQA (Methani et al., [2020) as listed in Table |I[ To ensure balanced
representation, each modality-specific dataset contributes approximately 16.7% of the total examples,
with the remaining 16.7% comprising mixed-modality compound figures. This configuration promotes
both visual diversity and generalization across biomedical imaging types. Training is performed over
40 epochs using a batch size of 64 and an initial learning rate of le-5. We evaluate performance on
both our synthetic validation set and the ImageCLEF 2016 compound figure separation benchmark
(Kalpathy-Cramer et al.| [2014; |Garcia Seco de Herrera et al., 2016). Our model outperforms the
model trained on MedICaT only on both evaluation sets as shown by Table[2] Figure 2] showcases
examples from the ImageCLEF 2016 dataset and from a subset of PMC-6M, illustrating accurate
detection of distinct subfigures across diverse panel layouts and content types.

Table 1: Datasets used for synthetic subfigure generation, categorized by modality and split.

Split Radiology  Histopathology = Dermatology Retina Plots
Train ROCO SICAP HAM10000 RetinaMNIST PlotQA
Sample Size 65422 18783 10015 1080 60000
Validation  ROCO (test) PathMNIST PAD-UFES-20 RetinaMNIST (val) PlotQA (val)
Sample Size 8176 10004 2298 120 10000

Table 2: Performance comparison on two datasets using mAP and F1 metrics.

Model Synthetic Validation ImageCLEF 2016
mAP (%) F1 (%) mAP (%) F1 (%)

Previous model (MedICaT) 33.22 73.18 28.20 64.85

Our model (DAB-DETR) 98.58 99.96 36.88 73.55
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Figure 2: Qualitative results of subfigure detection using our DAB-DETR model. Left Real-world
biomedical compound figures from PMC articles in PMC-6M (also BIOMEDICA). Right Examples
from the ImageCLEF 2016 benchmark. The model accurately localizes and separates distinct
subfigures, including heterogeneous panels and non-uniform layouts.

3.3 Curating OPEN-PMC-18M

Decomposing the compound images of PMC-6M using our DAB-DETR model yields an initial
dataset of approximately 32 million single-panel images representing a wide range of clinical (e.g.,
radiology, pathology, microarray) and non-clinical (e.g., plots) images. For each figure, we simply
pair the caption of the source compound figure to create the image-caption pair.

Filtering Pipeline To further refine the raw collection of 32 million image-caption pairs, we apply
an additional layer of filtering by reviewing metadata fields to only keep subfigures whose original
compound figure was labeled by either Clinical Image or Microscopy, which yields a dataset of
26 million pairs. Subsequently, we employ a ResNet-101 model to assess each
image and infer its medical relevance. This filtering process further reduces the dataset to 18 million
high-quality image-caption pairs.

Dataset Statistics We summarize the key characteristics of OPEN-PMC-18M below:

» Image Modalities: The dataset includes subfigures from three primary biomedical image
modalities, as illustrated in Figure [T} radiology scans (e.g., CT, MRI, X-ray) comprising
18% of the dataset, pathology and microscopy images accounting for 73%, and visible light
photography (VLP) representing 8%.

» Caption Length: Captions vary in length and complexity. The average caption contains
165.8 tokens. The maximum length is 7352 and almost 19.48% of captions have more than
256 tokens.

4 Experiments

4.1 Encoder Pretraining

As a first step, we train separate encoders for image and text modalities by aligning their representa-
tions using a vanilla contrastive loss. Let ¢ denote an image encoder and ¢ denote a text encoder
that maps images and text to a common representation space, respectively. Given a batch of training
samples B = {(z;,t;)}},, where z; and #; denote the ™ image and text instances respectively, the
InfoNCE loss is optimized by minimizing the distance between the representations
of an image and its corresponding text, (¢(x;),%(¢;)), while maximizing the distance between
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176 ature parameter. For simplicity of notation, we drop B and denote the loss for (z,t) by feon(z, t).
177 Multimodal contrastive learning trains encoders ¢ and i) by minimizing Eq. [1|over the pairs in B:

Linultimodal = mln ]EB{ chon iyt ] )

178 4.2 Evaluation Setup

179 To systematically assess the impact of dataset scale and curation quality, we perform evaluations
180 along both dimensions. Our models are trained under a unified architecture and training protocol to
181 ensure controlled evaluation. For models without accessible training data, we instead use publicly
182 released checkpoints obtained from HuggingFace. For the text encoder, we use PubMedBERT
183 (Gu et al.,|2020)), and for the vision encoder, we adopt a ViT-B/16 transformer (Dosovitskiy et al.,
184 |2020) pretrained on ImageNet. The encoders are trained for 64 epochs with batch size of 2048.
185 The best-performing checkpoints for each encoder are selected based on validation retrieval per-
186 formance. The training was performed using 8 NVIDIA A100 GPUs and completed in five days.
187 We conducted our experiments using the mmlearn multimodal learning framework, available at
188 https://github.com/VectorInstitute/mmlearn/tree/main.

189 For assessing the role of quality, particularly subfigure-level extraction, we train a baseline model on
190 the 6 million compound figure-caption pairs of PMC-6M, where each compound image is used in its
191 original form without panel separation (section[3.2). We also include publicly available checkpoints
192 from other models trained on PMC-15M (Zhang et al.| [2023)) and BIOMEDICA (Lozano et al.| [2025)).
193 For BIOMEDICA, we use the checkpoint referred to as BUC-CLIPcp in|Lozano et al. (2025), which
194 is trained on a filtered subset of the full dataset. This subset retains content labeled under clinical
195 and scientific imaging, immunoassays, illustrative diagrams, chemical structures, maps, tools and
196 materials, and hand-drawn or screen-based visuals, while explicitly excluding tables and charts.
197 The model is trained for 36 epochs. For PMC-15M, we use the checkpoint trained on 15 million
198 image-caption pairs, referred to as BioMedCLIP in|Zhang et al.| (2023). All external checkpoints
199 were obtained from their official HuggingFace repositories and are evaluated using our standardized
200 downstream protocols.

201 To further ensure consistency, we independently reproduce the PMC-OA dataset (Lin et al., |2023b))
202 and train encoders using the same architecture and hyperparameters as those used for OPEN-PMC-
203 18M and PMC-6M. Throughout the paper, all encoder variants are referenced by the name of the
204 dataset on which they are trained, to facilitate transparent comparison. All the details of pretraining
205 and hyperparameters are listed in the supplementary material.

206 4.3 Downstream Tasks

207 The performance of the encoders is evaluated on external and non-PMC datasets across two primary
208 tasks: retrieval and zero-shot classification. For the retrieval task, we assess both image-to-text
209 (I2T) and text-to-image (T2I) retrieval across three benchmark datasets representative of distinct
210 medical imaging modalities: Quilt (Ikezogwo et al., [2024)) (microscopy), MIMIC-CXR (Johnson
211 let al, 2019) (radiology), and DeepEyeNet (Huang et al., 2021) (VLP). To evaluate robustness in
212 retrieval, we follow established protocols from [Liu et al.|(2024)) by applying a suite of low-level
213 visual perturbations, including brightness adjustment, spatial shift, rotation, horizontal flip, and zoom,
214 directly to the test images. To assess the statistical significance of robustness differences, we employ
215 the Wilcoxon signed-rank test, a non-parametric method for paired comparisons (Wilcoxon, |1945)).
216 We consider a p-value less than 0.01 as statistically significant. For classification, we evaluate models
217 using both zero-shot and linear probing protocols across a diverse set of tasks: five in radiology, eight
218 in microscopy, and six in VLP. We use our trained vision and text encoders to encode the image and
219 question, respectively.
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4.4 Cross-Modal Retrieval and Robustness

Table [3| summarizes the performance of various VLMs on cross-modal retrieval tasks across three
benchmark datasets: MIMIC-CXR, Quilt, and DeepEyeNet. We report Recall @200 (other Recall
metrics are listed in the supplementary material) for both image-to-text and text-to-image retrieval,
with the final column showing the Average Recall (AR) aggregated across all tasks. Models trained
on OPEN-PMC-18M and even PMC-6M (compound figures) consistently outperform PMC-15M
and BIOMEDICA, across all three tasks and retrieval directions. Among them, PMC-6M achieves
the highest AR of 21.22, while OPEN-PMC-18M sets a new state-of-the-art with an AR of 21.64.
This represents 31% relative gain in average retrieval performance over PMC-15M.

Robustness, quantified as the ratio between retrieval performance under perturbations (explained in
section[d.2) and performance on the original data is presented in Figure 3] (Right). Models trained
on OPEN-PMC-18M consistently achieve higher robustness scores relative to baseline models,
reflecting improved performance stability under input perturbations in addition to superior retrieval
performances. We observe statistically significant differences (p < 0.01) on Quilt and DeepEyeNet as
shown in Figure [3] (Left). These findings are particularly relevant to our focus on subfigure extraction
and the potential for improved robustness in imaging modalities that exhibit high visual and semantic
heterogeneity.

Table 3: Retrieval performance (Recall@200) of all models trained on paired image-caption pairs in
the medical domain. The last column, Average Recall (AR), aggregates the results across all tasks.
Highest performance values are in bold, second-best are underlined. PMC-6M refers to a baseline
model trained on a filtered subset of the BIOMEDICA dataset, using compound figures in their original
form without subfigure decomposition. The BIOMEDICA model retrieved from Hugging Face is
trained on a filtered subset of the full dataset, as described in their original paper.

Image-to-Text Text-to-Image
Model MIMIC Quilt DeepEyeNet | MIMIC Quilt DeepEyeNet AR
PMC-OA 0.139 0.142 0.152 0.152 0.149 0.157 0.148
OPEN-PMC 0.17 0.166 0.183 0.189 0.162 0.147 0.17
BioMedCLIP 0.185 0.165 0.162 0.162 0.185 0.146 0.167
BIOMEDICA 0.076 0.169 0.155 0.093 0.195 0.145 0.139
PMC-6M 0.25 0.203 0.172 0.257 0.22 0.170 0.212
OPEN-PMC-18M 0.226 0.211 0.196 0.239 0.233 0.193 0.216
1.00
_g 0.99
Bor Model PMC-6M BIOMEDICA PMC-15M
E 0.96
£ 005 DeepEyeNet  0.0014 0.0073 p > 0.01
g% Quilt 0.0032 p > 0.01 0.0001
< 0.93
092 . MIMIC-CXR p > 0.01 p > 0.01 p>0.01
DeepEyeNet MIMIC-CXR Quilt
PMC-15M BIOMEDICA OPEN-PMC-18M PMC-6M

Figure 3: Left Average robustness ratio across three retrieval benchmarks, defined as the ratio of
retrieval performance under visual perturbations to that on original (unperturbed) data. Right Paired
statistical comparisons (Wilcoxon signed-rank test) between OPEN-PMC-18M and each baseline
model. Results show statistically significant improvements (p < 0.01) on DeepEyeNet and Quilt for
at least one baseline comparison, while differences on MIMIC-CXR are not statistically significant
across any of the baselines.

4.5 Zero-shot Classification
Model comparisons for zero-shot classification are presented in Table 4] and linear probing results

are provided in the supplementary material. Results are grouped and averaged by modality. Models
trained on OPEN-PMC-18M consistently achieve the highest average performance across modalities,
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demonstrating superior transferability relative to all other evaluated models. Across the full set of 18
classification tasks spanning radiology, microscopy, and VLP , OPEN-PMC-18M ranks first in 6 tasks
and second in 2. A similar trend is observed in the linear probing results, where OPEN-PMC-18M
also achieves the highest average performance across modalities.

Table 4: Zero-shot classification F1-scores across diverse medical datasets for different models. For
details on model training configurations and dataset sources, refer to the retrieval results table and its
caption (Table [3).

Radiology
Model PneumoniaMNIST+  BreastMNIST+  OrganAMNIST+  OrganCMNIST+  OrganSMNIST+  Average
PMC-OA 50.94 52.36 19.70 14.79 16.99 30.95
OPEN-PMC 50.13 59.65 27.95 23.23 20.03 36.19
BioMedCLIP 60.13 33.76 19.40 14.12 16.00 28.62
BIOMEDICA 38.46 56.66 19.25 17.13 16.33 29.56
PMC-6M 68.81 26.87 23.48 14.68 17.57 30.28
OPEN-PMC-18M 86.18 50.36 18.75 14.33 13.65 36.65
Visible Light Photography
Model PAD-UFES-20  Skin Cancer ~ PathMNIST+ DermaMNIST+ OCTMNIST+  RetinaMNIST+  Average
PMC-OA 17.18 13.30 56.03 14.29 50.74 27.22 29.79
OPEN-PMC 21.11 13.56 49.16 14.60 45.27 26.12 28.30
BioMedCLIP 24.41 13.62 42.27 14.07 11.87 20.82 21.17
BIOMEDICA 40.57 17.20 49.10 21.89 10.00 18.53 26.21
PMC-6M 33.04 16.56 52.17 17.52 46.91 22.81 31.50
OPEN-PMC-18M 24.38 18.28 60.75 17.01 46.28 23.15 31.64
Microscopy
Model Sicap PCam  NCT-CRC-HE LC-Lung LC-Colon BACH  BloodMNIST+  TissueMNIST+  Average
PMC-OA 32.80 70.65 43.95 56.04 91.05 33.75 5.57 717 42.62
OPEN-PMC 20.71 38.96 42.88 63.97 88.38  41.31 10.73 6.08 39.12
BIOMEDICA 31.80 62.17 48.98 70.93 84.43  39.83 4.37 4.31 43.35
BioMedCLIP 41.53 72.57 49.46 76.63 86.54  23.88 6.83 3.86 45.16
PMC-6M 22.89 68.05 55.28 86.86 7841  52.58 3.72 3.05 46.35
OPEN-PMC-18M  16.29  69.55 64.42 86.01 7194 6794 28.42 3.74 51.03

4.6 Representations Analysis

To explore differences in the structure of learned image representations, we project the embedding
spaces of three benchmark sets, each constructed by combining datasets used for retrieval and
zero-shot classification across radiology, microscopy, and visible light photography (VLP), into two
dimensions using t-SNE (Figure ). The radiology benchmark includes MIMIC-CXR and other re-
lated zero-shot classification tasks, totaling approximately 41,000 samples. The microscopy and VLP
benchmarks contain approximately 20,000 and 6,000 samples, respectively. To quantify differences
between the embedding distributions, we compute the Maximum Mean Discrepancy (MMD) Gretton
et al. (2012). Given a dataset X (e.g., all radiology samples), we extract embeddings ¢(X) and
1(X) using vision encoders ¢ and 1) trained on OPEN-PMC-18M and PMC-6M, respectively. To
assess whether the differences between these distributions are statistically significant, we perform
a permutation test by randomly reassigning samples and recomputing MMD over 100 iterations to
generate an empirical null distribution.

Visual inspection of the embeddings reveals distinct representational structures between the two
models. This distinction is particularly evident in microscopy and VLP, where the latent spaces
of the two models are more clearly differentiated. In contrast, radiology embeddings appear more
intermixed, with less visual separation between the models’ representation spaces. Nonetheless, the
MMD analysis confirms that the observed differences are statistically significant across all modalities.
For the aggregated radiology dataset, the observed MMD is 0.0214 (null range: 0.0186-0.0214;
p = 0.005). For the aggregated microscopy dataset, the observed MMD is 0.0212 (null range:
0.0188-0.0212; p < 0.001). For the VLP dataset, the observed MMD is again 0.0214 (null range:
0.0186-0.0214; p = 0.007). These results indicate that models trained on subfigure-level data yield
significantly different representation spaces compared to those trained on compound figures.
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Figure 4: t-SNE visualizations of models embeddings trained on OPEN-PMC-18M and PMC-6M
on three imaging modalities, illustrating the structure and separation of the learned representation
spaces. MMD analysis reveals statistically significant differences in embedding distributions across

all imaging modalities.

5 Limitations and Open Challenges in Biomedical Vision-Language
Representation Learning

Our findings suggest that in the context of VLM representation learning, data quality and dataset
scale should be viewed as complementary axes in building effective and robust biomedical VLMs.
Subfigure extraction, used here as a means to improve alignment quality demonstrates clear benefits,
particularly in visually heterogeneous domains such as microscopy and visible light photography,
as shown in Figure 2] Radiology, however, exhibits more limited gains. These observations raise
the importance of modality-aware pretraining strategies, where both model architectures and data
curation pipelines are adapted to the unique characteristics of each imaging modality. While our results
highlight promising trends, we note that additional analysis is required, particularly in radiology,
across a broader and more diverse set of downstream tasks. Such evaluation will help clarify when and
where subfigure extraction yields the greatest benefit. Given the strong performance and robustness
of encoders trained on OPEN-PMC-18M, future work includes exploring their integration with large
language model decoders for downstream tasks that require generative reasoning over visual inputs,
such as medical report generation and visual question answering.

We recognize that scaling and curating large biomedical datasets brings challenges that extend beyond
improving model performance. To support transparency and reproducibility, we release all dataset
filtering criteria, subfigure detection models, and training pipelines. However, interpretability remains
an open challenge in VLMs and particularly in the biomedical domain. Although our models are not
intended for clinical deployment, they could be fine-tuned or adapted for various clinical application.
However, without rigorous validation and careful consideration of clinical safety, such use poses
serious risks. Furthermore, our datasets, sourced from open-access repositories such as PMC, may
reflect underlying biases tied to specific institutions, imaging protocols, or publication norms. These
factors can influence model behavior in subtle ways, limiting generalizability, especially when applied
to underrepresented populations or distinct clinical settings.

6 Conclusion

In this paper we addressed a critical gap in the design of high-fidelity multimodal medical datasets,
aiming to advance robust and generalizable representation learning. We evaluated the effectiveness
and robustness of subfigure extraction. We introduced OPEN-PMC-18M, one of the largest and
highest quality image-caption pairs to date. Models trained on OPEN-PMC-18M consistently
outperform existing benchmarks across radiology, microscopy, and visible light photography. These
findings lay the groundwork for more generalizable medical VLMs and better aligned with the
complex realities of biomedical data.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction are well-aligned with the
paper’s actual contributions. They emphasize the creation of a high-quality biomedical
vision-language dataset and its impact on representation learning, which is thoroughly
supported by the methodology, experiments, and evaluations presented in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include a "Insights, Limitations, and Broader Considerations" section
where we discuss the current limitations of our approach and outline potential directions to
address them in future research.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not have any theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all the details of our model training and evaluation pipeline.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: To facilitate reproducibility and support further research, we have made our
codebase, pretrained model weights, and the dataset publicly available through our GitHub
and Hugging Face repositories. Each repository includes comprehensive documentation and
usage instructions to enable easy adoption and integration by the research community.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes. The paper provides comprehensive training and evaluation details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports performance metrics across multiple runs and includes
standard deviations to indicate variability, providing a clear understanding of the statistical
significance and robustness of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

14


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

552
553
554

555
556
557

558
559

560

561
562

563
564
565

566
567
568

569
570

571

572
573
574

575

576
577

578

579

580
581

582
583

584
585
586

587

588
589

590

592
593

594

595

596
597

598
599

600

601
602

603

8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the total training time of our models along with details of the GPU
used.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research complies with the NeurIPS Code of Ethics by using publicly
available data, providing open-source code, and clearly stating that the models are for
research use only.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: It is discussed in section "Insights, Limitations, and Broader Considerations"
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

¢ If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper includes clear disclaimers stating that the models are intended solely
for research use and not for clinical deployment. Additionally, all data used in the curation
process are sourced from publicly available resource, ensuring that no private or sensitive
information is exposed.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external assets used in the paper, including datasets, models, and code, are
properly credited with citations.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All new assets introduced in the paper, including the OPEN-PMC-18M
dataset and pretrained models, are thoroughly documented. The documentation is provided
alongside the assets in the public repositories to ensure ease of use and reproducibility.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not have any human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The study does not involve human subjects or private individual data. All data
used are sourced from publicly available open-access articles, and no identifiable personal
information is included, so IRB approval was not required.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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