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Abstract

Compound figures, which are multi-panel composites containing diverse subfig-1

ures, are ubiquitous in biomedical literature, yet large-scale subfigure extraction2

remains largely unaddressed. Prior work on subfigure extraction has been limited3

in both dataset size and generalizability, leaving a critical open question: How does4

high-fidelity image–text alignment via large-scale subfigure extraction impact repre-5

sentation learning in vision-language models? We address this gap by introducing6

a scalable subfigure extraction pipeline based on transformer-based object detec-7

tion, trained on a synthetic corpus of 500,000 compound figures, and achieving8

state-of-the-art performance on both ImageCLEF 2016 and synthetic benchmarks.9

Using this pipeline, we release OPEN-PMC-18M, a large-scale high quality10

biomedical vision-language dataset comprising 18 million clinically relevant sub-11

figure–caption pairs spanning radiology, microscopy, and visible light photography.12

We train and evaluate vision-language models on our curated datasets and show13

improved performance across retrieval, zero-shot classification, and robustness14

benchmarks, outperforming existing baselines. We release our dataset, models,15

and code to support reproducible benchmarks and further study into biomedical16

vision-language modeling and representation learning.17

1 Introduction18

The rapid progress of general-domain vision-language models (VLM) (Radford et al., 2021; Jia et al.,19

2021; Girdhar et al., 2023) has sparked growing interest in building large-scale multimodal datasets20

tailored to the medical domain (Zhang et al., 2023; Lin et al., 2023a; Pelka et al., 2018; Lozano et al.,21

2025; Baghbanzadeh et al., 2025). Despite these efforts, the scale of medical datasets still lags far22

behind their general-domain counterparts. While increasing dataset size continues to be a primary23

goal, there is growing recognition that improving the quality and relevance of image-text pairs may24

be a more effective strategy for enhancing model performance and clinical utility (Baghbanzadeh25

et al., 2025).26

Biomedical figures present unique challenges: they often consist of compound layouts that combine27

multiple subfigures, each potentially depicting a different imaging modality, anatomical region,28

or clinical concept. Unlike dataset scale, which has received substantial attention, this structural29

heterogeneity remains largely unexplored. Most of the existing biomedical VLM pipelines treat30

compound figures as atomic units, pairing the entire image with a caption, without disentangling their31

internal structure.32

We hypothesize that such coarse image-text alignment could introduce noise into pretraining, ulti-33

mately impacting the transferability and generalizability of the learned representations. While recent34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



work has scaled data curation through bulk mining of PubMed Central (PMC)1 articles (e.g., PMC-35

15M (Zhang et al., 2023) and BIOMEDICA (Lozano et al., 2025)), these efforts still rely on noisy and36

compound figures. To our knowledge, only a few prior works incorporate subfigure extraction as part37

of the curation process (Pelka et al., 2018; Lin et al., 2023a; Baghbanzadeh et al., 2025); however,38

they do so at small scale. This raises an important gap in the field: how does subfigure extraction and39

the resulting improvement in medical image-text alignment quality impact representation learning40

at scale, particularly given the known sensitivity of contrastive objectives to both dataset size and41

alignment fidelity during pretraining?42

In this work, we investigate the impact of large-scale subfigure extraction on medical vision-language43

representation learning. We first create a dataset of 6 million image-caption pairs by filtering out non-44

medical images (e.g., charts, plots, tables) from the BIOMEDICA corpus (Lozano et al., 2025) using45

a combination of label metadata and a ResNet classifier. For the subfigure extraction step, we train a46

high-performance object detection model with the same architecture as DAB-DETR (Dynamic Anchor47

Boxes DEtection TRansformer) (Liu et al., 2022) on a corpus of 500,000 programmatically-created48

compound figures. By decomposing compound figures with this model, we build OPEN-PMC-18M,49

one of the largest and most curated collections of biomedical image-text pairs to date, consisting of50

18 million subfigure-caption pairs. We then train vision and text encoders using a contrastive learning51

objective and evaluate the resulting models on an extensive suite of downstream tasks, including52

cross-modal retrieval and zero-shot classification across three distinct medical modalities: radiology,53

microscopy, and visible light photography (VLP). We release our dataset2, models, and code3 to54

support reproducible benchmarks and further study into biomedical VLM and representation learning.55

Our contributions are as follows:56

• We propose a scalable subfigure extraction pipeline using transformer-based object detection57

trained on a 500,000 compound figure dataset, achieving state-of-the-art performance on58

ImageCLEF 2016 (Kalpathy-Cramer et al., 2014; García Seco de Herrera et al., 2016) and59

synthetic evaluation sets.60

• We release OPEN-PMC-18M, a large-scale biomedical image-text dataset with 18 million61

subfigure-caption pairs filtered for clinical relevance across radiology, microscopy, and62

visible light photography.63

• We provide a comprehensive evaluation of vision-language models trained on our datasets,64

demonstrating improved performance in retrieval, classification, and robustness across65

multiple medical benchmarks.66

2 Related Work67

2.1 Biomedical Vision-Language Datasets68

Most efforts to date have relied on mining figures and captions from the PMC Open Access subset.469

One of the earliest publicly available datasets is ROCO (Pelka et al., 2018), which compiled around70

80,000 radiology and 6,000 non-radiology images, enriched with metadata such as captions and71

keywords. Later, Lin et al. (2023b) introduced PMC-OA , which includes 1.6 million image-text72

pairs. Their contribution emphasized automation—proposing a pipeline to streamline the pairing73

process and reduce human annotation. More recently, Zhang et al. (2023) announced PMC-15M, a74

dataset of 15 million image-text pairs. The largest released dataset to date is BIOMEDICA (Lozano75

et al., 2025), which comprises 24 million pairs and employs clustering, vision encoders, and expert76

taxonomies to assign modality labels at global and local levels. While these efforts represent major77

progress in scale, recent work has emphasized that data quality is a critical factor in learning effective78

and generalizable medical representations (Baghbanzadeh et al., 2025). Building on the premise of79

OPEN-PMC, our work takes a quality-first approach while also significantly scaling up the dataset.80

1https://pmc.ncbi.nlm.nih.gov/
2https://huggingface.co/datasets/vector-institute/open-pmc-18m
3https://anonymous.4open.science/r/open-pmc-18m-CE25/
4https://pmc.ncbi.nlm.nih.gov/tools/openftlist/
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2.2 Subfigure Extraction as Object Detection81

Early approaches to compound figure separation relied on classical computer vision techniques, using82

heuristics based on whitespace, edge detection, or layout regularity. However, these methods often83

struggled to handle diverse panel styles and complex spatial arrangements. More recent work treats84

subfigure extraction as an object detection problem, leveraging deep learning models. For example,85

Tsutsui and Crandall (2017) and Yao et al. (2021) used YOLO for subfigure separation. Lin et al.86

(2023a) also uses an object detection model to extract subfigures in their pipeline. They train a DETR87

(DEtection TRansformer) (Carion et al., 2020) model on the MedICaT dataset (Subramanian et al.,88

2020) containing 2069 annotated compound figures.89

Data annotation for training an image decomposition model is challenging and time-consuming.90

Current annotated datasets for this are small, which lead to models with suboptimal performance.91

To overcome this, synthetic datasets of compound figures have been proposed, where subfigures are92

programmatically composed to simulate real-world layouts. This allows training of object detection93

models without relying on large-scale human-annotated data (Tsutsui and Crandall, 2017; Yao et al.,94

2021).95

3 Data Composition and Curation Process96

3.1 Initial Collection and Filtering97

We begin with the BIOMEDICA dataset (Lozano et al., 2025), which has been extracted from articles98

in the PubMed Central Open Access Subset. BIOMEDICA contains approximately 24 million image-99

caption pairs along with metadata, including global and local modality labels for each image. We100

apply a filtering step using the provided labels and retain only those pairs primarily categorized as101

clinical imaging, microscopy, immunoassays, or chemical structure. This yields a dataset of 6 million102

pairs, which we refer to as PMC-6M in this paper.103

3.2 Vision-Based Subfigure Extraction104

To enable scalable extraction of subfigures from biomedical compound figures, we trained a105

transformer-based object detection architecture, Dynamic Anchor Box DEtection TRansformer106

(DAB-DETR) (Liu et al., 2022). Prior work of Lin et al. (2023a) trained a DETR model on MedICaT107

(Subramanian et al., 2020) with only 2,069 manually annotated compound figures. In contrast, we108

trained our model on a large-scale synthetic dataset of 500,000 compound figures, the first of its kind109

in the biomedical domain. We use DAB-DETR as it improves upon the original DETR model by110

learning dynamic anchors as queries, resulting in improved localization and faster convergence (Liu111

et al., 2022).112

Synthetic Data Formation. To train a subfigure extraction model at scale, we generate a synthetic113

dataset by reversing the subfigure extraction process: rather than decomposing existing compound114

figures, we programmatically construct new ones by composing multiple single-panel biomedical115

images into compound layouts. The key advantage of this approach is the availability of ground-truth116

bounding boxes for each subfigure. Our generation pipeline samples a layout template that specifies117

the spatial arrangement of subfigures. Each layout is defined by a set of configurable parameters,118

including:119

• Grid Size: Specifies a standard m× n grid or a custom arrangement for panel placement.120

• Margins: Random horizontal and vertical spacing between panels to simulate variability in121

published figure layouts.122

• Labeling Scheme: Determines how panels are annotated (e.g., using numerical, alphabetical,123

or compound labels like "1a" or "a-1"), and whether labels appear inside or outside panel124

boundaries.125

• Aspect Ratio: Specifies a fixed width-to-height ratio applied uniformly to all subfigures.126

Subfigures are sampled from a repository of single-panel biomedical images spanning diverse127

modalities such as radiology, microscopy, pathology, etc., which we will describe below. Composite128

figures may contain panels from the same modality or a heterogeneous mix, providing semantic129
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Figure 1: Left Overview of our pipeline for creating synthetic compound figures used to train the
DAB-DETR model. A Sampler selects single-panel images and layout specifications from their
respective pools. A Labeler assigns subfigure labels from a predefined label pool (e.g., 1, a, a1,
a-1), placing them according to the chosen scheme. Right Distribution of medical image modalities,
number of subfigures per compound figure, and caption length statistics within OPEN-PMC-18M.
The average caption contains 165.82 tokens, with a max of 7352 and almost 19.48% of captions had
more than 256 tokens.

diversity and mimicking real-world figure complexity. Figure 2) illustrates the full synthetic data130

pipeline.131

Image Decomposition Model Training and Evaluation. We train a DAB-DETR model on the132

500,000 synthetic compound figures and validate its performance on a similarly created holdout133

set of 20,000 images. Source subfigures are drawn from well-known benchmark datasets such as134

ROCO (Pelka et al., 2018), SICAP (Ángel E. Esteban et al., 2019), HAM10000 (Tschandl et al.,135

2018), PathMNIST and RetinaMNIST from MedMNIST (Yang et al., 2021, 2023), PAD-UFES-20136

(Pacheco et al., 2020), and PlotQA (Methani et al., 2020) as listed in Table 1. To ensure balanced137

representation, each modality-specific dataset contributes approximately 16.7% of the total examples,138

with the remaining 16.7% comprising mixed-modality compound figures. This configuration promotes139

both visual diversity and generalization across biomedical imaging types. Training is performed over140

40 epochs using a batch size of 64 and an initial learning rate of 1e-5. We evaluate performance on141

both our synthetic validation set and the ImageCLEF 2016 compound figure separation benchmark142

(Kalpathy-Cramer et al., 2014; García Seco de Herrera et al., 2016). Our model outperforms the143

model trained on MedICaT only on both evaluation sets as shown by Table 2. Figure 2 showcases144

examples from the ImageCLEF 2016 dataset and from a subset of PMC-6M, illustrating accurate145

detection of distinct subfigures across diverse panel layouts and content types.146

Table 1: Datasets used for synthetic subfigure generation, categorized by modality and split.
Split Radiology Histopathology Dermatology Retina Plots
Train ROCO SICAP HAM10000 RetinaMNIST PlotQA

Sample Size 65422 18783 10015 1080 60000
Validation ROCO (test) PathMNIST PAD-UFES-20 RetinaMNIST (val) PlotQA (val)

Sample Size 8176 10004 2298 120 10000

Table 2: Performance comparison on two datasets using mAP and F1 metrics.
Model Synthetic Validation ImageCLEF 2016

mAP (%) F1 (%) mAP (%) F1 (%)
Previous model (MedICaT) 33.22 73.18 28.20 64.85
Our model (DAB-DETR) 98.58 99.96 36.88 73.55
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PMC ImageCLEF

Figure 2: Qualitative results of subfigure detection using our DAB-DETR model. Left Real-world
biomedical compound figures from PMC articles in PMC-6M (also BIOMEDICA). Right Examples
from the ImageCLEF 2016 benchmark. The model accurately localizes and separates distinct
subfigures, including heterogeneous panels and non-uniform layouts.

3.3 Curating OPEN-PMC-18M147

Decomposing the compound images of PMC-6M using our DAB-DETR model yields an initial148

dataset of approximately 32 million single-panel images representing a wide range of clinical (e.g.,149

radiology, pathology, microarray) and non-clinical (e.g., plots) images. For each figure, we simply150

pair the caption of the source compound figure to create the image-caption pair.151

Filtering Pipeline To further refine the raw collection of 32 million image-caption pairs, we apply152

an additional layer of filtering by reviewing metadata fields to only keep subfigures whose original153

compound figure was labeled by either Clinical Image or Microscopy, which yields a dataset of154

26 million pairs. Subsequently, we employ a ResNet-101 model (Lin et al., 2023a) to assess each155

image and infer its medical relevance. This filtering process further reduces the dataset to 18 million156

high-quality image-caption pairs.157

Dataset Statistics We summarize the key characteristics of OPEN-PMC-18M below:158

• Image Modalities: The dataset includes subfigures from three primary biomedical image159

modalities, as illustrated in Figure 1: radiology scans (e.g., CT, MRI, X-ray) comprising160

18% of the dataset, pathology and microscopy images accounting for 73%, and visible light161

photography (VLP) representing 8%.162

• Caption Length: Captions vary in length and complexity. The average caption contains163

165.8 tokens. The maximum length is 7352 and almost 19.48% of captions have more than164

256 tokens.165

4 Experiments166

4.1 Encoder Pretraining167

As a first step, we train separate encoders for image and text modalities by aligning their representa-168

tions using a vanilla contrastive loss. Let φ denote an image encoder and ψ denote a text encoder169

that maps images and text to a common representation space, respectively. Given a batch of training170

samples B = {(xi, ti)}Ni=1, where xi and ti denote the ith image and text instances respectively, the171

InfoNCE loss (Oord et al., 2018) is optimized by minimizing the distance between the representations172

of an image and its corresponding text, (φ(xi), ψ(ti)), while maximizing the distance between173
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unrelated image-text representation pairs, (φ(xi), ψ(tj)), i ̸= j:174

ℓcon(xi, ti;B) = −

(
log

exp(⟨φ(xi), ψ(ti)⟩/τ)∑N
k=1 exp(⟨φ(xi), ψ(tk)⟩/τ)

+ log
exp(⟨φ(xi), ψ(ti)⟩/τ)∑N
k=1 exp(⟨φ(xk), ψ(ti)⟩/τ)

)
, (1)

where ⟨·, ·⟩ denotes similarity between two vectors (e.g. cosine similarity), and τ > 0 is a temper-175

ature parameter. For simplicity of notation, we drop B and denote the loss for (x, t) by ℓcon(x, t).176

Multimodal contrastive learning trains encoders φ and ψ by minimizing Eq. 1 over the pairs in B:177

ℓmultimodal = min
φ,ψ

EB
[ 1
N

N∑
i=1

ℓcon(xi, ti)
]
. (2)

4.2 Evaluation Setup178

To systematically assess the impact of dataset scale and curation quality, we perform evaluations179

along both dimensions. Our models are trained under a unified architecture and training protocol to180

ensure controlled evaluation. For models without accessible training data, we instead use publicly181

released checkpoints obtained from HuggingFace. For the text encoder, we use PubMedBERT182

(Gu et al., 2020), and for the vision encoder, we adopt a ViT-B/16 transformer (Dosovitskiy et al.,183

2020) pretrained on ImageNet. The encoders are trained for 64 epochs with batch size of 2048.184

The best-performing checkpoints for each encoder are selected based on validation retrieval per-185

formance. The training was performed using 8 NVIDIA A100 GPUs and completed in five days.186

We conducted our experiments using the mmlearn multimodal learning framework, available at187

https://github.com/VectorInstitute/mmlearn/tree/main.188

For assessing the role of quality, particularly subfigure-level extraction, we train a baseline model on189

the 6 million compound figure-caption pairs of PMC-6M, where each compound image is used in its190

original form without panel separation (section 3.2). We also include publicly available checkpoints191

from other models trained on PMC-15M (Zhang et al., 2023) and BIOMEDICA (Lozano et al., 2025).192

For BIOMEDICA, we use the checkpoint referred to as BMC-CLIPCF in Lozano et al. (2025), which193

is trained on a filtered subset of the full dataset. This subset retains content labeled under clinical194

and scientific imaging, immunoassays, illustrative diagrams, chemical structures, maps, tools and195

materials, and hand-drawn or screen-based visuals, while explicitly excluding tables and charts.196

The model is trained for 36 epochs. For PMC-15M, we use the checkpoint trained on 15 million197

image-caption pairs, referred to as BioMedCLIP in Zhang et al. (2023). All external checkpoints198

were obtained from their official HuggingFace repositories and are evaluated using our standardized199

downstream protocols.200

To further ensure consistency, we independently reproduce the PMC-OA dataset (Lin et al., 2023b)201

and train encoders using the same architecture and hyperparameters as those used for OPEN-PMC-202

18M and PMC-6M. Throughout the paper, all encoder variants are referenced by the name of the203

dataset on which they are trained, to facilitate transparent comparison. All the details of pretraining204

and hyperparameters are listed in the supplementary material.205

4.3 Downstream Tasks206

The performance of the encoders is evaluated on external and non-PMC datasets across two primary207

tasks: retrieval and zero-shot classification. For the retrieval task, we assess both image-to-text208

(I2T) and text-to-image (T2I) retrieval across three benchmark datasets representative of distinct209

medical imaging modalities: Quilt (Ikezogwo et al., 2024) (microscopy), MIMIC-CXR (Johnson210

et al., 2019) (radiology), and DeepEyeNet (Huang et al., 2021) (VLP). To evaluate robustness in211

retrieval, we follow established protocols from Liu et al. (2024) by applying a suite of low-level212

visual perturbations, including brightness adjustment, spatial shift, rotation, horizontal flip, and zoom,213

directly to the test images. To assess the statistical significance of robustness differences, we employ214

the Wilcoxon signed-rank test, a non-parametric method for paired comparisons (Wilcoxon, 1945).215

We consider a p-value less than 0.01 as statistically significant. For classification, we evaluate models216

using both zero-shot and linear probing protocols across a diverse set of tasks: five in radiology, eight217

in microscopy, and six in VLP. We use our trained vision and text encoders to encode the image and218

question, respectively.219
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4.4 Cross-Modal Retrieval and Robustness220

Table 3 summarizes the performance of various VLMs on cross-modal retrieval tasks across three221

benchmark datasets: MIMIC-CXR, Quilt, and DeepEyeNet. We report Recall@200 (other Recall222

metrics are listed in the supplementary material) for both image-to-text and text-to-image retrieval,223

with the final column showing the Average Recall (AR) aggregated across all tasks. Models trained224

on OPEN-PMC-18M and even PMC-6M (compound figures) consistently outperform PMC-15M225

and BIOMEDICA, across all three tasks and retrieval directions. Among them, PMC-6M achieves226

the highest AR of 21.22, while OPEN-PMC-18M sets a new state-of-the-art with an AR of 21.64.227

This represents 31% relative gain in average retrieval performance over PMC-15M.228

Robustness, quantified as the ratio between retrieval performance under perturbations (explained in229

section 4.2) and performance on the original data is presented in Figure 3 (Right). Models trained230

on OPEN-PMC-18M consistently achieve higher robustness scores relative to baseline models,231

reflecting improved performance stability under input perturbations in addition to superior retrieval232

performances. We observe statistically significant differences (p < 0.01) on Quilt and DeepEyeNet as233

shown in Figure 3 (Left). These findings are particularly relevant to our focus on subfigure extraction234

and the potential for improved robustness in imaging modalities that exhibit high visual and semantic235

heterogeneity.236

Table 3: Retrieval performance (Recall@200) of all models trained on paired image-caption pairs in
the medical domain. The last column, Average Recall (AR), aggregates the results across all tasks.
Highest performance values are in bold, second-best are underlined. PMC-6M refers to a baseline
model trained on a filtered subset of the BIOMEDICA dataset, using compound figures in their original
form without subfigure decomposition. The BIOMEDICA model retrieved from Hugging Face is
trained on a filtered subset of the full dataset, as described in their original paper.

Image-to-Text Text-to-Image
Model MIMIC Quilt DeepEyeNet MIMIC Quilt DeepEyeNet AR

PMC-OA 0.139 0.142 0.152 0.152 0.149 0.157 0.148
OPEN-PMC 0.17 0.166 0.183 0.189 0.162 0.147 0.17
BioMedCLIP 0.185 0.165 0.162 0.162 0.185 0.146 0.167
BIOMEDICA 0.076 0.169 0.155 0.093 0.195 0.145 0.139

PMC-6M 0.25 0.203 0.172 0.257 0.22 0.170 0.212
OPEN-PMC-18M 0.226 0.211 0.196 0.239 0.233 0.193 0.216

Figure 3: Left Average robustness ratio across three retrieval benchmarks, defined as the ratio of
retrieval performance under visual perturbations to that on original (unperturbed) data. Right Paired
statistical comparisons (Wilcoxon signed-rank test) between OPEN-PMC-18M and each baseline
model. Results show statistically significant improvements (p < 0.01) on DeepEyeNet and Quilt for
at least one baseline comparison, while differences on MIMIC-CXR are not statistically significant
across any of the baselines.

4.5 Zero-shot Classification237

Model comparisons for zero-shot classification are presented in Table 4, and linear probing results238

are provided in the supplementary material. Results are grouped and averaged by modality. Models239

trained on OPEN-PMC-18M consistently achieve the highest average performance across modalities,240

7



demonstrating superior transferability relative to all other evaluated models. Across the full set of 18241

classification tasks spanning radiology, microscopy, and VLP , OPEN-PMC-18M ranks first in 6 tasks242

and second in 2. A similar trend is observed in the linear probing results, where OPEN-PMC-18M243

also achieves the highest average performance across modalities.244

Table 4: Zero-shot classification F1-scores across diverse medical datasets for different models. For
details on model training configurations and dataset sources, refer to the retrieval results table and its
caption (Table 3).

Radiology
Model PneumoniaMNIST+ BreastMNIST+ OrganAMNIST+ OrganCMNIST+ OrganSMNIST+ Average

PMC-OA 50.94 52.36 19.70 14.79 16.99 30.95
OPEN-PMC 50.13 59.65 27.95 23.23 20.03 36.19
BioMedCLIP 60.13 33.76 19.40 14.12 16.00 28.62
BIOMEDICA 38.46 56.66 19.25 17.13 16.33 29.56

PMC-6M 68.81 26.87 23.48 14.68 17.57 30.28
OPEN-PMC-18M 86.18 50.36 18.75 14.33 13.65 36.65

Visible Light Photography
Model PAD-UFES-20 Skin Cancer PathMNIST+ DermaMNIST+ OCTMNIST+ RetinaMNIST+ Average

PMC-OA 17.18 13.30 56.03 14.29 50.74 27.22 29.79
OPEN-PMC 21.11 13.56 49.16 14.60 45.27 26.12 28.30
BioMedCLIP 24.41 13.62 42.27 14.07 11.87 20.82 21.17
BIOMEDICA 40.57 17.20 49.10 21.89 10.00 18.53 26.21

PMC-6M 33.04 16.56 52.17 17.52 46.91 22.81 31.50
OPEN-PMC-18M 24.38 18.28 60.75 17.01 46.28 23.15 31.64

Microscopy
Model Sicap PCam NCT-CRC-HE LC-Lung LC-Colon BACH BloodMNIST+ TissueMNIST+ Average

PMC-OA 32.80 70.65 43.95 56.04 91.05 33.75 5.57 7.17 42.62
OPEN-PMC 20.71 38.96 42.88 63.97 88.38 41.31 10.73 6.08 39.12
BIOMEDICA 31.80 62.17 48.98 70.93 84.43 39.83 4.37 4.31 43.35
BioMedCLIP 41.53 72.57 49.46 76.63 86.54 23.88 6.83 3.86 45.16

PMC-6M 22.89 68.05 55.28 86.86 78.41 52.58 3.72 3.05 46.35
OPEN-PMC-18M 16.29 69.55 64.42 86.01 71.94 67.94 28.42 3.74 51.03

4.6 Representations Analysis245

To explore differences in the structure of learned image representations, we project the embedding246

spaces of three benchmark sets, each constructed by combining datasets used for retrieval and247

zero-shot classification across radiology, microscopy, and visible light photography (VLP), into two248

dimensions using t-SNE (Figure 4). The radiology benchmark includes MIMIC-CXR and other re-249

lated zero-shot classification tasks, totaling approximately 41,000 samples. The microscopy and VLP250

benchmarks contain approximately 20,000 and 6,000 samples, respectively. To quantify differences251

between the embedding distributions, we compute the Maximum Mean Discrepancy (MMD) Gretton252

et al. (2012). Given a dataset X (e.g., all radiology samples), we extract embeddings ϕ(X) and253

ψ(X) using vision encoders ϕ and ψ trained on OPEN-PMC-18M and PMC-6M, respectively. To254

assess whether the differences between these distributions are statistically significant, we perform255

a permutation test by randomly reassigning samples and recomputing MMD over 100 iterations to256

generate an empirical null distribution.257

Visual inspection of the embeddings reveals distinct representational structures between the two258

models. This distinction is particularly evident in microscopy and VLP, where the latent spaces259

of the two models are more clearly differentiated. In contrast, radiology embeddings appear more260

intermixed, with less visual separation between the models’ representation spaces. Nonetheless, the261

MMD analysis confirms that the observed differences are statistically significant across all modalities.262

For the aggregated radiology dataset, the observed MMD is 0.0214 (null range: 0.0186–0.0214;263

p = 0.005). For the aggregated microscopy dataset, the observed MMD is 0.0212 (null range:264

0.0188–0.0212; p < 0.001). For the VLP dataset, the observed MMD is again 0.0214 (null range:265

0.0186–0.0214; p = 0.007). These results indicate that models trained on subfigure-level data yield266

significantly different representation spaces compared to those trained on compound figures.267

8



Figure 4: t-SNE visualizations of models embeddings trained on OPEN-PMC-18M and PMC-6M
on three imaging modalities, illustrating the structure and separation of the learned representation
spaces. MMD analysis reveals statistically significant differences in embedding distributions across
all imaging modalities.

5 Limitations and Open Challenges in Biomedical Vision–Language268

Representation Learning269

Our findings suggest that in the context of VLM representation learning, data quality and dataset270

scale should be viewed as complementary axes in building effective and robust biomedical VLMs.271

Subfigure extraction, used here as a means to improve alignment quality demonstrates clear benefits,272

particularly in visually heterogeneous domains such as microscopy and visible light photography,273

as shown in Figure 2. Radiology, however, exhibits more limited gains. These observations raise274

the importance of modality-aware pretraining strategies, where both model architectures and data275

curation pipelines are adapted to the unique characteristics of each imaging modality. While our results276

highlight promising trends, we note that additional analysis is required, particularly in radiology,277

across a broader and more diverse set of downstream tasks. Such evaluation will help clarify when and278

where subfigure extraction yields the greatest benefit. Given the strong performance and robustness279

of encoders trained on OPEN-PMC-18M, future work includes exploring their integration with large280

language model decoders for downstream tasks that require generative reasoning over visual inputs,281

such as medical report generation and visual question answering.282

We recognize that scaling and curating large biomedical datasets brings challenges that extend beyond283

improving model performance. To support transparency and reproducibility, we release all dataset284

filtering criteria, subfigure detection models, and training pipelines. However, interpretability remains285

an open challenge in VLMs and particularly in the biomedical domain. Although our models are not286

intended for clinical deployment, they could be fine-tuned or adapted for various clinical application.287

However, without rigorous validation and careful consideration of clinical safety, such use poses288

serious risks. Furthermore, our datasets, sourced from open-access repositories such as PMC, may289

reflect underlying biases tied to specific institutions, imaging protocols, or publication norms. These290

factors can influence model behavior in subtle ways, limiting generalizability, especially when applied291

to underrepresented populations or distinct clinical settings.292

6 Conclusion293

In this paper we addressed a critical gap in the design of high-fidelity multimodal medical datasets,294

aiming to advance robust and generalizable representation learning. We evaluated the effectiveness295

and robustness of subfigure extraction. We introduced OPEN-PMC-18M, one of the largest and296

highest quality image-caption pairs to date. Models trained on OPEN-PMC-18M consistently297

outperform existing benchmarks across radiology, microscopy, and visible light photography. These298

findings lay the groundwork for more generalizable medical VLMs and better aligned with the299

complex realities of biomedical data.300
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made in the paper.407
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals413
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Question: Does the paper discuss the limitations of the work performed by the authors?416

Answer: [Yes]417
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address them in future research.420
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model well-specification, asymptotic approximations only holding locally). The authors427
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Question: For each theoretical result, does the paper provide the full set of assumptions and449

a complete (and correct) proof?450

Answer: [NA]451

Justification: We do not have any theoretical results.452
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• The answer NA means that the paper does not include theoretical results.454
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referenced.456
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-465

perimental results of the paper to the extent that it affects the main claims and/or conclusions466

of the paper (regardless of whether the code and data are provided or not)?467
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Justification: We provide all the details of our model training and evaluation pipeline.469
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• The answer NA means that the paper does not include experiments.471
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well by the reviewers: Making the paper reproducible is important, regardless of473

whether the code and data are provided or not.474

• If the contribution is a dataset and/or model, the authors should describe the steps taken475

to make their results reproducible or verifiable.476

• Depending on the contribution, reproducibility can be accomplished in various ways.477
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dataset, or provide access to the model. In general. releasing code and data is often481

one good way to accomplish this, but reproducibility can also be provided via detailed482

instructions for how to replicate the results, access to a hosted model (e.g., in the case483

of a large language model), releasing of a model checkpoint, or other means that are484

appropriate to the research performed.485

• While NeurIPS does not require releasing code, the conference does require all submis-486

sions to provide some reasonable avenue for reproducibility, which may depend on the487

nature of the contribution. For example488

(a) If the contribution is primarily a new algorithm, the paper should make it clear how489

to reproduce that algorithm.490

(b) If the contribution is primarily a new model architecture, the paper should describe491

the architecture clearly and fully.492

(c) If the contribution is a new model (e.g., a large language model), then there should493

either be a way to access this model for reproducing the results or a way to reproduce494
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the dataset).496

(d) We recognize that reproducibility may be tricky in some cases, in which case497

authors are welcome to describe the particular way they provide for reproducibility.498

In the case of closed-source models, it may be that access to the model is limited in499

some way (e.g., to registered users), but it should be possible for other researchers500

to have some path to reproducing or verifying the results.501
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5. Open access to data and code502

Question: Does the paper provide open access to the data and code, with sufficient instruc-503

tions to faithfully reproduce the main experimental results, as described in supplemental504

material?505

Answer: [Yes]506

Justification: To facilitate reproducibility and support further research, we have made our507

codebase, pretrained model weights, and the dataset publicly available through our GitHub508

and Hugging Face repositories. Each repository includes comprehensive documentation and509
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/513

public/guides/CodeSubmissionPolicy) for more details.514

• While we encourage the release of code and data, we understand that this might not be515

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not516
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• The instructions should contain the exact command and environment needed to run to519

reproduce the results. See the NeurIPS code and data submission guidelines (https:520

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.521

• The authors should provide instructions on data access and preparation, including how522

to access the raw data, preprocessed data, intermediate data, and generated data, etc.523

• The authors should provide scripts to reproduce all experimental results for the new524

proposed method and baselines. If only a subset of experiments are reproducible, they525

should state which ones are omitted from the script and why.526

• At submission time, to preserve anonymity, the authors should release anonymized527

versions (if applicable).528

• Providing as much information as possible in supplemental material (appended to the529

paper) is recommended, but including URLs to data and code is permitted.530

6. Experimental Setting/Details531

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-532

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the533

results?534

Answer: [Yes]535

Justification: Yes. The paper provides comprehensive training and evaluation details.536
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• The answer NA means that the paper does not include experiments.538

• The experimental setting should be presented in the core of the paper to a level of detail539

that is necessary to appreciate the results and make sense of them.540

• The full details can be provided either with the code, in appendix, or as supplemental541

material.542

7. Experiment Statistical Significance543

Question: Does the paper report error bars suitably and correctly defined or other appropriate544

information about the statistical significance of the experiments?545

Answer: [Yes]546

Justification: The paper reports performance metrics across multiple runs and includes547

standard deviations to indicate variability, providing a clear understanding of the statistical548

significance and robustness of the results.549
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• The answer NA means that the paper does not include experiments.551
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-552

dence intervals, or statistical significance tests, at least for the experiments that support553

the main claims of the paper.554

• The factors of variability that the error bars are capturing should be clearly stated (for555

example, train/test split, initialization, random drawing of some parameter, or overall556

run with given experimental conditions).557

• The method for calculating the error bars should be explained (closed form formula,558

call to a library function, bootstrap, etc.)559

• The assumptions made should be given (e.g., Normally distributed errors).560

• It should be clear whether the error bar is the standard deviation or the standard error561

of the mean.562

• It is OK to report 1-sigma error bars, but one should state it. The authors should563

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis564

of Normality of errors is not verified.565

• For asymmetric distributions, the authors should be careful not to show in tables or566

figures symmetric error bars that would yield results that are out of range (e.g. negative567

error rates).568

• If error bars are reported in tables or plots, The authors should explain in the text how569

they were calculated and reference the corresponding figures or tables in the text.570

8. Experiments Compute Resources571

Question: For each experiment, does the paper provide sufficient information on the com-572

puter resources (type of compute workers, memory, time of execution) needed to reproduce573

the experiments?574

Answer: [Yes]575

Justification: We report the total training time of our models along with details of the GPU576

used.577

Guidelines:578

• The answer NA means that the paper does not include experiments.579

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,580

or cloud provider, including relevant memory and storage.581

• The paper should provide the amount of compute required for each of the individual582

experimental runs as well as estimate the total compute.583

• The paper should disclose whether the full research project required more compute584

than the experiments reported in the paper (e.g., preliminary or failed experiments that585

didn’t make it into the paper).586

9. Code Of Ethics587

Question: Does the research conducted in the paper conform, in every respect, with the588

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?589

Answer: [Yes]590

Justification: The research complies with the NeurIPS Code of Ethics by using publicly591

available data, providing open-source code, and clearly stating that the models are for592

research use only.593

Guidelines:594

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.595

• If the authors answer No, they should explain the special circumstances that require a596

deviation from the Code of Ethics.597

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-598

eration due to laws or regulations in their jurisdiction).599

10. Broader Impacts600

Question: Does the paper discuss both potential positive societal impacts and negative601

societal impacts of the work performed?602

Answer: [Yes]603
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Justification: It is discussed in section "Insights, Limitations, and Broader Considerations"604

Guidelines:605

• The answer NA means that there is no societal impact of the work performed.606

• If the authors answer NA or No, they should explain why their work has no societal607

impact or why the paper does not address societal impact.608

• Examples of negative societal impacts include potential malicious or unintended uses609

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations610

(e.g., deployment of technologies that could make decisions that unfairly impact specific611

groups), privacy considerations, and security considerations.612

• The conference expects that many papers will be foundational research and not tied613

to particular applications, let alone deployments. However, if there is a direct path to614

any negative applications, the authors should point it out. For example, it is legitimate615

to point out that an improvement in the quality of generative models could be used to616

generate deepfakes for disinformation. On the other hand, it is not needed to point out617

that a generic algorithm for optimizing neural networks could enable people to train618

models that generate Deepfakes faster.619

• The authors should consider possible harms that could arise when the technology is620

being used as intended and functioning correctly, harms that could arise when the621

technology is being used as intended but gives incorrect results, and harms following622

from (intentional or unintentional) misuse of the technology.623

• If there are negative societal impacts, the authors could also discuss possible mitigation624

strategies (e.g., gated release of models, providing defenses in addition to attacks,625

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from626

feedback over time, improving the efficiency and accessibility of ML).627

11. Safeguards628

Question: Does the paper describe safeguards that have been put in place for responsible629

release of data or models that have a high risk for misuse (e.g., pretrained language models,630

image generators, or scraped datasets)?631

Answer: [Yes]632

Justification: The paper includes clear disclaimers stating that the models are intended solely633

for research use and not for clinical deployment. Additionally, all data used in the curation634

process are sourced from publicly available resource, ensuring that no private or sensitive635

information is exposed.636

Guidelines:637

• The answer NA means that the paper poses no such risks.638

• Released models that have a high risk for misuse or dual-use should be released with639

necessary safeguards to allow for controlled use of the model, for example by requiring640

that users adhere to usage guidelines or restrictions to access the model or implementing641

safety filters.642

• Datasets that have been scraped from the Internet could pose safety risks. The authors643

should describe how they avoided releasing unsafe images.644

• We recognize that providing effective safeguards is challenging, and many papers do645

not require this, but we encourage authors to take this into account and make a best646

faith effort.647

12. Licenses for existing assets648

Question: Are the creators or original owners of assets (e.g., code, data, models), used in649

the paper, properly credited and are the license and terms of use explicitly mentioned and650

properly respected?651

Answer: [Yes]652

Justification: All external assets used in the paper, including datasets, models, and code, are653

properly credited with citations.654

Guidelines:655

• The answer NA means that the paper does not use existing assets.656
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• The authors should cite the original paper that produced the code package or dataset.657

• The authors should state which version of the asset is used and, if possible, include a658

URL.659

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.660

• For scraped data from a particular source (e.g., website), the copyright and terms of661

service of that source should be provided.662

• If assets are released, the license, copyright information, and terms of use in the663

package should be provided. For popular datasets, paperswithcode.com/datasets664

has curated licenses for some datasets. Their licensing guide can help determine the665

license of a dataset.666

• For existing datasets that are re-packaged, both the original license and the license of667

the derived asset (if it has changed) should be provided.668

• If this information is not available online, the authors are encouraged to reach out to669

the asset’s creators.670

13. New Assets671

Question: Are new assets introduced in the paper well documented and is the documentation672

provided alongside the assets?673

Answer: [Yes]674

Justification: All new assets introduced in the paper, including the OPEN-PMC-18M675

dataset and pretrained models, are thoroughly documented. The documentation is provided676

alongside the assets in the public repositories to ensure ease of use and reproducibility.677

Guidelines:678

• The answer NA means that the paper does not release new assets.679

• Researchers should communicate the details of the dataset/code/model as part of their680

submissions via structured templates. This includes details about training, license,681

limitations, etc.682

• The paper should discuss whether and how consent was obtained from people whose683

asset is used.684

• At submission time, remember to anonymize your assets (if applicable). You can either685

create an anonymized URL or include an anonymized zip file.686

14. Crowdsourcing and Research with Human Subjects687

Question: For crowdsourcing experiments and research with human subjects, does the paper688

include the full text of instructions given to participants and screenshots, if applicable, as689

well as details about compensation (if any)?690

Answer: [NA]691

Justification: We do not have any human subjects.692

Guidelines:693

• The answer NA means that the paper does not involve crowdsourcing nor research with694
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tion of the paper involves human subjects, then as much detail as possible should be697
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or other labor should be paid at least the minimum wage in the country of the data700

collector.701

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human702

Subjects703

Question: Does the paper describe potential risks incurred by study participants, whether704

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)705

approvals (or an equivalent approval/review based on the requirements of your country or706

institution) were obtained?707

Answer: [NA]708
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Justification: The study does not involve human subjects or private individual data. All data709

used are sourced from publicly available open-access articles, and no identifiable personal710

information is included, so IRB approval was not required.711

Guidelines:712

• The answer NA means that the paper does not involve crowdsourcing nor research with713

human subjects.714

• Depending on the country in which research is conducted, IRB approval (or equivalent)715

may be required for any human subjects research. If you obtained IRB approval, you716

should clearly state this in the paper.717

• We recognize that the procedures for this may vary significantly between institutions718

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the719

guidelines for their institution.720

• For initial submissions, do not include any information that would break anonymity (if721

applicable), such as the institution conducting the review.722
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