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ABSTRACT

Online reinforcement learning (RL) with sparse rewards poses a challenge partly
because of the lack of feedback on states leading to the goal. Furthermore, ex-
pert offline data with reward signal is rarely available to provide this feedback
and bootstrap online learning. How can we guide online agents to the right so-
lution without this on-task data? Reward shaping offers a solution by providing
fine-grained signal to nudge the policy towards the optimal solution. However,
reward shaping often requires domain knowledge to hand-engineer heuristics for
a specific goal. To enable more general and inexpensive guidance, we propose
and analyze a data-driven methodology that automatically guides RL by learning
from widely available video data such as Internet recordings, off-task demonstra-
tions, task failures, and undirected environment interaction. By learning a model
of optimal goal-conditioned value from diverse passive data, we open the floor to
scaling up and using a wide variety of data sources to model general goal-reaching
behaviors relevant to guiding online RL. Specifically, we use intent-conditioned
value functions to learn from diverse video and incorporate these goal-conditioned
values into the reward. Our experiments show that video-trained value functions
work well with a variety of data sources, exhibit positive transfer from human
video pre-training, can generalize to unseen goals, and scale with dataset size.

1 INTRODUCTION

Many sequential decision-making tasks are naturally defined with a sparse reward, meaning the
agent only receives positive signal when the goal has been achieved. Unfortunately, these sparse
reward tasks are especially challenging in reinforcement learning (RL) (Sutton, 2018) since they
provide no signal at intermediate states, effectively requiring exhaustive search. Practitioners often
resort to collecting task-relevant prior data (Pomerleau, 1988) or hand-designing task-relevant dense
reward functions (Mataric, 1994). However, manually collecting this high-quality data or defining a
task-specific reward is time-intensive and not general.

To solve this problem in RL, we should guide the search procedure online towards the desired goal.
This dictates the usage of some general prior informing the agent what states lead to others to direct
it to the goal. Humans make use of extensive prior knowledge when attempting to accomplish
tasks: for example, we know that finding a mug generally requires us to try looking in cabinets and
that opening them requires interacting with the handle. We posit that this prior can in fact be learned
with task-agnostic environment data and general manipulation videos to develop a sense of “how the
world works.” This data is easily collected in the environment or mined from the web, respectively.

To leverage both of these data types, we choose to learn from video, enabling the use of a myriad
of datasets without needing embodiment-specific actions or task-specific rewards. The nature of
video data availability on the web also allows for training on other environments. We hypothesize
that learning models from various video sources will expand the data support, enabling generaliza-
tion and successful goal-reaching guidance. Crucially, we elect to represent our prior as a goal-
conditioned state-value function V (s, g), that for any image s and desired target g, estimates the
temporal distance between the two states. Learning this type of model easily plugs into online RL
by penalizing the predicted distance from the goal. Also, using a value-learning approach allows
ingesting suboptimal reaching data, further relaxing our requirements for the training data, as op-
posed to other behavioral prior methods (Escontrela et al., 2023). Lastly, goal-conditioned value

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Internet
Video

Replay 
Buffer

Offline 
Robot
Data

    ICVF

(s, a, s’, r + V(s, goal))

train

(s, a, s’, r)

sample

rollouts

Pretraining Fine-tuning Online RL

ICVF ICVF

Offline
Robot
Data

Figure 1: Left: ViVa uses samples from internet-scale video to learn a value-function that encodes
goal-reaching priors. Middle: ViVa finetunes on robotics-relevant data to bring the value function
into the domain of the tasks we wish to solve. Right: During online RL, we freeze the value function
and augment the extrinsic reward with a guidance signal that captures temporal distances. We choose
to include the robotics-relevant interaction data in our online pipeline to assist exploration.

functions naturally extend to multiple tasks by flexible goal specification. In essence, we desire a
simply learned function that scales with widely available off-task and off-environment video data to
generally inform the agent about useful states leading to the goal.

We can instantiate our method by pre-training an Intent-conditioned Value Function (ICVF) (Ghosh
et al., 2023) on Internet-scale egocentric interaction data in various settings (Ego4D) (Grauman
et al., 2022). We use this training to develop strong visual features as well as a priors over object
manipulation and interaction outcomes. We then finetune this ICVF on environment-specific, yet
task-agnostic data, to specialize the function for the setting of interest. During online RL, we provide
the temporal distance estimates to the agent in the form of a reward penalty.

We observe that reformulating online sparse RL problems with Video-trained Value functions (ViVa)
shows a number of benefits. Firstly, we see generalization to new goals unseen in prior data in the
Antmaze environment (Fu et al., 2021), a simple state-based control setting. Secondly, we also see
improvement in performance by training on off-task data in a visual robotic simulator, RoboVerse
(Singh et al., 2020). Thirdly, we see that pre-training on Ego4D can significantly improve perfor-
mance but is not sufficient to solve online RL alone, necessitating some environment finetuning.
Lastly, we see that ViVa improves online performance as data scale increases and can enable solving
complex robotic tasks on Franka Kitchen (Gupta et al., 2019), another robotic simulator.

2 RELATED WORK

Solving sparse online RL problems is a difficult challenge due to the lack of reward feedback. One
way to make it easier is to better explore the environment to more reliably reach the goal state and
begin backing up rewards. They range from simple noisy behaviors (Haarnoja et al., 2018b) to
structured behavioral priors (Ecoffet et al., 2021; Bharadhwaj et al., 2021; Kearns & Singh, 2002;
Brafman & Tennenholtz, 2003). Some methods utilize intrinsic bonuses (Schmidhuber, 2010) to
minimize uncertainty (Kolter & Ng, 2009; Pathak et al., 2019; Houthooft et al., 2017; Still & Pre-
cup, 2012) or to seek novelty (Burda et al., 2018; Pathak et al., 2017; Ostrovski et al., 2017; Tang
et al., 2017; Bellemare et al., 2016). Unfortunately, these methods break down in complex visual
environments and intricate robotic control settings due to the large state and action space.

To narrow this search, a prior is desirable to inform the agent of what states or actions to explore
more. One way to do this is to inject domain knowledge into the reward function, guiding it to
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the goal. This family of approaches, known as reward shaping, can accelerate learning the opti-
mal policy (Ng et al., 1999; Mataric, 1994; Hu et al., 2020; Devlin & Kudenko, 2012; Wiewiora,
2003). However, hand-crafting these rewards does not generally scale to many tasks and is often
over-designed for one domain (Jiang et al., 2020; Mahmood et al., 2018; Haarnoja et al., 2018a;
Malysheva & Kudenko, 2018; Hussein et al., 2017; Brys et al., 2015). A more ideal way to have a
general prior is to learn it from a wide range of available data. In this work, we explore the effect of
various video data sources in providing robotics-relevant dynamics information to downstream RL.

Many methods elect to use this cheap video data to learn a rich image representation through re-
construction objectives (Xiao et al., 2022), constrastive learning (Nair et al., 2022), value-functions
(Bhateja et al., 2023), or predictive objectives (Shah & Kumar, 2021). There is also a family of
approaches that model videos through inferring latent actions from states, and use environment-
specific action-labelled data to map these latent actions to real actions (Ye et al., 2024; Edwards
et al., 2019; Schmidt & Jiang, 2024; Bruce et al., 2024). Bhateja et al. (2023) propose V-PTR which
is particularly similar to our approach but only utilizes the trained ICVF encoders as a pre-trained
representation for offline RL. Our method aims to use a distance-function rather than a pre-trained
encoder to directly guide a goal-conditioned online RL agent. This resembles temporal distance
learning methods (Pong et al., 2020; Mezghani et al., 2023) such as Dynamical Distance Learning
(DDL) (Hartikainen et al., 2020) where policy-conditioned distance learning and online RL for dis-
tance minimization is alternated. However, DDL uses distances for unsupervised skill discovery and
preference-learning, and importantly do not extend to internet-scale interaction data.

The most similar approach is Value-Implicit Pretraining (VIP) (Ma et al., 2023) whereby a internet-
scale video-trained representation function induces a distance to shape the reward. Our method
differs from VIP in a few different ways. First, our method explicitly uses temporal-difference
learning as opposed to time-contrastive learning, as done in VIP. Second, we explicitly focus on
downstream online RL rather than direct imitation or smooth trajectory optimization. Third, we
present a bi-level pre-training procedure to not only take advantage of task-agnostic human video,
but also environmental interaction data. We therefore identify with other offline-to-online methods
(Xie et al., 2022; Lee et al., 2021; Agarwal et al., 2022; Zheng et al., 2023; Andrychowicz et al.,
2018; Li et al., 2023) whereas VIP compares to other pre-trained representation distances. These
offline-to-online methods often assume action access though which limits the scope of usable data.
Our method’s access to environmental interaction data dictates comparison to RLPD (Ball et al.,
2023), a method which runs online RL and mixes training batches with offline data samples, as well
as JSRL (Uchendu et al., 2023), a method which condenses offline data into a policy to assist online
exploration.

3 PRELIMINARIES

Let S be the state space and A be the action space. We consider a sparse-reward Markov Decision
Process (MDP), M defined by a tuple (S,A, P, r, γ) where P (s′|s, a) is the transition dynamics and
γ is the discount factor. We additionally consider a goal specified by a goal state set G. The reward
r(s) is the set inclusion indicator r(s) = 1[s ∈ G]. The objective in this setting is learn a policy π
that maximizes the expected return Ea∼π(st),st+1∼P (.|st,a)[

∑∞
t=0 γ

tr(st)] where the expectation is
taken over the policy π and the environment dynamics.

For our experiments, we assume access to a video dataset of human egocentric interactions, Dvideo,
and a dataset of environment-specific interaction, Denv . Dvideo contains data out of the desired
domain and does not use the same embodiment as used for the target MDP M. Denv is environment-
specific data that contains actions, uses the embodiment of interest, but is either agnostic to the actual
task at hand, or does not contain any successful trajectories due to the expensive nature of positive
data trajectories.

4 VIVA : VIDEO-TRAINED VALUE FUNCTIONS

Our proposed solution for the sparse online RL case when faced with a lack of demonstrations is
to develop a prior that guides the agent towards a valid goal, g ∈ G. We elect to learn a value
function V (s, g) to give the value of any given state, s, in the context of the task of reaching the state
g optimally. As detailed in 4.1, we can train this value function to directly represent the temporal
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Figure 2: Left: A visualization of trajectories from the corrupted dataset shown in green. Middle:
The learned ICVF values across all states with the goal at the red star. Right: The optimal dense
reward (i.e. L2 distance) for all states with the goal at the red star.

distance from s to g, thus giving a simple reward penalty. This allows us to create a guided reward
which has an injected prior towards the goal of choice.

r̂(s, a) = r(s, a) + V (s, g) (1)

4.1 VALUE-FUNCTION GUIDANCE

Our desired function is V (s, g), which generally yields a higher value for states closer to g on the
optimal path from s to g. Since we aim to learn this model from action and reward free video data,
we elect to model an Intent-conditioned Value Function, ICV F (s, s+, g), which is fully trainable
from this passive data. The ICVF models the unnormalized likelihood of reaching some outcome
state, s+, when starting in state s and acting optimally to reach some goal state g, otherwise
known as the “intent”. To precisely define the ICVF, we denote rg : s 7→ r as a reward function
corresponding to reaching any goal state. The optimal policy, π∗

rg , induces a state-transition which
can define the value function based on the following expectation:

Pg(st+1|st) = P
π∗
rg (st+1|st)

rg(s) = 1[s = g]− 1

ICV F (s, s+, g) = Es0=s,st+1∼Pg(.|st)

∞∑
t=0

γtrs+(st).

(2)

By applying a scalar shift of -1 to our sparse reward, the reward-to-go is equivalent to the negative
discounted number of timesteps to reach the goal. This negative temporal distance is well-suited to
be used as an additive reward penalty. Furthermore, if we use g as not only the goal, but also the
outcome, s+, we can model the negated time to reach g from s if the agent were to act optimally
towards g thereafter. This is what we are looking for and can let us define our desired value function:

V (s, g) = ICV F (s, g, g) = Es0=s,st+1∼Pg(.|st)

∞∑
t=0

γtrg(st)

r̂(s, a) = r(s, a) + ICV F (s, g, g).

(3)

We incorporate r̂, our guided reward, into the online RL system. This allows the agent to ap-
ply knowledge of state-goal relationships contained in the learned ICVF. We note that usage of a
potential-based instrinsic reward could be used for provable policy invariance as shown by Ng et al.
(1999), but we observe higher variance returns which could destabilize training shown in Appendix
A.3.

4.2 VALUE-FUNCTION TRAINING

We model the ICVF as a monolithic neural network, Vθ(s, s+, g). This differs from the original
multilinear formulation, ϕθ(s)TTθ(g)ψθ(s

+), since we found a monolithic architecture to produce
higher-quality value functions as shown in Figure 11 in the Appendix. When working with image
states, we elect to feed in learnable latent representations of the inputs to the value function. We
detail the training procedure below.

Given a video dataset of image sequences, D, we first sample a starting frame and neighboring frame
(s, s′) from the same trajectory. Second, we sample some outcome s+ from the future of the same
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Figure 3: All plots detail the mean evaluation return computed over 10 evaluation episodes. Left:
Online RL for pick-and-place on COG as we scale to more and more on-task data. The rows below
show example off-task successful trajectories with the WidowX robot from the drawer prior
and blocked drawer datasets. Right: Online RL for pick-and-place on COG when including
Ego4D pretraining and off-task data sources. The rows below are a failure and a success from the
prior dataset.

trajectory, and we sample a goal, g, in an identical way to s+. We additionally follow Ghosh et al.
(2023) in sometimes sampling identical images or random images for s+ and g for better training.
After retrieving a sample, we minimize the temporal-difference (TD) error, in Equation 4. Inspired
by Kostrikov et al. (2021a), we use the expectile regression framework with an advantage heuristic,
shown in Equation 5, to relax any maximization operators. This expectile biases the objective to
more strongly weight samples (s, s′) that are approaching g under our current model of value.

min
θ

|α− 1(A ≤ 0)| ∗ (Vθ(s, s+, g)− 1(s = s+)− γVθ(s
′, s+, g))2 (4)

A = 1(s = g) + γVθ(s
′, g, g)− Vθ(s, g, g) (5)

Essentially, if transitioning to s′ while conditioned on g is advantageous under our current value
estimates, we assume that the transition is implicitly running the optimal action to reach g. This
allows us to update our value function without a maximum operation across actions. As a result,
we just minimize the one-step TD error which is equivalent to regressing our value estimate of
Vθ(s, s

+, g) towards 1(s = s+) + γVθ(s
′, s+, g). We use the expectile, α, to decide how hard or

soft this assumption is, with α = 0.5 equating all samples to be equal weight, and α = 1 forcing only
using positive advantage samples for updates. As shown by Kostrikov et al. (2021a), this converges
in the limit as α approaches 1

4.3 SYSTEM OVERVIEW

Video pre-training Using the training process described in 4.2, we first train an ICVF on Ego4D,
or Dvideo. Ego4D is a dataset of first-person camera video from hundreds of participants across
many diverse scenes. This video data contains humans doing daily-life activities such as laundry,
lawn-mowing, sports, gardening, and more. Approximately 3000 hours of video data is included and
we reshape to 128 × 128 and apply a random crop augmentation further detailed in Appendix A.1.
As detailed earlier, we utilize a -1 reward shift for the self-supervised reward targets to ensure the
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value to-go matches a temporal distance as desired. We elect to sample future outcomes and goals
from the same trajectory 80% of the time and use a 10% chance for both choosing random goals or
goals equal to current sampled state. Lastly, we choose an expectile of 0.9 which ensures backups
are biased to occur stronger for transitions where the advantage heuristic is positive. This expectile
allows for the convergence guarantees in optimal value function learning as the expectile approaches
1 shown in Kostrikov et al. (2021a). We utilize ResNetv2 (He et al., 2016) on JAX (Bradbury et al.,
2018) as our neural architecture and functional paradigm for this video pre-training. We encode the
three input images, (s, s+, g) with the ResNet before passing them into an ensemble of two 2-layer
MLPs for min-Q learning.
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Figure 4: The online evaluation return in AntMaze
when training ViVa with corrupted data. As seen,
learning a value-function prior for online RL pro-
vides a more generalizable reward model when of-
fline rewarded data is absent. Learning a behav-
ioral prior also works in this setting.

Environment fine-tuning Secondly, we use
available environment data, Denv , to finetune
the ICVF. The finetuning is done exactly the
same way as pre-training but with environment
video data. This finetuning brings the model
into the domain of the RL task and can help
to develop setting-specific features relevant to
tasks in the environment. We hypothesize usage
of Dvideo will develop general visual features
and fusion between the input and goal images.
Furthermore, it can learn priors about the cause-
and-effect of manipulation. Alternatively, the
fine-tuning on Denv will help to develop task-
specific features and the visual dynamics of the
target environment.

Guided online RL After our value function
is trained, we lastly run online RL and utilize
the available environmental data, Denv , as prior
data. Specifically, every batch update for online RL includes 50% sampled online data from the re-
play buffer and 50% sampled offline data from the prior dataset. The addition of the prior data into
our RL training assists online exploration by providing offline trajectories to backup across and ex-
plore which may not be otherwise explored online. We run experiments with this system set up to
study and analyze generalization characteristics, performance, and data scaling properties. We pro-
vide details of our chosen algorithms Soft Actor-Critic (Haarnoja et al., 2018b) and its DrQ variant
(Kostrikov et al., 2021b) in the Appendix. As shown by Haarnoja et al. (2018b), soft policy iteration
is shown to converge.

5 RESULTS

We analyze ViVa through different lenses to understand the benefits of video-trained value functions
for downstream online RL. Specifically, we seek to study the generalization capabilities of ViVa in
providing effective guidance for tasks it has not been provided data for, the performance of ViVa
in difficult control tasks, and the scaling properties of ViVa as more diverse data is incorporated in
greater quantities.

5.1 BASELINES

We also choose to compare to other methods which take advantage of offline data to determine
whether video-trained value functions are an effective mathematical object for representing a prior
for online RL. We firstly compare against Reinforcement Learning with Prior Data (RLPD), a
method which simply includes offline prior data in the update batches exactly as we do in ViVa
. Importantly, RLPD only uses extrinsic reward signals and does not pretrain or finetune a value for
relabeling offline data as ViVa does. We also compare against Jump-start Reinforcement Learning
(JSRL) which learns a behavioral prior policy from offline data and then runs online RL by execut-
ing the learned prior policy for N random steps and then giving control to the agent’s policy until
termination. This method aims to condense prior experience into a policy for improving exploration
towards desired goals. For our experiments, we train an imitative policy from offline data and use
that as the behavioral prior for JSRL. Lastly, we use vanilla DreamerV2, a competitive world-model
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Figure 5: All plots detail the mean evaluation return computed over 10 evaluation episodes. Left:
Online RL for the Hinge Cabinet task in FrankaKitchen. The bottom row is an image trajectory of
a demonstration of opening the hinge cabinet. Right: Online RL for the Sliding Cabinet task in
FrankaKitchen. The bottom row is an image trajectory of a demonstration of opening the sliding
cabinet.

approach for online RL (Hafner et al., 2022) that uses latent imagination of rollouts for training. We
use these baselines to study the importance of explicitly learning a value function from prior data
as opposed to directly including it in the replay buffer or learning a behavioral prior from it. We
also compare against vanilla Soft-Actor Critic (SAC) and ablate Ego4D pre-training from ViVa to
further analyze our method.

5.2 EXPERIMENTS

Corrupted AntMaze We first use the D4RL AntMaze (Fu et al., 2021) environment to visually
analyze the robustness to states seen outside of the training distribution. Environment and training
details are further expanded upon in Appendix A.3. We modify the D4RL diverse prior dataset
which includes the training transitions of a random start goal-reaching policy. Importantly, we
corrupt this dataset by removing all trajectories containing points near the goal-region as shown in
Figure 2. We train a 3-layer Multilayer Perceptron with 512 units each using Equation 4 as the
training objective and display the learned value function, after 45 minutes of training on a Tesla
V100 16GB GPU, in Figure 2. Evidently, we observe generalization to the goal region when it has
not been seen during value training. The benefits of this generalization can be seen when running
downstream online RL are shown in Figure 4. We conclude that learning a simple ICVF network
on offline data is enough to develop a prior that generalizes to the unseen goal and prevents the
failures that RLPD exhibits on sparse-reward tasks when the offline dataset doesn’t contain the
goal. Our comparison shows that JSRL exhibits similar extrapolation to new goals in the space of
expert actions as opposed to values. However, this similar extrapolation ability seems to fail when
introduced to more complex visual environments. In these settings ViVa is able to take advantage of
Ego4D pre-training whereas JSRL cannot.

RoboVerse off-task transfer We use the RoboVerse (Singh et al., 2020) simulator (COG) to test
whether ViVa can generalize to new tasks never seen before in a visual domain, rather than state-
based. This simulator has a variety of settings and accompanying datasets using a 6 DoF WidowX-
250 robot on a desk. We choose to evaluate on a pick-and-place task to move a randomly placed
object into a tray – this task has two datasets of interest, one of 10K grasping attempts (with around
40% success), known as the prior dataset, and one task-specific dataset of 5K placing at-
tempts (with around 90% success) labeled with rewards. For our experimental setup, we choose
to exclude the task-specific dataset to emphasize the absence of positive demonstration data.
During training, we combine the prior data with various other off-task sets which contain inter-
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Figure 6: Left: An ablation study of including Ego4D pretraining or not across different environ-
ment finetuning data availability levels. At 0%, we are evaluating a random value function and the
zero-shot performance of an Ego4D trained value function. Right: Each row is a randomly sampled
trajectory from the Ego4D training showing car washing, cooking, and construction (from top to
bottom).

actions with an open drawer, a closed drawer, and an obstructed drawer. All these datasets contain
no rewards as they do not match the desired reward we are using. We train ViVa for 9 hours on a
v4 TPU with these datasets and use it to guide online RL for pick-and-place. We leave details of
the training and environment in the Appendix. The results in Figure 3 show that ViVa succeeds in
solving the task whereas plainly sampling the available data offline fails. This is since the offline
data includes no rewards so RLPD fails to benefit from offline batch updates. On the other hand, the
imitative prior that JSRL uses does not explore the right areas which slows down learning. Interest-
ingly, this experiment shows that ViVa is able to take advantage of diverse off-task environmental
and video data to inform goal-reaching. To concretize this conclusion, we ablate these data sources
to show that this is what enables guidance to unseen goals in the Figure 9 in Appendix A.4.

To more deeply understand how the trained ICVF behaves on out-of-distribution examples, we also
plot value curves over trajectories of failure demonstrations and unseen successes in Figure 7. As
shown, ViVa provides guidance towards unseen goals, resembling how a control value function
trained on positive demonstrations does. Similar to the AntMaze experiment, ViVa provides gener-
alization to unseen goals and assists downstream online RL while also taking advantage of Internet-
scale video data. We analyze the usage of how ViVa behaves as more data is available and how
useful this Internet-scale pre-training is in the experiments below.

RoboVerse scaling law In this experiment, we seek to assess whether a greater amount of task-
relevant data has a positive effect on the downstream RL guidance. We train ViVa on a varying
amount of data (from the task-specific and prior datasets) for 5 hours on a v4 TPU
and then examine the online performance. We elect to include only the prior dataset in the online
RL phase since including the task-specific data would significantly simplify the problem. As
shown in Figure 3, we can see there is a strong performance increase as data scales upwards. This
shows that ViVa benefits from the diversity and coverage of its training data and has positive scaling
behavior.

RoboVerse pre-training ablation We run the same analysis in our scaling law, but we remove
environment-agnostic, task-agnostic video to assess the direct impact of Ego4D pretraining. In
Figure 6 we can see a diminishing yet positive return from pre-training the value function on internet-
scale Ego4D video. Specifically, in the low-data regime, we observe a 2x increase in performance
when including Internet-scale video. This demonstrates the effective transfer to online RL from
including videos of interaction data supporting our initial hypothesis of developing a goal-reaching
prior for guidance. Although, the poor zero-shot performance depicts the importance of fine-tuning
on environmental data given the significant domain shift from Ego4D to RoboVerse.

Franka Kitchen Lastly, to evaluate on a more difficult robotic benchmark, we run ViVa on the
FrankaKitchen (Fu et al., 2021; Gupta et al., 2019) environment which simulates a 9-DoF Franka
robot tasked to interact with different objects in a kitchen. We use datasets of ∼ 1K failure trajec-
tories when attempting to interact with the Hinge Cabinet and Sliding Cabinet as the environmental
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Figure 7: The top shows the image trajectory being evaluated and the bottom is the corresponding
value function plot. Left: Value across a successful trajectory conditioned on a picking goal. Mid-
dle: Value across a failure trajectory conditioned on a picking goal. Right: Value on an unseen
placing trajectory with an unseen placing goal. The blue is our model generalizing, and the orange
reference is an optimal value function learned on the placing task.

interaction data to finetune the video-pretrained value function. Finetuning is run for 2.5 hours on a
v4 TPU. Results of each task with and without video pretraining are shown in Figure 5. We observe
that RLPD works well due to the negative reward shift that encourages the agent to be near the ter-
minal states of the prior data. JSRL works poorly yet still succeeds on some seeds since imitating
the interaction failures allow for exploring near the right area. Evidently, the inclusion of Ego4D
pretraining tends to improve sample-efficiency.

6 DISCUSSION

In this paper, we proposed a method for transferring goal-reaching priors found in video data to
downstream online RL problems by learning an intent-conditioned value function. This method can
enable sparse-reward task solving, generalization to new goals, and positive transfer between tasks.
Our analysis of ViVa illustrates the importance of using value function pre-training on video data as
opposed to other methods of utilizing prior data. Our scaling experiments show that this is due to
the wide support that this method can take advantage of, namely from the availability and generality
of video data as well as the lack of assumptions for value learning.

Comparisons with JSRL depict the superiority of value functions as a representation of prior data as
opposed to classical imitative policies. We hypothesize this is because value learning uses a method
akin to shortest-path finding within data to discover an underlying temporal structure as opposed
to naively matching the next action. Furthermore, direct imitative policies prevent support from
action-free data sources such as Ego4D. However, latent-imitation methods could be explored to
leverage actionless datasets. Regardless, the ViVa paradigm should therefore provide insight to RL
practitioners looking to harness extra data and ameliorate the absence of rewarded prior data.

Limitations and future work We note that a limitation of value functions is the weak zero-shot ex-
trapolation ability when far out of domain. This can be seen through the poor 0% scale performance
shown in Figure 6 which is presumably because RoboVerse is significantly different than Ego4D.
But when there is fine-tuning involved (shown at scales larger than 0% in Figure 6), this Ego4D
pretraining helps, offering 2x performance boost in the low-data regime. These results make it clear
that pre-training offers a way to make fine-tuning more effective, but cannot work on its own as it’d
need task-relevant data. A direction of future work would be to find ways to encode more explicit
forms of abstraction in the value function in order to extrapolate deeply when given only off-domain
pre-training data (such as Ego4D). This would help to improve pure zero-shot performance when
given no environment data.

We also notice that ViVa utilizes some action-labelled robotic data for fine-tuning which is assumed
to be exploratory or somewhat relevant to the downstream task. An exciting future direction would
be to pair ViVa without fine-tuning with an exploration algorithm online to run the fine-tuning dur-
ing the online RL phase, thus simplifying the training pipeline by removing a separate fine-tuning
phase. This method would also allow for resolving value errors through collecting counterfactual
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examples since these errors can be detrimental to performance by forcing the agent into states that
are erroneously near the goal. This way, ViVa could even be used to form a curriculum based on
state-values or uncertainties in state-values to guide exploration in harder problems. Lastly, a natu-
ral extension includes utilizing language goals for the intent-conditioned value function, harnessing
multi-modal features, and extending into the real-world.

7 REPRODUCIBILITY STATEMENT

We include important training parameters in our system overview, in Section 4.3. These include
image shapes, augmentation choices, reward shift, and hyperparameters that control the data sam-
pling for training. In Section 5, we include domain specific parameters as well as the datasets used
for fine-tuning ViVa . Lastly, we include an Appendix with fine-grained training details, datasets,
and code-bases used. The Appendix expands upon details mentioned in the main paper and gives
parameters for exactly reproducing the models we have trained on the code repositories we used.
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Figure 8: ICVF Ego4D value loss over training.

Hyperparameter Value
prandomgoal 0.1
ptrajgoal 0.8
pcurrgoal 0.1
reward scale 1.0
reward shift -1.0
psamegoal 0.5
intent sametraj True
Encoder ResNet-v2
MLP Hidden Dims [256, 256]
Value Ensemble Size 2
Optimizer Learning Rate 6e-5
Optimizer Epsilon 0.00015
Discount 0.98
Expectile 0.9
Target Update Rate 0.005
Batch Size 64

Table 1: ICVF Ego4D Training Settings. We
include parameters from the ICVF public code
base to control the image sampling mechanism.

A APPENDIX

A.1 VIVA TRAINING

We pre-train ViVa on the Ego4D video dataset. We use the public ICVF codebase and use settings
shown in Table 1. We preprocess the video dataset by shaping to 256 × 256, center cropping the
middle 224 × 224, then resizing it to 128 × 128. The ICVF itself is structured with an encoder
which converts the state, future outcome, and goal into embeddings. For the encoder, we utilize the
26-layer ResNet-v2. The training loss is displayed in Figure 8. We train with 1 v4 TPU for 1.5 days.

Once embedded, we concatenate the latents and pass them into an ensemble of 2 Multilayer Per-
ceptrons, each with LayerNorm and to produce the value estimate. We train the ICVF for 1 million
steps. For RoboVerse and Franka Kitchen, we apply the same exact training process, but on a the
fine-tuning dataset. Antmaze doesn’t utilize pretraining and functions on states, so it has a different
setup. For our final experiments, we swept across checkpoints to identify strong value functions to
run online RL with.

A.2 ONLINE RL

When running online RL with a trained ICVF, we formulate our reward as:

r̃(s, a) = r(s, a) + ICV F (s, g, g) (6)

However, we experimented with a different approach where

r̃(s, a, s′) = r(s, a) + (γΦg(s
′)− Φg(s)) (7)

Φg(s) = ICV F (s, g, g) (8)

which follows the potential-based reward shaping strategy as formulated by Ng et al. (1999). They
show a learned Q-function under the proposed reward transformation is:

Q̃∗
g(s, a) = Q∗

g(s, a)− Φg(s) (9)
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Figure 9: Left: An experiment ablating out off-task data and Ego-4D pre-training. As seen, off-
task data and off-environment pre-training are sigificant for performance boost. Right: Comparison
between V-PTR and ViVa on the COG pick-and-place task showing how ViVa’s design of reward
guidance trumps simple representation transfer on COG.
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Figure 10: Left: Comparison in AntMaze between using value potential or pure value as the reward
augmentation. Middle: Comparison in AntMaze between agents given access to extrinsic reward
labels or not. Right: Comparison between agent given prior data access (RLPD) and agents given 0
prior data (SAC)

which is evidently invariant of actions and thus admits the same optimal policy. Although this is
favorable in theory, in practice we observed no changes in results except variance in policy rollout
returns which could destabilize training. This was tested in Antmaze by training an ICVF on the full
Antmaze dataset and utilizing the potential-based shaping reward versus the simple value-guided
reward as shown in Figure 10.

A.3 ANTMAZE

Value training Our first experiment involves the AntMaze environment specified in the D4RL
experiment suite. It is build upon Mujoco and controls an 8 DoF ant with 4 legs through a maze. It
starts in the bottom left and is tasked to reach the top right using a sparse reward. In practice, we
do not utilize any ICVF Ego4D pretraining since we run this experiment in a state-based fashion.
The state is 29-dimensional including positions, velocities, angles, and angular velocities. We use
a different ICVF setup for training too. Specifically, we utilize a discount of 0.999, a learning rate
of 3e-4 and an epsilon of 1e-8. We use a 3 layer, 512 unit MLP with LayerNorm as the value
function. We experimented with using the original multilinear formulation proposed by Ghosh et al.
(2023) but noticed early collapse during training as well as noisy values, shown in Figure 11. This
motivated our choice to use a single, monolithic neural architecture to represent value.

RL training We run on the RLPD public codebase and detail RLPD hyperparameters in Table 2.
RLPD simply runs the Soft Actor-Critic algorithm but adds offline sampling and some extra design
choices as detailed in their paper. We edit every update batch reward by adding the ICVF value for
the current state conditioned on the goal times 0.001. We use 5 seeds for all baseline experiments.
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Figure 11: These plots show trained value function curves across time on a trajectory from s to m
to e, representing start, middle, and end, respectively. We denote x as representing the state in the
trajectory at a given timestep. Each row is a comparison of values when setting the goal-conditioning
to start, middle, or end. As depicted, the monolithic values much more smoothly express distance
from the start, middle, or end as we move across the trajectory.

Hyperparameter Value
CNN Features (32, 64, 128, 256)
CNN Filters (3, 3, 3, 3)
CNN Strides (2, 2, 2, 2)
CNN Padding ”VALID”
CNN Latent Dimension 50
Update-to-Data Ratio 1
Offline Ratio 0.5
Start Training 5000
Backup Entropy True
Hidden Dims (256, 256)
Batch Size 256
Q Ensemble Size 2
Temperature LR 3e-4
Init Temperature 0.1
Actor LR 3e-4
Critic LR 3e-4
Discount 0.99
Tau 0.005
Critic Layer Norm True
Horizon 40

Figure 12: RLPD Settings for COG RoboVerse
and FrankaKitchen

Hyperparameter Value
Update-to-Data Ratio 20
Offline Ratio 0.5
Start Training 5000
Backup Entropy False
Hidden Dims (256, 256, 256)
Q Ensemble Size 1
Temperature LR 3e-4
Init Temperature 1.0
Actor LR 3e-4
Critic LR 3e-4
Discount 0.99
Tau 0.005
Critic Layer Norm True
Horizon 1000

Figure 13: RLPD Settings for Antmaze
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Method AntMaze Corrupt COG Pick-Place Franka Hinge Franka Slide
ViVa N/A 8.73± 13.48 30.38± 32.07 62.64± 12.85
ViVa (No Ego4D) 0.89± 0.14 6.42± 11.25 14.91± 25.20 54.75± 14.98
JSRL 0.95± 0.04 0± 0 0± 0 1.68± 3.76
DreamerV2 N/A 0± 0 0± 0 15.11± 22.36
RLPD 0± 0 0± 0 21.06± 23.64 54.38± 19.71
SAC 0± 0 0.01± 0.03 0± 0 0.44± 0.98
ViVa N/A 16.71± 16.73 47.56± 33.64 75.61± 11.46
ViVa (No Ego4D) 0.9± 0.13 8.42± 14.58 47.15± 33.36 74.61± 15.06
JSRL 0.98± 0.01 0± 0 8.7± 23.00 3.06± 6.84
DreamerV2 N/A 0± 0 0± 0 25.32± 30.71
RLPD 0± 0 0± 0 41.704± 33.40 72.47± 21.44
SAC 0± 0 0.02± 0.03 0± 0 0.80± 1.79

Table 2: Experimental Suite Results. The top set of results are at the halfway point through the
online RL training process. The bottom rows are metrics at the final step.

A.4 COG ROBOVERSE

We use the RoboVerse simulator, publicly located here, which simulates a WidowX
robot through PyBullet. We use the datasets created in the COG paper which is pub-
licly located here. We run experiments on the pick-and-place task which sparsely re-
wards the agent for picking up a target object randomly placed on a table and placing
it into a silver tray. For ICVF fine-tuning, we utilize a number of data combinations
for different experiments detailed in the paper, but select from the main group of COG
datasets: pickplace prior, pickplace task, DrawerOpenGrasp, drawer task,
closed drawer prior, blocked drawer 1 prior, and blocked drawer 2 prior.
We only include pickplace task in the scaling law and elect to remove it for all other ex-
periments.

During the online RL phase, we adopt the same RLPD system but we use the DrQ regularization
methods for image-based RL. Specifically, we utilize the D4PG (Barth-Maron et al., 2018) visual
encoder. We attach experimental hyperparameters in Table 12 and use 8 seeds each. We additionally
compare our method to V-PTR, a similar method which uses the trained representations from the
ICVF rather than the actual value network outputs. V-PTR uses the trained encoders to map the
observations into an embedding space for the policy network to learn on. Since our method uses
the notion of distance itself and more actively enforces this signal directly into the reward, we
hypothesize it’d be more directly useful for sparse reward RL. Our comparison results are in Figure
9 which motivate our decision to use values directly. We additionally ablate off-task data and Ego4D
pre-training to show the effect of each data source in Figure 9.

A.5 FRANKA KITCHEN

Our final experiment uses the Franka Kitchen environment available on D4RL here which simu-
lates a 9-DoF Franka Robot in a kitchen environment. We control the robot in joint velocity mode
clipped between -1 and 1 rad/s. The 9 degrees of freedom are 7 joints and 2 fingers of the grip-
per. We analyze two tasks which are opening the sliding cabinet and opening the hinge cabinet.
These tasks are specified with a sparse reward. As mentioned in the paper, the datasets we used
contain failed interactions with the target objects. We collect this data by controlling the robot with
expert demonstration actions with added Gaussian noise. We then filter out all successes from this
data to form our dataset. The hinge failures dataset contains 1013 trajectories, whereas the sliding
door dataset contains 630 trajectories. These trajectories are 50 steps each. The RLPD settings for
FrankaKitchen are the exact same as for RoboVerse but we use a horizon of 50 steps rather than 40,
and we run 6 seeds per baseline.
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