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Abstract

Conformal prediction (CP) has been a popular
method for uncertainty quantification because it
is distribution-free, model-agnostic, and theoret-
ically sound. For forecasting problems in super-
vised learning, most CP methods focus on build-
ing prediction intervals for univariate responses.
In this work, we develop a sequential CP method
called MultiDimSPCI that builds prediction re-
gions for a multivariate response, especially in
the context of multivariate time series, which
are not exchangeable. Theoretically, we estimate
finite-sample high-probability bounds on the con-
ditional coverage gap. Empirically, we demon-
strate that MultiDimSPCI maintains valid cov-
erage on a wide range of multivariate time series
while producing smaller prediction regions than
CP and non-CP baselines.

1. Introduction
Conformal prediction (CP) has been a popular distribution-
free technique to quantify uncertainty in modern machine
learning (Volkhonskiy et al., 2017). In building predictive
algorithms, CP can enhance trained machine learning esti-
mators to output not just point estimates but also provide
uncertainty sets that contain the unobserved ground truth
with user-specified high probability. As a result, CP has
been applied successfully to many applications, such as
anomaly detection (Xu & Xie, 2021a), classification (An-
gelopoulos et al., 2021; Xu & Xie, 2022), regression (Barber
et al., 2021), and so on. In a nutshell, CP methods work as
wrappers that take in three components: a black-box pre-
dictive model f , an input feature X , and a potential output
Y . Then, it designs a so-called “non-conformity” score that
measures how non-conforming the potential output is. Natu-
rally, the uncertainty set conditioning on the input feature
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and the predictor model would contain all potential outputs
that are conforming to the past.

Most successful applications of CP have considered Y as
an univariate variable. In the regression setting (Kim et al.,
2020), CP methods thus output prediction intervals while
in the classification setting (Romano et al., 2020), these
methods produce prediction sets. With mild assumptions,
such as assuming that data (X,Y ) are exchangeable, these
one-dimensional uncertainty sets can theoretically guarantee
high coverage probability. Recent works have also extended
such guarantees to non-exchangeable observations and ei-
ther quantify the coverage gap in finite training samples
(Barber et al., 2023) or show asymptotic coverage conver-
gence (Xu & Xie, 2023b).

Despite the success of CP on scalar outputs Y , effective
use of CP on multi-dimensional outputs is considerably less
studied, especially when data are non-exchangeable as in
the case of multivariate time-series forecasting. Moreover,
there can be complex dependence between the multiple
dimensions of the time series, making the problem more
interesting and important. Specifically, the goal is not just
to provide a prediction interval for each dimension of Y
but to produce an uncertainty region that captures the cor-
relation within Y and jointly contains all coordinates of Y .
While uncertainty quantification methods for this problem
have existed outside CP, as in vector auto-regressive models
(Salinas et al., 2020), these approaches often have strong
modeling or data assumption and lack rigorous theoretical
justifications. On the other hand, various multi-dimensional
CP methods have been proposed. Yet, they are either re-
peated use of one-dimensional CP methods (Stankevičiūtė
et al., 2021) or fail to work beyond exchangeability (Mes-
soudi et al., 2022).

We highlight the differences against copula-based CP meth-
ods, which have been developed for multi-dimensional fore-
casting. The initial approach developed in (Messoudi et al.,
2021) assumed exchangeability, which is unsuitable for
time series. The recent development by (Sun & Yu, 2024)
proposes copula CP for multi-step time-series forecasting.
However, their theory assumed that each data sample of an
entire time series is drawn i.i.d. from an unknown distri-
bution, hence ignoring temporal dependency. We further
introduce copula and its use in CP in Section 3.2, with
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additional comparison against baselines in Section 5.2.

Hence, the central focus of this work is to advance CP in the
context of multivariate time-series forecasting. Specifically,
we build ellipsoidal prediction sets whose size is adaptively
and efficiently calibrated during test time. We also provide
rigorous theoretical guarantees and extensive experiments
to showcase the utility of the proposed method. In summary,
our contributions are

• We propose a sequential conformal prediction method
that builds ellipsoidal prediction regions for multivari-
ate time series. In particular, sizes of the ellipsoids
are sequentially re-estimated during test time to ensure
adaptiveness and accuracy.

• We provide finite-sample high-probability bounds for
the coverage gap of constructed prediction regions,
which do not depend on the exchangeability of the
observations.

• We empirically verify on multivariate time-series (up to
dimension 20) that MultiDimSPCI can yield smaller
prediction regions than baseline CP and non-CP meth-
ods without losing coverage.

For clarity, a taxonomy of existing CP methods is in Ta-
ble 1 to highlight our role within the CP literature. In
this paper, we assume that the noise sequence in the data-
generating process (see Eq (11)) is stationary and strongly
mixing, where the original data sequence does not need
to be exchangeable. Meanwhile, we impose some stan-
dard assumptions on the tail behavior of the distribution to
derive a non-asymptotic bound on the conditional guaran-
tee. We highlight that our guarantees differ from existing
multi-dimensional CP works that assume exchangeability
(Messoudi et al., 2021; 2022) or i.i.d. data (Sun & Yu, 2024).

We adopt the standard notations. For a random process
{Xn}n, Xn = op(an) means that |Xn|/an

p→ 0. For
function f(n) and g(n), f(n) = Õ(g(n)) means that
f(n) = O(g(n) log(g(n))k) for some k. Besides, for event
A and B, the notation A

∣∣B means A under the condition B.
For vector u, v ∈ Rp, u⊗ v is the outer product of u and v.

1.1. Literature review

CP with exchangeable data. The field of CP started in
(Vovk et al., 2005) and has been widely used for uncer-
tainty quantification due to its flexibility and robustness.
On a high level, we define a “non-conformity” score and
evaluate such scores on a hold-out calibration set. Then,
uncertainty sets include all potential observations whose
non-conformity scores are within the empirical quantiles
of the calibration scores. Assuming nothing but that input
data are exchangeable, CP methods have been successfully
developed in different applications (Wisniewski et al., 2020;

Xu & Xie, 2021a; 2022), in addition to the active research
on proper designs of non-conformity scores (Angelopoulos
et al., 2021; Huang et al., 2023; Gui et al., 2023). Compre-
hensive reviews of conformal prediction can be found in
(Fontana et al., 2023; Angelopoulos & Bates, 2023).

CP for one-dimensional time series. Two general trends of
extending beyond exchangeability work well for univariate
Y . The first considers adaptively adjusting the significance
level α during test time to account for mis-coverage. Such
works include (Gibbs & Candes, 2021; Zaffran et al., 2022;
Lin et al., 2022). The recent work (Angelopoulos et al.,
2024) extends such framework through the lens of con-
trol theory to prospectively model non-conformity scores in
online settings. The second considers weighing the past non-
conformity score non-equally so that scores more similar to
the present are given higher weights. Such works include
(Tibshirani et al., 2019; Xu & Xie, 2021b; 2023b; Xu et al.,
2023; Nair & Janson, 2023), some of which have success-
fully been applied to univariate time series. The recent work
(Barber et al., 2023) also suggests that re-weighting can be
a general scheme to account for non-exchangeability. Our
MultiDimSPCI is similar to the second line of approaches
but works in high dimensions.

CP for multi-dimensional data. Numerous works have
been on this topic. (Stankevičiūtė et al., 2021) builds
coordinate-wise prediction intervals for multi-horizon time-
series prediction using Bonferroni correction of the signifi-
cance level. For multivariate functional data, a similar idea
of building prediction bands was studied in (Diquigiovanni
et al., 2022), where this idea was further developed for time
series (Diquigiovanni et al., 2021). In addition, (Messoudi
et al., 2021) develops a principled way to determine the
length of coordinate-wise intervals by using copula, result-
ing in hyper-rectangular prediction regions. The extension
of copula for time-series forecasting was later studied in
(Sun & Yu, 2024). However, it is important to note that
the use of hyper-rectangles can be sub-optimal in many
cases, even in the two-dimensional instances when the true
conditional distribution Y |X is N(f(X),Σ) with a non-
zero off-diagonal entry in Σ. To overcome this, (Messoudi
et al., 2022) considers ellipsoidal uncertainty sets that rely
on data exchangeability. A more exact quantification of the
uncertainty set is studied in (Johnstone & Ndiaye, 2022),
which, however, strongly depends on the underlying predic-
tive model of Y . As a result, extending CP for multivariate
time-series forecasting beyond using hyper-rectangles still
needs to be explored.

Uncertainty quantification beyond CP. The task of building
uncertainty set for unobserved response has been widely
studied beyond CP. There has been a long history of using
copula to capture the joint distribution of multivariate re-
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Table 1. A 2×2 taxonomy of conformal prediction approaches (not an exhaustive list), categorized based on the dimension of the response
variable Y (rows) and data assumptions (columns).

Exchangeable Non-exchangeable

Univariate Y
(Volkhonskiy et al., 2017)

(Barber et al., 2021; Kim et al., 2020)
(Zaffran et al., 2022; Xu & Xie, 2023a)
(Xu & Xie, 2023b; Barber et al., 2023)

Multivariate Y
(Messoudi et al., 2021; Diquigiovanni et al., 2022)
(Johnstone & Ndiaye, 2022; Feldman et al., 2023)

Ours
(Stankevičiūtė et al., 2021; Sun & Yu, 2024)

sponse by relating the joint cumulative distribution function
(CDF) with each marginal CDF (Sklar, 1959; Elidan, 2013).
Meanwhile, (Dobriban & Lin, 2023) uses conditional pivots
to construct joint coverage regions for parameters and obser-
vations, extending beyond CP. However, its utility beyond
exchangeable data remains unclear. On the other hand, there
has been extensive development in the probabilistic fore-
casting literature, popular examples of which include the
DeepAR (Salinas et al., 2020) and Temporal Fusion Trans-
former (Lim et al., 2021). Such approaches optimize (vari-
ants of) the pinball loss to estimate quantiles of multivariate
responses but typically require extensive hyper-parameter
tuning and return hyper-rectangular uncertainty sets. We
will show experimentally that their performances are often
worse than their CP counterparts. Lastly, (Feldman et al.,
2023) uses CP in the representation space learnt by a deep
generative model, allowing general prediction sets for mul-
tivariate data. Coverage guarantee for exchangeable data is
proved, and extension to time series remains unexplored.

2. Problem setup
We consider a multi-dimensional time-series regression
setup: for time index t = 1, 2, . . ., assume observations
Zt = (Xt, Yt) are sequentially revealed, where Yt ∈ Rp

are p-dimensional vector variables and Xt ∈ Rd are d-
dimensional features. The features Xt may be the history
of Yt or contain other variables that help predict Yt. In par-
ticular, we allow arbitrarily unknown correlation among the
observations Zt. Let {Zt}Tt=1 be the training data.

Our goal is to sequentially construct prediction regions
Ĉt−1(Xt, α) starting from t = T+1, which depends on past
observations, the current feature Xt, and a user-specified
significance level α ∈ [0, 1]. In particular, we desire the
prediction regions to contain the true observations Yt with
a probability at least 1− α. Mathematically, there are two
types of coverage guarantees to be satisfied by Ĉt−1(Xt, α).
The first is the weaker marginal coverage:

P(Yt ∈ Ĉt−1(Xt, α)) ≥ 1− α,∀t, (1)

while the second is the stronger conditional coverage:

P(Yt ∈ Ĉt−1(Xt, α)|Xt) ≥ 1− α,∀t. (2)

If Ĉt−1(Xt, α) satisfies (1) or (2), it is called marginally or
conditionally valid, respectively. When Ĉt−1(Xt, α) satis-

fies the coverage guarantees, we aim to build regions that
are as small as possible to quantify uncertainty precisely.

3. Method
In this section, we first propose the ellipsoidal uncertainty
set that effectively quantifies multi-dimensional prediction.
We then discuss several benefits of the proposed approach
against alternatives. We finally suggest alternative forms of
the uncertainty set beyond using ellipsoids.

3.1. Ellipsoidal uncertainty set

We build the prediction regions in the shape of ellipsoids and
calibrate the radius of ellipsoids using conformal prediction
for univariate time series. Recall that we have access to T
training data Zt = (Xt, Yt) for t = 1, . . . , T . Assume we
have been given an algorithm f̂ , trained on a separate set I to
perform point prediction for Y . Meanwhile, we collect pre-
diction residuals ε̂t ∈ Rp ε̂t = Yt − f̂(Xt), t = 1, . . . , T.
This approach is similar to the split conformal prediction
(Volkhonskiy et al., 2017) or leave-one-out techniques (Bar-
ber et al., 2021; Xu & Xie, 2023a).

To define the ellipsoidal uncertainty set, we first denote the
covariance estimator over the prediction residuals as

Σ̂ =
1

T − 1

T∑
t=1

(ε̂t − ε̄)(ε̂t − ε̄)T , (3)

where ε̄ = 1
T

∑T
t=1 ε̂t is the sample mean vector over the

residuals. As the definition of an ellipsoid will rely on
the inverse of Σ̂ in (3), which may not be invertible, we
consider a low-rank approximation of Σ̂ as follows. Let the
singular value decomposition of Σ̂ be Σ̂ = USV T , where
S = diag(λ1, . . . , λp) is the diagonal matrix of singular
values satisfying λ1 ≥ . . . ≥ λp ≥ 0, and U and V satisfy
UUT = V V T = Ip. Given a small positive threshold
ρ > 0, the low-rank approximation Σ̂ρ is

Σ̂ρ = UρSρV
T
ρ , (4)

where Sρ = diag(λ1, . . . , λk) for which λk ≥ ρ, and Uρ

and V T
ρ contain the first k columns and rows of U and V T ,

respectively. The pseudo-inverse Σ̂−1
ρ is thus written as

Σ̂−1
ρ = VρS

−1
ρ UT

ρ , (5)
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where S−1
ρ = diag(1/λ1, . . . , 1/λk). Using Σ̂−1

ρ , which
is always well-defined, an ellipsoid with radius r is thus
B(r, ε̄, Σ̂ρ) = {x ∈ Rp : (x− ε̄)T Σ̂−1

ρ (x− ε̄) ≤ r}.

We then find an appropriate radius r using time-series con-
formal prediction methods. First, given a new residual
ε̂ = Y − f̂(X) and the pseudo-inverse Σ̂−1

ρ in (5), we
define the scalar non-conformity score ê(Y ) as

ê(Y ) = (ε̂− ε̄)T Σ̂−1
ρ (ε̂− ε̄) ∈ R. (6)

We then compute the non-conformity scores on the train-
ing set (Xt, Yt) for t = 1, . . . , T to obtain the set ET =
{ê(Yt)}Tt=1. Note that non-conformity scores in ET can
be sequentially dependent due to the inherent dependency
among the original data (Xt, Yt). We take this into account
by using SPCI (Xu & Xie, 2023b), a sequential confor-
mal inference method for univariate time series. Specif-
ically, rather than directly taking the empirical quantile
over ET , we fit a quantile regression estimator Q̂t on ET ,
where Q̂t(α) aims to predict the α-quantile of the unseen
non-conformity score. There is no specific restriction on
the quantile regression method used here. For example,
SPCI(Xu & Xie, 2023b) uses the quantile random forest.

We first define the set difference of two sets A and B as
A \B = {x : x ∈ A and x /∈ B}. Thus, the prediction set
Ĉt−1(Xt, α) ⊂ Rp for a given confidence level α is

Ĉt−1(Xt, α) = {Y : Q̂t(β̂) ≤ ê(Y ) ≤ Q̂t(1− α+ β̂)} (7)

β̂ = argmin
β∈[0,α]

V (Σ̂ρ, Q̂t(1− α+ β))− V (Σ̂ρ, Q̂t(β)) (8)

The prediction region (7) is further simplified as f̂(Xt) +

B(
√

Q̂t(1− α+ β̂), ε̄, Σ̂ρ) \ B(
√
Q̂t(β̂), ε̄, Σ̂ρ), which

contains all Y such that their non-conformity scores ê(Y )
are within the respective quantiles of the ellipsoid centers at
the prediction f̂(Xt). In (8), V (Σ̂ρ, r) denotes the volume
of the ellipsoid with radius r, and we find β̂ empirically
as the tightest significance level at which the volume of
the prediction region is smallest. Note that optimizing β
further allows us to consider asymmetry in the distribution
of non-conformity scores. When the optimal β̂ is zero, it
reduces to an ellipsoid as follows, which is also shown in
Figure 1(c): Ĉt−1(Xt, α) = {Y : ê(Y ) ≤ Q̂t(1 − α)} =

f̂(Xt) + B
(√

Q̂t(1− α), ε̄, Σ̂ρ

)
In Appendix A.1, we

further discuss the use of local ellipsoids to define the pre-
diction set Ĉt−1(Xt, α), which empirically can lead to im-
proved performances.

We propose MultiDimSPCI in Algorithm 1 as a multi-
dimensional generalization of the original SPCI (Xu & Xie,
2023b) method. The main benefits lie in the extension to
quantify uncertainty in multi-dimensional prediction. The

(a) (b) (c)

Figure 1. Comparison of multivariate CP method on real two-
dimensional wind data (see Section 5.2). Left (a): Empirical
copula (Messoudi et al., 2021) which constructs coordinate-wise
prediction intervals. Middle (b): Spherical confidence set intro-
duced in (Sun & Yu, 2024). Right (c): our proposed ellipsoidal
confidence set via MultiDimSPCI. While all methods yield cov-
erage at least above the target 95% on test data, our method yields
the smallest average size.

Algorithm 1 Multi-dimensional SPCI (MultiDimSPCI)

Require: Training data {(Xt, Yt)}Tt=1, prediction algo-
rithm A, significance level α, quantile regression al-
gorithm Q, positive threshold ρ > 0.

Ensure: Prediction intervals Ĉt−1(Xt, α), t > T

1: Obtain f̂ and residuals {ε̂t}Tt=1 ⊂ Rp (computed on the
holdout set) with A and {(Xt, Yt)}Tt=1

2: Compute non-conformity scores ET from {ε̂t}Tt=1 and
Σ̂ρ using (6)

3: for t > T do
4: Use quantile regression to obtain Q̂t ← Q(ET )
5: Obtain uncertainty set Ĉt−1(Xt, α) as in (7)
6: Obtain new residual ε̂t
7: Update residual set {ε̂t}Tt=1 by adding ε̂t and remov-

ing the oldest one and update ET
8: end for

method we propose is simple and uses an ellipsoid uncer-
tainty set. However, we will show later that this method
can achieve conditional coverage. Besides, even though our
method only uses the information of the first two moments,
it outperforms the copula method, which is the state of the
art. Figure 1 illustrates the benefit of MultiDimSPCI
over existing methods in yielding smaller uncertainty sets
for multi-dimensional UQ time series.

3.2. Comparison with copula

We briefly introduce copula and explain how copula has
been utilized in multivariate conformal prediction. We then
highlight the key differences of the copula-based CP method
with our MultiDimSPCI.

Let X = (X1, . . . , Xp) be a generic p-dimensional con-
tinuous random vector with the joint CDF F and marginal
CDFs Fj of Xj for j = 1, . . . , p. We remark that in this
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subsection, for notation convenience, the subscript j in Xj

denotes the j-th component of X rather than the j-th feature
vector of the original time series (i.e., Xj in the sequence
{(Xt, Yt)}). Define Uj := Fj(Xj), where for u ∈ [0, 1],
P(Uj ≤ u) = P(Xj ≤ F−1

j (u)) = Fj(F
−1
j (u)) = u.

Hence, Uj ∼ Unif[0, 1] is a uniform random variable on
[0, 1]. Now, the joint CDF of (U1, . . . , Up) is the copula C
of (X1, . . . , Xp):

C(u1, . . . , up) = P(U1 ≤ u1, . . . , Up ≤ up) (9)

= P(X1 ≤ F−1
1 (u1), . . . , Xp ≤ F−1

p (up))

= F (F−1
1 (u1), . . . , F

−1
p (up)).

Hence, the copula C links p marginal CDFs {Fj} to the joint
CDF F . For instance, consider bivariate Gaussian copula as
an example, where we can explicitly write down the copula
C. Let (X1, X2) ∼ N (0,Σ) with Σ11 = Σ22 = 1 and
Σ12 = Σ21 = κ for κ ∈ [−1, 1]. Then,

C(u1, u2) = P(U1 ≤ u1, U2 ≤ u2)

= P(X1 ≤ Φ−1(u1), X2 ≤ Φ−1(u2))

= Φ2(Φ
−1(u1),Φ

−1(u2);κ), (10)

where Φ is the CDF of N (0, 1) and Φ2(·;κ) is the joint
CDF of N (0,Σ). Note that the bivariate Gaussian copula
is parametric, assuming the marginal and joint distributions
follow Gaussian distributions.

In conformal prediction, copula has been used to calibrate
the coordinate-wise quantile of prediction residuals. Let
|ε̂tj | be the j-th coordinate of the t-th prediction residual
in absolute value, and let Ftj be its marginal distribution.
Then, past works (Messoudi et al., 2021) fit a copula Ct to
the p-dimensional random vector (|ε̂t1|, . . . , |ε̂tp|). Specif-
ically, they find (ut1, . . . , utp) ∈ [0, 1]p so that P(|ε̂t1| ≤
F−1
t1 (ut1), . . . , |ε̂tp| ≤ F−1

tp (utp)) = Ct(ut1, . . . , utp) =
1 − α, where α is a pre-specified significance level (e.g.,
α = 0.05). In practice, Ftj is unknown so it is replaced by
F̂tj , the empirical distribution defined using past residuals,
and the values (ut1, . . . , utp) are found under special as-
sumptions (e.g., ut1 = . . . = utp (Messoudi et al., 2021)) or
searched via stochastic gradient descent (Sun & Yu, 2024).

We remark two main differences between copula conformal
prediction and our proposed MultiDimSPCI. First, the
use of copula CP requires searching for multi-dimensional
vectors ut = (ut1, . . . , utp) at each t, whose efficiency and
accuracy also highly depends on the choice of copula Ct.
How to design copula and search for the best ut remains
unclear. In contrast, our MultiDimSPCI requires much
less design effort, as it only uses an estimation of the covari-
ance matrix of residuals {ε̂t}. Second, note that copula CP
returns hyper-rectangular prediction sets, as the method con-
structs one prediction interval at each p coordinates. Such

hyper-rectangular sets can be too large compared to ellip-
soidal sets, as we experimentally find ours are significantly
smaller without affecting test coverage (see Section 5.2).

3.3. Benefits of the proposed approach

We further discuss the benefits of MultiDimSPCI against
other approaches.

Against coordinate-wise use of SPCI (Xu & Xie, 2023b):
Rather than building ellipsoidal uncertainty sets, a naive but
perhaps more intuitive approach is to apply SPCI p times,
once per dimension of Y ∈ Rp. The resulting uncertainty
sets are hyper-rectangles, which can be unnecessarily large
in many cases. In addition, the significance values for SPCI
at different dimensions need to be adjusted appropriately
to achieve valid coverage of Y . Computationally, such
use of SPCI is also more expensive than MultiDimSPCI
because (p−1)T1 additional quantile regression models are
fitted (T1 is the length of the test set).

Against copula-based CP methods (Messoudi et al., 2021;
Sun & Yu, 2024): Besides the limitation above of return-
ing hyper-rectangular uncertainty sets, these copula-based
methods fail to account for the sequential dependency of
non-conformity scores when taking the empirical quantile
over scores. In contrast, the proposed MultiDimSPCI
explicitly takes dependency into account by adaptively re-
estimating the quantile of non-conformity scores.

Against probabilistic forecasting methods (Salinas et al.,
2020; Lim et al., 2021): There are two main benefits of
MultiDimSPCI. First, our proposed method is compat-
ible with any user-specified prediction model f̂ of Y . In
contrast, such probabilistic forecasting methods often re-
quire specifically designed deep neural networks to predict
the quantiles of Y directly. Second, we can provide cov-
erage guarantees for the proposed method, whereas those
methods often lack sound justifications.

4. Theoretical Analysis
In this section, we will present theoretical results for bound-
ing the conditional coverage of our method. The result is
based on the case where the sample covariance matrix is
invertible. We first recall and define the notations and then
give out the assumptions required, which are general and
identifiable. After that, we will present our coverage guar-
antees when using the empirical quantile function as the
quantile regression predictor. The norm ∥ · ∥ used in the
paper is the spectral norm (2-norm). The proof details will
be in Appendix C. The main idea of the proof consists of
two parts. The first part is the convergence of the empirical
CDF to the true CDF of the residual. The second part is to
control the estimation error of the sample covariance matrix.
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We assume that Yt ∈ Rp is generated from a true model
with unknown additive noise:

Yt = f(Xt) + εt, t = 1, 2, . . . , (11)

where f is an unknown function and εt represents the pro-
cess noise, whose marginal distribution is not necessarily
Gaussian, the process noise may have temporal dependence.
For the simplicity of notation, we assume ε̄ = 0 here so that
the non-conformity score simplifies to ε̂Tt Σ̂

−1ε̂t. Besides,
without loss of generality, we can assume E[ε] = 0. Other-
wise, we can subtract the mean from the noises and add to
the function f .

We define ε̂t = yt− f̂(xt) as the vector prediction residual,
and the scalar non-conformity score êt = ε̂Tt Σ̂

−1ε̂t ∈ R.
Moreover, et = εTt Σ

−1εt, ∆t = ε̂t−εt. Here εt ∈ Rp is
the true noise in model (11) and Σ ∈ Rp×p is the true
covariance matrix of ε. Besides, we define the empiri-
cal CDF F̂T+1(x) = 1

T

∑T
t=1 1{êt ≤ x}, F̃T+1(x) =

1
T

∑T
t=1 1{et ≤ x}.

We also use Fe(x) = P{e ≤ x} to represent the CDF of
the nonconformity score. Since we consider the case where
the marginal distributions of et are identical, their CDF is
the same, and we can define it as Fe(x). In our method,
we use the empirical distribution of non-conformity score
ê to approximate the distribution of e. A new observation
YT+1 being covered by the conformal interval with given
coverage is equivalent to êT+1 falling in a given quantile in
empirical distribution F̂T+1.

From the property of CDF, we know that Fe(eT+1) ∼
Unif[0, 1]. If we can show that F̂T+1 approximates Fe

well, then it will follow that F̂T+1 approximately covers a
region of 1− α probability. Comparing ê and e, we see that

êt − et = ε̂Tt Σ̂
−1ε̂t − εTt Σ

−1εt, (12)

where Σ̂ is estimated from {ε̂t}Tt=1. We would need ε̂t to be
close to εt. Otherwise, this approximation would not hold.

Assumption 4.1 (i.i.d. and Lipschitz). Assume {εt}T+1
t=1 are

independent and identically distributed (i.i.d.). Meanwhile,
Fe(x) (the CDF of the true non-conformity score) is as-
sumed to be Lipschitz continuous with constant LT+1 > 0.

Remark 4.2. We first assume that the error process {εt}T+1
t=1

is i.i.d. In fact, this assumption is not necessary, and we
will extend this assumption to cases beyond exchangeability.
The result for stationary and strong mixing sequences will
be presented in Corollary 4.18.

Assumption 4.3 (Estimation quality). There exists a se-
quence {δT }T≥1 such that

1

T

T∑
t=1

∥∆t∥2 ≤ δ2T , ∥∆T+1∥ ≤ δT . (13)

Remark 4.4. The assumption requires that the square sum
of the prediction error be bounded by δ2T . For many esti-
mators, there exists a sequence {δT }T≥1 that goes to zero.
For example, δT = op(T

−1/4) for general neural networks
sieve estimators when f is sufficiently smooth (Chen &
White, 1999). When f is a sparse high-dimensional lin-
ear model, δT = op(T

−1/2) for the Lasso estimator and
Dantzig selector (Bickel et al., 2009).

Assumption 4.5 (Covariance eigenvalue). There exists a
λ > 0 s.t. ∥Σ∥ ≥ λ and ∥Σ̂∥ ≥ λ.

Remark 4.6. It is a common assumption to require both
the covariance matrix and the estimated covariance matrix
to be strictly positive definite. The condition holds for the
covariance matrix as long as there is no linear dependency
between variables, which is true for the errors εt. Besides,
the assumption is also satisfied by the sample covariance ma-
trix because our algorithm uses the pseudo-inverse, which
ensures positive eigenvalues.

Assumption 4.7 (Tail behavior). There exist some constants
q > 4, K1,K2 > 0 and L ≥ 1, such that maxt≤T ∥εt∥ ≤√
K1p almost surely and E|⟨ε, x⟩|q ≤ Lq for x ∈ Sp−1.

There exists a constant K2 such that Var[∥ε∥2] ≤ K2p.

Remark 4.8. The assumption is required in Theorem 1.2
(Vershynin, 2012) so that the sample covariance matrix con-
verges to the true covariance matrix in the operator norm.
Other assumptions in literature ensure a O(T−1/2) con-
vergence. For example, (Koltchinskii & Lounici, 2017)
requires random variables ε to be weakly square-integrable,
sub-Gaussian, and pre-Gaussian. Our method can use co-
variance estimators other than the classic sample covariance
matrix. The sample covariance matrix is a natural choice,
but it is a poor estimator when the dimension is very high un-
less there are some nice tail behaviors (Lugosi & Mendelson,
2019). There are a lot of results in the literature focusing
on covariance estimation under different conditions. The
Assumption 4.7 can be easily switched to other require-
ments if we change the estimator. (Cai et al., 2016) offers an
overview of covariance estimators with their optimal rates.
The choice and analysis of the covariance matrix is not the
main focus of our paper, so we use the sample covariance
matrix here for simplicity.

With the i.i.d. assumption, we can show that the empirical
distribution of et approximates the true CDF well in the
following sense.

Lemma 4.9 (Convergence of empirical CDF of {εt}Tt=1

under i.i.d.). Under Assumption 4.1, for any training size T,
there is an event AT which occurs with probability at least

1−
√

log(16T )
T , such that conditioning on AT ,

sup
x
|F̃T+1(x)− Fe(x)| ≤

√
log(16T )

T
. (14)

6



Conformal prediction for multi-dimensional time series by ellipsoidal sets

Remark 4.10. The i.i.d. assumption is not a must, and we
can easily extend it to the case where {et}Tt=1 is station-
ary and strong mixing. We will show a similar result in
Corollary C.11.

With the assumptions, we can also show that the empirical
distribution of ê approximates the empirical distribution of
e well in the following sense:

Lemma 4.11 (Distance between the empirical CDF of
{εt}Tt=1 and {ε̂t}Tt=1 under i.i.d.). Under Assumption 4.1,
4.3, 4.5 and 4.7, with a high probability 1− δ,

sup
x
|F̂T+1(x)− F̃T+1(x)|

≤(LT+1 + 1)CS + 2 sup
x
|F̃T+1(x)− Fe(x)|,

where CS = (
δ2T
λ + K3

λ2 C( 1δ )
20/9qlog( 1δ )(log log p)

2

p3/2−2/q

T 1/2−2/q +22K3 max{ p3

Tδ , p
3/2δT }])1/2 and C is a con-

stant that depends only on K1, q, L and K3 = K1 +
√
3K2

is a constant. Thus

CS = Õ

(
max

{
p3/4−1/q

T 1/4−1/q
, p3/4δ

1/2
T

})
. (15)

Our main theorem is the following Theorem 4.12, which
establishes the asymptotic conditional coverage as a result
of Lemma 4.9 and 4.11.

Theorem 4.12 (Conditional guarantee under i.i.d. assump-
tion). Under Assumption 4.1, 4.3, 4.5 and 4.7, with a high
probability 1− δ, for any training size T and α ∈ (0, 1), we
have

|P(YT+1 ∈ Ĉα
T+1 | XT+1 = xT+1)− (1− α)|

≤12
√

log(16T )

T
+ 4(LT+1 + 1)(CS + δT ),

(16)

where CS is defined in (15).

Remark 4.13. The bound is controlled by the sample size
T and the coefficient δT . This vanishes when T → ∞
and δT → 0, which means that when the sample size is
large enough, and the estimator f̂ is accurate enough, the
conditional coverage will converge to 1− α.

Corollary 4.14 (Guarantee with true covariance matrix, and
under i.i.d.). If the true covariance matrix Σ is known, we
can use Σ̂ = Σ. Under Assumption 4.1, 4.3, 4.5 and 4.7, for
any training size T and α ∈ (0, 1), we have

|P(YT+1 ∈ Ĉα
T+1 | XT+1 = xT+1)− (1− α)|

≤12
√

log(16T )

T
+ 4(LT+1 + 1)

(
δT√
λ
+ δT

)
.

(17)

Remark 4.15. When the true covariance matrix is known,
we have a tighter and simpler bound than Theorem 4.12.

Although the true covariance is usually unknown in reality,
the same bound can be reached if the sample covariance
matrix is estimated from another independent training set.

Then, we would present a corollary that extends our guar-
antee to the case where {εt}Tt=1 is a stationary and strong
mixing sequence.

Definition 4.16. A sequence of random variables {Xn} is
said to be strictly stationary if for every k ≥ 1, any integers
n1, . . . , nk, and any integer h, the joint distribution of the
random variables (Xn1

, . . . , Xnk
) is the same as the joint

distribution of (Xn1+h, . . . , Xnk+h).

Definition 4.17. A sequence of random variables
{Xn} is said to be strongly mixing (or α-mixing)
if the mixing coefficients αk defined by αk =
supn∈N supA∈Fn

1 ,B∈F∞
n+k
|P (A∩B)−P (A)P (B)| tend to

zero as k →∞, where Fb
a denotes the σ-algebra generated

by {Xa, . . . , Xb}.

Using a similar technique, we can prove the following result
for the case where {εt}Tt=1 is a stationary and strong mixing
sequence. Here, we assume that the true covariance matrix Σ
is known for simplicity, but we will discuss in Remark 4.19
how to extend the result when true covariance is unknown.

Corollary 4.18 (Guarantee with true covariance matrix, un-
der stationarity and strong mixing). Assume {εt}Tt=1 is a
stationary and strong mixing sequence with mixing coeffi-
cient 0 <

∑
k>0 αk < M . Under Assumption 4.3, 4.5 and

4.7, for any training size T and α ∈ (0, 1), we have

|P(YT+1 ∈ Ĉα
T+1 | XT+1 = xT+1)− (1− α)|

≤12
(M2 )1/3(log T )2/3

T 1/3
+ 4(LT+1 + 1)

(
δT√
λ
+ δT

) (18)

Remark 4.19. The first term in the convergence rate is of
order Õ(T−1/3), which is slighter bigger than the order
Õ(T−1/2) in Theorem 4.12 under i.i.d. case. The second
term is the same. The essence of generalizing the outcome
to scenarios where the true covariance matrix Σ remains
unknown lies in the convergence properties of the sample
covariance matrix. There are works directed towards these
convergence properties within the context of stationary time
series. For instance, (Chen et al., 2013) presented an asymp-
totic convergence result for a threshold sample covariance
estimator. Utilizing methodologies akin to those employed
in Theorem 4.12, a similar result can be substantiated, and
there is also the possibility to apply a variety of estimators.
However, the focus of this work is not on the convergence
of the covariance matrix estimator, which is left as future
works. Moreover, as previously indicated, independent train-
ing data can be leveraged to estimate the covariance matrix
and achieve the same bound in Corollary 4.18.
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Table 2. Simulation results by both methods. Target coverage is 90%. Standard deviation is computed over ten independent trials in which
training and test data are regenerated.

(a) Independent AR(w)

p 2 4 8 10 16 20
Method MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI

Coverage 90.0%
(0.26)

90.0%
(0.29)

90.0%
(0.25)

89.9%
(0.14)

90.0%
(0.31)

89.9%
(0.30)

89.8%
(0.25)

89.8%
(0.27)

89.9%
(0.24)

89.9%
(0.23)

90.0%
(0.26)

89.8%
(0.30)

Size 1.45e+1
(9.34e-2)

1.52e+1
(8.73e-2)

3.00e+2
(2.62e+0)

3.94e+2
(3.38e+0)

1.30e+5
(1.43e+3)

3.68e+5
(6.44e+3)

2.65e+6
(4.79e+4)

1.22e+7
(1.61e+5)

2.23e+10
(5.61e+8)

5.84e+11
(1.39e+10)

9.15e+12
(2.97e+11)

8.67e+14
(2.90e+13)

(b) VAR(w)

p 2 4 8 10 16 20
Method MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI MultiDim

SPCI
SPCI

Coverage 90.0%
(0.26)

92.7%
(0.25)

90.2%
(0.21)

91.5%
(0.22)

90.0%
(0.23)

91.6%
(0.18)

89.9%
(0.23)

90.7%
(0.31)

89.9%
(0.20)

91.0%
(0.19)

90.0%
(0.25)

90.9%
(0.19)

Size 2.73e+0
(1.36e-2)

6.46e+0
(5.84e-2)

3.89e+1
(2.25e-1)

4.94e+2
(7.49e+0)

7.16e+4
(7.25e+2)

9.27e+6
(1.46e+5)

3.63e+7
(4.79e+5)

3.24e+9
(6.09e+7)

8.55e+12
(1.45e+11)

1.91e+17
(5.38e+15)

1.14e+16
(2.11e+14)

7.41e+22
(1.68e+21)

5. Experiments
We test Algorithm 1 on both simulated and real-time se-
ries to show that MultiDimSPCI reaches valid cover-
age with smaller prediction regions. In all our experi-
ments, the value of ρ used in (4) is set to be 0.001. For
simplicity, we only consider the global covariance ma-
trix in (3) rather than its local variant (A.1), which would
bring further improvements. Code is available at https:
//github.com/hamrel-cxu/MultiDimSPCI.

5.1. Simulation

We simulate two types of stationary time series. The first
case considers independent AR(w) sequences, and the sec-
ond case considers VAR(w) sequences. We want to show
that compared to SPCI applied independently to each di-
mension (equivalent to using independent copula (Messoudi
et al., 2021, See Sec. 3.3.1)), MultiDimSPCI yields sig-
nificantly smaller prediction regions with valid coverage.

Data generation. Denote Yt = [Yi1, . . . , Yip]
T ∈ Rp for

p ≥ 2. We generate Yt as

Yt =

w∑
l=1

αlYi−l + εt, εt ∼ N(0,Σ). (19)

In (19), αl ∈ Rp×p contains the set of coefficients, where
we further construct them so that the sequences {Yt} are sta-
tionary. In the first case of independent AR(w) sequences,
we have Σ = Ip. In the second case of VAR(w) sequences,
we design Σ = BBT to be a positive definite covariance
matrix, where Bij

i.i.d.∼ Unif[−1, 1].

Setup. In both cases of AR and VAR time series follow-
ing (19), we let w = 5 and vary p ∈ {2, 4, 8, 10, 16, 20}.
The initial 80K samples {Yt} are training data; the remain-
ing 20K samples are test data. Because SPCI assumes

independence across different univariate sequence, we let
α̃ = 1−(1−α)1/p and apply SPCI on individual sequences
with the corrected α̃. The multivariate linear regression
method is used as the point predictor.

Results. Table 2 examines the empirical coverage and aver-
age size of prediction regions in Rp by both methods on the
two cases of data generation. Both methods can maintain
valid coverage around the target 90% in two cases. Neverthe-
less, it is clear that as dimension p increases, the average size
of prediction regions by the proposed MultiDimSPCI is
significantly smaller (for several magnitudes) than that by
SPCI applied to individual sequences. In Figure A.1, we vi-
sualize the non-critical regions in both cases to demonstrate
why MultiDimSPCI provides smaller prediction regions.

5.2. Real-data

We now compare MultiDimSPCI with existing methods
designed for multivariate uncertainty quantification. The
three CP baselines are CopulaCPTS (Sun & Yu, 2024), Lo-
cal ellipsoid (Messoudi et al., 2022), and Copula (Messoudi
et al., 2021). The two probabilistic forecasting baselines are
temporal fusion transformers (TFT) (Lim et al., 2021) and
DeepAR (Salinas et al., 2020).

We consider three real multivariate time-series datasets. The
first wind dataset considers wind speed in meters per sec-
ond at different wind farms (Zhu et al., 2021), with 764
observations in total. The second solar dataset considers
solar radiation in Diffused Horizontal Irradiance (DHI) units
at different solar sensors (Zhang et al., 2021), with 8755
observations in total. The third traffic dataset considers
traffic flow collected at different traffic sensors (Xu & Xie,
2021a), with 8778 observations in total. On each dataset,
we randomly select p ∈ {2, 4, 8} locations (same for all
methods) and examine the test coverage and average size on
the p-dimensional time series. The first 85% data are used
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Table 3. Real-data comparison of test coverage and average prediction set size by different methods. The target coverage is 0.95, and
at each p, the smallest size of prediction sets is in bold. Our MultiDimSPCI yields the narrowest confidence sets without sacrificing
coverage for two reasons. First, it explicitly captures dependency among coordinates of Yt by forming ellipsoidal prediction sets. Second,
it captures temporal dependency among non-conformity scores upon adaptive re-estimation of score quantiles.

(a) Wind data

Method p = 2 coverage p = 2 size p = 4 coverage p = 4 size p = 8 coverage p = 8 size
MultiDimSPCI 0.97 1.60 0.96 7.02 0.96 72.10

CopulaCPTS (Sun & Yu, 2024) 0.98 2.55 0.97 10.23 0.97 252.67
Local ellipsoid (Messoudi et al., 2022) 0.96 3.51 0.97 13.07 0.98 1.09e+3

Copula (Messoudi et al., 2021) 0.98 2.81 0.98 10.32 0.97 1.60e+3
TFT (Lim et al., 2021) 0.94 10.61 0.75 159.39 0.94 2.91e+4

DeepAR (Salinas et al., 2020) 0.96 7.07 0.76 67.97 0.96 1.79e+5
(b) Solar data

Method p = 2 coverage p = 2 size p = 4 coverage p = 4 size p = 8 coverage p = 8 size
MultiDimSPCI 0.96 1.68 0.96 2.89 0.97 4.97

CopulaCPTS (Sun & Yu, 2024) 0.99 4.36 0.99 37.56 0.99 3.28e+3
Local ellipsoid (Messoudi et al., 2022) 0.97 1.32 0.97 3.20 0.97 43.07

Copula (Messoudi et al., 2021) 0.99 4.11 0.99 27.73 0.99 1.42e+3
TFT (Lim et al., 2021) 0.99 13.68 0.99 71.72 0.93 1.19e+3

DeepAR (Salinas et al., 2020) 0.97 10.76 0.98 157.09 0.74 31.82
(c) Traffic data

Method p = 2 coverage p = 2 size p = 4 coverage p = 4 size p = 8 coverage p = 8 size
MultiDimSPCI 0.96 1.31 0.96 1.93 0.96 2.98

CopulaCPTS (Sun & Yu, 2024) 0.95 1.70 0.94 3.15 0.95 14.10
Local ellipsoid (Messoudi et al., 2022) 0.95 1.36 0.94 2.08 0.95 4.13

Copula (Messoudi et al., 2021) 0.95 1.44 0.95 3.90 0.94 40.60
TFT (Lim et al., 2021) 0.89 9.07 0.93 87.92 0.88 9.69e+2

DeepAR (Salinas et al., 2020) 0.87 13.53 0.88 57.20 0.82 9.89e+3

for training, and the remaining 15% are used for testing.

Table 3 shows that the test coverage of MultiDimSPCI
and two CP methods is always valid by yielding coverage
greater than or equal to the target 95%. In contrast, the two
probabilistic forecasting baselines may incur severe under-
coverage, where TFT coverage is generally better than
DeepAR’s. Regarding the average size of prediction regions,
we also note that the average size by MultiDimSPCI is
consistently smaller than those by baselines (except against
Local ellipsoid on solar data when p = 2), demonstrating
that our proposed method quantifies prediction uncertainty
more precisely. We believe these benefits come from using
ellipsoidal rather than hyper-rectangular prediction sets and
the adaptive re-estimation of quantiles of non-conformity
scores. Additionally, Table A.3 shows comparisons on
higher-dimensional wind data, on which the benefits of
MultiDimSPCI persist. Figure A.2 further analyzes the
rolling performance of different methods. We see that the
rolling coverage of MultiDimSPCI and the CP baselines
all center around the target 95% coverage value with reason-
ably small variations. Meanwhile, MultiDimSPCI has a
smaller rolling width than the CP baselines, indicating that
our proposed method almost always yields smaller predic-
tion regions. Lastly, as seen in Figure A.3, the estimated
correlation between residuals from two different locations

can be as high as 0.92 (see solar data). Thus, it is indeed
necessary to consider such correlation when constructing
prediction regions to quantify prediction uncertainty effec-
tively.

6. Discussions
In this work, we proposed MultiDimSPCI, a general se-
quential conformal prediction method for multivariate time
series. Specifically, MultiDimSPCI extends sequential
univariate CP method to construct ellipsoids during test time.
Extensions using local ellipsoids that are adaptive in shape
are also discussed. Theoretically, we bound the coverage
gap in finite samples without assuming data exchangeability.
Empirically, on both simulation and real time series, we
show MultiDimSPCI yields significantly smaller predic-
tion sets than baselines and maintains coverage.

In the future, we will explore constructing prediction re-
gions beyond ellipsoids. One such possibility is using con-
vex hulls, which are irregular in shape but could lead to the
tightest fit as prediction sets. We discuss such possibility
and preliminary results in Appendix A.2). We will also
further study the theoretical properties of CP in high dimen-
sions, leveraging existing results on multivariate quantile
estimation.
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A. Additional technical details
A.1. Improvements using local ellipsoids

In practice, constructing the scalar non-conformity scores in (6) based on a global covariance matrix in (3) fails to capture
local variation in data. We can improve our MultiDimSPCI through using local ellipsoids proposed in (Messoudi et al.,
2022).

Specifically, given a test data feature Xt for t > T , we first consider its k nearest neighbors among previous T samples
{Xt−1, Xt−2, . . . , Xt−T }. Let the index set of neighbors be Nt with |Nt| = k. Then, we denote Ĉovt as the sample
covariance estimator using {ε̂t}t∈Nt

(see Eq. (3) for the definition using {ε̂t}Tt=1). As a result, given a parameter λ ∈ [0, 1],
the local covariance estimator at time t is written as the weighted average

Σ̂t = λĈovt + (1− λ)Σ̂, (A.1)

where Σ̂ is the global empirical covariance matrix in (3). We recommend setting k = 0.1T and λ = 0.95 to capture
local variations effectively. Lastly, as Σ̂t in (A.1) may not be invertible, we use its low-rank approximation in (4) and the
corresponding pseudo-inverse in (5), which would be used to compute the non-conformity score (6) at time t. We empirically
find that compared to using (3), the use of (A.1) can lead to up to 25% reduction in the average size of prediction sets.

A.2. Prediction set using convex hulls

Currently, the ellipsoid shape is utilized for the prediction region. This method is robust and guarantees coverage accuracy,
as demonstrated by experiments. However, considering the distribution shape of the residuals may further enhance its
performance. The distribution might not conform to an ellipsoidal shape in high-dimensional cases, potentially being
irregular. As a result, the ellipsoidal shape may not be the most optimal or tight fit. What if we could allow our prediction
set to adapt to any shape? In doing so, the new region would likely be much tighter in scenarios where the true residuals do
not follow an ellipsoidal distribution.

In almost all instances, a convex hull can cover a set of points more compactly than an ellipsoid. We could achieve a
significantly tighter fit by adopting a convex hull for the prediction region. The primary distinction between the two methods
lies in the control parameters: the ellipsoid requires only the radius adjustment, whereas the convex hull necessitates control
over all vertices. Ideally, we would select a set of data points that optimally balances coverage and minimizes the region
size. However, this becomes computationally infeasible as the dataset size increases. Rather than optimizing the convex hull,
we require it to cover exactly all the training data encompassed by the ellipsoid method.

The experimental results for time series in R2 and R4 are presented in Appendix B. With the same training size, the
convex hull method produces a significantly smaller prediction region but with lower than required coverage. This issue
can be mitigated by using a larger training dataset, allowing the convex hull to approximate the true distribution more
accurately. However, computing a convex hull in high dimensions involves a worst-case time complexity of O(T ⌊p/2⌋)
using standard methods (Barber et al., 1996). Another challenge arises as dimensions increase: the convex hull method
demands a substantially larger training dataset to capture the distribution, which may be impractical adequately. This aspect
will be explored in future research.

B. Additional experiments
Comparison of non-critical regions. From Figure A.1, we see that MultiDimSPCI almost always yields smaller
prediction sets than the coordinate-wise use of SPCI, whose prediction regions are squares that tend to over-cover the
test samples. In contrast, MultiDimSPCI can well capture the dependency within Y to enable accurate uncertainty
quantification.

Results using convex hulls. The convex hull method selects the points in the training set that are covered by the ellipsoid
method and uses the convex hull of these points as the prediction regions. It has a smaller region than the ellipsoid method
because of how it is constructed. As shown in Table A.1, the convex hull method on time series in R2 reaches valid coverage
with a smaller prediction set. However, as shown in Table A.2, getting a region with valid coverage in higher dimensions
requires much more training data. The computational cost in higher dimensions becomes unaffordable if we want to reach a
reasonable coverage.
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Table A.1. Accuracy and size of the prediction sets on two independent AR(w) sequences.
MultiDimSPCI Copula Convex hull Baseline

Coverage 90.2 90.6 90.0 89.8
Size 3.92 3.59 3.64 3.58

C. Proof
Lemma C.1. Fe(eT+1) ∼ Unif[0, 1].

Proof. This holds for random variable e as long as the CDF Fe is continuous and strictly increasing.

Lemma C.2. Under Assumption 4.1, for any training size T, there is an event AT which occurs with probability at least
1−

√
log(16T )/T , such that conditioning on AT ,

sup
x
|F̃T+1(x)− Fe(x)| ≤

√
log(16T )

T
. (A.2)

Proof. The proof follows the proof of Lemma 1 in (Xu & Xie, 2023a). When the error process is i.i.d., the famous
Dvoretzky-Kiefer-Wolfowitz inequality (Kosorok, 2008) implies that

P
(
sup
x
|F̃T+1(x)− Fe(x)| > sT

)
≤ 2e−2Ts2T . (A.3)

Figure A.1. Non-critical regions on independent AR(w) (left) and VAR(w) (right) in R2. The average size of prediction regions is shown
in captions. The size of the non-critical region by the proposed method is smaller, especially on VAR(w). As a result, the prediction
regions by MultiDimSPCI are smaller than those by SPCI.

Table A.2. Accuracy and size of the prediction set for error uniformly spread in [−1, 1]4.
MultiDimSPCI Copula Convex hull Baseline

Coverage
(80000 training samples) 89.6 90.5 85.9 89.9

Size
(80000 training samples) 22.2 14.5 14.2 14.4

Coverage
(800000 training samples) 90.2 90.5 88.6 89.9

Size
(800000 training samples) 22.2 14.5 14.3 14.4
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Table A.3. Comparison on wind data when dimension d = 25. The setup is identical to that in Table 3.
MultiDimSPCI CopulaCPTS Local ellipsoid Copula

Coverage 0.95 0.98 0.98 0.94
Size 3.55e+7 1.13e+14 4.93e+16 1.20e+13

(a) Wind data

(b) Solar data

(c) Traffic data

Figure A.2. Real-data comparison of rolling coverage (target coverage is 95%) and size of prediction sets at p = 8. In each subplot of
(a)-(c), the top row plots rolling coverage over prediction time indices (red dashed line is the target coverage) and as boxplots, and the
bottom row shows results for rolling sizes. We only visualize the comparison of MultiDimSPCI with selected CP baselines, which
have comparable average size of prediction regions in Table 3.

Pick sT =
√
W (16T )/(2

√
T ), where W (T ) is the Lambert W function that satisfies W (T )eW (T ) = T . We see that
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(a) Wind data (b) Solar data (c) Traffic data

Figure A.3. Distribution of estimated correlation and the eigenvalues of corresponding correlation matrices on real-time series. We
visualize the results using p-dimensional prediction residuals with p = 8.

sT ≤
√
log(16T )/T . Thus, define the event AT on which supx |F̃T+1(x)− Fe(x)| ≤

√
log(16T )/T , whereby we have

sup
x
|F̃T+1(x)− Fe(x)|

∣∣AT ≤
√

log(16T )

T
,

P (AT ) > 1−
√

log(16T )

T
.

(A.4)

Lemma C.3 (Theorem 1.2, (Vershynin, 2012)). Consider a random vector ε ∈ Rp(p ≥ 4) which has zero mean and satisfies
moment assumption 4.7 for some q > 4 and some K1, L. Let δ > 0. Then, with probability at least 1− δ, the covariance
matrix Σ of ε can be approximated by the sample covariance matrix 1

T

∑T
t=1 εt ⊗ εt as∥∥∥∥∥Σ− 1

T

T∑
t=1

εt ⊗ εt

∥∥∥∥∥ ≤ C

(
1

δ

)20/9q

log

(
1

δ

)
(log log p)2

( p

T

)1/2−2/q

, (A.5)

where C is a constant that depends only on parameters q,K1, L.

Lemma C.4. Under Assumption 4.1, 4.3, 4.5 and 4.7, with high probability 1− δ,

T∑
t=1

|êt − et| ≤
T

λ
δ2T +

K3T

λ2

[
C

(
1

δ

)20/9q

log

(
1

δ

)
(log log p)2

p3/2−2/q

T 1/2−2/q
+ 22K3 max

{
p3

Tδ
, p3/2δT

}]
, (A.6)

where C is a constant that depends only on parameters q,K1, L and K3 = K1 +
√
3K2.

Proof. For any test conformity score ê and the corresponding e, we drop subscript t here for notation simplicity.

|ê− e| = |ε̂T Σ̂−1ε̂− εTΣ−1ε|

≤ |ε̂T Σ̂−1ε̂− εT Σ̂−1ε|+ |εT Σ̂−1ε− εTΣ−1ε|

≤ ∥Σ̂−1∥∥∆∥2 + |εT (Σ̂−1 − Σ−1)ε|

≤ 1

λ
∥∆∥2 + ∥ε∥2∥Σ̂−1 − Σ−1∥

=
1

λ
∥∆∥2 + ∥ε∥2∥Σ̂−1(Σ− Σ̂)Σ−1∥

≤ 1

λ
∥∆∥2 + ∥ε∥2∥Σ̂−1∥∥Σ−1∥∥Σ− Σ̂∥

≤ 1

λ
∥∆∥2 + 1

λ2
∥ε∥2∥Σ− Σ̂∥.

(A.7)

Then the problem becomes bounding the spectral norm ∥Σ−Σ̂∥. Recall that ε̂t = εt+∆t, and we define ε̄∗ = (
∑T

t=1 ε̂t)/T ,
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∆̄ = (
∑T

t=1 ∆t)/T . The sample covariance matrix can be represented as

Σ̂ =
1

T − 1

T∑
t=1

(ε̂t − ε̄)(ε̂t − ε̄)T

=
1

T − 1

T∑
t=1

[(εt +∆t)− (ε̄∗ + ∆̄)][(εt +∆t)− (ε̄∗ + ∆̄)]T

=
1

T − 1

T∑
t=1

[(εt − ε̄∗) + (∆t − ∆̄)][(εt − ε̄∗) + (∆t − ∆̄)]T

=
1

T − 1

T∑
t=1

(εt − ε̄∗)(εt − ε̄∗)
T

︸ ︷︷ ︸
1

+
1

T − 1

T∑
t=1

(∆t − ∆̄)(∆t − ∆̄)T︸ ︷︷ ︸
2

+

1

T − 1

T∑
t=1

[
(εt − ε̄∗)(∆t − ∆̄)T + (∆t − ∆̄)(εt − ε̄∗)

T
]

︸ ︷︷ ︸
3

.

(A.8)

The first term is the sample covariance matrix of εt, which typically converges to the true covariance matrix when the
dimension p is negligible compared to T . From the assumption 4.3, the magnitude of the second term and the third term
should be bounded by δT , which is the accuracy of prediction. This means that

∥Σ̂− Σ∥ ≤ ∥ 1 − Σ∥+ ∥ 2 ∥+ ∥ 3 ∥. (A.9)

We can bound each spectral norm respectively.

∥ 1 − Σ∥ =

∥∥∥∥∥ 1

T − 1

(
T∑

t=1

εtε
T
t − T ε̄∗ε̄

T
∗

)
− Σ

∥∥∥∥∥
=

∥∥∥∥∥
(

1

T

T∑
t=1

εtε
T
t − Σ

)
+

1

T (T − 1)

(
T∑

t=1

εtε
T
t − T 2ε̄∗ε̄

T
∗

)∥∥∥∥∥
≤

∥∥∥∥∥ 1T
T∑

t=1

εtε
T
t − Σ

∥∥∥∥∥+ 1

T (T − 1)

(∥∥∥∥∥
T∑

t=1

εtε
T
t

∥∥∥∥∥+ ∥∥T 2ε̄∗ε̄
T
∗
∥∥)

(i)

≤ C

(
3

δ

) 20
9q

log

(
3

δ

)
(log log p)2

( p

T

) 1
2−

2
q

+
1

T (T − 1)

(
T∑

t=1

∥εtεTt ∥+ T 2∥ε̄∗ε̄T∗ ∥

)
(ii)

≤ 4C

(
1

δ

) 20
9q

log

(
1

δ

)
(log log p)2

( p

T

) 1
2−

2
q

+
1

T (T − 1)

T∑
t=1

∥εt∥2 + 2∥ε̄∗∥2,

where (i) holds with high probability 1 − δ
3 under Assumption 4.7 according to the Lemma C.3 from Theorem 1.2 in

(Vershynin, 2012) and (ii) holds because 320/9q ≤ 2, log(3/δ) ≤ 2 log(1/δ) when δ ≤ 1/3 and T/(T − 1) ≤ 2. We can
put the constant 4 into the constant C which simplifies the notation. From now on, we use C to represent the whole constant
4C in the expression. For the other term ∥ε̄∗∥2 = ∥(

∑T
t=1 εt)/T∥2, we can bound it with Chebshev’s inequality. Since

εt ∈ Rp, we use εti(1 ≤ i ≤ p) to denote the ith entry of random vector εt.

∥ε̄∗∥2 =

∥∥∥∥∥
∑T

t=1 εt
T

∥∥∥∥∥
2

=

p∑
i=1

∣∣∣∣∣
∑T

t=1 εti
T

∣∣∣∣∣
2

. (A.10)

Using Chebshev inequality, we have that

P

(∣∣∣∣∣
∑T

t=1 εti
T

∣∣∣∣∣ ≥
√

3pVar(εti)

Tδ

)
≤ Var(εti)

T ( 3pVar(εti)
Tδ )

=
δ

3p
(A.11)
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This means that

P
(
∥ε̄∗∥2 ≤

3p
∑p

i=1 Var(εti)

Tδ

)
= P

 p∑
i=1

∣∣∣∣∣
∑T

t=1 εti
T

∣∣∣∣∣
2

≤
3p
∑p

i=1 Var(εti)

Tδ


≥ P

 p⋂
i=1

{∣∣∣∣∣
∑T

t=1 εti
T

∣∣∣∣∣
2

≤ 3pVar(εti)

Tδ

}
≥
(
1− δ

3p

)p

≥ 1− δ

3
.

(A.12)

Considering that

p∑
i=1

Var(εti) = E(∥εt∥2) ≤ K1p.

We have that with probability higher than 1− δ/3,

∥ 1 − Σ∥ ≤ C

(
1

δ

) 20
9q

log

(
1

δ

)
(log log p)2

( p

T

) 1
2−

2
q

+
1

T (T − 1)

T∑
t=1

∥εt∥2 + 2∥ε̄∗∥2

≤ C

(
1

δ

) 20
9q

log

(
1

δ

)
(log log p)2

( p

T

) 1
2−

2
q

+
1

T (T − 1)

T∑
t=1

∥εt∥2 +
6K1p

2

Tδ
.

(A.13)

For the second term, we have

∥ 2 ∥ =

∥∥∥∥∥ 1

T − 1

(
T∑

t=1

∆t∆
T
t − T ∆̄∆̄T

)∥∥∥∥∥
≤ 1

T − 1

(∥∥∥∥∥
T∑

t=1

∆t∆
T
t

∥∥∥∥∥+ T∥∆̄∆̄T ∥

)

≤ 2

T − 1

T∑
t=1

∥∆t∥2

≤ 2Tδ2T
T − 1

.

(A.14)
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For the third term, we have

∥ 3 ∥ = 1

T − 1

∥∥∥∥∥
T∑

t=1

(εt∆
T
t +∆tε

T
t )− T (ε̄∗∆̄

T + ∆̄ε̄T∗ )

∥∥∥∥∥
≤ 2

T − 1

(∥∥∥∥∥
T∑

t=1

εt∆
T
t

∥∥∥∥∥+ T∥∆̄∥∥ε̄∗∥

)

=
2

T − 1

∥∥∥∥∥
T∑

t=1

εt∆
T
t

∥∥∥∥∥+
√√√√(∥∑T

t=1 εt∥2
T

)(
∥
∑T

t=1 ∆t∥2
T

)
≤ 2

T − 1

 T∑
t=1

∥εt∥∥∆t∥+

√√√√( T∑
t=1

∥εt∥2
)(

T∑
t=1

∥∆t∥2
)

(i)

≤ 4

T − 1

√√√√( T∑
t=1

∥εt∥2
)(

T∑
t=1

∥∆t∥2
)

≤ 4δT
T − 1

√√√√T

T∑
t=1

∥εt∥2.

The inequality (i) holds because of Cauchy-Schwarz inequality (
∑T

t=1 ∥εt∥2)(
∑T

t=1 ∥∆t∥2) ≥ (
∑T

t=1 ∥εt∥∥∆t∥)2. From
Assumption 4.7, we have

E

[
T∑

t=1

∥εt∥2
]
= TE(∥εt∥2) ≤ TK1p. (A.15)

Using Chebshev’s inequality we have

P

{∣∣∣∣∣ 1T
T∑

t=1

∥εt∥2 − E[∥εt∥2]

∣∣∣∣∣ ≥
√

3Var[∥εt∥2]
Tδ

}
≤ Var[∥εt∥2]

T ( 3Var[∥εt∥2])
Tδ )

=
δ

3
, (A.16)

which means with probability higher than 1− δ/3,

1

T

T∑
t=1

∥εt∥2 ≤ E[∥εt∥2] +
√

3Var[∥εt∥2]
Tδ

≤ K1p+

√
3K2p

Tδ

≤ (K1 +
√
3K2)p := K3p.

(A.17)

The last inequality holds because of Assumption 4.7 and pTδ ≥ 1. Without loss of generality, we can assume K3 ≥ 1.
Define ST = 1

T

∑T
t=1 ∥εt∥2. Overall, with probability higher than 1 − δ, we have inequality A.17 and the following
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inequality holds when T ≥ p

∥Σ̂− Σ∥ ≤ C
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δ

) 20
9q

log
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δ

)
(log log p)2(

p

T
)

1
2−

2
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∥εt∥2
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6K1p

2
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2Tδ2T
T − 1
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4δT
T − 1
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K3p

T
, δ2T ,

√
K3pδT

}
+

6K3p
2

Tδ

≤ C

(
1

δ

) 20
9q

log

(
1

δ

)
(log log p)2(

p

T
)

1
2−

2
q + 22K3 max

{
p

T
, δ2T ,
√
pδT ,

p2

Tδ

}
(ii)

≤ C

(
1

δ

) 20
9q

log

(
1

δ

)
(log log p)2(

p

T
)

1
2−

2
q + 22K3 max

{
p2

Tδ
,
√
pδT

}
.

where (i) holds because T
T−1 ≤ 2 and (ii) holds because p ≥ δ2T . Then the following inequality holds with high probability

1− δ,

T∑
t=1

|êt − et| ≤
1

λ

T∑
t=1

∥∆t∥2 +
1

λ2

T∑
t=1

∥εt∥2∥Σ̂− Σ∥

≤ T

λ
δ2T +

K3Tp

λ2

[
C

(
1

δ

) 20
9q

log

(
1

δ

)
(log log p)2(

p

T
)

1
2−

2
q + 22K3 max

{
p2

Tδ
,
√
pδT

}]

=
T

λ
δ2T +

K3T

λ2

[
C

(
1

δ

) 20
9q

log

(
1

δ

)
(log log p)2

p3/2−2/q

T 1/2−2/q
+ 22K3 max

{
p3

Tδ
, p3/2δT

}]
.

(A.18)

Corollary C.5. If the true covariance matrix Σ is known and we use Σ̂ = Σ, then

T∑
t=1

|êt − et| ≤
T

λ
δ2T . (A.19)

Proof. This is because when we use Σ̂ = Σ, the second term in Equation A.18 is zero. Then the bound is simply the first
term.

Lemma C.6. Under Assumption 4.1, 4.3, 4.5 and 4.7, with a high probability 1− δ,

sup
x
|F̂T+1(x)− F̃T+1(x)| ≤ (LT+1 + 1)CS + 2 sup

x
|F̃T+1(x)− Fe(x)|, (A.20)

where

CS =

(
δ2T
λ

+
K3

λ2

[
C

(
1

δ

) 20
9q

log

(
1

δ

)
(log log p)2

p3/2−2/q

T 1/2−2/q
+ 22K3 max

{
p3

Tδ
, p3/2δT

}])1/2

and K3 = K1 +
√
3K2.
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Proof. Using lemma C.4 and 4.3, we have that with probability 1− δ

T∑
t=1

|et − êt| ≤
T

λ
δ2T +

K3T

λ2

[
C

(
1

δ

)20/9q

log

(
1

δ

)
(log log p)2

p3/2−2/q

T 1/2−2/q
+ 22K3 max

{
p3

Tδ
, p3/2δT

}]
= TC2

S .

(A.21)

Let S = {t : |et − êt| ≥ CS}. Then

|S|CS ≤
T∑

t=1

|et − êt| ≤ TC2
S . (A.22)

So |S| ≤ TCS . Then

|F̂T+1(x)− F̃T+1(x)| ≤
1

T

T∑
t=1

|1{êt ≤ x} − 1{et ≤ x}|

≤ 1

T

(
|S|+

∑
t/∈S

|1{êt ≤ x} − 1{et ≤ x}|

)
(i)

≤ 1

T

(
|S|+

∑
t/∈S

1{|et − x| ≤ CS}

)

≤ 1

T

(
|S|+

T∑
t=1

1{|et − x| ≤ CS}

)
≤ CS + P(|eT+1 − x| ≤ CS)+

sup
x

∣∣∣∣∣ 1T
T∑

t=1

1{|et − x| ≤ CS} − P(|eT+1 − x| ≤ CS)

∣∣∣∣∣
= CS + [Fe(x+ CS)− Fe(x− CS)] + sup

x

∣∣∣[F̃T+1(x+ CS)− F̃T+1(x− CS)]

− [Fe(x+ CS)− Fe(x− CS)]
∣∣∣

(ii)

≤ (LT+1 + 1)CS + 2 sup
x
|F̃T+1(x)− Fe(x)|,

where (i) is because |1{a ≤ x} − 1{b ≤ x}| ≤ 1{|b − x| ≤ |a − b|} for a, b ∈ R and (ii) is because the Lipschitz
continuity of Fe(x).

Corollary C.7. If the true covariance matrix Σ is known and we use Σ̂ = Σ. Under Assumption 4.1, 4.3, 4.5 and 4.7, with
a high probability 1− δ,

sup
x
|F̂T+1(x)− F̃T+1(x)| ≤ (LT+1 + 1)

δT√
λ
+ 2 sup

x
|F̃T+1(x)− Fe(x)|. (A.23)

Theorem C.8. Under Assumption 4.1, 4.3, 4.5 and 4.7, with a high probability 1− δ, for any training size T and α ∈ (0, 1),
we have

|P(YT+1 ∈ Ĉα
T+1 | XT+1 = xT+1)− (1− α)|

≤ 12
√
log(16T )/T + 4(LT+1 + 1)(CS + δT ).

(A.24)

Proof. First, we recall the notation here. We define ε̂t = yt − f̂(xt) as the prediction residual, êt = ε̂Tt Σ̂
−1ε̂t as the
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non-conformity score, et = εTt Σ
−1εt and ∆t = ε̂t − εt. Besides, we define the empirical CDF

F̂T+1(x) =
1

T

T∑
t=1

1{êt ≤ z}

F̃T+1(x) =
1

T

T∑
t=1

1{et ≤ z}.

(A.25)

For any β ∈ [0, α], following the idea in Section 4:∣∣∣P(YT+1 ∈ Ĉα
T+1

∣∣XT+1 = xT+1

)
− (1− α)

∣∣∣
=
∣∣∣P(êT+1 ∈ [β quantile of F̂T+1, 1− α+ β quantile of F̂T+1]

∣∣XT+1 = xT+1

)
− (1− α)

∣∣∣
=
∣∣∣P(β ≤ F̂T+1 (êT+1) ≤ 1− α+ β

)
− P (β ≤ Fe (eT+1) ≤ 1− α+ β)

∣∣∣ .
(A.26)

The last equality is a result of Lemma C.1. We can further rewrite the equation A.26 as follows:

|P(β ≤ F̂T+1(êT+1) ≤ 1− α+ β)− P(β ≤ Fe(eT+1) ≤ 1− α+ β)|

≤ E|1{β ≤ F̂T+1(êT+1) ≤ 1− α+ β} − 1{β ≤ Fe(eT+1) ≤ 1− α+ β}|

≤ E(|1{β ≤ F̂T+1(êT+1)} − 1{β ≤ Fe(eT+1)}|+

|1{F̂T+1(êT+1) ≤ 1− α+ β} − 1{Fe(eT+1) ≤ 1− α+ β}|).

(A.27)

The last inequality is because that for any constants a, b and univariates x, y,

|1{a ≤ x ≤ b} − 1{a ≤ y ≤ b}| ≤ |1{a ≤ x} − 1{a ≤ y}|+ |1{x ≤ b} − 1{y ≤ b}|.

Then we have

E|1{β ≤ F̂T+1(êT+1)} − 1{β ≤ Fe(eT+1)}| ≤ P(|Fe(eT+1)− β| ≤ |F̂T+1(êT+1)− Fe(eT+1)|)

E|1{F̂T+1(êT+1) ≤ 1− α+ β} − 1{Fe(eT+1) ≤ 1− α+ β}| ≤

P(|Fe(eT+1)− (1− α+ β)| ≤ |F̂T+1(êT+1)−Fe(eT+1)|),

which holds since |1{a ≤ x}−1{b ≤ x}| ≤ 1{|b−x| ≤ |a−b|} for any constant a, b and univariate x and E[1{A}] = P(A).
Recall in Lemma 4.9, we defined AT as the event on which

sup
x
|F̃T+1(x)− Fe(x)|

∣∣AT ≤
√

log(16T )

T
,

where P(AT ) > 1−
√

log(16T )
T . Let AC

T denote the complement of the event AT . For any γ ∈ [0, 1], we have that

P(|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(eT+1)|)

≤ P(|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(eT+1)|
∣∣AT ) + P(AC

T )

≤ P(|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(eT+1)|
∣∣AT ) + P(AC

T )

≤ P(|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(êT+1)|+ |Fe(êT+1)− Fe(eT+1)|
∣∣AT ) +

√
log(16T )

T
.

(A.28)

To bound the conditional probability above, we note that with a high probability 1− δ, conditioning on the event AT ,

|F̂T+1(êT+1)− Fe(êT+1)|+ |Fe(êT+1)− Fe(eT+1)|
∣∣AT

≤ sup
x
|F̂T+1(x)− Fe(x)|

∣∣AT + LT+1|êT+1 − eT+1|

≤ sup
x
|F̂T+1(x)− F̃T+1(x)|

∣∣AT + sup
x
|F̃T+1(x)− Fe(x)|

∣∣AT + LT+1|êT+1 − eT+1|

≤ (LT+1 + 1)CS + 3 sup
x
|F̃T+1(x)− Fe(x)|

∣∣AT + LT+1δT

≤ 3

√
log(16T )

T
+ (LT+1 + 1)(CS + δT ).

(A.29)
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which follows the result from Lemma 4.9 and 4.11.

Therefore, because Fe(eT+1) ∼ Unif[0, 1], we have

P
(
|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(êT+1)|+ |Fe(êT+1)− Fe(eT+1)|

∣∣AT

)
≤6
√

log(16T )

T
+ 2(LT+1 + 1)(CS + δT ).

(A.30)

As a result, by letting γ = β and 1− α+ β, we have

|P(YT+1 ∈ Ĉα
T+1 | XT+1 = xT+1)− (1− α)|

≤ 12

√
log(16T )

T
+ 4(LT+1 + 1)(CS + δT ).

(A.31)

Now we have an asymptotic coverage guarantee for the case where {εt}Tt=1 is i.i.d., and we can extend the result to the case
where {εt}Tt=1 is stationary and strong mixing.

Assumption C.9. Assume {εt}T+1
t=1 is stationary and strong mixing with the mixing coefficients

∑
k>0 αk < M . Meanwhile,

Fe(x) (the CDF of true non-conformity score) is Lipschitz continuous with constant LT+1 > 0.

The properties of stationary and strong mixing can be imparted to the sequence {et}Tt=1.

Lemma C.10. Under Assumption C.9, {et}Tt=1 is stationary and strong mixing with coefficients
∑

k>0 αk({et}t≥1) < M ,
where αk({et}t≥1) represents the α−mixing coefficients of the random sequence {et}t≥1.

Proof. The relationship between et and εt is that

et = εTt Σ
−1εt. (A.32)

Define f(x) = xTΣ−1x. Since f(x) is a Borel-measurable function, we have that f−1(B) is also Borel-measurable for any
Borel set B ⊂ R. Thus we have

P(en1 ∈ Bn1 , · · · , enk
∈ Bnk

) = P(εn1 ∈ f−1(Bn1), · · · , εnk
∈ f−1(Bnk

))

= P(εn1+h ∈ f−1(Bn1
), · · · , εnk+h ∈ f−1(Bnk

))

= P(en1+h ∈ Bn1
, · · · , enk+h ∈ Bnk

),

(A.33)

which shows the stationarity of {et}Tt=1. Besides, the σ-algebra generated by f(εt) is contained in the σ-algebra generated
by εt; consequently for all I ⊂ Z (possibly infinite),

σ(f(εt), t ∈ I) ⊂ σ(εt, t ∈ I). (A.34)

Since the definition of the mixing coefficient is the maximum over the sub-sigma algebra generated by the sequence, it
follows that for all k,

αk({f(εt)}t≥1) ≤ αk. (A.35)

As a result, we have that {et}Tt=1 is strong mixing with mixing coefficients
∑

k>0 αk({et}t≥1) < M .

Lemma C.11. Under Assumption C.9, with a high probability 1− (M(log T )2

2T )
1
3 ,

sup
x
|F̃T+1(x)− Fe(x)| ≤

(M2 )1/3(log T )2/3

T 1/3
. (A.36)

23



Conformal prediction for multi-dimensional time series by ellipsoidal sets

Proof. The proof follows the proof of Corollary 2 in (Xu & Xie, 2023a). Define vT (x) :=
√
T (F̃T+1(x)− Fe(x)). Then,

Proposition 7.1 in (Rio et al., 2017) shows that

E
(
sup
x
|vT (x)|2

)
≤

(
1 + 4

T∑
k=0

αk

)(
3 +

log T

2 log 2

)2

, (A.37)

where αk is the kth mixing coefficient. Since we assumed that the coefficients are summable with
∑

k≥0 αk < M (for
example, αk = O(n−s), s > 1), Markov’s Inequality shows that

P(sup
x
|F̃T+1(x)− Fe(x)| ≥ sT ) ≤

E(supx |vT (x)|2/T )
s2T

≤ 1 + 4M

Ts2T

(
3 +

log T

2 log 2

)2

.

(A.38)

Thus, we let

sT :=

(
1 + 4M

T

(
3 +

log T

2 log 2

)2
)1/3

≈
(
M(log T )2

2T

)1/3

, (A.39)

and see that

P

(
sup
x
|F̃T+1(x)− Fe(x)| ≤

(
M(log T )2

2T

)1/3
)

≥ 1−
(
M(log T )2

2T

)1/3

.

(A.40)

Hence, the event AT is chosen so that conditioning on AT ,

sup
x
|F̃T+1(x)− Fe(x)| ≤

(M2 )1/3(log T )2/3

T 1/3
. (A.41)

Corollary C.12. Assume {εt}Tt=1 is a stationary and strong mixing sequence with mixing coefficient 0 <
∑

k>0 αk < M .
Under Assumption 4.3, 4.5 and 4.7, for any training size T and α ∈ (0, 1), we have

|P(YT+1 ∈ Ĉα
T+1 | XT+1 = xT+1)− (1− α)|

≤ 12
(M2 )1/3(log T )2/3

T 1/3
+ 4(LT+1 + 1)

(
δT√
λ
+ δT

)
.

(A.42)

When the true covariance matrix Σ is known, lemma C.5 also holds for the stationary and strong mixing process, and the
proof can be directly used. Combining C.5 and C.11 with the same technique in Theorem C.8 yields the bound in Corollary
4.18.

When the true covariance matrix Σ is unknown, we only need to prove a similar result in Lemma C.4. The difference is that
we require the covariance estimator to converge to the true covariance matrix at a certain speed. As mentioned in Remark
4.19, there is work presenting covariance estimators with guarantee in the stationary case, like (Chen et al., 2013). As long
as we plug in certain estimators, the proof will follow, and the bound will depend on the guarantee of the estimator.
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