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Abstract. Abdominal multi-organ segmentation in multiple MR se-
quences plays a crucial role in assisting clinical decision making. How-
ever, the annotation of multi-sequence MR images is time-consuming and
labor-intensive, and the limited availability of labels constrains the ad-
vancement of multi-sequence MR abdominal segmentation. In this study,
we propose a three-stage method for multi-sequence MR, abdominal or-
gan segmentation, incorporating unsupervised domain adaptation, semi-
supervised learning, registration, and anatomical structure constraints.
Specifically, in the first stage, pseudo-labels for T1-weighted (T1W) se-
quences are generated using labeled CT samples and unlabeled T1W
sequence samples through unsupervised domain adaptation and semi-
supervised learning. The second stage involves using a T1W-to-Multi-
sequence label transfer module to share the pseudo-labels from T1W
sequence with other sequences that have minimal positional differences,
followed by training a multi-sequence segmentation network via semi-
supervised learning. In the third stage, iterative training is conducted
using the pseudo-labels generated by the segmentation model, with an
Anatomy-aware module employed to enhance the accuracy of the pseudo
labels. Our method achieved an average score of 81.60% and 89.83% for
the organ DSC and NSD on the validation set and the average run-
ning time and area under GPU memory-time curve were 11.80s and
26888MB, respectively. Our code is available at https://github.com/
Ho-Garfield/FLARE2024_he.

Keywords: Abdominal organ segmentation - semi-supervised learning -
unsupervised domain adaptation - registration - anatomical constraints.
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1 Introduction

Abdominal imaging, including CT and MRI, is crucial for diagnosing and as-
sessing abdominal diseases involving organs such as the liver, kidneys, and

spleen [1,2]. Accurate segmentation of abdominal organs is essential for im-
proving disease diagnosis, lesion detection, and developing effective treatment
plans [3,4].

Significant progress has been made in the segmentation of abdominal organs
in CT imaging, mainly due to the high resolution of CT images and the availabil-
ity of high-quality manual annotations, which have facilitated the development
of effective segmentation algorithms [5]. Compared to CT, MR imaging offers
a wider range of parameters, allowing for multi-parametric and multi-sequence
imaging, which provides advantages in diagnosing soft tissue diseases [6]. How-
ever, the diversity of MRI sequences makes annotation more challenging, and
the substantial differences between MR sequences and poor image quality have
limited the exploration of multi-sequence MR-based abdominal organ segmenta-
tion. Additionally, the lack of one-to-one paired samples between CT and MRI
further complicates these challenges.

To overcome these challenges, image-to-image translation-based Unsuper-
vised Domain Adaptation (UDA) methods have been widely used. For example,
CycleGAN [7], a classic UDA method, is popular in medical imaging field due
to its unique structural consistency constraints and the convenience of not re-
quiring paired data [3]. However, these one-to-one domain adaptation methods
can only learn the relationship between two different domains. In the context
of domain adaptation with multiple target domains, as illustrated in Figure 1,
this approach requires the construction of multiple transfer networks for each
sequence pair, which limits scalability. To address this issue, Yang et al. [9]
proposed an unsupervised domain adaptation technique for liver segmentation
by embedding images from each domain into a shared domain-invariant content
space and a domain-specific style space through disentangled learning. Similarly,
Xu et al. [10] employed content and style separation with generator reconstruc-
tion and style constraints, effectively transforming source domain images into
multiple target domains while preserving structural consistency and minimizing
domain mixing. Semi-supervised learning methods also offer promising solutions
in this context [L1]. For example, Chen et al [12]. leveraged cross-modal con-
sistency between CT and MRI as a constraint and introduced a contrastive
similarity loss to address cross-modal abdominal organ segmentation. Likewise,
Zhao et al [13]. integrated the Mean Teacher model [14] into a UDA framework
to enhance cross-modal medical image segmentation. However, these methods
rarely fully leveraged the characteristic of different sequences of the same sam-
ple with highly similar structures within multi-sequence MR datasets. Instead,
they address the problem of unsupervised domain adaptation for segmentation
from CT to multi-sequences MR by improving deep learning models originally
designed for natural images.

Unlike these approaches, our approach leverages the unique properties of
medical images by introducing a T1W-to-Multi-sequence label transfer mod-
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Fig. 1. Illustration of the task in this work. We aim to segment 13 abdominal organs in
different MR sequences (e.g., dynamic contrast enhancement (including non-contrast
phase (T1-weighted (T1W)), early-arterial phase (EAP), portal venous phase (PVP),
delay phase (DP)), t2-weighted (T2 W), diffusion-weighted image (DWI) and in-phase
(IP)/out-of-phase (OP)) by learning from existing annotated CT datasets without
annotations in the target domains.

ule with filtering capabilities, facilitating label sharing across multiple MR se-
quences. This approach transforms the one-to-multiple domain adaptation prob-
lem into a simpler one-to-one domain adaptation problem. To further enhance
segmentation accuracy, we propose an iterative training framework that refines
pseudo-labels using anatomical structure constraints. Specifically, our apppoach
includes three parts: 1) CT to T1W image translation and pseudolabel genera-
tion: we use CycleGAN to translate CT images into TIW images (fake T1W),
and then perform semi-supervised learning to genarate T1W pseudo-labels by us-
ing fake T1W images, along with their paired CT labels and real TIW images. 2)
Label transfer and multi-sequence segmentation: we employ the T1W-to-Multi-
sequence label transfer module to share labels among sequences with minimal
positional differences, conduct semi-supervised training with labeled CT data
to develop a multi-sequence MR segmentation model, and subsequently use this
model to generate pseudo-labels for the LLD-MMR(Liver Lesion Diagnosis on
Multi-phase MRI) [15] and AMOS [16] datasets. 3) Anatomy-aware refinement
and iterative learning: an Anatomy-aware module and iterative learning strat-
egy were introduced to enhance the model’s performance and robustness. In
summary, our main contributions are threefold:

— We propose a multi-sequence MR abdominal organ segmentation method
based on unsupervised domain adaptation and semi-supervised learning.

— We introduce a T1W-to-Multi-sequence label transfer module to facilitate
label sharing across multiple sequences and improve pseudo-label accuracy,
along with an Anatomy-aware module to enhance these processes.

— Our method achieves strong performance on the multi-sequence MR abdom-
inal multi-organ datasets.
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2 Method
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Fig. 2. Flowchart of our method, where green dashed images are from the CT dataset,
red dashed images are from the LLD-MRI dataset, blue dashed images are from the
AMOS dataset, and yellow dashed boxes in Stage 3 highlight parts that do not meet
anatomical constraints (e.g., non-unique organ components or disconnected duodenum
and stomach). In Stage 1, 498 CT samples are used for CycleGAN training. In Stages 2
and 3, 100 manually annotated CT samples and 400 pseudo-labeled CT samples (slice
> 150) are used.

As shown in Figure 2, we propose a three-stage method for abdominal or-
gan segmentation in multiple MR sequences. The first stage involves generating
pseudo-labels for the T1W sequence, the second stage focuses on training a multi-
sequence MR segmentation model, and the third stage is dedicated to iterative
training the segmentation model on multiple datasets. The specific details of
each stage are described below.

2.1 Preprocessing

Since our method includes both domain transfer and semantic segmentation
models, our preprocessing techniques differ for these tasks. Specifically, for both
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models, we first performed resampling, patient position readjustment and adjust-
ing grayscale range for initialization. Particularly, for the style transfer model
(CycleGAN) [7], we also used translation registration to align the anatomical
structures of the T1W sequence and CT.

— Resampling. We use B-spline interpolation to resample the images and
nearest-neighbor interpolation for the labels, adjusting the pixel spacing to
1.2 x 1.2 x 3 to reduce GPU memory usage.

— Patient position readjustment. We first normalize all positions to the
LPS orientation. However, for the LLD-MMR, dataset, we observed that some
samples have different Z-axis orientations. To unify the body orientation, we
used Otsu’s method [17] to obtain the body mask of the in-phase sequence
samples and decided whether to flip the samples along the z-axis based on
the size of the black regions within the body mask on either side of the z-axis,
ensuring consistent z-axis orientation for the LLD-MMR dataset.

— Adjust grayscale range. To facilitate better transfer and semantic segmen-
tation, we first converted the CT and MR sequences to a grayscale range.
For CT images, the window level is first set to 40 and the window width to
400, followed by scaling the intensity to a range of 0-255. For MR images,
the intensity is directly scaled to 0-255.

— Translation registration. To ensure that the parts of the input to the
network correspond better during cropping for CycleGAN training, we first
performed translation registration on the CT data based on the existing
labels, with the registration target being "FLARE22 Tr 0001" (the first in
alphabetical order), to remove non-abdominal regions. Then, we used Otsu’s
method to obtain body masks for all samples in the CT and LLD-MMR
datasets, and performed translation registration on the T1W modality of
the LLD-MMR dataset using the body mask, with the registration target
being "MR745 6 C-pre" (the first in alphabetical order). To better align
the datasets, we next performed translation registration on the CT and MRI
datasets based on their body masks.

2.2 Semi-supervised Model

As shown in Figure 2, we use an identical semi-supervised model structure for
Stages 1 to 3. We adopt the Mean Teacher model [14], which includes both a
student model and a teacher model, where the student model is updated using
standard backpropagation, and the teacher model is updated as an exponential
moving average (EMA) of the student model’s weights. The student and teacher
models use similar network structures, where the base network architecture is
a 3D U-Net(Figure 3). The model leverages unlabeled data by imposing a con-
sistency constraint between the outputs of the student model and the outputs
of the teacher model when given perturbed versions of the input data, thereby
effectively utilizing the unlabeled data to enhance segmentation performance.
Specifically, for unlabeled data (e.g., with a shape of (X, Y, Z)), we utilize
the consistency constraint between the outputs of the teacher model and the
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Fig. 3. Structure and Layer Configuration of the 3D U-Net Model Utilized in the Study

student model to regularize the model. The Mean Squared Error (MSE) used
as the consistency loss is defined as follows, where K represents t-he number of
classes, and pgt,)g and pgslz correspond to the outputs of the teacher and student
models, respectively.

1 ZxXYxX K ) )
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%

Regarding labeled data, we perform data augmentation and employ deep su-
pervision [18], with the supervised loss defined as a combination of multi-class
Dice loss and multi-class cross-entropy loss [19]. In practice, afy 2 33 were halved
with each decrease in resolution, leading to a;1 = 4. All weight factors were
ultimately normalized to sum to 1.
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Laeep = aplossg,, + a1losssup + azlossdup + aslossdup (2)
Therefore, the objective loss function of our semi-supervised model is defined as
Equation 3,where A is a dynamic parameter that gradually increases according to
A = 0.1 x exp(—5.0 x (1.0 — percentage;,.,)?) ,where percentage,,., represents

the percentage of the current iteration relative to the total number of iterations.

TotalLoss = ALcopn, + Lgeep (3)

2.3 CT to T1W image translation and pseudo-label generation

In this stage, we first perform style transfer from CT to the TIW and then
use transferred data for semi-supervised learning. Specifically, we use the CT
labels (including manually annotated labels and pseudo-labels generated by the
FLARE22 winning algorithm [20]) as the labels for the transferred pseudo-T1W
sequence and conduct semi-supervised learning with the real T1W sequence
to obtain pseudo-labels for the real TIW sequence. The specific details are as
follows:



Joint UDA and SSL for MR Abdominal Segmentation 7

CT to T1W Sequence Style Transfer. As shown in Figure 2, style trans-
fer is conducted exclusively from CT to the T1IW. We selected 100 manually
annotated CT samples and 398 CT pseudo-labeled samples (sorted by name)
as the source domain for style transfer (Note that the 498 CT samples, which
have been processed through Translation registration, were used exclusively in
the first stage.), while 498 unlabeled T1W sequence MR, samples from the LLD-
MMR dataset (with names containing "pre") were used as the target domain
for style transfer. We chose 3D CycleGAN as the transfer model from CT to
T1W sequence because CycleGAN uses L1 loss as the cycle consistency loss (as
shown in Equation 4, 5, where G is the generator from CT to T1W sequenceand
F is the generator from T1W sequence to CT). This loss effectively maintains
anatomical consistency, allowing the CT labels to be used as pseudo-labels for
the generated fake T1W sequence.

Losseyciegr = Evor|||F(G(zer)) — zor|1] (4)

LOSSCyClele = Eyle [||G(F(yT1W)) - yTlW“ﬂ (5)

Semi-Supervised Training with Real and Fake T1W Sequences. To
obtain a network for segmenting the T1W sequence, we perform semi-supervised
training using both real T1W sequence data from the LLD-MMR dataset and
the labeled fake T1W sequence data generated from CT. This model will be used
to predict the T1W sequences in the LLD-MMR . dataset.

2.4 Label transfer and multi-sequence segmentation

In the second stage, our goal is to develop a multi-sequence MR segmentation
model using the T1IW pseudo-labels obtained in the first stage. To achieve this,
we introduce a T1W-to-Multi-sequence label transfer module, which shares la-
bels among multiple sequences that have minimal positional differences (filtered
based on pseudo-labels of the kidneys). For sequences with larger positional
differences, we leverage semi-supervised learning using unlabeled data after reg-
istration. The detailed about the module is explained below.

T1W-to-Multi-sequence label transfer module. Given that we only have
labels for the T1W sequence and not for other sequences, we need to generate
labels for the same samples in other sequences. Our main idea is to first perform
registration, then validate its success using pseudo-labels of the kidneys, and
finally use T1W labels as the labels for the successfully registered MR sequences.
This is achieved via the following steps:

i) Body mask generation and registration. Firstly, for sequences with clear
body contours, such as the early-arterial phase (EAP), portal venous phase
(PVP), delay phase (DP), and in-phase (IP), we use Otsu’s method to cre-
ate boby mask. Secondly, those masks are then used for rigid registration to
align them with the T1W mask and applied the transformation matrix to the
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Fig. 4. Example of filtering other sequences based on left and right kidney pseudo-
Label Dice Similarity Coefficient (DSC) scores. (In this example, IP, OP, DWI, and
T2W are excluded due to the absence of DSC > 0.85 in the kidney labels)

original images. Thirdly, For the out-of-phase (OP) sequence, we apply the same
transformation matrix as used for IP. Finally, for sequences with unclear body
contours and significant differences, such as T2-weighted (T2W) and diffusion-
weighted images (DWTI), we register them to the similarly colored EAP sequence
to improve alignment.

ii) Filtering incorrectly registered modalities. Since registration results are
not always accurate, we further filter out incorrectly registered modalities based
on kidney pseudo-labels. First, for sequences other than T1W and OP, we ex-
panded the T1W kidney label region and apply Otsu’s method within this range
to obtain coarse kidney pseudo-labels for each sequence. Second, we calculate
the Dice Similarity Coefficient (DSC) between these coarse pseudo-labels and
the T1W kidney pseudo-label (as shown in Figure 4). Third, for EAP, PVP, and
DP sequences, where temporal and resolution differences are smaller, registra-
tion is considered successful if the DSC for at least one kidney is greater than
0.85. For DWI, 1P, OP, and T2W sequences, registration is deemed successful
if both kidneys have DSC greater than 0.8, and at least one kidney has a DSC
greater than 0.85. Using these criteria, Sequences meeting these criteria retain
their samples.

Model training based on semi-supervised learning. As the data in the
LLD-MRI dataset only includes the abdominal region, the model may lack un-
derstanding of other body parts, leading to potential mispredictions. To improve
the model’s learning of features from other regions of the body and enhance its
robustness, we introduce manually annotated samples and pseudo-labeled sam-
ples with over 150 slices from the CT dataset. Additionally, we employ semi-
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supervised learning to fully utilize unlabeled data that were not successfully
registered for training the segmentation model. The trained model will be used
in the third stage to generate pseudo-labels.

2.5 Anatomy-aware refinement and iterative learning

Through the multi-sequence segmentation model from the second stage, we can
obtain pseudo-labels for all data in the MR dataset. However, these pseudo-labels
contain errors, and directly using them for training would lead to suboptimal
results. To further enhance the model’s performance, we propose an Anatomy-
aware module to eliminate pseudo-labels with anatomical errors, thereby im-
proving the accuracy of the labels.

Case ffamos_7935 (slice = Case #MR33924 1 _InP  Case #amos_7051 (slice = Case #MR26745_6_C-
#31) hase si — #23) = pre (slice #30.)

’-g/, _"
N . %

Fig. 5. Examples of cases meeting and not meeting anatomical structure constraints:
The 1st and 2nd columns show samples that meet the constraints, the 3rd column
shows a sample that does not meet the Multi-organ single-connected region constraint
(the duodenum and stomach labels are not connected), and the 4th column shows a
sample that does not meet the Single-organ single-connected region constraint (multiple
gallbladder labels are present).

Anatomy-aware module. To improve the quality of the pseudo-labels, we fil-
ter the labels based on the anatomical structure of the abdomen. As shown
in Figure 5. We established the corresponding anatomical constraints based
on two main characteristics of normal abdominal organs: each organ has a
unique connected region (Single-organ single-connected region) and the esoph-
agus, stomach, and duodenum form a unique connected domain (Multi-organ
single-connected region). Specifically, we achieve this by setting constraints 6-
8. Note that the left and right adrenal glands are not subject to constraint
1. Among them, Size,,q, is the size of the largest connected component of
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each organ, Sizegecong 1S the size of the second largest connected component,
Stizecsdsecond 18 the size of the second largest connected component in the region
composed of the esophagus, stomach, and duodenum, and Sizecyzist and Sizeginy
are default size thresholds set to 512 and 64, respectively.

Sizemazr > Siz€erist (6)
Sizesecond < Sizetiny (7)
Si2€esd,yona < S12€Liny (8)

Strategies to improve inference speed and reduce resource consump-
tion. Similar to nnU-Net [21], we use sliding window prediction for the samples.
To speed up the process and reduce resource consumption, we perform predic-
tions in half precision and set the window size to (224,160,48), with mirroring
only on axes (0,2). With an initial step size of 0.5, if the total number of steps
exceeds 20, we adjust the step size to (1,1,0.5) to reduce prediction time.

2.6 Post-processing

For the liver, stomach, gallbladder, adrenal glands, and pancreas, we remove
predictions outside of this range. For the aorta and kidneys, we use the largest
connected region as the label. We then establish body orientation based on the
positions of the liver and kidneys, eliminating incorrect predictions in regions
such as the duodenum or pancreas located above the liver and the spleen region
located below the kidneys.

3 Experiments

3.1 Dataset and evaluation measures

The training dataset is curated from more than 30 medical centers under the

license permission, including TCIA [22], LiTS [23], MSD [24], KiTS [25,26], au-
toPET [27,28], AMOS [16], LLD-MMRI [15], TotalSegmentator [29], and AbdomenCT-
1K [30], and past FLARE Challenges [31,32,33]. The training set includes 2050

abdomen CT scans and over 4000 MRI scans. The validation and testing sets in-
clude 110 and 300 MRI scans, respectively, which cover various MRI sequences,
such as T1, T2, DWI, and so on. The organ annotation process used ITK-
SNAP [34], nnU-Net [21], MedSAM [35], and Slicer Plugins [36,37].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.
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3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 22.04.2 LTS

CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
RAM 8%x32GB; 2400MT/s

GPU (number and type) NVIDIA GeForce RTX 4090 24G

CUDA version 11.8

Programming language Python 3.9.0
Deep learning framework Pytorch (Torch 2.1.0)
Code https://github.com/Ho-Garfield/FLARE2024_he

Training protocols To address the differences between CT and MR data do-
mains, our approach involves two stages:

i) Style transfer using CycleGAN. We use a 3D CycleGAN network to trans-
form CT images into T1W images. During the training phase for this style
transfer, we adopt the following settings: set the batch size to 1 and randomly
select samples, each sample is cropped to a voxel size of [160,160,48]. For the
optimizer, we use the Adam optimizer [38] with default 5; = 0.5, 32 = 0.999.
The specific configuration of CycleGAN is shown in Table 2.

ii) Training semi-supervised models. For all semi-supervised models, we main-
tain a consistent configuration across different models. We set the batch size to
4, with 2 samples sequentially selected from the labeled data and the remaining
2 samples randomly drawn from the unlabeled data. Each sample is cropped to
a voxel size of [224,160,48], with the same data augmentation and patch sam-
pling strategy as nnU-Net [21] employed. For the optimizer, we use SGD with
momentum, where the momentum is set to 0.99, and the weight decay is set to
3 x 107°. The specific configuration is shown in Table 3.

4 Results and discussion

The results of public validation are calculated based on 110 open validation cases
with ground truth. Note that the validation metrics include the standard devi-
ation (score + std), while the testing metrics do not, as the standard deviation
is not available.

4.1 Quantitative results on validation set

antitative ablation experiments to evaluate the impact of introducing unlabeled
MR datasets and the different methods of doing so. The results are shown in
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Table 2. Training protocols for CycleGAN.

Network initialization Normal Initialization

Batch size 1

Patch size 160x160x48

Total epochs 400

Optimizer Adam (with default 81 = 0.5, B2 = 0.999)
Initial learning rate (Ir) 0.0002

Lr decay schedule 1- max(0, epoch + 2 - 200 )/201
Training time 80 hours

Loss function Cycle-consistency loss + GAN loss
Number of model parameters 90.32M

Number of flops 2312.29G

COq2eq 22.90 kg

Table 3. Training protocols for the Semi-supervised model.

Network initialization “He” Initialization

Batch size 4

Patch size 224x160x48

Total iterations 150000

Optimizer SGD with nesterov momentum (x = 0.99)

Initial learning rate (Ir) 0.01

Lr decay schedule Poly learning rate policy: (1 — iterations/150000)°-°
Training time 24.24 hours

Number of model parameters 33.89M

Number of flops 693.53G

CO2eq 6.33 Kg
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Table 4. Segmentation Metric Results on the Validation Set

Target Validation
DSC(%) NSD(%)
Liver 96.56+1.12 97.80+1.81
Right kidney 93.82+1.92 92.93+3.63
Spleen 95.01£9.30 97.58+9.72
Pancreas 83.02+8.52 95.85+5.63
Aorta 88.79+£7.33 94.2748.77

Inferior vena cava | 83.73£5.97 87.68+7.41
Right adrenal gland|60.23+14.15 78.724+15.23
Left adrenal gland [67.534+17.44 83.69+19.98

Gallbladder 79.56423.21 79.00+£24.64
Esophagus 64.074+10.98 83.93+12.77
Stomach 87.164+9.79 91.72+10.92
Duodenum 67.75+£10.71 91.25+7.60
Left kidney 93.61£2.13 93.3942.86
Average 81.604+4.66 89.83+4.77

Table 5. Comparison of Baseline, Semi-supervised, and Proposed Methods, where
Baseline refers to supervised learning using only CT labels (100 manually annotated
and 2000 pseudo-labels generated by the FLARE22 winning algorithm [20]). Semi-
supervised refers to semi-supervised training using CT dataset and all unlabeled MR
datasets (AMOS [16] and LLD-MMR [15]|datasets).

Target Baseline Semi-supervised Proposed
DSC(%) NSD(%)|DSC(%) NSD(%)|DSC(%) NSD(%)
Liver 91.20  90.91 | 92.58 92.26 | 96.56  97.80
Right kidney 89.16 88.65 | 87.98 88.10 | 93.82  92.93
Spleen 85.85  86.58 | 85.50 86.53 | 95.01 97.58
Pancreas 75.82  87.08 | 74.11  85.12 | 83.02 95.85
Aorta 82.45  85.75 | 84.09  87.57 | 88.79  94.27

Inferior vena cava 67.25 67.63 70.01 70.90 83.73 87.68
Right adrenal gland| 52.93 69.51 56.76 72.96 60.23 78.72
Left adrenal gland | 64.18  78.18 | 64.50 78.62 67.53  83.69

Gallbladder 64.86  62.29 | 65.98 62.88 | 79.56  79.00
Esophagus 54.79  66.94 | 54.72  67.37 | 64.07  83.93
Stomach 68.20 71.08 | 68.00 70.93 | 87.16 91.72
Duodenum 59.32  79.20 | 57.94  79.20 | 67.75  91.25
Left kidney 89.79  90.82 | 88.71  89.88 | 93.61  93.39

Average 72.75 7882 | 73.14 79.41 | 81.60  89.83
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Table 6. Overview of Ablation Experiment Results. Note: Semi(w/o CT) means
using only MRI pseudo-labels for semi-supervised learning.Semi refers to using T1W
pseudo-labels and CT labels for semi-supervised learning. w/o0 AMOS denotes the ab-
sence of the AMOS dataset [16]. T4+Semi involves using the T1W-to-Multi-sequence
label transfer module for multi-sequence labels in semi-supervised learning. Super-
vised refers to using pseudo-labels from Stage 2 for supervised learning. A+4Semi
means filtering pseudo-labels with the Anatomy-aware module before semi-supervised
learning. Proposed represents the optimal results from multiple iterations of semi-
supervised learning with the Anatomy-aware module. All training sets include the CT
dataset (manually annotated samples and pseudo-labels [20] for slices > 150) and the
LLD-MRI dataset [15].

Stage 2 Stage 3
Target Semi(w/o CT) Semi Semi(w/o AMOS)[T+Semi(w/o AMOS)|  Supervised A--Semi(iter=1) Proposed
DSC(%) NSD(%)[DSC(%) NSD(%)[DSC(%) NSD(%) [DSC(%) _NSD(%) |DSC(%) NSD(%)[DSC(%) NSD(%)[DSC(%) NSD(%)

Liver 95.46  95.85 | 95.64  96.49 | 95.64 96.31 96.03 97.23 96.24  97.36 | 96.38  97.67 | 96.56  97.80
Right kidney 90.89 88.99 93.21 93.52 93.57 93.98 93.35 91.89 93.73 92.62 93.79 92.75 93.82 92.93
Spleen 92.46 93.69 92.86 95.17 | 92.80 94.78 95.76 98.08 94.92 97.34 95.05 97.60 95.01 97.58
Pancreas 79.13  92.64 | 80.80  92.73 | 80.80 93.03 81.91 94.67 81.94  94.57 | 8280 95.19 | 83.02  95.85
Aorta, 84.39 88.11 89.39 93.15 89.17 92.87 87.73 92.91 87.96 88.04 93.29 88.79 94.27

Inferior vena cava | 77.65  77.91 | 77.90  79.77 | T7.67 79.40 81.42 84.38 82.18
Right adrenal gland| 53.42  70.79 | 59.11 7778 | 59.63 77.98 58.52 76.05 57.70
Left adrenal gland | 61.06 67.67  82.88 | 67.10 82.30 66.76 82.78 66.84

82.87  86.47 | 83.73  87.68
60.16  78.89 | 60.23  78.72
67.81  83.61 | 67.53  83.69

Gallbladder 72.60 7235  TL4d | 73.02 7219 | 76.04 74.93 75.97 76.64 7545 | 79.56  79.00
Esophagus 61.70 65.80  83.51 | 65.16 83.16 63.86 82.38 63.90 65.26  84.20 | 64.07  83.93
Stomach 83.58 83.10  87.04 | 83.17 87.22 86.25 90.91 86.57 86.53  90.83 | 87.16  91.72
Duodenum 63.28 65.05 87.24 | 64.91  87.84 | 66.34 89.11 66.91 67.57 89.38 | 67.75  91.25
Left kidney 92.10 91.59  92.72 | 91.60 92.51 93.13 92.45 93.51 92.49  92.37 | 93.61 93.39
Average 77.52 79.57  87.19 | 79.55 87.20 80.55 88.29 80.64 81.18  89.05 | 81.60  89.83
92
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Fig. 6. The Impact of the Number of Iterations on DSC and NSD
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Table 5. We found that when the model was trained solely using CT labels
and the original CT images (window level: 40, window width: 400, scaled to
the grayscale range of (0, 255)) without MR datasets, it exhibited some ability
to segment MR images. However, the results were markedly suboptimal. When
semi-supervised learning was applied directly to the unlabeled MR data, the
performance improvement was limited due to the significant differences between
CT and MR data. In contrast, compared to the direct semi-supervised learning
approach, our method improved DSC and NSD by 8.46% and 10.42%, respec-
tively, demonstrating that our method can more effectively leverage unlabeled
MR data.

Secondly, to evaluate the use of unlabeled data in Stage 2 and Stage 3, as
well as the effectiveness of our proposed T1W-to-Multi-sequence label transfer
module and Anatomy-aware module, we conducted further quantitative abla-
tion experiments. As shown in Table 6, by first comparing the use of CT labels,
we found that the introduction of CT labels significantly improved the model’s
segmentation performance, especially for smaller organs. Then, by comparing
the semi-supervised experiments with and without the use of AMOS unlabeled
data, we found that the introduction of AMOS unlabeled data in Stage 2 had
little impact on improving the model. Therefore, we chose not to introduce the
AMOS unlabeled data too early in Stage 2. Additionally, by incorporating our
proposed T1W-to-Multi-sequence label transfer module, the model’s DSC and
NSD improved by 1% and 1.09%, respectively, demonstrating the effectiveness
of this module. We also observed that compared to directly using CT labels
and MR pseudo-labels from Stage 2 for supervised learning, first filtering er-
roneous pseudo-labels using the Anatomy-aware module and then performing
semi-supervised learning more effectively improved performance (with DSC im-
provement of 0.09% vs 0.63% compared to Stage 2).

Finally, we experimented with the number of iterations, as shown in Figure 6.
We observed that as the number of iterations increased, the segmentation per-
formance of the model improved, peaking after three iterations, with the most
significant improvement observed in the gallbladder, where the DSC increased
by 2.92% compared to the first iteration. Beyond three iterations, the perfor-
mance gains were minimal or even slightly decreased; therefore, we selected the
model with three iterations as the final model.

4.2 Qualitative results on validation set

As shown in Figure 7, in the cases with good segmentation results, such as Case
amos_ 7261 and Case amos_ 8141, the baseline method made errors in segment-
ing the stomach, gallbladder, duodenum, and pancreas. In contrast, our method
significantly reduced the segmentation errors in the stomach and gallbladder
and improved the segmentation results for the duodenum and pancreas. On the
other hand, in cases with poor segmentation results, such as Case amos 8178
and Case amos_ 0514, the baseline method made severe prediction errors due
to the lack of MR data. Although our method also encountered prediction er-
rors, the occurrence of severe prediction errors was greatly reduced compared
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Case #amos_7261 (slice #35)

Case #amos_08141 (slice #36)

Fal

Case #amos_8178 (slice #35)

Case #amos_0514 (slice #160)
e
L)

&

MR image Ground Truth Baseline Ours

Fig. 7. Segmentation result examples: The first and second rows show cases with good
segmentation results, while the third and fourth rows show cases with bad segmentation
results. The red arrows indicate the areas where segmentation errors occurred.
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to the baseline method. However, as shown in Case amos 0514, when the pre-
dicted samples have blurred boundaries and complex, disordered structures, our
method still encounters prediction errors.

4.3 Segmentation efficiency results on validation set

We have submitted our Docker container encapsulating our model to the official
challenge. Since our final Docker container submission did not undergo public
validation efficiency testing, we conducted local tests on 110 cases. Efficiency
metrics for 8 of these cases are shown in the Table 7. The average efficiency
metrics are shown in the Table 8.

Table 7. Quantitative evaluation of segmentation efficiency in terms of the run-
ning them and GPU memory consumption. Total GPU denotes the area under GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA GeForce RTX 4090 (24G).

Case ID Image Size  Running Time (s) Max GPU (MB) Total GPU (MB)

amos_ 0540 (192, 192, 100) 9.11 3534 20018
amos_ 7324 (256, 256, 80) 9.45 3540 20379
amos 0507 (320, 290, 72) 9.1 3522 19493
amos_ 7236 (400, 400, 115) 10.61 3526 22968
amos_ 7799 (432, 432, 40) 13.33 3575 33938
amos_ 0557 (512, 152, 512) 15.51 3563 35943
amos_ 0546 (576, 468, 72) 10.44 3534 22395
amos_ 8082 (1024, 1024, 82) 22.36 3539 50420

Table 8. Efficiency evaluation results of our submitted docker. All metrics reported
are the average values on 110 validation cases.

GPU AUC GPU CPU AUC CPU RAM AUC RAM
¢ Memory  Time  Utilization  Time Time

11.8 3536.7 26888.4 96.89 262.62 19673.5 218337.4

Tim

4.4 Results on final testing set

The final testing results for the proposed method in the FLARE 2024 challenge
are summarized in Table 9. The table presents the performance metrics of the
method, including the Dice Similarity Coefficient (DSC), Normalized Surface
Distance (NSD), inference time, and GPU memory usage. Each metric is re-
ported with both the mean and standard deviation (Mean + Std), as well as the
median along with the first and third quartiles (Median (Q1, Q3)).
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Table 9. Final testing results of the proposed method on the FLARE 2024 challenge.

Metric Mean + Std Median (Q1, Q3)
DSC (%) 733 £ 12.2 76.4 (63.3, 82.5)
NSD (%) 77.3 £ 14.6 81.0 (71.2, 88.4)
Inference Time (s) 13.2 + 4.7 12.0 (10.3, 14.5)

GPU Memory (MB) 803958.4 4+ 321077.0 716623.5 (617594.9, 892799.6)

4.5 Limitation and future work

Despite our model achieving relatively satisfactory segmentation performance
initially, there are still several shortcomings and areas for improvement in our
research, as outlined below.

Potential for Improvement in Style Transfer. Our focus has been on lever-
aging anatomical knowledge and dataset characteristics to address the problem
of unsupervised domain adaptation for multi-sequence MRI multi-organ seg-
mentation. In terms of the structure of the style transfer network, we only used
the basic CycleGAN framework and did not incorporate the latest style transfer
frameworks, such as diffusion models [39], which might have potentially improved
our results. Additionally, due to time constraints, we only attempted style trans-
fer for T1W, which has poor contrast. In the future, we will explore using more
advanced style transfer networks and attempt CT-to-other-sequence transfers to
enhance model performance.

Underutilization of CT Pseudo-Labels. It is worth noting that we only used
manually annotated labels and a portion of pseudo-labels containing more body
information (slice count > 150). For the remaining pseudo-labels, considering
that our goal is to segment MR sequences, we did not introduce a large number of
CT pseudo-labels. As a result, a substantial amount of high-quality CT pseudo-
labels was left unused. In future work, we will further explore how to effectively
utilize CT pseudo-labels to assist in the training of MR sequence segmentation
models.

Optimization of Method Steps. Although the algorithms and models we
used are simple, our method involves multiple steps and requires training mul-
tiple models, resulting in lengthy training times. In the future, we can optimize
some steps, such as combining the style transfer and segmentation tasks in Step
1, to reduce unnecessary training time expenditure.

5 Conclusion

We combined unsupervised domain adaptation, registration, semi-supervised
learning, and abdominal anatomical structure constraints to propose a simple
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three-stage multi-sequence MR segmentation method. First, our method achieves
partial label sharing among multi-sequences MR through registration and align-
ment detection of kidney labels. Next, we employ semi-supervised learning to
fully utilize unlabeled data. Finally, we use an anatomical constraint filtering
module and iterative training to refine pseudo-labels and further improve model
performance. Our method was validated on the large-scale annotated dataset
from the MICCAI FLARE 2024 challenge, achieving good segmentation perfor-
mance in the abdominal organ segmentation task.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2024 challenge has not
used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
intervention. We thank all data owners for making the CT scans publicly avail-
able and CodaLab [40] for hosting the challenge platform. This work was funded
by the Key R&D Program of Guangdong Province (No.2021B0101420006); Na-
tional Natural Science Foundation of China (No.82472051); National Natural
Science Foundation for Young Scientists of China (No.82102019).

Disclosure of Interests

The authors declare no competing interests.

References

1. Rebecca L Siegel, Angela N Giaquinto, and Ahmedin Jemal. Cancer statistics,
2024. CA: a cancer journal for clinicians, 74(1), 2024. 2

2. Jitka Starekova, Diego Hernando, Perry J Pickhardt, and Scott B Reeder. Quantifi-
cation of liver fat content with ct and mri: state of the art. Radiology, 301(2):250—
262, 2021. 2

3. Cory Robinson-Weiss, Jay Patel, Bernardo C Bizzo, Daniel I Glazer, Christopher P
Bridge, Katherine P Andriole, Borna Dabiri, John K Chin, Keith Dreyer, Jayashree
Kalpathy-Cramer, et al. Machine learning for adrenal gland segmentation and
classification of normal and adrenal masses at ct. Radiology, 306(2):€220101, 2022.
2

4. Alexander D Weston, Panagiotis Korfiatis, Timothy L Kline, Kenneth A Philbrick,
Petro Kostandy, Tomas Sakinis, Motokazu Sugimoto, Naoki Takahashi, and
Bradley J Erickson. Automated abdominal segmentation of ct scans for body
composition analysis using deep learning. Radiology, 290(3):669-679, 2019. 2

5. Jun Ma, Yao Zhang, Song Gu, Xingle An, Zhihe Wang, Cheng Ge, Congcong
Wang, Fan Zhang, Yu Wang, Yinan Xu, et al. Fast and low-gpu-memory abdomen
ct organ segmentation: the flare challenge. Medical Image Analysis, 82:102616,
2022. 2

6. M Alvaro Berbis, Félix Paulano Godino, Julia Rodriguez-Comas, Enrique Nava,
Roberto Garcia-Figueiras, Sandra Baleato-Gonzalez, and Antonio Luna. Ra-
diomics in ¢t and mr imaging of the liver and pancreas: tools with potential for
clinical application. Abdominal Radiology, 49(1):322-340, 2024. 2



20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Jiahui He et al.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings of
the IEEE international conference on computer vision, pages 2223-2232, 2017. 2,
5

Yunhao Ge, Dongming Wei, Zhong Xue, Qian Wang, Xiang Zhou, Yigiang Zhan,
and Shu Liao. Unpaired mr to ct synthesis with explicit structural constrained
adversarial learning. In 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019), pages 1096-1099. IEEE, 2019. 2

Junlin Yang, Nicha C Dvornek, Fan Zhang, Julius Chapiro, MingDe Lin, and
James S Duncan. Unsupervised domain adaptation via disentangled representa-
tions: Application to cross-modality liver segmentation. In Medical Image Comput-
ing and Computer Assisted Intervention—-MICCAI 2019: 22nd International Con-
ference, Shenzhen, China, October 13-17, 2019, Proceedings, Part II 22, pages
255-263. Springer, 2019. 2

Xijaowei Xu, Yinan Chen, Jianghao Wu, Jiangshan Lu, Yuxiang Ye, Yechong
Huang, Xin Dou, Kang Li, Guotai Wang, Shaoting Zhang, et al. A novel one-
to-multiple unsupervised domain adaptation framework for abdominal organ seg-
mentation. Medical Image Analysis, 88:102873, 2023. 2

Rushi Jiao, Yichi Zhang, Le Ding, Bingsen Xue, Jicong Zhang, Rong Cai, and
Cheng Jin. Learning with limited annotations: a survey on deep semi-supervised
learning for medical image segmentation. Computers in Biology and Medicine,
page 107840, 2023. 2

Xiaoyu Chen, Hong-Yu Zhou, Feng Liu, Jiansen Guo, Liansheng Wang, and Yizhou
Yu. Mass: Modality-collaborative semi-supervised segmentation by exploiting
cross-modal consistency from unpaired ct and mri images. Medical Image Analysis,
80:102506, 2022. 2

Ziyuan Zhao, Fangcheng Zhou, Kaixin Xu, Zeng Zeng, Cuntai Guan, and S Kevin
Zhou. Le-uda: Label-efficient unsupervised domain adaptation for medical image
segmentation. IEEE Transactions on Medical Imaging, 42(3):633-646, 2022. 2
Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. Ad-
vances in neural information processing systems, 30, 2017. 2, 5

Meng Lou, Hanning Ying, Xiaoqing Liu, Hong-Yu Zhou, Yuqing Zhang, and Yizhou
Yu. Sdr-former: A siamese dual-resolution transformer for liver lesion classification
using 3d multi-phase imaging. arXiv preprint arXiv:2402.17246, 2024. 3, 10, 13,
14

Yuanfeng Ji, Haotian Bai, Chongjian GE, Jie Yang, Ye Zhu, Ruimao Zhang, Zhen
Li, Lingyan Zhanng, Wanling Ma, Xiang Wan, and Ping Luo. Amos: A large-
scale abdominal multi-organ benchmark for versatile medical image segmentation.
Advances in Neural Information Processing Systems, 35:36722-36732, 2022. 3, 10,
13, 14

Nobuyuki Otsu et al. A threshold selection method from gray-level histograms.
Automatica, 11(285-296):23-27, 1975. 5

Qikui Zhu, Bo Du, Baris Turkbey, Peter L. Choyke, and Pingkun Yan. Deeply-
supervised cnn for prostate segmentation. In 2017 international joint conference
on neural networks (IJCNN), pages 178-184. IEEE, 2017. 6

Jun Ma, Jianan Chen, Matthew Ng, Rui Huang, Yu Li, Chen Li, Xiaoping Yang,
and Anne L. Martel. Loss odyssey in medical image segmentation. Medical Image
Analysis, 71:102035, 2021. 6



20.

21.

22.

23.

24.

25.

Joint UDA and SSL for MR Abdominal Segmentation 21

Ziyan Huang, Haoyu Wang, Jin Ye, Jingqgi Niu, Can Tu, Yuncheng Yang, Shiyi Du,
Zhongying Deng, Lixu Gu, and Junjun He. Revisiting nnu-net for iterative pseudo
labeling and efficient sliding window inference. In MICCAI Challenge on Fast
and Low-Resource Semi-supervised Abdominal Organ Segmentation, pages 178-189.
Springer, 2022. 6, 13, 14

Fabian Isensee, Paul F' Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-
Hein. nnu-net: a self-configuring method for deep learning-based biomedical image
segmentation. Nature Methods, 18(2):203-211, 2021. 10, 11

Ken Clark, Bruce Vendt, Kirk Smith, John Freymann, Justin Kirby, Paul Koppel,
Stephen Moore, Stephen Phillips, Derek Maffitt, Michael Pringle, Lawrence Tar-
box, and Fred Prior. The cancer imaging archive (tcia): maintaining and operating
a public information repository. Journal of Digital Imaging, 26(6):1045-1057, 2013.
10

Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-
Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Ma-
mani, Gabriel Chartrand, Fabian Lohdfer, Julian Walter Holch, Wieland Som-
mer, Felix Hofmann, Alexandre Hostettler, Naama Lev-Cohain, Michal Drozdzal,
Michal Marianne Amitai, Refael Vivanti, Jacob Sosna, Ivan Ezhov, Anjany
Sekuboyina, Fernando Navarro, Florian Kofler, Johannes C. Paetzold, Suprosanna
Shit, Xiaobin Hu, Jana Lipkova, Markus Rempfler, Marie Piraud, Jan Kirschke,
Benedikt Wiestler, Zhiheng Zhang, Christian Hiilsemeyer, Marcel Beetz, Florian
Ettlinger, Michela Antonelli, Woong Bae, Miriam Bellver, Lei Bi, Hao Chen, Grze-
gorz Chlebus, Erik B. Dam, Qi Dou, Chi-Wing Fu, Bogdan Georgescu, Xavier Gird
i Nieto, Felix Gruen, Xu Han, Pheng-Ann Heng, Jiirgen Hesser, Jan Hendrik
Moltz, Christian Igel, Fabian Isensee, Paul Jager, Fucang Jia, Krishna Chaitanya
Kaluva, Mahendra Khened, Ildoo Kim, Jae-Hun Kim, Sungwoong Kim, Simon
Kohl, Tomasz Konopczynski, Avinash Kori, Ganapathy Krishnamurthi, Fan Li,
Hongchao Li, Junbo Li, Xiaomeng Li, John Lowengrub, Jun Ma, Klaus Maier-
Hein, Kevis-Kokitsi Maninis, Hans Meine, Dorit Merhof, Akshay Pai, Mathias Per-
slev, Jens Petersen, Jordi Pont-Tuset, Jin Qi, Xiaojuan Qi, Oliver Rippel, Karsten
Roth, Ignacio Sarasua, Andrea Schenk, Zengming Shen, Jordi Torres, Christian
Wachinger, Chunliang Wang, Leon Weninger, Jianrong Wu, Daguang Xu, Xiaoping
Yang, Simon Chun-Ho Yu, Yading Yuan, Miao Yue, Liping Zhang, Jorge Cardoso,
Spyridon Bakas, Rickmer Braren, Volker Heinemann, Christopher Pal, An Tang,
Samuel Kadoury, Luc Soler, Bram van Ginneken, Hayit Greenspan, Leo Joskowicz,
and Bjoern Menze. The liver tumor segmentation benchmark (lits). Medical Image
Analysis, 84:102680, 2023. 10

Amber L. Simpson, Michela Antonelli, Spyridon Bakas, Michel Bilello, Keyvan
Farahani, Bram van Ginneken, Annette Kopp-Schneider, Bennett A. Landman,
Geert Litjens, Bjoern Menze, Olaf Ronneberger, Ronald M. Summers, Patrick
Bilic, Patrick F. Christ, Richard K. G. Do, Marc Gollub, Jennifer Golia-Pernicka,
Stephan H. Heckers, William R. Jarnagin, Maureen K. McHugo, Sandy Napel,
Eugene Vorontsov, Lena Maier-Hein, and M. Jorge Cardoso. A large annotated
medical image dataset for the development and evaluation of segmentation algo-
rithms. arXiw preprint arXiv:1902.09063, 2019. 10

Nicholas Heller, Fabian Isensee, Klaus H. Maier-Hein, Xiaoshuai Hou, Chunmei
Xie, Fengyi Li, Yang Nan, Guangrui Mu, Zhiyong Lin, Miofei Han, Guang Yao,
Yaozong Gao, Yao Zhang, Yixin Wang, Feng Hou, Jiawei Yang, Guangwei Xiong,
Jiang Tian, Cheng Zhong, Jun Ma, Jack Rickman, Joshua Dean, Bethany Stai,
Resha Tejpaul, Makinna Oestreich, Paul Blake, Heather Kaluzniak, Shaneabbas



22

26.

27.

28.

29.

30.

31.

32.

33.

34.

Jiahui He et al.

Raza, Joel Rosenberg, Keenan Moore, Edward Walczak, Zachary Rengel, Zach
Edgerton, Ranveer Vasdev, Matthew Peterson, Sean McSweeney, Sarah Peterson,
Arveen Kalapara, Niranjan Sathianathen, Nikolaos Papanikolopoulos, and Christo-
pher Weight. The state of the art in kidney and kidney tumor segmentation in
contrast-enhanced ct imaging: Results of the kits19 challenge. Medical Image Anal-
ysis, 67:101821, 2021. 10

Nicholas Heller, Sean McSweeney, Matthew Thomas Peterson, Sarah Peterson,
Jack Rickman, Bethany Stai, Resha Tejpaul, Makinna Oestreich, Paul Blake, Joel
Rosenberg, et al. An international challenge to use artificial intelligence to de-
fine the state-of-the-art in kidney and kidney tumor segmentation in ct imaging.
American Society of Clinical Oncology, 38(6):626-626, 2020. 10

Sergios Gatidis, Tobias Hepp, Marcel Friih, Christian La Fougére, Konstantin
Nikolaou, Christina Pfannenberg, Bernhard Schélkopf, Thomas Kiistner, Clemens
Cyran, and Daniel Rubin. A whole-body fdg-pet/ct dataset with manually anno-
tated tumor lesions. Scientific Data, 9(1):601, 2022. 10

Sergios Gatidis, Marcel Frith, Matthias Fabritius, Sijing Gu, Konstantin Nikolaou,
Christian La Fougére, Jin Ye, Junjun He, Yige Peng, Lei Bi, et al. The autopet
challenge: Towards fully automated lesion segmentation in oncologic pet/ct imag-
ing. preprint at Research Square (Nature Portfolio ), 2023. 10

Jakob Wasserthal, Hanns-Christian Breit, Manfred T. Meyer, Maurice Pradella,
Daniel Hinck, Alexander W. Sauter, Tobias Heye, Daniel T. Boll, Joshy Cyriac,
Shan Yang, Michael Bach, and Martin Segeroth. Totalsegmentator: Robust seg-
mentation of 104 anatomic structures in ct images. Radiology: Artificial Intelli-
gence, 5(5):¢230024, 2023. 10

Jun Ma, Yao Zhang, Song Gu, Cheng Zhu, Cheng Ge, Yichi Zhang, Xingle An,
Congcong Wang, Qiyuan Wang, Xin Liu, Shucheng Cao, Qi Zhang, Shangqing
Liu, Yunpeng Wang, Yuhui Li, Jian He, and Xiaoping Yang. Abdomenct-1k: Is
abdominal organ segmentation a solved problem? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(10):6695-6714, 2022. 10

Jun Ma, Yao Zhang, Song Gu, Xingle An, Zhihe Wang, Cheng Ge, Congcong Wang,
Fan Zhang, Yu Wang, Yinan Xu, Shuiping Gou, Franz Thaler, Christian Payer,
Darko Stern, Edward G.A. Henderson, Dénal M. McSweeney, Andrew Green, Price
Jackson, Lachlan McIntosh, Quoc-Cuong Nguyen, Abdul Qayyum, Pierre-Henri
Conze, Ziyan Huang, Ziqi Zhou, Deng-Ping Fan, Huan Xiong, Guogiang Dong,
Qiongjie Zhu, Jian He, and Xiaoping Yang. Fast and low-gpu-memory abdomen ct
organ segmentation: The flare challenge. Medical Image Analysis, 82:102616, 2022.
10

Jun Ma, Yao Zhang, Song Gu, Cheng Ge, Shihao Ma, Adamo Young, Cheng Zhu,
Kangkang Meng, Xin Yang, Ziyan Huang, Fan Zhang, Wentao Liu, YuanKe Pan,
Shoujin Huang, Jiacheng Wang, Mingze Sun, Weixin Xu, Dengqiang Jia, Jae Won
Choi, Natéalia Alves, Bram de Wilde, Gregor Koehler, Yajun Wu, Manuel Wiesen-
farth, Qiongjie Zhu, Guoqgiang Dong, Jian He, the FLARE Challenge Consortium,
and Bo Wang. Unleashing the strengths of unlabeled data in pan-cancer abdominal
organ quantification: the flare22 challenge. Lancet Digital Health, 2024. 10

Jun Ma, Yao Zhang, Song Gu, Cheng Ge, Ershuai Wang, Qin Zhou, Ziyan Huang,
Pengju Lyu, Jian He, and Bo Wang. Automatic organ and pan-cancer segmentation
in abdomen ct: the flare 2023 challenge. arXiv preprint arXiv:2408.12534, 2024.
10

Paul A Yushkevich, Yang Gao, and Guido Gerig. Itk-snap: An interactive tool
for semi-automatic segmentation of multi-modality biomedical images. In Annual



35.

36.

37.

38.

39.

40.

Joint UDA and SSL for MR Abdominal Segmentation 23

International Conference of the IEEE Engineering in Medicine and Biology Society,
pages 3342-3345, 2016. 10

Jun Ma, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. Segment
anything in medical images. Nature Communications, 15:654, 2024. 10

Andriy Fedorov, Reinhard Beichel, Jayashree Kalpathy-Cramer, Julien Finet,
Jean-Christophe Fillion-Robin, Sonia Pujol, Christian Bauer, Dominique Jennings,
Fiona Fennessy, Milan Sonka, et al. 3d slicer as an image computing platform for
the quantitative imaging network. Magnetic Resonance Imaging, 30(9):1323-1341,
2012. 10

Jun Ma, Sumin Kim, Feifei Li, Mohammed Baharoon, Reza Asakereh, Hongwei
Lyu, and Bo Wang. Segment anything in medical images and videos: Benchmark
and deployment. arXiv preprint arXiv:2408.03322, 2024. 10

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 11

Amirhossein Kazerouni, Ehsan Khodapanah Aghdam, Moein Heidari, Reza Azad,
Mohsen Fayyaz, Ilker Hacihaliloglu, and Dorit Merhof. Diffusion models in medical
imaging: A comprehensive survey. Medical Image Analysis, 83:102846, 2023. 18
Zhen Xu, Sergio Escalera, Adrien Pavao, Magali Richard, Wei-Wei Tu, Quanming
Yao, Huan Zhao, and Isabelle Guyon. Codabench: Flexible, easy-to-use, and re-
producible meta-benchmark platform. Patterns, 3(7):100543, 2022. 19



24 Jiahui He et al.

Table 10. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer

A meaningful title Yes

The number of authors (<6) 5

Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts: Yes
background, related work, and motivation

A pipeline/network figure is provided Figure 2
Pre-processing Page 4
Strategies to use the partial label

Strategies to use the unlabeled images. Page 6 — 10
Strategies to improve model inference Page 10
Post-processing Page 10
The dataset and evaluation metric section are presented Page 10
Environment setting table is provided Table 1
Training protocol table is provided Table 2, 3
Ablation study Page 11 -15
Efficiency evaluation results are provided Table 7, 8
Visualized segmentation example is provided Page 7
Limitation and future work are presented Yes

Reference format is consistent. Yes




