
Primal-Dual Spectral Representation
for Off-policy Evaluation

Anonymous CPAL submission

Off-policy evaluation (OPE) is one of the most fundamental problems in reinforce-1

ment learning (RL) to estimate the expected long-term payoff of a given target pol-2

icywith only experiences from another behavior policy that is potentially unknown.3

The distribution correction estimation (DICE) family of estimators have advanced4

the state of the art in OPE by breaking the curse of horizon. However, the major5

bottleneck of applying DICE estimators lies in the difficulty of solving the saddle-6

point optimization involved, especially with neural network implementations. In7

this paper, we tackle this challenge by establishing a linear representation of value8

function and stationary distribution correction ratio, i.e., primal and dual variables9

in the DICE framework, using the spectral decomposition of the transition operator.10

Such primal-dual representation not only bypasses the non-convex non-concave11

optimization in vanilla DICE, therefore enabling an computational efficient algo-12

rithm, but also paves the way for more efficient utilization of historical data. We13

highlight that our algorithm, SpectralDICE, is the first to leverage the linear rep-14

resentation of primal-dual variables that is both computation and sample efficient,15

the performance of which is supported by a rigorous theoretical sample complexity16

guarantee and a thorough empirical evaluation on various benchmarks.17

1 Introduction18

The past decade has witnessed the ubiquitous success of reinforcement learning (RL) across vari-19

ous domains. Despite the original rationale that RL agents should learn a reward-maximizing policy20

from continuous interactions with the environment, there also exist a wide range of applicational21

scenarios where online interaction with the environment may be expensive, inefficient, risky, uneth-22

ical, and/or even infeasible, examples of which include robotics [1, 2], autonomous driving [3, 4],23

healthcare [5, 6], education [7, 8], dialogue systems [9, 10] and recommendation systems [11, 12].24

These application scenariosmotivate the study of offlineRL,where the learning agent only has access25

to historical data collected by a separate behavior policy.26

Off-policy evaluation (OPE) is one of the most fundamental problems in offline RL that aims at27

estimating the expected cumulative reward of a given target policy using only historical data col-28

lected by a different, potentially unknown behavior policy. In the past decade, various off-policy29

performance estimators have been proposed [13–16]. However, these estimators generally suffer30

from the curse of horizon [17]—step-wise variances accumulate in a multiplicative way, resulting in31

prohibitively high trajectory variances and thus unreliable estimators. The recently proposed Dis-32

tribution Correction Estimation (DICE) family of estimators have advanced the state of the art in33

OPE, leveraging the primal-dual formulation of policy evaluation for a saddle-point optimization34

approach that directly estimates the stationary distribution correction ratio, and hence breaking the35

curse of horizon [18, 19].36

Nevertheless, as systems scale up in terms of the size of state-action spaces, the saddle-point op-37

timization in the formulation of DICE estimators become increasingly challenging to solve. Such38

curse of dimensionality is common for RLmethods in general, and people have beenworking to allevi-39

ate the computational burden by exploiting function approximators. However, many known func-40

tion approximators require additional assumptions to ensure computational and statistical prop-41

erties [20–25], which may not be easily statisfiable in practice. Moreover, the induced optimiza-42
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tion upon function approximators may be difficult to solve [26–28]. In particular, under a generic43

neural network parametrization, computing the DICE estimator [29] requires solving non-convex44

non-concave saddle-point optimizations, which is known to be NP-hard in theory and also yields45

unstable performance in practice, and is therefore regarded as intractable.46

This dilemma brings up a very natural question:47

Can we design an OPE algorithm that is both efficient and practical?48

By “efficient” we mean its statistical complexity avoids an exponential dependence on both the49

length of history and the dimension of state-action spaces, i.e., eliminating both curse of horizon and50

curse of dimensionality. By “practical” we mean the algorithm is free from unstable saddle-point51

optimizations and can be easily implemented and applied in practical settings.52

In this paper, we provide an affirmative answer to this question by revealing a novel linear structure53

encapsulating both Q-functions and distribution correction ratios via a spectral representation of54

the transition operator, which has many nice properties to enable efficient representation learning55

and off-policy evaluation.56

Contributions. Specifically, the contributions of this paper can be summarized as follows:57

• We propose a novel primal-dual spectral representation of the state-action transition operator, which58

makes both the Q-function and the stationary distribution correction ratio (i.e., the primal and59

dual variables in DICE) linearly representable in the primal/dual feature spaces, and thus en-60

hances the tractability of the corresponding DICE estimator.61

• We design SpectralDICE, an off-policy evaluation algorithm based on our primal-dual spectral62

representation, which bypasses the non-convex non-concave saddle-point optimization in vanilla63

DICE with generic neural network parameterization, and also makes efficient use of historical64

data. As far as we are concerned, our algorithm is the first to leverage the linear representation65

of both primal and dual variables that is computation and sample efficient.66

• The performance of the SpectralDICE algorithm is justified both theoretically with a rigorous67

sample complexity guarantee and empirically by a thorough evaluation on various RL bench-68

marks.69

1.1 Related Work70

Off-Policy Evaluation (OPE). Off-policy evaluation has long been an active field of RL research.71

In the casewhere the behavior policy is known, various off-policy performance estimators have been72

proposed, including direct method (DM) estimators [30, 31], importance sampling (IS) estimators73

[13, 14], doubly-robust (DR) estimators [15, 16, 32] and other mixed-type estimators [24, 33, 34],74

which generally suffer from the curse of dimension. In an effort to settle this issue, there is also abun-75

dant literature on estimating the correction ratio of the stationary distribution [17, 35], amongwhich76

the distribution correction estimation (DICE) family of estimators are the state of the art that lever-77

age a novel primal-dual formulation of OPE to eliminate the curse of horizon, and in the meantime,78

allow unknown behavior policies [18, 19, 29, 36, 37]. However, as discussed above, the induced79

saddle-point optimization becomes unstable with neural networks, impeding the practical applica-80

tion of DICE estimators.81

Spectral Representation in MDPs. Spectral decomposition of the transition kernel is known to82

induce a linear structure of Q-functions, which enables the design of provably efficient algorithms83

assuming known (primal) spectral feature maps [38–40]. These algorithms break the curse of di-84

mensionality in the sense that their computation or sample complexity is independent of the size of85

the state-action space, but rather, only depends polynomially on the feature space dimension, the86

intrinsic dimension of the problem.87

With the growing interest in spectral structures ofMDPs, representation learning for RL has recently88

attracted much theory-oriented attention in the online setting [41, 42]. Practical representation-89

based online RL algorithms have been designed via kernel techniques [43, 44], latent variable mod-90
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els [45, 46], contrastive learning [47, 48], and diffusion score matching [49]. Recently, a unified91

representation learning framework is proposed from a novel viewpoint that leverages the spectral92

decomposition of the transition operator [40].93

Spectral representations have also been exploited in the offline setting [50–52], where the temporal94

difference algorithm is applied in the linear space induced by the primal spectral feature for esti-95

mating Q-functions. The linear structure of the occupancy measure induced by the dual spectral96

feature is recently utilized in Huang et al. [53], which leads to an offline RL algorithm for station-97

ary density ratio estimation. Although the algorithm is theoretically sound, the stationary density98

ratio breaks the linearity in occupancy, and hence the algorithm is not computationally efficient. As99

far as we know, there is no such offline RL algorithm that efficiently utilizes both primal and dual100

representations.101

2 Preliminaries102

Notations. Denote by ∥·∥p the p-norm of vectors or the Lp-norm of functionals, and by ⟨x,y⟩ =103

x⊤y the Euclidean inner product of vectors x and y. Denote by ÊdD [·] the empirically approximated104

expectation using samples from dataset D ∼ dD. Denote by∆(S) the set of distributions over set S,105

the element ofwhich shall be regarded as densitieswhenever feasible. Denote the indicator function106

by 1{·}. Write [n] := {1, . . . , n} for n ∈ Z+. Regard f(n) ≲ g(n) as f(n) = O(g(n)).107

MarkovDecision Processes (MDPs). We consider an infinite-horizon discountedMarkov decision108

process (MDP)M = (S,A,P, r, µ0, γ), where S is the (possibly infinite) state space, A is the (pos-109

sibly infinite) action space; P : S×A → ∆(S) is the transition kernel, r : S×A → [0, 1] is the reward110

function; µ0 ∈ ∆(S) is the initial state distribution, and γ ∈ (0, 1) is the reward discount factor, so111

that the discounted cumulative reward can be defined as∑∞
t=0 γ

trt. We consider stationary Marko-112

vian policies Π := {π : S → ∆(A)} that admit an action distribution depending on the current state113

only. Given any policy π ∈ Π , let Eπ,P[·] denote the expectation over the trajectory governed by π114

and P (possibly under prescribed initial conditions). Let dπP(·, ·) ∈ ∆(S ×A) denote the (stationary)115

state-action occupancy measure under policy π, i.e., the normalized discounted probability of visiting116

(s, a) in a trajectory induced by policy π, defined by117

dπP(s, a) = (1− γ)Eπ,P

[ ∞∑
t=0

γt1{st = s, at = a}

]
.

Similarly, let dπP(·) ∈ ∆(S) denote the state occupancy measure subject to the relation dπP(s, a) =118

dπP(s)π(a|s). Further, define the state/state-action value functions (a.k.a. V - and Q-functions) as:119

V π
P (s) := Eπ,P

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s

]
,

Qπ
P(s, a) := Eπ,P

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
.

In this way, the value of policy π inM is defined by120

ρP(π) := (1− γ)Es∼µ0 [V
π
P (s)] = (1− γ)Es∼µ0,

a∼π(·|s)
[Qπ

P(s, a)],

where the factor (1− γ) is introduced for normalization. We omit the subscript P in clear context.121

Remark 1. In order to better illustrate how the proposed method works in MDPs with continuous122

state-action spaces, we abuse the notation a bit to regard P, π and dπ as densities. Parallel results for123

the discrete case can be analogously derived without difficulties.124

The Primal-Dual Characterization of ρ(π). Distribution Correction Estimation (DICE) [29] is a125

primal-dual-based method that evaluates the value of a given target policy π in the offline setting,126

using the linear programming (LP) formulation of policy values [54]. Specifically, it is known that127
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we can equivalently characterize ρ(π) defined in (1) by the primal LP:128

min
Q(·,·)

(1− γ)Es∼µ0,
a∼π(·|s)

[Q(s, a)],

s.t. Q(s, a) ⩾ r(s, a) + γEs′∼P(·|s,a),
a′∼π(·|s′)

[Q(s′, a′)], ∀(s, a) ∈ S ×A. (1)

Further, it can be shown that strong duality holds in (1), with Lagrangian multipliers exactly the129

state-action occupancymeasures dπ(·, ·). Then we characterize ρ(π) by the following primal-dual LP:130

min
Q(·,·)

max
d(·,·)

(1− γ)Es∼µ0,
a∼π(·|s)

[Q(s, a)] + E(s,a)∼dπ(·,·)

[
r(s, a) + γEs′∼P(·|s,a),

a′∼π(·|s′)
[Q(s′, a′)]−Q(s, a)

]
. (2)

We highlight that this primal-dual LP formulation is favored in the offline RL setting in that histori-131

cal experiences can be utilized to empirically approximate the expectations in (2) after some simple132

change-of-variables. In particular, for any measurable function f(s, a), the importance sampling133

(IS) estimator for the expected value of f(s, a) is given by134

E(s,a)∼dπ [f(s, a)] = E(s,a)∼dπb

[
dπ(s, a)

dD(s, a)
· f(s, a)

]
, (3)

where ζ(s, a) := dπ(s,a)
dD(s,a)

is known as the stationary distribution correction ratio for dataset D ∼ dD.135

TheDICE family estimators [18, 55, 56] is designed by plugging the IS expectation estimator (3) into136

(2), such that the stationary distribution correction ratio ζ(·, ·) is parameterized along with the Q-137

function to formulate an optimization, with various regularization available [57]. It is evident that138

the DICE family estimators are applicable to the offline RL setting with unknown behavior policy.139

Spectral Representation. We can always perform spectral decomposition of the dynamic operator140

to obtain a spectral representation of anyMDP [40]. In particular, low-rankMDPs refer to suchMDPs141

with intrinsic finite-rank spectral representation structures that enable scalable RL algorithms, and142

are thus of theoretical interest [38, 58]. Formally,M is said to be a low-rank MDP if there exists a143

primal feature map ϕ : S × A → Rd and dual features µ̃ : S → Rd, θr ∈ Rd, such that P(s′|s, a) =144

⟨ϕ(s, a), µ̃(s′)⟩, r(s, a) = ⟨ϕ(s, a),θr⟩, for any s, s′ ∈ S , a ∈ A. Here both the primal feature ϕ and145

the dual features µ̃, θr are assumed to be unknown, and thus must be learned from data [41, 42].146

Unfortunately, it is revealed in Ren et al. [40], Zhang et al. [48] that learning the features of a low-147

rank MDP is difficult from the unnormalized density fitting point of view. To settle this tractability148

issue, the above papers propose a reparameterization of the dual feature as µ̃(·) = q(·)µ(·), where149

we introduce an auxiliary distribution q(·) ∈ ∆(S) that will be specified later. Therefore, we will150

stick to the following spectral decomposition of the transition kernel in this paper:151

P(s′|s, a) = ⟨ϕ(s, a), q(s′)µ(s′)⟩, ∀s ∈ S, a ∈ A, s′ ∈ S. (4)
Under such reparameterization, it is known that the spectral representaton can be learned efficiently.152

Additionally, we also assume µ0 to be linearly representable in the dual feature space.153

Assumption 1 (initial representation). There exists ω0 ∈ Rd, such that µ0(s) = q(s)⟨µ(s),ω0⟩, ∀s.154

Off-Policy Evaluation (OPE). Consider a setting where we are given D = {(si, ai, s′i) | i ∈ [N ]},155

an offline dataset ofN historical transitions, sampled by a behavior policy πb that could be unknown.156

The objective is to estimate the expected cumulative rewards ρ(π) of a different target policy π.157

For satisfactory performance, it is important that the behavior policy provides sufficient data cov-158

erage for the frequent transitions experienced by policy π. Specifically, we assume the occupancy159

ratio between π and πb satisfies the following regularity assumption.160

Assumption 2 (concentratability). dπ(s,a)
dπb (s,a) ⩽ Cπ

∞, ∀s ∈ S, a ∈ A.161

We point out that the concentratability assumption is standard in offline RL literature [22, 59], and162

is also implicitly enforced in recent work like Huang et al. [53] (see Definition 1 therein). We are163
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aware that the coefficient Cπ
∞ can potentially be translated into different feature-related constants164

[42], which does not change the asymptotics of sample complexity, yet only adds to the technical165

complexity. For clarity, we will stick to the simple Assumption 2 in this paper.166

3 SpectralDICE: OPE using Primal-Dual Spectral Representation167

In this section, we first introduce a novel linear representation for the stationary distribution correc-168

tion ratio using the dual spectral feature of transition kernel. We highlight that this linear structure,169

together with the known linear representation ofQ-functions, helps to bypass the non-convex non-170

concave optimization required in the computation of DICE estimators, and also enables efficient171

utilization of historical data sampled by unknown behavior policies. Based on the above ideas, we172

present SpectralDICE, the proposed off-policy evaluation (OPE) algorithm using our primal-dual173

spectral representation.174

3.1 Primal-Dual Spectral Representation175

We start by specifying the primal-dual spectral representation used in SpectralDICE. At first glance,176

it may seem natural to directly learn the spectral representation of P as defined in (4). However,177

it turns out that this naive approach includes the target policy π in the linear representation of178

dπ(·, ·), which in turn induces a complicated representation for the stationary distribution correction179

ratio ζ(·, ·) [53], and thus, leads to an intractable optimization (2) for the computation of the DICE180

estimator.181

The above challenge inspires us to properly reparameterize the spectral decomposition (4). Specif-182

ically, since we only work with a fixed target policy π for off-policy evaluation, we shall con-183

sider the following alternative representation of the state-action transition kernel Pπ(s′, a′|s, a) :=184

P(s′|s, a)π(a′|s′):185

Pπ(s′, a′|s, a) =
〈
ϕ(s, a), q(s′)πb(a

′|s′) π(a′|s′)
πb(a′|s′)µ(s

′)︸ ︷︷ ︸
µπ(s′,a′)

〉
. (5)

Note that Assumption 2 guarantees a non-zero denominator when the nominator is non-zero. We186

refer to (5) as the primal-dual spectral representation of the state-action) transition kernel Pπ , where187

ϕ(·, ·) and µπ(·, ·) are still called primal and dual spectral features, respectively. The superscript π of188

the dual spectral feature emphasizes its dependence on the target policy.189

The primal-dual spectral representation has several nice properties. In particular, we can show that190

theQ-functionQπ(s, a), the state-action occupancymeasure dπ(s, a), and the stationary distribution191

correction ratio ζ(s, a) can all be represented in linear forms using the primal/dual features, as192

summarized below.193

Lemma 1. With primal-dual spectral representation (5), the Q-function Qπ(·, ·) is linearly representable in194

the primal feature space with cofactor θπ
Q ∈ Rd:195

Qπ(s, a) = ⟨ϕ(s, a),θπ
Q⟩, ∀s ∈ S, a ∈ A. (6)

Further, under Assumption 1, the state-action occupancy measure dπ(·, ·) is also linearly representable in the196

dual feature space with cofactor ωπ
d ∈ Rd:197

dπ(s, a) = q(s)πb(a|s)⟨µπ(s, a),ωπ
d ⟩, ∀s ∈ S, a ∈ A.

Specifically, when the auxiliary distribution q(·) is selected as the state-occupancy measure dπb(·) of the be-198

havior policy πb, the stationary distribution correction ratio can also be linearly represented as:199

ζ(s, a) =
dπ(s, a)

q(s)πb(a|s)
= ⟨µπ(s, a),ωπ

d ⟩. (7)
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Proof. Note that the original dual feature in (4) can be restored by µ(s′) = πb(a
′|s′)

π(a′|s′) µ
π(s′, a′) for any200

a′ ∈ A. Then by Bellman recursive equation we have:201

Qπ(s, a) = ⟨ϕ(s, a),θr⟩+ γ

ˆ
V π(s′)⟨ϕ(s, a), q(s′)µ(s′)⟩ds′

=

〈
ϕ(s, a),θr + γ

ˆ
V π(s′)q(s′)µ(s′)ds′︸ ︷︷ ︸

θπ
Q

〉
.

Similarly, by the recursive property of dπ we have:202

dπ(s, a) = (1− γ)µ0(s)π(a|s) + γ

ˆ
dπ(s̃, ã)Pπ(s, a|s̃, ã)ds̃dã

= (1− γ)q(s)
〈
πb(a|s)µπ(s, a),ω0

〉
+ γ

〈
q(s)πb(a|s)µπ(s, a),

ˆ
dπ(s̃, ã)ϕ(s̃, ã)ds̃dã

〉
=

〈
q(s)πb(a|s)µπ(s, a), (1− γ)ω0 + γ

ˆ
dπ(s̃, ã)ϕ(s̃, ã)ds̃dã︸ ︷︷ ︸
ωπ

d

〉
,

where we use the initial representation (Assumption 1) and the fact that π(a|s)µ(s) =203

πb(a|s)µπ(s, a). The representation of ζ(·, ·) is hence a direct corollary since q(s)πb(a|s) = dπb(s, a)204

when q(·) = dπb(·).205

Then, using the linear spectral representations of Q and ζ in (6) and (7), we shall equivalently206

formulate the DICE estimator as follows.207

Corollary 2. With primal-dual spectral representation (5) where q(·) ≡ dπb(·), under Assumption 1,208

ρP(π) = min
θQ

max
ωd

{
(1− γ)Es∼µ0,

a∼π(·|s)

[
ϕ(s, a)⊤θQ

] (8)

+ Es∼dπb (·), a∼πb(a|s),
s′∼P(·|s,a), a′∼π(·|s′)

[(
µπ(s, a)⊤ωd

)(
r(s, a) + γϕ(s′, a′)⊤θQ − ϕ(s, a)⊤θQ

)]}
.

The proof of Corollary 2 is deferred to Appendix B.1 due to limited space. We highlight that our209

new DICE formulation (8) bears several benefits:210

• Offlinedata compatible. The estimator is favorable forOPE since the expectation over the (s, a, s′)211

transition pair can be effectively approximated by samples from the offline dataset D, as long as212

the auxiliary distribution q(·) is selected as the state occupancymeasure dπb of the behavior policy213

πb such that Pr[(s, a, s′) ∈ D] = q(s)πb(a|s)P(s′|s, a).214

• Optimization tractable. Given (learned) ϕ(s, a) and µπ(s, a), the saddle-point optimization in215

(8) is convex-concave with respect to both θQ and ωd, which perfectly bypasses the optimiza-216

tion difficulty in vanilla DICE estimators with neural-network-parameterized Qπ(·, ·) and ζ(·, ·).217

Meanwhile, compared to the counterpart obtained by directly applying the naive spectral rep-218

resentation (4) (details of which can be found in Appendix B.2), the proposed estimator (8) is219

tractable in that it is free of the policy ratio π(a|s)
πb(a|s) that is unknown.220

From now on, we will always regard q(·) ≡ dπb(·) for the aforementioned nice properties to hold.221

3.2 Spectral Representation Learning222

In the last section, we have elaborated on how to perform OPE using off-policy data given a primal-223

dual spectral representation. Now it only suffices to specify how to learn such a representation,224

which we regard as an abstract subroutine (ϕ̂, µ̂π) ← RepLearn(F ,D, π). Here F denotes the col-225

lection of candidate representations. We highlight that our algorithm works with any representa-226

tion learning method that has a bounded learning error, without any further requirements on the227
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Algorithm 1 SpectralDICE: DIstribution Correction Estimation with Spectral Representation
Require: Target policy π, off-policy dataset D, function family F .
1: Learn a spectral representation (ϕ̂, µ̂π)← RepLearn(F ,D, π).
2: Plug in the spectral representation (ϕ̂, µ̂π) to compute the following DICE estimator:

ρ̂(π) = minθQ
maxωd

{
(1− γ)Ês∼µ0,

a∼π(·|s)

[
ϕ̂(s, a)⊤θQ

]
+ Ê(s,a,s′)∼D,

a′∼π(·|s′)

[(
µ̂π(s, a)⊤ωd

)(
r(s, a) + γϕ̂(s′, a′)⊤θQ − ϕ̂(s, a)⊤θQ

)]}
.

(9)
3: return ρ̂(π)

learning mechanism. Given a range of spectral representation learning methods available in liter-228

ature [40, 45, 48, 49], for the sake of clarity we only consider a few candidates here, while other229

methods may also be applicable:230

1. Ordinary Least Squares (OLS). Inspired by Ren et al. [40], an OLS objective can be constructed231

as follows. Denote byQπ(s′, a′, s, a) := dπb(s, a)Pπ(s′, a′|s, a) the joint distribution of state-action232

transitions under behavior policy πb, based on which we plug in (5) to obtain233

Qπ(s′, a′, s, a)√
dπb(s, a)dπb(s′, a′)

=
√
dπb(s, a)dπb(s′, a′)ϕ(s, a)⊤µπ(s′, a′),

which further induces the following OLS objective:234

min
(ϕ̂,µ̂π)∈F

ˆ (
Qπ(s′, a′, s, a)√
dπb(s, a)dπb(s′, a′)

−
√
dπb(s, a)dπb(s′, a′)ϕ̂(s, a)⊤µ̂π(s′, a′)

)2

dsdads′da′

Therefore, (ϕ̂, µ̂π) can be learned by solving [40, 60]:235

min(ϕ̂,µ̂π)∈F

{
Ê(s,a)∼dπb ,(s̃′,ã′)∼dπb

[(
ϕ̂(s, a)⊤µ̂π(s̃′, ã′)

)2]− 2Ê(s,a)∼dπb ,(s′,a′)∼Pπ(·,·|s,a)

[
ϕ̂(s, a)⊤µ̂π(s′, a′)

]}
,

where the last term becomes a constant after expansion and is thus omitted. For practical im-236

plementation, we can use stochastic gradient descent to solve the above stochastic optimization237

problem.238

2. Noise-Contrastive Estimation (NCE).NCE is a widely used method for contrastive representa-239

tion learning in RL [47, 48]. To learn (ϕ̂, µ̂π), we consider a binary contrastive learning objective240

[47]:241

min(ϕ̂,µ̂π)∈F Ê(s,a)∼dπb

[
Ê(s′,a′)∼Pπ(·,·|s,a)

[
log
(
1 + 1

ϕ̂(s,a)⊤µ̂π(s′,a′)

)]
+ Ê(s′,a′)∼Pneg

[
log
(
1 + ϕ̂(s, a)⊤µ̂π(s′, a′)

)]]
,

where Pneg is a negative sampling distribution.242

Details of these representation learning methods along with their learning errors can be found in243

Appendix C.244

3.3 SpectralDICE245

With the two key components specified above, now we are ready to state SpectralDICE, the pro-246

posed offline policy evaluation (OPE) algorithm using spectral representations, as in Algorithm 1.247

Specifically, given a policy π, assuming access to an offline dataset (s, a, s′) ∼ D sampled by the248

behavior policy πb, we follow a two-step algorithm to evaluate the target policy π in an off-policy249

manner:250

1. Representation learning. We may choose any representation learning method that comes with251

a bounded learning error as the RepLearn subroutine, and the overall sample complexity will252

depend on this choice (see Section 4).253
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2. DICE-based policy evaluation. With the learned representation (ϕ̂, µ̂π), we use the primal-dual254

DICE estimator (9) to estimate the value of the target policy π. Note that the data distribution255

dD(s, a, s′) = dπb(s)πb(a|s)P(s′|s, a) is exactly compatible with the formulation in (8).256

Remark 2 (Numerical considerations). It is known that directly solving (9) leads to potential numer-257

ical instability issues due to the objective’s linearity in θQ and ωd [19]. Fortunately, it is shown in258

Yang et al. [57] that certain regularization leads to strictly concave inner maximization while keep-259

ing the optimal solution unbiased (see Appendix B.3 for details). In our implementation, we append260

a regularizer−λÊ(s,a)∼D
[
f(µ̂π(s, a)⊤ωd)

] to the objective in (9), where f is a differentiable function261

with closed and convex Fenchel conjugate f∗ (see Appendix E.1), and λ is a tunable constant. Fur-262

thermore, since µπ(s, a)⊤ωd = ζ(s, a) ⩽ Cπ
∞ and ϕ(s, a)⊤θQ = Q(s, a) ⩽ 1

1−γ , we also restrict θQ263

and ωd in regions Θ(ϕ̂) = {θQ | 0 ⩽ ϕ̂(s, a)⊤θQ ⩽ 1
1−γ } and Ω(µ̂π) = {ωd | µ̂π(s, a)⊤ωd ⩽ Cπ

∞},264

respectively.265

4 Theoretical Guarantee266

In this section, we provide a rigorously theoretical analysis regarding the sample complexity of the267

proposed SpectralDICE algorithm. For the sake of technical conciseness, we make the following268

assumption on the candidate familyF . We argue that this is not a restrictive assumption, but rather,269

only helps to highlight the key contributions with simplified analysis.270

Assumption 3 (realizability). Assume a finite family F , such that ⟨ϕ̂(s, a), dπb(s′, a′)µ̂π(s′, a′)⟩ is271

a valid state-action transition kernel for any (ϕ̂, µ̂π) ∈ F , and the ground-truth representation272

(ϕ⋆,µπ,⋆) ∈ F .273

Representation Learning Error. The key to subsequent analyses is to first bound the error of rep-274

resentation learning, which is of some theoretical interest by itself. Generally speaking, we expect275

probably approximately correct (PAC) bounds for representation learning in the following format.276

Claim 3. With probability at least 1− δ, we have277

E(s,a)∼d
πb
P

[∥∥P̂π(·, ·|s, a)− Pπ(·, ·|s, a)
∥∥
1

]
⩽ ξ(|F|, N, δ),

where P̂π(s′, a′|s, a) := dπb

P (s′, a′)ϕ̂(s, a)⊤µ̂π(s′), N is the number of samples in D, and the upper bound278

ξ only depends on |F|, N and δ.279

We point out that, under certain regularity assumptions, the above claim can be proven for many280

spectral representation learning algorithms. Specifically, when RepLearn is implemented by OLS281

or NCE, we can show that ξ(|F|, N, δ) = Θ
(√

1
N log |F|

δ

)
.282

Policy Evaluation Error. The performance of the proposed SpectralDICE algorithm is evaluated283

by the policy evaluation error E := ρ̂(π)− ρP(π), which can be bounded by the following theorem.284

Theorem 4 (Main Theorem). Suppose Claim 3 holds for the RepLearn subroutine. Then under Assump-285

tions 1 to 3, with probability at least 1− δ, we have286

E ≲
1

1− γ

√
log(1/δ)

N
+

1

(1− γ)2
· ξ(|F|, N, δ/2).

Proof sketch. We first split E into the following terms:287

E = ρ̂(π)− ρ̄(π)︸ ︷︷ ︸
statistical

+ ρ̄(π)− ρP̂(π)︸ ︷︷ ︸
dataset

+ ρP̂(π)− ρP(π)︸ ︷︷ ︸
representation

,

where we introduce an auxiliary problem:288

ρ̄(π) = min
θQ

max
ωd

{
(1− γ)Es∼µ0,

a∼π(·|s)

[
ϕ̂(s, a)⊤θQ

]
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+ Es∼dπb (·), a∼πb(a|s),
(s′,a′)∼Pπ(·,·|s,a)

[(
µ̂π(s, a)⊤ωd

)
·
(
r(s, a) + γϕ̂(s′, a′)⊤θQ − ϕ̂(s, a)⊤θQ

)]}
.

Note that (9) is the empirical estimation of ρ̄(π), and that ρ̄(π) is (subtly) inequivalent to ρP̂(π)—the289

expectation is still taken over (s′, a′) ∼ Pπ(·, ·|s, a) rather than P̂π(·, ·|s, a) = ⟨ϕ̂(s, a), µ̂π(·, ·)⟩.290

Intuitively, the latter two terms are directly related to the representation learning error established291

in Claim 3, which can actually be bounded as follows:292

ρP̂(π)− ρP(π) ≲
γ

(1− γ)2
· ξ(|F|, N, δ/2),

ρ̄(π)− ρP̂(π) ≲
1

1− γ
· ξ(|F|, N, δ/2).

On the other hand, the first term is only caused by replacing the expectations with their empirical293

estimators, which can be bounded by concentration inequalities as:294

ρ̂(π)− ρ̄(π) ≲ 1

1− γ

√
log(1/δ)

N
.

Plugging these terms back completes the proof.295

Finally, we conclude that the sample complexity of SpectralDICE equipped with either OLS or296

NCE RepLearn subroutine is Õ(N−1/2) (under mild regularity assumptions). Details are deferred297

to Appendix D.298

5 Experiments299

In this section, we present experimental results in both continuous and discrete environments to300

demonstrate the strength of the proposed SpectralDICE algorithm. We also study the impact of301

hyperparameters, data coverage and the choice of behavior policy on the OPE performance, and302

illustrate the efficacy of the proposed representation learning method.303

The empirical results show that our method outperforms BestDICE, the state-of-the-art DICE im-304

plementation without representation learning, in terms of both the convergence rate and the final305

prediction error. In comparison to other baselines, SpectralDICE achieves comparable performance306

with higher efficiency in simple environments, and performs significantly better than others in the307

most challenging environment.308

5.1 Continuous Environments309

Setting. We start by comparing SpectralDICE with various baseline OPE methods in literature,310

including BestDICE [57], Fitted Q Evaluation (FQE) [61], Model-Based (MB) method [62], Impor-311

tance Sampling (IS) method [13] and Doubly-Robust (DR)method [32]. We follow the experiment312

protocol in Yang et al. [57] to evaluate and compare the OPE performances of these algorithms in313

three continuous MuJoCo environments, namely Cartpole, Reacher and Half-Cheetah, in an in-314

creasing order of difficulty. In our implementation, for representation learning, we parameterize315

each of ϕ̂ and µ̂π with a 2-layer feed-forward neural network. For the OPE step, regularizer is ap-316

pended to (9), and the estimated policy value is retrieved by ρ̂(π) = E(s,a)∼dD [µ̂π(s, a)⊤ωd · r(s, a)]317

(see Remark 2). Both steps are regarded as stochastic optimization problems, and are solved by318

stochastic gradient descent and stochastic gradient descent-ascent, respectively. Optimization hy-319

perparameters are selected via grid search. Performance is quantified by OPE error |ρ̂(π)− ρ(π)|.320

Results. TheOPE performances of differentmethods in three environments are shown in Figure 1.321

It is observed that SpectralDICE achieves comparable performance in fewer optimization steps as322

compared to all the other baselines, and further, outperforms them in terms of both convergence rate323

and final estimation error in the most challenging Half-Cheetah environment. Further, although324
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Figure 1: OPE error over the number of training steps in Cartpole, Reacher and Half-Cheetah
environments (from left to right). Due to the use of convex-concave formulation, we can see that
SpectralDICE converges faster and more stably to the target policy with a smaller OPE error in all
three environments.

Figure 2: Averaged relative
OPE errors over three envi-
ronments.

Figure 3: OPE error of SpectralDICE in Four Roomswith varying
behavior policies (“far-away” policy π1 vs. “similar” policy π2),
dataset sizes and feature dimensions.

FQE achieves an error close to SpectralDICE in simpler environments, its performance significantly325

degrades when the transition dynamics becomesmore complex, demonstrating the importance and326

power of spectral representation.327

Here we also highlight the comparison between two DICE-based methods—SpectralDICE (ours)328

and BestDICE. All settings showcase the advantage of our primal-dual spectral representation over329

the generic neural network representation, which justify the argument that, compared to the non-330

convex non-concave optimization in vanilla DICE, our convex-concave optimization leads to faster331

convergence and enhanced stability within a wider range of environments.332

For a clearer comparison, we further present the averaged relative OPE error across these three en-333

vironments in Figure 2. Here the relative OPE error is defined by |ρ̂(π)−ρ(π)|
|ρ̄(πb)−ρ(π)| , i.e., OPE error normal-334

ized by the value difference between the target and behavior policies. Under this metric, it becomes335

more evident that our method outperforms all the baselines in terms of estimation accuracy by a336

large margin.337

5.2 Discrete Environment338

Setting. We proceed to test our method in Four Rooms [63], a classical discrete environment fea-339

turing convenient visualization, to study the algorithm’s sensitivity for hyperparameters and il-340

lustrate the efficacy of representation learning. For representation learning in this tabular MDP,341

we perform singular value decomposition (SVD) of the matrix [Pπ(s′,a′|s,a)
dπ(s′,a′)

] (indexed by (s, a) and342

(s′, a′)) and select the top d singular vectors as ϕ̂(s, a) and µ̂π(s′, a′).343

Sensitivity Study. We study the algorithm’s sensitivity with respect to behavior policy πb, dataset344

sizeN and spectral feature dimension d by examining their impact on the OPE performance. For πb,345

we vary between two behavior policies π1 and π2, where π1 has a larger ℓ1-distance from the target346

policy than π2. The results are shown in Figure 3. It can be observed that the proposed algorithm347

is always able to achieve low OPE errors with sufficiently large feature dimensions, showcasing its348

wide applicability under different behavior policies, data availability and hyperparameters.349
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Figure 4: Visualization of the learned transition kernel for a fixed state and all the four actions.
Efficacy of Representation Learning. To give a hint of the efficacy of our representation learning350

scheme RepLearn, we visualize in Figure 4 the learned transition kernel P̂ for a fixed state and all351

the four actions, where P̂ is restored from the spectral representation by (4). As shown in the heat352

map (where darker color indicates higher probability), the RepLearn algorithm successfully learns353

a set of primal-dual features that accurately encode the correct transition dynamics.354

More experimental details are deferred to Appendix A.355

6 Conclusion356

In this paper, to relieve the intrinsic tension between breaking the curse of horizon and overcoming357

the curse of dimensionality via DICE estimators, we propose a novel primal-dual spectral repre-358

sentation method that establishes linear spectral representations for both the primal variable (i.e.,359

Q-function) and the dual variable (i.e., stationary distribution correction ratio), which leads to Spec-360

tralDICE, an efficient and practical OPE algorithm that eliminates the non-convex non-concave361

saddle-point optimization in DICE and makes efficient use of historical data. The performance of362

SpectralDICE is justified by a theoretical sample complexity guarantee and the empirical outper-363

formance. Future directions include taking one step further to design offline policy optimization364

methods using primal-dual spectral representations, and applying the algorithm for efficient imita-365

tion learning.366
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Appendix547

A More Experimental Results548

Additional Experiments. We evaluate the OPE performance of the proposed SpectralDICE algo-549

rithm and the aforementioned baselines (see Section 5.1) in three additional environments, namely550

Walker2d, Hopper and Ant, the results of which are shown in Figure 5. These additional experiments551

further justify that our algorithm outperforms all the other baselines in a consistent and robust way,552

enjoying both a faster convergence rate and a smaller OPE error. These additional experimental553

results further confirm the superiority of SpectralDICE.554

Figure 5: OPE error over the number of training steps in Walker2d, Hopper and Ant (from left to
right).

Implementation Details. For the baseline algorithms, we follow the implementation of BestDICE555

in [57] and the implementations of FQE, MB, IS, DR in [64]. The optimization hyperparameters556

including learning rate, optimizer parameter, network architecture, batch size, etc., are selected via557

grid search. All the experiments were conducted using V100 GPUs on a multi-node cluster.558

For the continuous environments, the target policy is obtained using deep reinforcement learning559

agents (Deep Q-Network (DQN) agent for Cartpole, and Soft Actor-Critic (SAC) agents for all the560

other environments). The behavior policy is then obtained by sampling from a Gaussian distribu-561

tion centered at the mean action of the target policy, where the variance of the Gaussian distribution562

can be adjusted to get behavior policies at different distances from the target policy. To build the of-563

fline dataset, we collect 400 trajectories using the behavior policy, where each trajectory is truncated564

to 250 steps.565

The source code is available at https://anonymous.4open.science/r/spectral_dice-720A.566

B Primal-Dual Spectral Representation567

In this appendix, we present the key properties of the proposed primal-dual spectral representation568

with proofs, as well as a brief discussion on why the spectral representation of that specific form is569

preferable.570

B.1 DICE Estimator with Primal-Dual Spectral Representation571

We first present the proof of Corollary 2 that is already stated in the main text.572

Corollary 2. With primal-dual spectral representation (5) where q(·) ≡ dπb(·), under Assumption 1,573

ρ(π) = min
θQ

max
ωd

{
(1− γ)Es∼µ0,

a∼π(·|s)

[
ϕ(s, a)⊤θQ

]
+ Es∼dπb (·), a∼πb(a|s),

s′∼P(·|s,a), a′∼π(·|s′)

[(
µπ(s, a)⊤ωd

)(
r(s, a) + γϕ(s′, a′)⊤θQ − ϕ(s, a)⊤θQ

)]}
.

16



Proof of Corollary 2. Recall the primal-dual LP formulation of policy evaluation stated in (2), which574

can be equivalently rewritten using the primal-dual spectral representation (5) as follows:575

ρ(π) = min
Q(·,·)

max
dπ(·,·)

{
(1− γ)Es∼µ0,

a∼π(·|s)
[Q(s, a)] +

ˆ
dπ(s, a)

[
r(s, a) + γEs′∼P(·|s,a),

a′∼π(·|s′)

[
Q(s′, a′)

]
−Q(s, a)

]
dsda

}
(10a)

= min
Q(·,·)

max
dπ(·,·)

{
(1− γ)Es∼µ0,

a∼π(·|s)
[Q(s, a)] +

ˆ
q(s)πb(a|s) ·

dπ(s, a)

q(s)πb(a|s)

[
r(s, a) + γEs′∼P(·|s,a),

a′∼π(·|s′)

[
Q(s′, a′)

]
−Q(s, a)

]
dsda

}
(10b)

= min
Q(·,·)

max
dπ(·,·)

{
(1− γ)Es∼µ0,

a∼π(·|s)
[Q(s, a)] + Es∼q(·), a∼πb(a|s),

s′∼P(·|s,a), a′∼π(·|s′)

[
dπ(s, a)

q(s)πb(·|s)
(
r(s, a) + γQ(s′, a′)−Q(s, a)

)]}
(10c)

= min
θQ

max
ωd

{
(1− γ)Es∼µ0,

a∼π(·|s)

[
ϕ(s, a)⊤θQ

]
+ Es∼dπb (·), a∼πb(·|s),

s′∼P(·|s,a), a′∼π(·|s′)

[
µπ(s, a)⊤ωd

(
r(s, a) + γϕ(s′, a′)⊤θQ − ϕ(s, a)⊤θQ

)]}
,

(10d)
576

where in (10b) we perform the IS-style change-of-variable used in DICE estimators (see (3)); in577

(10d) we plug in the primal-dual spectral representation of Qπ and dπ stated in (5), as well as the578

fact that q(·) ≡ dπb(·).579

B.2 Failure of the Naive Spectral Representation580

In Section 3.1, it is mentioned that directly applying the naive spectral representation (4) proposed581

in Ren et al. [40] induces a complicated representation for ζ(·, ·), which in turn leads to an intractable582

optimization (2) for the computation of the DICE estimator. The above point is further elaborated583

here in a formal way.584

Note that, in Lemma 1, the linear representation of Qπ only builds upon the low-rank MDP as-585

sumption, and therefore it still holds with the naive spectral representation (4). Meanwhile, it can586

be checked that587

dπ(s, a) =

〈
q(s)π(a|s)µ(s), (1− γ)ω0 + γ

ˆ
dπ(s̃, ã)ϕ(s̃, ã)ds̃dã︸ ︷︷ ︸
ωπ

d

〉
, (11)

which can be obtained by plugging the relation π(a|s)µ(s) = πb(a|s)µπ(s, a) into the linear repre-588

sentation of dπ(·, ·) to eliminate µπ from the representation. Consequently, the LP formulation (10)589

becomes590

ρ(π) = min
Q(·,·)

max
dπ(·)

{
(1− γ)Es∼µ0,

a∼π(·|s)
[Q(s, a)] +

ˆ
dπ(s, a)

[
r(s, a) + γEs′∼P(·|s,a),

a′∼π(·|s′)

[
Q(s′, a′)

]
−Q(s, a)

]
dsda

}

= min
Q(·,·)

max
dπ(·)

{
(1− γ)Es∼µ0,

a∼π(·|s)
[Q(s, a)] +

ˆ
q(s)πb(a|s) ·

π(a|s)
πb(a|s)

dπ(s, a)

q(s)π(a|s)

[
r(s, a) + γEs′∼P(·|s,a),

a′∼π(·|s′)

[
Q(s′, a′)

]
−Q(s, a)

]
dsda

}

= min
Q(·,·)

max
dπ(·)

{
(1− γ)Es∼µ0,

a∼π(·|s)
[Q(s, a)] + Es∼q(·), a∼πb(·|s),

s′∼P(·|s,a), a′∼π(·|s′)

[
π(a|s)
πb(a|s)

dπ(s, a)

q(s)π(a|s)
(
r(s, a) + γQ(s′, a′)−Q(s, a)

)]}

= min
θQ

max
ωd

{
(1− γ)Es∼µ0,

a∼π(·|s)

[
ϕ(s, a)⊤θQ

]
+ Es∼q(·), a∼πb(·|s),

s′∼P(·|s,a), a′∼π(·|s′)

[
π(a|s)
πb(a|s)

(
µ(s)⊤ωd

)(
r(s, a) + γϕ(s′, a′)⊤θQ − ϕ(s, a)⊤θQ

)]}
,

which involves an unknown ratio π(a|s)
πb(a|s) when the behavior policy πb is unknown, and is thus in-591

tractable.592

The above failed attempt implies that the policy ratio should be “absorbed” into the representation to593

be implicitly learned during representation learning, which exactly inspires the primal-dual spectral594

representation (5).595
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B.3 Solving the Minimax Problem via Regularization596

It is known that directly solving (9) leads to potential numerical instability issues due to the objec-597

tive’s linearity in θQ and ωd [19]. Fortunately, it is shown in Yang et al. [57] that certain regulariza-598

tion leads to strictly concave inner maximization while keeping the optimal solution ω⋆
d unbiased.599

Specifically, in practice we may append the following regularizer to the objective in (8):600

ρreg(π) = min
θQ

max
ωd

{
(1− γ)Es∼µ0,

a∼π(·|s)

[
ϕ(s, a)⊤θQ

]
+ Es∼dπb (·), a∼πb(a|s),

s′∼P(·|s,a), a′∼π(·|s′)

[(
µπ(s, a)⊤ωd

)
·

(
r(s, a) + γϕ(s′, a′)⊤θQ − ϕ(s, a)⊤θQ

)]
− λE(s,a)∼D

[
f(µ̂π(s, a)⊤ωd)

]}
.

(12)
Here f is a differentiable convex function with closed and convex Fenchel conjugate f∗ (see Ap-601

pendix E.1), and λ > 0 is a tunable constant that controls the magnitude of regularization. It is602

evident that the regularized objective is concave in ωd, which facilitates the inner maximization.603

What’s more, it has also be shown that such regularization does not alter the optimal solution ω⋆
d ,604

as summarized below.605

Lemma 5 (Nachum et al. [19], Yang et al. [57]). The solution (θreg,⋆
Q ,ωreg,⋆

d ) to (12) satisfies:606

ϕ(s, a)⊤θreg,⋆
Q = ϕ(s, a)⊤θ⋆

Q − λ(I − Pπ)−1f ′
(

dπ(s,a)
dπb (s,a)

)
,

µπ(s, a)⊤ω⋆
d = µπ(s, a)⊤ωreg,⋆

d ,

ρreg(π) = ρ(π)− λDf (d
π∥dπb),

where (θ⋆
Q,ω

⋆
d) is the solution to (8).607

We emphasize that the regularized problem is unbiased only in the sense that ωreg,⋆
d = ω⋆

d . There-608

fore, in general we need to plug ωreg,⋆
d back into (8) and solve the outer minimization again to609

recover θ⋆
Q. Nevertheless, when λ is sufficiently small, we shall regard θreg,⋆

Q ≈ θ⋆
Q to relieve the610

computational burden.611

In practice, we can only solve the empirical version of (12), i.e.,612

ρreg(π) = min
θQ

max
ωd

{
(1− γ)Ês∼µ0,

a∼π(·|s)

[
ϕ(s, a)⊤θQ

]
+ Ês∼µ0,

a∼π(·|s)

[(
µπ(s, a)⊤ωd

)
·(

r(s, a) + γϕ(s′, a′)⊤θQ − ϕ(s, a)⊤θQ
)]
− λÊ(s,a)∼D

[
f(µ̂π(s, a)⊤ωd)

]}
.

C Representation Learning Methods and Their Error Bounds613

In this appendix, we introduce two candidate methods—ordinary least squares (OLS) and noise-614

contrastive estimation (NCE)—for the RepLearn subroutine. Further, we also provide their represen-615

tation learning error bounds in the form of Claim 3, which is restated here for readers’ convenience:616

Claim 3. With probability at least 1− δ, the representation learning error of RepLearn(F ,D, π) is bounded617

by618

E(s,a)∼d
πb
P

[∥∥P̂π(·, ·|s, a)− Pπ(·, ·|s, a)
∥∥
1

]
⩽ ξ(|F|, N, δ),

where P̂π(s′, a′|s, a) := dπb

P (s′, a′)ϕ̂(s, a)⊤µ̂π(s′), and N is the number of samples in D.619

It should be emphasized that the two methods discussed here are not the only candidates for Re-620

pLearn. Rather, any representation learning method that comes with a learning error bound in the621

required form is applicable, without any further requirements on the learning mechanism.622
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C.1 Ordinary Least Sqaures (OLS)623

Method. Inspired by Ren et al. [40], the objective of OLS can be constructed as follows. Denote624

by Qπ(s′, a′, s, a) := dπb(s, a)Pπ(s′, a′|s, a) the joint distribution of state-action transitions under625

behavior policy πb. Then we plug Qπ into (5) and rearrange the terms to obtain626

Qπ(s′, a′, s, a)√
dπb(s, a)dπb(s′, a′)

=
√
dπb(s, a)dπb(s′, a′)ϕ(s, a)⊤µπ(s′, a′).

Therefore, we propose to optimize over the following OLS objective:627

min
(ϕ̂,µ̂π)∈F

ˆ (
Qπ(s′, a′, s, a)√
dπb(s, a)dπb(s′, a′)

−
√
dπb(s, a)dπb(s′, a′)ϕ̂(s, a)⊤µ̂π(s′, a′)

)2

dsdads′da′

= min
(ϕ̂,µ̂π)∈F

{ˆ
Qπ(s′, a′, s, a)2

dπb(s, a)dπb(s′, a′)
dsdads′da′ − 2E(s,a)∼dπb ,(s′,a′)∼Pπ(·,·|s,a)

[
ϕ̂(s, a)⊤µ̂π(s′, a′)

]
+ E(s,a)∼dπb ,(s′,a′)∼dπb

[(
ϕ̂(s, a)⊤µ̂π(s′, a′)

)2]}
,

Note that the first term ´ Qπ(s′,a′,s,a)2

dπb (s,a)dπb (s′,a′)dsdads
′da′ is a constant that can be omitted in optimization,628

while the second and third terms can be effectively approximated by sampling from the dataset D629

and the target policyπ. Therefore, in practicewe learn (ϕ̂, µ̂π) by solving the following optimization:630

min
(ϕ̂,µ̂π)∈F

{
Ê(s,a)∼dπb ,(s̃′,ã′)∼dπb

[(
ϕ̂(s, a)⊤µ̂π(s̃′, ã′)

)2]−2Ê(s,a)∼dπb ,(s′,a′)∼Pπ(·,·|s,a)

[
ϕ̂(s, a)⊤µ̂π(s′, a′)

]}
,

(13)
where the expectations are replaced by their empirical estimations using data sampled from D.631

Error Bound. We proceed to show the representation learning error bound for the OLS method,632

which requires the following regularity assumption on the transition kernel Pπ and the occupancy633

measure dπb .634

Assumption 4 (regularity for OLS). (1) lower-bounded transition kernel: Pπ(s′, a′|s, a) ⩾ 1
CP

> 0,635

∀s, a, s′, a′; (2) effective behavior policy coverage: dπb (s,a)
dπb (s′,a′) ⩽ Ccov, ∀s, a, s′, a′.636

We point out that the major rationale behind these mild assumptions is to rule out the cases where637

certain transitions are scarcely sampled due to the singularity in transition kernel or behavior policy.638

Theorem 6 (OLS learning error). Under Assumptions 1 to 3 and the additional Assumption 4 for regular-639

ity, let (ϕ̂, µ̂π) be the solution to (13), and set P̂π(s′, a′|s, a) := dπb(s′, a′)ϕ̂(s, a)⊤µ̂π(s′). Then, for any640

δ ∈ (0, 1), with probability at least 1− δ, we have641

E(s,a)∼d
πb
P

[∥∥Pπ(·, ·|s, a)− P̂π(·, ·|s, a)
∥∥
1

]
⩽
√
CPCreg ·

√
log(|F|/δ)

N
,

where Creg = 4
3

√
Ccov + 8Ccov is a universal constant determined by the PAC bound for OLS..642

Proof. Wewould like to apply the fast-rate PAC bound for OLS regression (Lemma 18). For the sake643

of clarity, we explicitly define the family of candidate regression functions as644

F̃ :=
{
f : (s, a, s′, a′) 7→

√
dπb(s, a)dπb(s′, a′)ϕ(s, a)⊤µπ(s′, a′)

∣∣∣ (ϕ,µπ) ∈ F
}
.

It is evident that any f ∈ F̃ is bounded as follows:645

0 ⩽ f(s, a, s′, a′) =

√
dπb(s, a)

dπb(s′, a′)
P̃π(s′, a′|s, a) ⩽

√
Ccov,

where we use the fact that ⟨ϕ̂(s, a), dπb(s′, a′)µ̂π(s′, a′)⟩ is always some valid transition kernel P̃π646

(by Assumption 3), and the additional regularity assumption (Assumption 4). Further, since the647
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family F̃ is realizable (by Assumption 3), there exists an optimal f⋆ ∈ F̃ such that648

f⋆(s, a, s′, a′) =
Qπ(s′, a′, s, a)√
dπb(s, a)dπb(s′, a′)

.

As f(s, a, s′, a′), f⋆(s, a, s′, a′) ∈ [0,
√
Ccov], we deduce from Lemma 18 that, with probability at least649

1− δ,650 ˆ (
f⋆(s, a, s′, a′)− f̂(s, a, s′, a′)

)2
dsdads′da′ ⩽ Creg ·

log(|F|/δ)
N

, (14)

where Creg := 4
3

√
Ccov + 8Ccov, and f̂(s, a, s′, a′) :=

√
dπb(s, a)dπb(s′, a′)ϕ̂(s, a)⊤µ̂π(s′, a′). Conse-651

quently,652

E(s,a)∼d
πb
P

[∥∥Pπ(·, ·|s, a)− P̂π(·, ·|s, a)
∥∥
1

]
=

ˆ
dπb

P (s, a)
∣∣∣Pπ(s′, a′|s, a)− P̂π(s′, a′|s, a)

∣∣∣dsdads′da′ (15a)

=

ˆ ∣∣∣Qπ(s′, a′, s, a)− Q̂π(s′, a′, s, a)
∣∣∣dsdads′da′ (15b)

⩽

√√√√ˆ (√Qπ(s′, a′, s, a)− Q̂π(s′, a′, s, a)√
Qπ(s′, a′, s, a)

)2

dsdads′da′ ·
ˆ

Qπ(s′, a′, s′, a′)dsdads′da′ (15c)

=

√ˆ
dπb(s′, a′)

Pπ(s′, a′|s, a)

(
f⋆(s, a, s′, a′)− f̂(s, a, s′, a′)

)2
dsdads′da′ (15d)

⩽

√
max

s,a,s′,a′

{
dπb(s′, a′)

Pπ(s′, a′|s, a)

}
·
√
Creg ·

log(|F|/δ)
N

(15e)

⩽
√
CPCreg ·

√
log(|F|/δ)

N
, (15f)

where in (15b) we use the definition ofQπ , and define Q̂π := dπb

P (s, a)P̂π(s′, a′|s, a); in (15c) we use653

Cauchy-Schwartz inequality; in (15d) we use the definition of f̂ and f⋆; in (15e) we plug in the PAC654

bound (14); in (15f) we use Assumption 4 to bound the coefficient. This completes the proof.655

C.2 Noise-Constrastive Learning (NCE)656

Method. NCE is a widely used method for contrastive representation learning in RL [47, 48]. To657

learn (ϕ̂, µ̂π), we consider a binary contrastive learning objective [47]:658

min
(ϕ̂,µ̂π)∈F

Ê(s,a)∼dπb

[
Ê(s′,a′)∼Pπ(·,·|s,a)

[
log
(
1 + 1

ϕ̂(s,a)⊤µ̂π(s′,a′)

)]
+ Ê(s′,a′)∼Pneg

[
log
(
1 + ϕ̂(s, a)⊤µ̂π(s′, a′)

)]]
,

(16)
where Pneg is a negative sampling distribution that will be specified with justification later. We659

highlight that the above objective implicitly guarantees an equal number of positive and negative660

samples.661

The following derivations follow a similar pathway as those in [47]. For notational consistency that662

facilitates the application of known results, we introduce the following auxiliary notations. Define663

F̃ :=
{
f : (s, a, s′, a′) 7→ ϕ(s, a)⊤µπ(s′, a′) | (ϕ,µπ) ∈ F

}
.

For clarity, we augment the sampled transitions to include a label y indicating whether the sample664

is positive (y = 1) or negative (y = 0). Formally, given a dataset D = {(si, ai, s′i, a′i) | i ∈ [N ]} of665

positive transitions, we randomly sample N negative transitions (s̃i, ãi) ∼ Pneg (i ∈ [N ], i.i.d.), and666

define the augmented dataset667

D̃ :=
{
(si, ai, s

′
i, a

′
i, 1), (si, ai, s̃i, ãi, 0)

∣∣ i ∈ [N ]
}
.
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In this way, the NCE objective (16) can be equivalently rewritten (in MLE format) as668

max
f∈F̃

Ê(s,a,s′,a′,y)∼dD̃ [logψf (s, a, s
′, a′, y)], (17)

where the likelihood function ψf is defined by669

ψf (s, a, s
′, a′, y) :=

(
f(s, a, s′, a′)

1 + f(s, a, s′, a′)

)y

·
(

1

1 + f(s, a, s′, a′)

)1−y

.

We point out that ψf (s, a, s
′, a′, ·) ∈ ∆(Y) for any (s, a, s′, a′), where Y := {0, 1}. In fact, given670

f⋆ that optimizes the unconstrained non-empirical version of (17), ψf⋆ can be interpreted as the671

probability of obtaining label y given (s, a, s′, a′), as summarized in the following lemma that is672

similar to Lemma C.1 in Qiu et al. [47].673

Lemma 7 (non-empirical solution to NCE). The optimal solution to the unconstrained non-empirical674

version of (17), i.e., f⋆ := maxf E(s,a,s′,a′,y)∼dD̃ [logψf (s, a, s
′, a′, y)], is characterized by675

f⋆(s, a, s′, a′) =
Pπ(s′, a′|s, a)
Pneg(s′, a′)

.

Proof. Note that the objective can be rewritten as676

E(s,a,s′,a′,y)∼dD̃ [logψf (s, a, s
′, a′, y)]

=

ˆ
dD̃(s, a, s′, a′)

∑
y∈Y

Pr(y|s, a, s′, a′) logψf (s, a, s
′, a′, y)

dsdads′da′

= −
ˆ
dD̃(s, a, s′, a′) · H

(
Pr(y|s, a, s′, a′);ψf (s, a, s

′, a′, y)
)
dsdads′da′.

Here H(·; ·) is the cross entropy between distributions, which, by Gibbs’ inequality, is minimized677

only when678

Pr(y|s, a, s′, a′) = ψf⋆(s, a, s′, a′, y) =

(
f⋆(s, a, s′, a′)

1 + f⋆(s, a, s′, a′)

)y

·
(

1

1 + f⋆(s, a, s′, a′)

)1−y

. (18)

On the other hand, Bayes’ rule states that (note that Pr(y|s, a) = 1
2 , ∀y ∈ Y):679

Pr(y = 1|s, a, s′, a′) = Pr(s′, a′|s, a, y = 1)Pr(y = 1|s, a)∑
y∈Y Pr(s′, a′|s, a, y)Pr(y|s, a)

=
Pπ(s′, a′|s, a)

Pneg(s′, a′) + Pπ(s′, a′|s, a)
. (19)

Comparing (18) and (19) gives680

f⋆(s, a, s′, a′)

1 + f⋆(s, a, s′, a′)
=

Pπ(s′, a′|s, a)
Pneg(s′, a′) + Pπ(s′, a′|s, a)

=⇒ f⋆(s, a, s′, a′) =
Pπ(s′, a′|s, a)
Pneg(s′, a′)

.

This completes the proof.681

Remark 3. For conciseness, here we slightly abuse the notation Pr(·) to denote the distribution (den-682

sity or mass) of joint and conditional distributions involving random variables (s, a, s′, a′, y) ∼ dD̃.683

Specifically, we write Pr(· · · , x, · · · ) to indicate an arbitrary value x taken by the random variable,684

and we also write Pr(· · · , x = x0, · · · ) to emphasize the value x0 taken by that random variable.685

Lemma 7 is important in that it echoes the form of primal-dual spectral representation in (5). Specif-686

ically, we shall take Pneg(·, ·) ≡ dπb(·, ·) for an exact match, which is also implementable using offline687

data since dπb can be effectively approximated by sampling the trajectories. We will stick to this688

choice of Pneg from now on.689

Error Bound. We proceed to show the representation learning error bound for the NCE method,690

which requires the following regularity assumption on the negative sampling distribution Pneg, or691

equivalently, as per the choice above, the state-action occupancy measure dπb(·, ·) for the behavior692

policy πb.693
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Assumption 5 (regularity for NCE). dπb

P (s, a) ⩾ 1
Cd

> 0, ∀s, a.694

We point out that Assumption 5 is a standard assumption for the negative sampling distribu-695

tion [47], aiming at eliminating the cases where certain transitions are scarcely drawn as nega-696

tive samples and thus obstruct efficient representation learning for those cases. The assumption697

is also slightly stronger than the effective behavior policy coverage assumption required by the OLS698

method (see Assumption 4).699

Theorem 8 (NCE learning error). Under Assumptions 1 to 3 and the additional Assumption 5 for700

regularity, let (ϕ̂, µ̂π) be the solution to (16) with Pneg(·, ·) ≡ dπb(·, ·), and set P̂π(s′, a′|s, a) :=701

dπb(s′, a′)ϕ̂(s, a)⊤µ̂π(s′). Then, for any δ ∈ (0, 1), with probability at least 1− δ, we have702

E(s,a)∼d
πb
P

[∥∥Pπ(·, ·|s, a)− P̂π(·, ·|s, a)
∥∥
1

]
⩽ 2
√
2(1 + Cd) ·

√
log(|F|/δ)

N
.

The proof of Theorem 8 largely follows the same pathway and techniques established in Qiu et al.703

[47]. Nevertheless, our proof is less technically involved since the offline non-episodic setting sig-704

nificantly weakens the correlation between samples. For the sake of completeness, we restate the705

proof below.706

Proof. Westart by observingPr(y, s′, a′|s, a) := Pr(y|s, a, s′, a′)Pr(s′, a′|s, a), wherePr(s′, a′|s, a) can707

in turn be calculated using Bayes’ rule as follows:708

Pr(s′, a′|s, a) = Pr(s′, a′|s, a, y = 0)Pr(y = 0|s, a) + Pr(s′, a′|s, a, y = 1)Pr(y = 1|s, a)
= 1

2

(
Pπ(s′, a′|s, a) + Pneg(s

′, a′)
)
. (20)

Here we use the fact that the data distribution dD̃ implicitly assigns an equal number of labels as709

y = 0 and y = 1 by the design of NCE objective (16). Since Pr(s′, a′|s, a) is a constant that is710

independent from f , we can further rewrite the NCE objective to be711

argmax
f∈F̃

{
Ê(s,a,s′,a′,y)∈D̃

[
log Prf (y|s, a, s′, a′)

]}
= argmax

f∈F̃

{
Ê(s,a,s′,a′,y)∈D̃

[
log Prf (y, s

′, a′|s, a)
]}
,

(21)
where we define the shorthand notations712

Prf (y|s, a, s′, a′) :=
(

f(s, a, s′, a′)

1 + f(s, a, s′, a′)

)y

·
(

1

1 + f(s, a, s′, a′)

)1−y

,

Prf (y, s
′, a′|s, a) :=

(
f(s, a, s′, a′)Pr(s′, a′|s, a)

1 + f(s, a, s′, a′)

)y

·
(

Pr(s′, a′|s, a)
1 + f(s, a, s′, a′)

)1−y

for any f ∈ F̃ . Note that the right-hand side of (21) is in the desired MLE form, with ground-713

truth conditional density Prf⋆(y, s′, a′|s, a) specified by some f⋆ ∈ F̃ , thanks to the realizability714

assumption (Assumption 3). Now, using the PAC bound for MLE shown in Agarwal et al. [41] (see715

Lemma 19), we have716

N∑
i=1

E(si,ai)∼d
πb
P

[∥∥Prf̂ (·, ·, ·|si, ai)− Prf⋆(·, ·, ·|si, ai)
∥∥2
1

]
⩽ 8 log(|F|/δ)

Since all (si, ai) pairs are sampled i.i.d. from the same distribution dπb , we shall further conclude717

that718

E(s,a)∼d
πb
P

[∥∥Prf̂ (·, ·, ·|s, a)− Prf⋆(·, ·, ·|s, a)
∥∥2
1

]
⩽

8 log(|F|/δ)
N

. (22)

We proceed to further relate (22) with the desired format. For this purpose, note that719 ∥∥Prf̂ (·, ·, ·|s, a)− Prf⋆(·, ·, ·|s, a)
∥∥
1

=
∥∥Prf̂ (y = 1, ·, ·|s, a)− Prf⋆(y = 1, ·, ·|s, a)

∥∥
1
+
∥∥Prf̂ (y = 0, ·, ·|s, a)− Prf⋆(y = 0, ·, ·|s, a)

∥∥
1

(23a)
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= 2

∥∥∥∥∥ Pr(·, ·|s, a)
1 + f̂(s, a, ·, ·)

− Pr(·, ·|s, a)
1 + f⋆(s, a, ·, ·)

∥∥∥∥∥
1

(23b)

= 2

ˆ ∣∣f̂(s, a, s′, a′)− f⋆(s, a, s′, a′)∣∣ · Pr(s′, a′|s, a)(
1 + f̂(s, a, s′, a′)

)(
1 + f⋆(s, a, s′, a′)

) ds′da′, (23c)

where in (23a) we use the definition of L1-norm; in (23b) we use the fact that720

Prf̂ (y, ·, ·|s, a)− Prf⋆(y, ·, ·|s, a) = (−1)y
(

Pr(·, ·|s, a)
1 + f̂(s, a, ·, ·)

− Pr(·, ·|s, a)
1 + f⋆(s, a, ·, ·)

)
.

Now, plugging Lemma 7 and (20) into the integrand in (23c), we have721 ∣∣f̂(s, a, s′, a′)− f⋆(s, a, s′, a′)∣∣ · Pr(s′, a′|s, a)(
1 + f̂(s, a, s′, a′)

)(
1 + f⋆(s, a, s′, a′)

)
=

∣∣Pπ(s′, a′|s, a)/Pneg(s
′, a′)− f̂(s, a, s′, a′)

∣∣ · 12(Pπ(s′, a′|s, a) + Pneg(s
′, a′)

)(
1 + f̂(s, a, s′, a′)

)(
1 + Pπ(s′, a′|s, a)/Pneg(s′, a′)

) (24a)

=

∣∣Pπ(s′, a′|s, a)− Pneg(s
′, a′)f̂(s, a, s′, a′)

∣∣
2
(
1 + f̂(s, a, s′, a′)

) (24b)

⩾

∣∣Pπ(s′, a′|s, a)− Pneg(s
′, a′)f̂(s, a, s′, a′)

∣∣
2(1 + Cd)

, (24c)

where we use the upper bound f̂(s, a, s′, a′) = P̂π(s′, a′|s, a)/dπb(s′, a′) ⩽ Cd in (24c). Hence,722 ∥∥Pπ(·, ·|s, a)− P̂π(·, ·|s, a)
∥∥
1

=

ˆ ∣∣Pπ(s′, a′|s, a)− Pneg(s
′, a′)f̂(s, a, s′, a′)

∣∣ds′da′ (25a)

⩽ 2(1 + Cd)

ˆ ∣∣f̂(s, a, s′, a′)− f⋆(s, a, s′, a′)∣∣ · Pr(s′, a′|s, a)(
1 + f̂(s, a, s′, a′)

)(
1 + f⋆(s, a, s′, a′)

) ds′da′ (25b)

= (1 + Cd)
∥∥Prf̂ (·, ·, ·|s, a)− Prf⋆(·, ·, ·|s, a)

∥∥
1
, (25c)

where we use P̂π(·, ·|s, a) = Pneg(·, ·)f̂(s, a, ·, ·) in (25a), (24) in (25b), and (23) in (25c). Finally,723

E(s,a)∼d
πb
P

[∥∥Pπ(·, ·|s, a)− P̂π(·, ·|s, a)
∥∥
1

]
⩽

√
E(s,a)∼d

πb
P

[∥∥Pπ(·, ·|s, a)− P̂π(·, ·|s, a)
∥∥2
1

]
(26a)

⩽

√
(1 + Cd)2E(s,a)∼d

πb
P

[∥∥Prf̂ (·, ·, ·|s, a)− Prf⋆(·, ·, ·|s, a)
∥∥2
1

]
(26b)

⩽ 2
√
2(1 + Cd) ·

√
log(|F|/δ)

N
, (26c)

where we use Cauchy-Schwartz inequality in (26a), (25) in (26b), and (22) in (26c).724

D Sample Complexity Guarantee725

In this appendix, we derive the sample complexity guarantee for the proposed SpectralDICE al-726

gorithm, assuming a known bound on the representation learning error induced by the RepLearn727

subroutine (see Claim 3). As discussed in the main text, the objective is to bound the estimation728

error E := ρ̂(π) − ρ(π), which can be intuitively split into the following three terms that are easier729

to bound:730

E = ρ̂(π)− ρ̄(π)︸ ︷︷ ︸
statistical error

+ ρ̄(π)− ρP̂(π)︸ ︷︷ ︸
dataset error

+ ρP̂(π)− ρP(π)︸ ︷︷ ︸
representation error

.
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Wepoint out that the statistical error results from replacing the expectationwith empirical estimates,731

the dataset error comes from the offline dataset that samples transitions from the true transition ker-732

nel Pπ instead of the learned kernel P̂π , and the representation error accounts for the error induced733

by plugging in the learned representation (ϕ̂, µ̂π) instead of the ground truth (ϕ⋆,µπ,⋆) into the734

DICE estimator.735

As described in the proof sketch, for the rest of this appendix, we provide an upper bound for each736

of these three terms, and eventually conclude with an overall sample complexity guarantee.737

Representation Error. We start by bounding the representation error term, which by intuition738

should be a direct consequence of the representation learning error shown in Claim 3.739

Lemma 9. Conditioned on the event that the inequality in Claim 3 holds, under Assumptions 1 to 3,740

ρP̂(π)− ρP(π) ⩽
γCπ

∞
(1− γ)2

· ξ(|F|, N, δ).

Proof. By the well-known Simulation Lemma (see Lemma 20), we have741

ρP̂(π)− ρP(π)
=

γ

1− γ
E(s,a)∼dπ

P

[
Es′∼P̂(·|s,a)

[
V π
P̂ (s′)

]
− Es′∼P(·|s,a)

[
V π
P̂ (s′)

]] (27a)

=
γ

1− γ
E(s,a)∼dπ

P

[
E(s′,a′)∼P̂π(·,·|s,a)

[
Qπ

P̂(s
′, a′)

]
− E(s′,a′)∼Pπ(·,·|s,a)

[
Qπ

P̂(s
′, a′)

]] (27b)

=
γ

1− γ

ˆ
dπP(s, a)dsda

ˆ
Qπ

P̂(s
′, a′)

(
P̂π(s′, a′|s, a)− Pπ(s′, a′|s, a)

)
ds′da′ (27c)

⩽
γ

(1− γ)2

ˆ
Cπ

∞d
πb

P (s, a)dsda

ˆ ∣∣Pπ(s′, a′|s, a)− P̂π(s′, a′|s, a)
∣∣ds′da′ (27d)

=
γCπ

∞
(1− γ)2

E(s,a)∼d
πb
P

[∥∥Pπ(s′, a′|s, a)− P̂π(s′, a′|s, a)
∥∥
1

]
(27e)

⩽
γCπ

∞
(1− γ)2

· ξ(|F|, N, δ), (27f)

where in (27a) we use the Simulation Lemma; in (27b) we use the relationship between value func-742

tions; in (27d) we plug in dπP(s, a) ⩽ Cπ
∞d

πb

P (s, a) (Assumption 2) and the fact that Qπ
P̂(·, ·) ⩽

1
1−γ ;743

in (27f) we use Claim 3.744

Dataset Error. The dataset error can be accounted for by a bounded difference in the objective745

function, which turns out to be another consequence of the representation learning error. For this746

purpose, we first show the following technical lemma that formalizes the above intuition.747

Lemma 10. min
x∈X

max
y∈Y

F1(x,y)− min
x∈X

max
y∈Y

F2(x,y) ⩽ max
x∈X ,y∈Y

∣∣F1(x,y)− F2(x,y)
∣∣.748

Proof. Let ε := max
x,y

∣∣F1(x,y)− F2(x,y)
∣∣. Then we have749

min
x

max
y

F1(x,y) ⩽ min
x

{
max
y

F2(x,y) + max
y
{F1(x,y)− F2(x,y)}

}
(28a)

⩽ min
x

{
max
y

F2(x,y) + ε

}
(28b)

= min
x

max
y

F2(x,y) + ε, (28c)

where in (28a) we use the fact that maxy{f(y) + g(y)} ⩽ maxy f(y) + maxy g(y).750

Now we are ready to show the following lemma regarding dataset error.751

Lemma 11. Conditioned on the event that the inequality in Claim 3 holds, under Assumptions 1 to 3,752

ρ̄(π)− ρP̂(π) ⩽
Cπ

∞
1− γ

· ξ(|F|, N, δ).
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Proof. For the sake of clarity, denote the optimization objectives of ρ̄(π) and ρP̂(π) as follows:753

ρ̄(π) = min
θQ

max
ωd

F̄ (θQ,ωd), ρP̂(π) = min
θQ

max
ωd

F̂ (θQ,ωd).

Then we can show that754

|ρ̄(π)− ρP̂(π)| =
∣∣∣∣min
θQ

max
ωd

F̄ (θQ,ωd)−min
θQ

max
ωd

F̂ (θQ,ωd)

∣∣∣∣ ⩽ ∣∣∣F̄ (θQ,ωd)− F̂ (θQ,ωd)
∣∣∣ (29a)

=

∣∣∣∣∣
ˆ
dπb

P (s, a)
(
Pπ(s′, a′|s, a)− P̂π(s′, a′|s, a)

)(
µ̂π(s, a)⊤ωd

)
·

(
r(s, a) + γϕ̂(s′, a′)⊤θQ − ϕ̂(s, a)⊤θQ

)
dsdads′da′

∣∣∣∣∣ (29b)

⩽
ˆ
dπb

P (s, a)
∣∣Pπ(s′, a′|s, a)− P̂π(s′, a′|s, a)

∣∣ · ∣∣µ̂π(s, a)⊤ωd

∣∣·∣∣r(s, a) + γϕ̂(s′, a′)⊤θQ − ϕ̂(s, a)⊤θQ
∣∣dsdads′da′ (29c)

⩽ E(s,a)∼d
πb
P

[∥∥Pπ(·, ·|s, a)− P̂π(·, ·|s, a)
∥∥
1
· Cπ

∞ · 1
1−γ

]
(29d)

=
Cπ

∞
1− γ

· ξ(|F|, N, δ), (29e)

where in (29a) we use Lemma 10; in (29c) we use the integral triangle inequality; in (29d) we plug755

in
∣∣µ̂π(s, a)⊤ωd

∣∣ ⩽ Cπ
∞ and

∣∣r(s, a) + γϕ̂(s′, a′)⊤θQ − ϕ̂(s, a)⊤θQ
∣∣ ⩽ 1

1−γ (see Remark 2); in (29e)756

we use Claim 3.757

Statistical Error. Finally, the statistical error is caused by replacing the expectations with their em-758

pirical estimations, which can be bounded byHoeffding’s concentration inequality (see Lemma 16).759

Lemma 12. Under Assumptions 1 to 3, with probability at least 1− δ, we have760

ρ̂(π)− ρ̄(π) ⩽ Cπ
∞

1− γ

√
log(1/2δ)

2N
.

Proof. For clarity, label the samples in D as D = {(si, ai, s′i, a′i) | i ∈ [N ]}, and define761

F (s, a, s′, a′) :=
(
µ̂π(s, a)⊤ωd

)(
r(s, a) + γϕ̂(s′, a′)⊤θQ − ϕ̂(s, a)⊤θQ

)
.

Note that
∣∣µ̂π(s, a)⊤ωd

∣∣ ⩽ Cπ
∞ and

∣∣r(s, a)+γϕ̂(s′, a′)⊤θQ− ϕ̂(s, a)⊤θQ
∣∣ ⩽ 1

1−γ (see Remark 2), we762

have763 ∣∣F (s, a, s′, a′)∣∣ ⩽ Cπ
∞

1− γ
, ∀s, a, s′, a′.

Therefore, by Hoeffding’s inequality (see Lemma 16), we conclude that764

Pr

[∣∣∣∣∣ 1N
N∑
i=1

F (si, ai, s
′
i, a

′
i)− Es∼dπb (·), a∼πb(a|s),

s′∼P(·|s,a), a′∼π(·|s′)
[F (s, a, s′, a′)]

∣∣∣∣∣ > t

]
⩽ 2 exp

(
− 2Nt2

4(Cπ
∞)2/(1− γ)2

)
.

Or equivalently, with probability at least 1− δ, we have765 ∣∣∣∣∣Ê(s,a,s′)∼D,
a′∼π(·|s′)

[F (s, a, s′, a′)]− Es∼dπb (·), a∼πb(a|s),
s′∼P(·|s,a), a′∼π(·|s′)

[F (s, a, s′, a′)]

∣∣∣∣∣ ⩽ Cπ
∞

1− γ

√
log(1/2δ)

2N
.

Finally, the conclusion follows from Lemma 10 using the same argument as above.766

Conclusion. Now we are ready to prove the Main Theorem.767

Theorem 4. Suppose Claim 3 holds for theRepLearn(F ,D, π) subroutine. Then under Assumptions 1 to 3,768

with probability at least 1− δ, we have769

E ⩽
Cπ

∞
1− γ

√
log(1/δ)

2N
+

Cπ
∞

(1− γ)2
· ξ(|F|, N, δ/2).
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Proof. Consider the following high-probability events:770

C1 : E(s,a)∼d
πb
P

[∥∥P̂π(·, ·|s, a)− Pπ(·, ·|s, a)
∥∥
1

]
⩽ ξ(|F|, N, δ/2),

C2 :

∣∣∣∣∣Ê(s,a,s′)∼D,
a′∼π(·|s′)

[F (s, a, s′, a′)]− Es∼dπb (·), a∼πb(a|s),
s′∼P(·|s,a), a′∼π(·|s′)

[F (s, a, s′, a′)]

∣∣∣∣∣ ⩽ Cπ
∞

1− γ

√
log(1/δ)

2N
.

As per Claim 3 and Lemma 12, we know Pr[Ci] ⩾ 1− δ/2 (i = 1, 2). Hence by Union Bound,771

Pr[C1 ∩ C2] ⩾ 1− δ.

On the other hand, conditioned on C1 ∩ C2, Lemma 9, Lemma 11 and Lemma 12 in combination772

guarantee that773

E = ρ̂(π)− ρ̄(π) + ρ̄(π)− ρP̂(π) + ρP̂(π)− ρP(π)

⩽
Cπ

∞
1− γ

√
log(1/δ)

2N
+

Cπ
∞

1− γ
· ξ(|F|, N, δ/2) + γCπ

∞
(1− γ)2

ξ(|F|, N, δ/2)

=
Cπ

∞
1− γ

√
log(1/δ)

2N
+

Cπ
∞

(1− γ)2
· ξ(|F|, N, δ/2)

This completes the proof.774

For completeness, we also include the corollaries of the Main Theorem that characterize the overall775

sample complexity of our SpectralDICE algorithm using OLS and NCE representation learning776

methods.777

Corollary 13 (sample complexity of OLS-based SpectralDICE). Under Assumptions 1 to 3 and the778

additional Assumption 4 for regularity, let (ϕ̂, µ̂π) be the solution to the OLS problem (13). Then, for any779

δ ∈ (0, 1), with probability at least 1− δ, we have780

E ⩽
Cπ

∞
1− γ

√
log(1/δ)

2N
+
Cπ

∞
√
CPCreg

(1− γ)2
·
√

log(2|F|/δ)
N

≲
1

(1− γ)2

√
log(|F|/δ)

N
,

where Creg = 4
3

√
Ccov + 8Ccov is a universal constant determined by the PAC bound for OLS..781

Corollary 14 (sample complexity of NCE-based SpectralDICE). Under Assumptions 1 to 3 and the782

additional Assumption 5 for regularity, let (ϕ̂, µ̂π) be the solution to the NCE problem (16)with Pneg(·, ·) ≡783

dπb(·, ·). Then, for any δ ∈ (0, 1), with probability at least 1− δ, we have784

E ⩽
Cπ

∞
1− γ

√
log(1/δ)

2N
+

2
√
2Cπ

∞(1 + Cd)

(1− γ)2
·
√

log(2|F|/δ)
N

≲
1

(1− γ)2

√
log(|F|/δ)

N
.

Remark 4 (Sampling the dataset). Throughout this paper, we have been slightly abusing the notation785

(s, a, s′) ∼ D, which is a little subtle in practice since only trajectories (rather than transitions) are786

collected. To ensure the correct data distribution dD(s, a) = dπb(s, a), we shall first randomly sample787

the trajectories, withinwhichwe sample each transition (st, at, st+1, at+1)with probability (1−γ)γt.788

E Technical Lemmas789

In this final appendix, we include all the technical lemmas used in the previous sections.790

E.1 f -Divergence791

Definition 1 (f -divergence). Let P and Q be two probabilities distribution over a sample space X ,792

such that P is absolutely continuous with respect to Q. Given a convex function f : R⩾0 → R such793

that f(1) = 0 and f(0) := limt→0+ f(t). Then the f -divergence of P with respect to Q is defined as794

Df (P∥Q) :=

ˆ
X
f

(
dP
dQ

)
dQ.
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The following variational representation of f -divergences is well-known in literature.795

Lemma 15 (variational representation using Fenchel conjugate). Let F denote the class of measurable796

real valued functions on X that is absolutely integratable with respect to Q. Then797

Df (P∥Q) = sup
g∈F

{
Ex∼P[g(x)]− Ex∼Q[f∗(g(x))]

}
,

where f∗ is the Fenchel conjugate of f . Further, if f is differentiable, then the optimal dual variable is given by798

g⋆(x) = f ′
(

dP
dQ

)
=⇒ Df (P∥Q) = Ex∼P

[
f ′
(

dP
dQ

)]
− Ex∼Q

[
f∗

(
f ′
(

dP
dQ

))]
Proof. See Theorem 4.4 in Broniatowski and Keziou [65].799

E.2 Concentration Inequalities800

Lemma 16 (Hoeffding’s inequality, Hoeffding [66]). Let X1, X2, · · · , XN be i.i.d. random variables801

with mean µ and taking values in [a, b] almost surely. Then for any ε > 0 we have802

Pr

[∣∣∣∣∣ 1N
N∑
i=1

Xi − µ

∣∣∣∣∣ > ε

]
⩽ 2 exp

(
− 2Nε2

(b− a)2

)
.

In other words, with probability at least 1− δ, we have803 ∣∣∣∣∣ 1N
N∑
i=1

Xi − µ

∣∣∣∣∣ ⩽ (b− a)
√

log(1/2δ)

2N
.

Lemma 17 (Bernstein’s inequality, Bernstein [67]). LetX1, X2, · · · , XN be i.i.d. random variables with804

mean µ, variance σ2, and bounded range |Xi − µ| ⩽ B almost surely. Then with probability at least 1 − δ,805

we have806

±

(
1

N

N∑
i=1

Xi − µ

)
⩽ σ

√
2 log(1/δ)

N
+
B log(1/δ)

3N
.

E.3 Statistical Learning: PAC Bounds807

In this section, we present the standard PAC bounds for OLS and MLE. Although these are both808

classic results, we fail to trace back to the original literature of the former, and thus provide a short809

proof here for completeness.810

Lemma 18 (PAC bound for OLS, fast rate). Consider a regression problem over a finite family F = {f :811

X → [a, b]} of bounded functions with data distribution (X,Y ) ∼M, where the objective is to solve for812

argmin
f∈F
L(f), where L(f) := E(X,Y )∼M

[
(f(X)− Y )2

]
.

Suppose the regression function f⋆(x) := E[Y | X = x] ∈ F (realizability), and we have access to i.i.d.813

sample (xi, yi) ∼M, ∀i ∈ [N ]. Let the Empirical Risk Minimization (ERM) estimator be814

f̂ := argmin
f∈F
L̂(f), where L̂(f) := 1

N

N∑
i=1

(f(xi)− yi)2.

Then, with probability at least 1− δ, the ERM estimator induces a regret that is at most815

L(f̂) ⩽ L(f⋆) + Creg
log(|F|/δ)

N
.

Suppose further that the ground truth is deterministic such that y = f⋆(x) for some f⋆ ∈ F , in which case816

we have817

L(f̂) ⩽ Creg
log(|F|/δ)

N
.

Here Creg = 8(b− a)2 + 4
3 (b− a) is a universal constant depending only on the range [a, b].818
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Proof. Define a random variable Zi := (f(Xi)− Yi)2 − (f⋆(Xi)− Yi)2, such that819

E(Xi,Yi)∼M[Zi(f)] = E(Xi,Yi)∼M
[
(f(Xi)− Yi)2 − (f⋆(Xi)− Yi)2

] (30a)
= E(Xi,Yi)∼M

[(
(f(Xi)− f⋆(Xi)) + (f⋆(Xi)− Yi)

)2 − (f⋆(Xi)− Yi)2
]

(30b)
= E(Xi,Yi)∼M

[
(f(Xi)− f⋆(Xi))

2
]
+ 2E(Xi,Yi)∼M[(f(Xi)− f⋆(Xi))(f

⋆(Xi)− Yi)]
(30c)

= E(Xi,Yi)∼M
[
(f(Xi)− f⋆(Xi))

2
]
=: E(f), (30d)

where in (30c)we use the following factE(Xi,Yi)∼M[(f(Xi)− f⋆(Xi))(f
⋆(Xi)− Yi)] = EXi [(f(Xi)−820

f⋆(Xi)) · EYi∼M(·|Xi)[f
⋆(Xi)− Yi]] = 0 that directly follows from the definition of f⋆. Similarly, for821

any t ∈ [T ],822

Var(Xi,Yi)∼M[Zi(f)] = E(Xi,Yi)∼M
[
Zi(f)

2
]
−
(
E(Xi,Yi)∼M[Zi(f)]

)2 (31a)
⩽ E(Xi,Yi)∼M

[(
(f(Xi)− Yi)2 − (f⋆(Xi)− Yi)2

)2] (31b)
= E(Xi,Yi)∼M

[
(f(Xi)− f⋆(Xi))

2(f(Xi) + f⋆(Xi)− 2Yi)
2
] (31c)

⩽ 4(b− a)2E(Xi,Yi)∼M
[
(f(Xi)− f⋆(Xi))

2
]
= 4(b− a)2E(f). (31d)

where in (31a) we simply drop the second term, and in (31c) we use the fact f(Xi)+f
⋆(Xi)−2Yi ∈823

[−2(b − a), 2(b − a)] as f(Xi), f
⋆(Xi), Yi ∈ [a, b]. Further, for any x ∈ X , y ∈ Y and f ∈ F , we have824

f(x) − y ∈ [−(b − a), b − a], implying Zi(f) ∈ [−(b − a), b − a] and E[Zi(f)] ∈ [−(b − a), (b − a)].825

Therefore, |Zi(f) − E[Zi(f)]| ⩽ 2(b − a). Then by Bernstein’s inequality (Lemma 17), we conclude826

that, with probability at least 1− δ,827

E[Zi(f)]−
1

N

N∑
i=1

Zi(f) ⩽
√
Var[Zi(f)]

√
2 log(1/δ)

N
+

2(b− a) log(1/δ)
3N

. (32)

To proceed, plug (30) and (31) into (32), and we have828

E(f)− (L̂(f)− L̂(f⋆)) ⩽ 2(b− a)
√
E(f)

√
2 log(1/δ)

N
+

2(b− a) log(1/δ)
3N

(33a)

⩽

(
1

2
E(f) + 4(b− a)2 log(1/δ)

N

)
+

2(b− a) log(1/δ)
3N

, (33b)

where in (33a) we apply the AM-GM inequality. Finally, we rearrange the terms to obtain829

E(f) ⩽ 2(L̂(f)− L̂(f⋆)) + Creg log(1/δ)

N
(34)

for any fixed f ∈ F , with probability at least 1− δ. Finally, we take the union bound with respect to830

all f ∈ F , such that with probability at least 1− δ, we have831

E(f) ⩽ 2(L̂(f)− L̂(f⋆)) + Creg log(|F|/δ)
N

, ∀f ∈ F . (35)

In particular, (35) also applies to the ERM estimator f̂ , which gives832

E(f̂) ⩽ 2(L̂(f̂)− L̂(f⋆)) + Creg log(|F|/δ)
N

⩽
Creg log(|F|/δ)

N
. (36)

Here we use the inequality L̂(f̂) ⩽ L̂(f⋆), as f̂ minimizes L̂(·) within F . This completes the proof.833

834

Lemma 19 (PAC bound for MLE, Agarwal et al. [41]). Consider a conditional probability estimation835

problem over a finite family F = {f : (X × Y)→ R}, where the objective is to estimate f⋆(x, y) := P(y|x).836

Suppose the ground truth f⋆ ∈ F (realizability), and we have access to (potentially correlated) samples837

{(xi, yi) | i ∈ [N ]} such that xi ∼ Di (Di is allowed to depend on (x1:i−1, y1:i−1), forming a martigale838

process) and yi ∼ P(·|xi). Let the Maximum Likelihood Estimator (MLE) be839

f̂ := argmax
f∈F

N∑
i=1

log f(xi, yi).
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Then, with probability at least 1− δ, the error of the MLE estimator is bounded as follows:840

N∑
i=1

Ex∼Di

[∥∥f̂(x, ·)− f⋆(x, ·)∥∥2
1

]
⩽ 8 log(|F|/δ).

Specifically, when {(xi, yi) | i ∈ [N ]} are i.i.d. samples from a dataset D, we have841

Ex∼D

[∥∥f̂(x, ·)− f⋆(x, ·)∥∥2
1

]
⩽

8 log(|F|/δ)
N

.

E.4 Simulation Lemma in MDPs842

The following Simulation Lemma is a simplified version of Lemma 21 in Uehara et al. [42].843

Lemma 20 (Simulation Lemma). Given two MDPs (P, r) and (P̂, r), for any policy π ∈ Π , we have844

ρP̂(π)− ρP(π) =
γ

1− γ
E(s,a)∼dπ

P

[
Es′∼P̂(·|s,a)

[
V π
P̂ (s′)

]
− Es′∼P(·|s,a)

[
V π
P̂ (s′)

]]
.

Proof. Note that, for any uniformly bounded function f : S ×A → R, we have845

Es∼µ0,a∼π(·|s)[f(s, a)]

=
1

1− γ
Eπ,P

[ ∞∑
t=0

(
γtf(st, at)− γt+1f(st+1, at+1)

) ∣∣∣∣∣ s0 ∼ µ0, a0 ∼ π(·|s0)

]

=
1

1− γ
∑
s,a

f(s, a) · Eπ,P

[ ∞∑
t=0

(
γt1{st = s, at = a} − γt+1

1{st+1 = s, at+1 = a}
) ∣∣∣∣∣ s0 ∼ µ0, a0 ∼ π(·|s0)

]

=
1

1− γ
∑
s,a

f(s, a) ·

dπP(s, a)− γ∑
s̃,ã

dπP(s̃, ã)Pπ(s, a|s̃, ã)


=

1

1− γ
E(s,a)∼dπ

P

[
f(s, a)− γE(s′,a′)∼Pπ(·,·|s,a)[f(s

′, a′)]
]
.

Therefore, since ρP(π) = 1
1−γE(s,a)∼dπ

P
[r(s, a)] and ρP̂(π) = Es∼µ0,a∼π(·|s)[Q

π
P̂(s, a)], we have846

ρP̂(π)− ρP(π) = Es∼µ0,a∼π(·|s)[Q
π
P̂(s, a)]−

1

1− γ
E(s,a)∼dπ

P
[r(s, a)]

=
1

1− γ
E(s,a)∼dπ

P

[
Qπ

P̂(s, a)− γE(s′,a′)∼Pπ(·,·|s,a)
[
Qπ

P̂(s
′, a′)

]
− r(s, a)

]
=

γ

1− γ
E(s,a)∼dπ

P

[
E(s′,a′)∼P̂π(·,·|s,a)

[
Qπ

P̂(s
′, a′)

]
− E(s′,a′)∼Pπ(·,·|s,a)

[
Qπ

P̂(s
′, a′)

]]
,

where in the last equality we plug in the Bellman equation847

Qπ
P̂(s, a) = r(s, a) + γE(s′,a′)∼P̂π(·,·|s,a)[Q

π
P̂(s

′, a′)].

Finally, we leverage the relationship between Q- and V -functions to complete the proof.848
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