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Abstract

Guidance techniques are simple yet effective for
improving conditional generation in diffusion
models. Albeit their empirical success, the prac-
tical implementation of guidance diverges signif-
icantly from its theoretical motivation. In this
paper, we reconcile this discrepancy by replacing
the scaled marginal distribution target, which we
prove theoretically invalid, with a valid scaled
joint distribution objective. Additionally, we
show that the established guidance implementa-
tions are approximations to the intractable opti-
mal solution under no future foresight constraint.
Building on these theoretical insights, we pro-
pose rectified gradient guidance (REG), a versa-
tile enhancement designed to boost the perfor-
mance of existing guidance methods. Experi-
ments on 1D and 2D demonstrate that REG pro-
vides a better approximation to the optimal so-
lution than prior guidance techniques, validating
the proposed theoretical framework. Extensive
experiments on class-conditional ImageNet and
text-to-image generation tasks show that incor-
porating REG consistently improves FID and In-
ception/CLIP scores across various settings com-
pared to its absence. Our code is publicly avail-
able at: https://github.com/zhengqigao/REG/.

1. Introduction
Generative machine learning endeavors to model the under-
lying data distribution, enabling the synthesis of new data
samples that closely mirror the characteristics of the original
dataset. While many generative model families (Kingma,
2013; Goodfellow et al., 2020) have emerged over time,
the recent surge in diffusion models (Ho et al., 2020; Song
et al., 2021) has marked a significant breakthrough, allow-
ing for diverse and high-quality generation. These diffusion
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models now dominate a wide range of tasks, such as class-
conditional image generation (Peebles & Xie, 2023; Karras
et al., 2024b), text-to-image generation (Ramesh et al., 2022;
Rombach et al., 2022), video generation (Ho et al., 2022),
and audio and speech synthesis (Kong et al., 2021). De-
spite the varied theoretical foundations, such as DDPM (Ho
et al., 2020), score matching (Song et al., 2021), Schrödinger
Bridge (De Bortoli et al., 2021), and flow matching (Lip-
man et al., 2023), diffusion models converge on a unified
implementation: a forward process progressively corrupts
data by adding Gaussian noise, while a reverse process, pa-
rameterized by a neural network, is trained to denoise and
reconstruct high-quality samples from pure noise.

One pivotal factor behind the success of diffusion models
is the guidance technique (Dhariwal & Nichol, 2021; Ho &
Salimans, 2022; Kynkäänniemi et al., 2024; Karras et al.,
2024a). Concretely, guidance is a sampling-time method
that balances mode coverage and sample fidelity (Ho & Sali-
mans, 2022) by updating the noise prediction network output
as a weighted sum of its original output and a user-defined
guidance signal, with the mixing coefficient (i.e., guidance
strength) controlled by hyper-parameters. When initially
proposed by Dhariwal & Nichol (2021), the guidance signal
is provided by an auxiliary classifier trained alongside the
diffusion model, giving rise to the name classifier guidance.
Subsequently, Ho & Salimans (2022) eliminate the need
for an additional classifier, relying instead on an implicit
Bayes posterior classifier to produce the guidance signal.
This classifier-free guidance method has since become a
pervasive component of modern diffusion models, enabling
effective conditional generation across various applications.

Despite the practical effectiveness of the guidance technique,
its motivation and theoretical formulation remain poorly
understood and, at times, conflicting in existing literature.
Specifically, guidance is originally stated as constructing
a new noise prediction network post-training correspond-
ing to sampling from a scaled distribution (Ho & Salimans,
2022). However, recent works (Bradley & Nakkiran, 2024;
Chidambaram et al., 2024) using Gaussian mixture case
studies reveal that this newly constructed noise prediction
network does not result in sampling from the intended scaled
distribution. This fundamental inconsistency weakens the
theoretical foundation of current guidance techniques, rais-
ing misinterpretations and concerns about the implemen-
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tation optimality. In this paper, we reconcile this conflict
and build a unified theoretical framework for understanding
guidance techniques in conditional diffusion models. Our
main contributions include:

(1) We establish that scaling the marginal distribution at
the denoising endpoint, as used in current guidance
literature, conflicts with the inherent constraints of the
reverse denoising process of diffusion models (§ 3).

(2) We ground our theory in scaling the joint distribution
associated with the entire denoising chain, interpreting
guidance methods as approximations to the intractable
optimal solution with quantified error bounds (§ 4).

(3) Finally, we present rectified gradient guidance (REG),
a versatile enhancement compatible with various guid-
ance techniques (§ 4). Comprehensive experiments
validate our theoretical framework and justify the ef-
fectiveness of the proposed REG method (§ 5).

2. Preliminary
We briefly review guidance techniques (Dhariwal & Nichol,
2021; Ho & Salimans, 2022) developed for conditional
image generation in diffusion models. For simplicity, we
adopt the notation of discrete-time DDPM (Ho et al., 2020)
throughout this paper, while noting that all of our results can
be similarly derived in other diffusion settings (Song et al.,
2021; Karras et al., 2024b). Let us denote the conditional
distribution of interest as q(x0|y). We attempt to learn a
diffusion model to generate samples x0 ∈ X ⊂ RD given
the conditioning variable y ∈ Y , where y can be either
continuous (e.g., a text embedding) or discrete (e.g., a class
label). Starting from a clean data x0, the forward process of
DDPM produces samples {xt}Tt=0 at progressively higher
noise levels by gradually injecting Gaussian noises through
T -step transitions q(xt|xt−1):

q(xt|xt−1) = N (xt|
√
αtxt−1, (1− αt)I),

q(x0:T |y) = q(x0|y)
T∏

t=1

q(xt|xt−1),
(1)

where {αt}Tt=1 is a decreasing series in [0, 1] controlling the
noise variance. The reverse process of DDPM starts from
a noisy sample xT , and gradually denoises it by T -step
transitions pθ(xt−1|xt,y), yielding a clean sample x0:

pθ(xt−1|xt,y) = N (xt−1|µθ,t, σ
2
t I),

pθ(x0:T |y) = pθ(xT |y)
T∏

t=1

pθ(xt−1|xt,y),
(2)

where θ represents learnable parameters, and pθ(xT |y) is
usually fixed to a standard Gaussian distribution regardless
of y, i.e., pθ(xT |y) = N (xT |0, I). The variance term σ2

t

is fixed in DDPM (Ho et al., 2020), but can also be learned
as a function of (xt, t,y) (Nichol & Dhariwal, 2021). The
mean µθ,t ∈ RD is parameterized by a noise prediction
network ϵθ(xt, t,y) : X × R+ × Y → RD as follows:

µθ,t =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t,y)

)
, (3)

where ᾱt =
∏t

i=1 αi. The noise prediction network
ϵθ(xt, t,y) is trained by minimizing the weighted L2 norm
between its output and the actual noise motivated by vari-
ational evidence lower bound (Ho et al., 2020). From now
on, unless explicitly stated, we will omit the arguments and
use the shorthand notation ϵθ,t = ϵθ(xt, t,y) for brevity.

Applying guidance techniques in conditional diffusion mod-
els is achieved by replacing ϵθ,t with a refined version ϵ̄θ,t in
the reverse denoising process Eq. (3) during sampling. Be-
low we delineate three prominent forms of ϵ̄θ,t, correspond-
ing to classifier guidance (CG) (Dhariwal & Nichol, 2021),
classifier-free guidance (CFG) (Ho & Salimans, 2022), and
auto-guidance (AutoG) (Karras et al., 2024a):

CG: ϵ̄θ,t = ϵθ,t − w
√
1− ᾱt∇xt

log pϕ(y|xt),

CFG: ϵ̄θ,t = ϵθ,t + w (ϵθ,t − ϵθ(xt, t)) ,

AutoG: ϵ̄θ,t = ϵθ,t + w (ϵθ,t − ϵθbad(xt, t,y)) ,

(4)

where the hyper-parameter w ∈ R+ controls the guidance
strength, and the shorthand notations ϵ̄θ,t = ϵ̄θ(xt, t,y)
is used for clarity. We emphasize that Eq. (4) is applied
for t = 1, 2, · · · , T , not t = 0. Since in our notation,
ϵθ(a, 1,y) is the noise prediction at the final time step used
to update from x1 = a to x0, and ϵθ(·, 0, ·) is never used in
the reverse denoising process and meaningless.

In CG, an auxiliary classifier pϕ(y|xt) with learnable pa-
rameters ϕ is trained alongside ϵθ,t to provide the guidance
signal during sampling (Dhariwal & Nichol, 2021). In con-
trast, CFG removes the need for an external classifier by
utilizing the diffusion model itself (Ho & Salimans, 2022).
The elegance of CFG lies in its training process, where
the conditioning variable y is randomly dropped. This
enables a single noise prediction network ϵθ,t to operate
either conditionally as ϵθ(xt, t,y), or unconditionally as
ϵθ(xt, t) = ϵθ(xt, t,y = ∅) by masking the conditioning
variable y = ∅ during sampling. Compared to CFG, Au-
toG further enhances guidance by using a degraded version
θbad of the diffusion model, such as a checkpoint from an
earlier stage of training (Karras et al., 2024a).

3. Guidance Theory Pitfall
Common Interpretation of Guidance. The original mo-
tivation underlying guidance (which later we will correct)
is that we attempt to sample from a constructed p̄θ(x0|y)
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given a trained diffusion pθ(x0|y) (Ho & Salimans, 2022):

p̄θ(x0|y) ∝ pθ(x0|y) ·R0(x0,y), (5)

where the reward R0(x0,y) : X × Y → R+ encourages
sampling x0 more frequently from where R0(x0,y) is large.
The rewards associated with CG, CFG, and AutoG are: 1

CG: R0(x0,y) = [pϕ(y|x0)]
w,

CFG: R0(x0,y) =

[
pθ(x0|y)
pθ(x0)

]w
,

AutoG: R0(x0,y) =

[
pθ(x0|y)
pθbad(x0|y)

]w
.

(6)

Intuitively, the CG reward encourages sampling from where
pϕ(y|x0) is large, which is advantageous for conditional
generation tasks (e.g., emphasizing class-specific charac-
teristics or aligning better with a text embedding). For
the CFG reward, Bayes’ theorem allows us to rewrite it as
R0(x0,y) ∝ [pθ(y|x0)]

w, implying that the CFG reward
differs from the CG reward merely in its use of an implicit
Bayes posterior classifier derived from the diffusion model.

Eqs. (5)-(6) are the commonly believed guidance interpreta-
tions. To ensure that the reverse denoising process indeed
samples from p̄θ(x0|y), two key relationships are required.
The first is the score function formula (Song et al., 2021;
Ho et al., 2020):

∇xt log pθ(xt|y) = −ϵθ(xt, t,y)√
1− ᾱt

,

∇xt log pθ(xt) = − ϵθ(xt, t)√
1− ᾱt

.

(7)

In the discrete-time DDPM formulation, strictly speaking,
Eq. (7) is valid only for time steps t = 1, 2, · · · , T , but
not for t = 0. In contrast, the continuous-time stochastic
differential equation (SDE) formulation of diffusion mod-
els (Song et al., 2021; Lu et al., 2022) naturally extends the
validity of the equation to all t ∈ [0, T ], including t = 0,
which we adopt in this paper. See Appendix A for details.

Next, by taking the derivative of the logarithm of Eq. (5),
we obtain the second relationship: ∇x0 log p̄θ(x0|y) =
∇x0

log pθ(x0|y) + ∇x0
logR0(x0,y). It is stated in the

literature (Ho & Salimans, 2022) that substituting Eq. (7)
into this gradient equation and using the rewards shown in
Eq. (6) allows CG, CFG, and AutoG to construct a new

1CG and CFG rewards are explicitly stated in (Ho & Salimans,
2022), while AutoG reward is unspecified in (Karras et al., 2024a)
and we reformulate it within this framework. Another subtly is that
strictly speaking, the original goal of CG and CFG stated in (Ho
& Salimans, 2022) correspond to Eqs. (8) and (9) in our paper
(i.e., scaling all marginal distributions). We slightly abuse the
concept and start from scaling only the terminal marginal Eq. (5)
for presentation clarity.

noise prediction network ϵ̄θ,t, which can then be used to
sample from p̄θ following the denoising process Eqs. (2)-(3).
However, a closer examination reveals that this derivation
would yield equations for ϵ̄θ,t associated with only t = 0.
On the contrary, Eq. (4), which has been employed by CG,
CFG, and AutoG in practice, applies to all time steps t =
1, 2, · · · , T , but not t = 0.

This discrepancy highlights a significant gap between the
theoretical derivations and the practical implementations
of current guidance techniques. Another way to illustrate
this gap is to observe that Eq. (5) implicitly assumes no
change to pθ(xt|y) for t = 1, 2, · · · , T . In contrast, the
actual practice Eq. (4) modifies ϵθ,t, thereby altering these
distributions through the score function formula in Eq. (7).

Invalid Marginal Scaling. Since the theoretical interpre-
tation and practical implementations only differ in the time
steps at which Eq. (4) is applied, it seems appealing to
bridge this gap by re-framing the original goal. Specifically,
instead of enforcing a single scaled constraint exclusively
on the marginal at the denoising endpoint, we redefine the
objective to impose scaled constraints on all marginals (Ho
& Salimans, 2022): 2

p̄θ(xt|y) ∝ pθ(xt|y) ·Rt(xt,y), (8)

where t = 1, 2, · · · , T , and the rewards are:

CG: Rt(xt,y) = [pϕ,Xt
(y|xt)]

w,

CFG: Rt(xt,y) =

[
pθ,Xt(xt|y)
pθ,Xt

(xt)

]w
,

AutoG: Rt(xt,y) =

[
pθ,Xt(xt|y)
pθbad,Xt

(xt|y)

]w
.

(9)

Here we explicitly note that the distributions are associated
with the random variable Xt in Rt(xt,y). It is important to
note that Rt(xt,y) defined in Eq. (9) with t = 0 recovers
the previously defined in Eq. (6), and that pϕ,X1

(y|X1 = a)
and pϕ,X2

(y|X2 = a) are not necessarily identical, even for
the same (a,y) value. To simplify notation, we will omit
Xt in subsequent expressions, as it should be clear from the
context. Taking the derivative of the logarithm of Eq. (8)
and applying the score function formula in Eq. (7) yields:

ϵ̄θ,t = ϵθ,t −
√
1− ᾱt∇xt

logRt(xt,y). (10)

Substituting the rewards from Eq. (9) into Eq. (10) leads to
Eq. (4). In other words, the reformulated goal of scaling all
marginal distributions in Eq. (8) aligns with the guidance
practice described in Eq. (4).

2To align with the fact that Eq. (4) is also applied at t = T , here
we must introduce RT and enforce scaling at t = T . However,
this suggests the denoising starts from a distribution other than the
fixed standard Gaussian. See § 4 for more discussion.

3



REG: Rectified Gradient Guidance for Conditional Diffusion Models

However, this reformulated goal itself is invalid, because
we observe that once Rt is given, Rt−1 is implicitly defined
up to a normalization constant due to the denoising process:

Rt−1(xt−1,y) ∝
E
[
N (xt−1|µ̄θ,t, σ

2
t I)Rt(xt,y)

]
E
[
N (xt−1|µθ,t, σ

2
t I)

] (11)

Unless explicitly stated otherwise, all expectations in this
paper are taken with respect to pθ(xt|y). The expression of
µθ,t is provided in Eq. (3), and µ̄θ,t is defined as follows:

µ̄θ,t = µθ,t +
1− αt√

αt
∇xt

Rt(xt,y). (12)

See Appendix B for the proof. This observation leads to two
significant corollaries. Firstly, the scaled objective presented
in Eq. (8) is invalid as it imposes excessive constraints that
may not be satisfied. Secondly, the original formulation in
Eq. (5) is also invalid. Because it implicitly assumes that all
Rt (where t = T, T−1, · · · , 1) should be identity functions,
which consequently makes R0 an identity function as well.
Essentially, these two corollaries state that it is not feasible
to construct a new DDPM corresponding to either the scaled
objective in Eq. (5) or Eq. (8).

Finally, if we preserve p̄θ(xT |y) unchanged from pθ(xT |y),
i.e., RT is an identity function, then all subsequent rewards
Rt (where t = T − 1, T − 2, · · · , 1) will also be identity
functions based on Eq. (11). This implies that strictly ad-
hering to the guidance theory requires a modification of
the distribution at the denoising start. However, the chain
start is typically fixed to a standard Gaussian distribution,
irrespective of whether guidance is applied. We will revisit
and elaborate on this subtlety in § 4 after reconstructing the
guidance theory on a correct foundation.

4. Guidance Theory from Joint Scaling
Scaling the Joint Distribution. Examining the interpre-
tation of guidance in the previous section, we identify the
critical flaw lies in that it scales the marginal distributions,
whereas the joint distribution should serve as the cornerstone
of our analysis. Specifically, to build the correct guidance
theory, we begin with a joint distribution scaled objective:

p̄θ(x0:T |y) ∝ pθ(x0:T |y) ·R0(x0,y). (13)

Eq. (13) is similar to Eq. (5) in that the reward value depends
only on the final generated sample x0 and the conditioning
variable y. However, it differs from Eq. (5) in that the
reward influences the entire denoising chain x0:T . Further-
more, Eq. (13) can derive Eq. (5) by marginalizing out x1:T .
Consequently, both of them have the same impact to the
generation, since the generation is determined solely by the
marginal p̄θ(x0|y). Before moving forward, we define the

induced expected reward Et(xt,y) at time step t as:

Et(xt,y) =

∫
pθ(x0|xt,y)R0(x0,y) dx0, (14)

where t = 0, 1, · · · , T . Note that the definition gives
E0(x0,y) = R0(x0,y) at t = 0. For later simplicity,
we introduce xT+1 = ∅, and thus ET+1(xT+1,y) =∫
pθ(x0|y)R0(x0,y) dx0 based on Eq. (14). Since this

expression does not depend on any specific xt or t, we also
denote it as ET+1(xT+1,y) = E(y) and will use them
interchangeably in subsequent discussions.

We now summarize our main result in Theorem 4.1, with
the proof deferred to Appendix C. Theorem 4.1 introduces
a scaled joint distribution p̄θ(x0:T |y) that we aim to con-
struct, justifying the existence and uniqueness of the tran-
sition kernels corresponding to it, and showing the form
of the marginals p̄θ(xt|y) and the updated noise prediction
network ϵ̄⋆θ,t. It implies that unlike the marginal scaling
shown in Eqs. (5) and (8), the joint scaled goal p̄θ(x0:T |y)
is valid since a new DDPM can be constructed to realize it.

Theorem 4.1. To satisfy the scaled goal given in Eq. (13),
we must have an unique set of transition kernels:

p̄θ(xt|xt+1,y) =
Et(xt,y)

Et+1(xt+1,y)
pθ(xt|xt+1,y) , (15)

where t = 0, 1, · · · , T and xT = ∅, which also determines:

p̄θ(xt|y) =
Et(xt,y)

E(y)
pθ(xt|y) . (16)

It implies the noise prediction network should be:

ϵ̄⋆θ,t =ϵθ,t −
√
1− ᾱt∇xt logEt(xt,y) . (17)

Important Remarks. Surprisingly, Theorem 4.1 states
that strictly adhering to the guidance theory must modify the
denoising start distribution from pθ(xT |y) = N (xT |0, I)
to p̄θ(xT |y) = ET (xT ,y)/E(y) · N (xT |0, I). 3 Whether
this adjustment should be adopted in practice remains
an open question, as the new distribution p̄θ(xT |y) is
generally unknown and analytically intractable for sam-
pling. We leave this question for future work and con-
clude this topic by discussing a notable special case.
Specifically, when ET (xT ,y) varies slowly with respect
to xT , the ratio ET (xT ,y)/E(y) ≈ 1 since E(y) =
ExT∼N (xT |0,I)[ET (xT ,y)]. In this case, p̄θ(xT |y) can still
be well approximated as a standard Gaussian.

Although Eq. (17) elegantly defines the updated noise pre-
diction ϵ̄⋆θ,t, it is infeasible to calculate. This is because the

3To our knowledge, we are the first to theoretically confirm
that guidance impacts the denoising start distribution. A prior
study (Wallace et al., 2023), sharing our spirit, attempt to optimize
the noise distribution as a form of guidance.
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term Et(xt,y) at time t requires foresight into the future
— it necessitates the complete execution of the denoising
process to the terminal point t = 0. Alternatively, replac-
ing ∇xt

logEt(xt,y) with ∇xt
logRt(xt,y) in Eq. (17)

yields Eq. (10), which is precisely what current guidance
practices employ. Hence, we posit that the original guid-
ance practice is best interpreted as an approximation
of the optimal noise prediction network, operating under
joint scaling with the constraint of no foresight into the
future. Importantly, our interpretation reconciles previous
confusions (Chidambaram et al., 2024; Bradley & Nakki-
ran, 2024) regarding why guidance implementations do not
result in sampling from p̄θ, as Eq. (17) represents the op-
timal solution for sampling from p̄θ, while the practical
implementation is an approximation shown in Eq. (10).

The effectiveness of guidance hinges on well-designed
rewards Rt, ensuring that ϵ̄θ,t ≈ ϵ̄⋆θ,t or equivalently
∇xt logRt(xt,y) ≈ ∇xt logEt(xt,y). To quantify the
approximation error, we present Theorem 4.2 and 4.3, with
proofs deferred to Appendix D. Notably, these theorems and
their proofs remain valid within the continuous-time SDE
formulation of diffusion models. When t is treated as con-
tinuous, Theorem 4.2 states that the mean squared approxi-
mation error decreases as the denoising process progresses
(t → 0 and ∆ → 0), as outlined in Eq. (18). Moreover, the
expected error is approximately linked to the second mo-
ment based on Eq. (19). Additionally, Theorem 4.3 states
that the approximation still exhibits a bias even under a
looser expectation perspective.

Theorem 4.2. Assume a deterministic sampler is used in the
reverse denoising process, and the original noise network
ϵθ,t is L-Lipschitz continuous with values bounded by B.
For CFG and AutoG , the following bound holds:
√
1− ᾱt||∇xt

logEt(xt,y)−∇xt
logRt(xt,y)||

≤ 2wB|| d∆
dxt

||+ 2wL||∆||+ 2wLt ,
(18)

where ∆ = x̂0 − xt, and x̂0 represents the estimate of x0

based on xt at time step t. Moreover, under these assump-
tions, we approximately have:

E[||ϵ̄⋆θ,t − ϵ̄θ,t||] ≲ C1E[||xt||] + C2 , (19)

where C1 and C2 are constants of xt.

Theorem 4.3. The bias of approximation is:

E[ϵ̄⋆θ,t − ϵ̄θ,t] = E[ϵθ,t · log
Rt(xt,y)

Et(xt,y)
] . (20)

REG as an Alternative. Upon recognizing that the origi-
nal guidance technique in Eq. (10) is an approximation to
the true guidance equation in Eq. (17), we attempt to explore
whether alternative approximations exist. To this end, we

propose a novel rectification to Eq. (10) by incorporating a
gradient term, dubbed rectified gradient guidance (REG):

ϵ̄REG
θ,t = ϵθ,t −

√
1− ᾱt∇xt

logRt(xt,y)

⊙
(
1−

√
1− ᾱt

∂(1T · ϵθ,t)
∂xt

)
︸ ︷︷ ︸

REG correction term

, (21)

where ⊙ represents the element-wise product, and 1T · ϵθ,t
computes the sum of all elements in ϵθ,t. To motivate our
above guidance equation, we first notice that Et(xt,y) in
Eq. (17) becomes R0(x̂0,y) when a deterministic sampler
is adopted in the denoising process. If we further apply the
chain rule, we obtain:

ϵ̄⋆θ,t = ϵθ,t −
√
1− ᾱt∇xt

logR0(x̂0,y)

= ϵθ,t −
√
1− ᾱt ·

∂x̂0

∂xt
· ∇x̂0

logR0(x̂0,y) .
(22)

We have performed several approximations to get Eq. (21)
from Eq. (22). Firstly, we replace ∇x0

logR0(x̂0,y) with
∇xt

logRt(x̂t,y). It is straightforward to show that their
mean squared error is upper bounded by 2wL||∆||+ 2wLt
following the proof for Theorem 4.2 in Appendix D. No-
tably, this bound has one fewer term than the original guid-
ance approximation error shown in Eq. (18). Secondly,
we have used the analytical expression x̂0 = 1√

ᾱt
(xt −√

1− ᾱtϵθ,t) given by the DDPM formulation to simplify
the jacobian matrix ∂x̂0/∂xt, during which the ratio 1/

√
ᾱt

has been omitted since it can be absorbed into the guidance
strength w. It is important to note that different diffusion
formulations (Karras et al., 2022) may produce slightly dif-
ferent analytical expressions relating xt to x̂0, leading to
variations in how the Jacobian matrix ∂x̂0/∂xt is simpli-
fied compared to the DDPM case, which will be covered in
our experiments in § 5.2. Finally, the last line of Eq. (22)
involves a D-by-D Jacobian matrix ∂x̂0/∂xt multiplied by
a D-dimensional vector ∇x̂0

logR0(x̂0,y), which is com-
putational prohibitive. We have simplified this operation by
approximating it with element-wise vector multiplication
in Eq. (21), which performs well empirically. This approxi-
mation can alternatively be interpreted as assuming that the
Jacobian matrix is (approximately) diagonal.

5. Experimental Results
5.1. 1D and 2D Synthetic Examples

In this section, we conduct qualitative experiments on 1D
and 2D synthetic examples. Based on the definition in
Eq. (14), the exact calculation of ∇xt

logEt(x,y) involves
gradient propagation through the denoising chain, which is
generally computationally intensive but can be affordably
computed in 1D or 2D.
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Figure 1. Left: Guidance values are plotted along the X-axis in the
range [−1.0, 2.0] at time step t = 13. Right: Heatmaps depict
the absolute differences between each gradient guidance value
and the optimal guidance ∇ logEt, plotted on uniform grids in
[−1.0, 2.0] at each time step. These two figures justify that our
proposed REG aligns better with the optimal guidance ∇ logEt

compared to the vanilla CFG, i.e., ∇ logRt without REG.

In the 1D example inspired by (Kynkäänniemi et al., 2024),
we attempt to learn a conditional data distribution q(x|y =
0) = 0.5×N (x|0.5, 0.252)+0.5×N (x|1.5, 0.252) using
a diffusion model with 20 steps and an MLP as the noise pre-
diction network. The unconditional data distribution q(x)
is set as 0.5 × N (x| − 1, 0.52) + 0.5 × N (x|1, 0.52). As
in (Kynkäänniemi et al., 2024), the number of classes and
other class-conditioned distributions are considered irrele-
vant in this context. The reward R0(x, y) = pθ(x|y)/pθ(x)
is chosen in Eq. (13). Following Eq. (14), the optimal
∇ logEt

4 is the derivative of a scalar to a scalar, and can be
computed via numerical integration at each time step t. Fur-
thermore, we evaluate the original ∇ logRt as per Eq. (10)
and the ∇ logRt corrected with REG as per Eq. (21). The
results are visualized in Figure 1. On the right, ∇ logRt

with REG aligns more closely with the optimal solution
∇ logEt across all time steps and grid points, compared to
the version without REG. The left panel of Figure 1 high-
lights a specific case at t = 13. Experimental setup details
and additional results are provided in Appendix E.1.

In the 2D example, we design a two-class conditional image
generation task inspired by (Pärnamaa, 2023). The train-
ing dataset consists of 8,000 samples per class, represented
as pairs (x0, y), where x0 is a point in a 2D plane, and y
is either 0 or 1. We train a diffusion model with 25 time
steps using a simple MLP as the noise prediction network.
In this example, both ∇ logEt and ∇ logRt represent the
derivative of a scalar with respect to a 2D vector and can
be visualized as gradient arrows in a 2D plane. Figure 2
presents the results. Columns (a)-(c) in Figure 2 demon-
strate that CFG with REG produces better results compared
to without REG. Additionally, for both classes, column (e)
is lighter in color and features coarser arrows compared to
column (f), making it visually closer to the optimal column
(d). The red-highlighted region for the first class provides

4For brevity and where no confusion arises, we will refer to
∇xt logEt(xt,y) as ∇ logEt, and similarly for ∇ logRt.

further evidence to support this observation. To rigorously
substantiate our claim, we present the win ratios in Table 1,
indicating the cases where the error with REG and with-
out REG is smaller, respectively. Finally, Figure 2 (g)-(h)
display the magnitude of our REG correction term. We ob-
serve that the REG correction term exhibits rough vertical
and horizontal patterns for the X-axis and Y-axis, respec-
tively, as well as a “low-resolution” shape associated with
each class. This behavior is expected because, when away
from the target shape, the REG X-correction term, which
relates to a derivative with respect to the X-coordinate, is
only weakly dependent on the Y-coordinate. Consequently,
it exhibits a vertical pattern, as shown in column (g). In
contrast, near the target shape, data points occur at varying
Y-coordinates for a fixed X-coordinate, causing the REG X-
correction term to vary accordingly.

Table 1. The win ratio x% : y% is reported for different time steps
and classes, where x% and y% denote the cases where ∇ logRt

with REG and without REG achieve a smaller error, respectively.

Time Step Class 1 Class 2

t = 20 60.2% : 39.8% 65.2% : 34.8%

t = 16 56.7% : 43.3% 68.2% : 31.8%

t = 12 67.8% : 32.2% 74.4% : 25.6%

t = 8 67.7% : 32.3% 73.1% : 26.9%

t = 4 65.5% : 34.5% 72.0% : 28.0%

5.2. Quantitative Results: Image Generation

In this section, we perform quantitative experiments on
class-conditional ImageNet generation and text-to-image
generation. We consider state-of-the-art guidance tech-
niques, including vanilla CFG (Ho & Salimans, 2022),
cosine CFG (Gao et al., 2023), linear CFG, interval
CFG (Kynkäänniemi et al., 2024), AutoG (Karras et al.,
2024a), and demonstrate that our REG is a method-agnostic
approach capable of enhancing the performance of all these
techniques when used in conjunction with them. As sum-
marized in Table 2, we deliberately select models spanning
diverse architectures, various samplers (e.g., DDPM, Euler,
and 2nd Heun), and different prediction parameterizations
(e.g., noise prediction and x0 prediction), to rigorously ver-
ify the effectiveness of our proposed REG method.

Class-Conditional ImageNet Generation. We evaluate
various resolutions, including 64×64, 256×256, and 512×
512, using DiT (Peebles & Xie, 2023) and EDM2 (Karras
et al., 2024b) as baseline models. Since EDM2 employs
a different analytical relationship between xt and x0 com-
pared to the DDPM formulation, the REG correction term
must be re-derived. See Appendix E.2 for details. Fréchet
Inception Distance (FID) and Inception score (IS) are the
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Figure 2. Results of guidance on a synthetic 2D two-class conditional generation task using a simple diffusion model with 25 time
steps. (a)-(c) illustrate the target shape to be learned, the shape generated using CFG with our proposed REG, and the shape generated
without REG, respectively. (d)-(f) depict ∇ logEt and ∇ logRt at t = 9, which are gradients of a scalar with respect to a 2D vector,
visualized as arrows in a 2D plane. (g)-(h) show the magnitude of the REG correction term (i.e., the second line of Eq. (21)) at t = 9.

Table 2. A summary of the models used in our experiment.

Model # Param Sampler Prediction

DiT-XL/2 675 M 250-step DDPM ϵ-prediction
EDM2-S 280 M 2nd Heun x0-prediction
EDM2-XXL 1.5 B 2nd Heun x0-prediction
SD-v1-4 860 M PNDM ϵ-prediction
SD-XL 2.6 B Euler Discrete ϵ-prediction

two key metrics used to evaluate the generated image quality
and diversity, respectively. We sweep the guidance scale
across a broad range to ensure coverage of the turning points
on the FID and IS curves. The best FID achieved by each
method is reported in Table 3 along with the corresponding
IS. As shown in Table 3, cosine and linear CFG perform
marginally better than vanilla CFG. On the other hand, inter-
val CFG significantly outperforms vanilla CFG, but we also
note that determining the optimal interval range involves a
fine-grained and computationally expensive search.

Table 3 shows that incorporating our proposed REG, the FID
usually decreases and IS increases across different models,
resolutions, and guidance methods. Note that for EDM2-S
and EDM2-XXL, interval CFG (Kynkäänniemi et al., 2024)
applies guidance to around 20% of all the time steps, so the
impact of REG is less pronounced in this case. Alternatively,
when applying interval CFG to DiT (Kynkäänniemi et al.,
2024), around 30% time steps use guidance, and REG shows
meaningful improvement in this case reducing FID from
1.95 to 1.86. To better justify REG’s efficacy, we plot the
Pareto front of FID versus IS in Figure 3. It illustrates that
using REG universally pushes the Pareto front downward
and to the right, achieving more optimal FID and IS metrics.
See Appendix E.2 for experimental details and extra results.

Text-to-Image Generation. We use pretrained stable dif-
fusion model SD-v1-4 (Rombach et al., 2022), and SD-
XL (Podell et al., 2023) available on Huggingface for this

Table 3. Class-conditional ImageNet generation results are re-
ported. The red ↓ and green ↑ arrows indicate better FID and
IS metrics, respectively, achieved by using REG with a specific
established guidance method compared to not using REG.

Resolution Benchmark FID ↓ IS ↑

64×64
EDM2-S 1.580 ——
+ AutoG 1.044 69.01

+ REG (ours) 1.035 ↓ 69.01 ↑

256×256

DiT-XL/2 9.62 121.50
+ Vanilla CFG 2.21 248.36

+ REG (ours) 2.04 ↓ 276.26 ↑
+ Cosine CFG 2.30 300.73

+ REG (ours) 1.76 ↓ 287.48 ↑
+ Linear CFG 2.23 268.69

+ REG (ours) 2.18 ↓ 284.20 ↑
+ Interval CFG 1.95 250.44

+ REG (ours) 1.86 ↓ 259.57 ↑

512×512

EDM2-S 2.56 ——
+ Vanilla CFG 2.29 268.56

+ REG (ours) 2.02 ↓ 275.30 ↑
+ Cosine CFG 2.16 282.46

+ REG (ours) 1.99 ↓ 291.77 ↑
+ Linear CFG 2.21 282.89

+ REG (ours) 1.99 ↓ 291.04 ↑
+ Interval CFG 1.67 287.45

+ REG (ours) 1.67 ↓ 288.43 ↑
EDM2-XXL 1.91 ——
+ Vanilla CFG 1.83 265.76

+ REG (ours) 1.74 ↓ 289.24 ↑
+ Cosine CFG 1.80 261.94

+ REG (ours) 1.69 ↓ 268.84 ↑
+ Linear CFG 1.81 262.03

+ REG (ours) 1.69 ↓ 268.30 ↑
+ Interval CFG 1.45 283.26

+ REG (ours) 1.45 ↓ 288.72 ↑

experiment. Due to the exhaustive search required for the
interval range in interval CFG and the need for a carefully
constructed “bad” version in AutoG, these two methods are
not practical within our computational budget and have been
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Figure 3. The Pareto front of FID versus IS is presented by varying
the guidance weight w over a broad range for different methods.
The turning points are also included. Curves positioned further
toward the bottom-right indicate superior performance. See Ap-
pendix E.2 for extra Pareto front results.

Figure 4. The Pareto front of FID versus CLIP score is shown by
varying the guidance weight w across a broad range for different
methods. Curves closer to the bottom-right are better.

Table 4. Text-to-Image generation results on the COCO-2017 5K
dataset are reported. The red ↓ and green ↑ arrows indicate better
FID and CLIP score, respectively, achieved by using REG with a
specific established guidance method compared to not using REG.

Model Benchmark FID ↓ CLIP (%) ↑

SD-v1-4
512×512

+ Vanilla CFG 20.27 30.68
+ REG (ours) 19.63 ↓ 30.75 ↑

+ Cosine CFG 23.19 30.80
+ REG (ours) 21.35 ↓ 30.96 ↑

+ Linear CFG 20.55 30.85
+ REG (ours) 20.27 ↓ 30.87 ↑

SD-XL
1024×1024

+ Vanilla CFG 23.73 31.38
+ REG (ours) 23.46 ↓ 31.51 ↑

+ Cosine CFG 32.14 31.58
+ REG (ours) 25.62 ↓ 31.66 ↑

+ Linear CFG 24.43 31.55
+ REG (ours) 23.67 ↓ 31.58 ↑

omitted. We evaluate different CFG approaches with and
without REG on the COCO-2017 dataset (with 5,000 gen-

erated images) using FID and CLIP score as the evaluation
metrics. We sweep a broad range of guidance scales, similar
to the class-conditional ImageNet generation experiment,
and present the results in Table 4.

Table 4 indicates that despite SD-XL having a larger param-
eter count, it appears to perform worse than SD-v1-4 on
this specific COCO benchmark, a phenomenon observed
in previous literature (Wang et al., 2024a;b). We also ob-
serve that cosine and linear CFG underperform compared
to vanilla CFG in this setting, consistent with findings re-
ported in prior work (Wang et al., 2024b). Nevertheless,
Table 4 demonstrates that our REG can improve the FID
and CLIP scores for all settings. Moreover, the Pareto fronts
of FID versus CLIP score are shown in Figure 4, further
justifying the effectiveness of REG. Qualitative results of
generated images under different text prompts are deferred
to Appendix E.2.

Runtime and Memory Overhead. Since REG requires
the computation of an additional Jacobian matrix compared
to the standard CFG approach, it naturally incurs higher
memory usage and runtime. We also note that similar
inference-time gradient calculations have also been explored
in universal guidance (Bansal et al., 2024), albeit in a differ-
ent context. Table 5 presents a summary of the runtime and
memory overhead introduced by REG on a single NVIDIA
A40 GPU under identical experimental settings, compared
to vanilla CFG approach. In almost all settings, we have
affordable less than 2× runtime and memory overhead.

Table 5. Comparison of CFG and REG runtime performance and
peak GPU memory usage across different models, resolutions,
and batch sizes. Memory is reported with batch size 1 to isolate
per-image cost.

Model Resolution / BS CFG / REG Runtime (sec)

EDM2-S 64 / 8 25.96 / 42.99 (1.66×)
DiT-XL/2 256 / 8 59.79 / 94.23 (1.58×)
EDM2-S 512 / 8 46.14 / 62.87 (1.36×)
EDM2-XXL 512 / 8 49.21 / 92.60 (1.88×)
SD-v1-4 512 / 4 32.63 / 39.54 (1.21×)
SD-XL 1024 / 2 47.48 / 74.52 (1.57×)

Model Resolution / BS CFG / REG Memory (GB)

EDM2-S 64 / 1 0.87 / 1.49 (1.71×)
DiT-XL/2 256 / 1 4.15 / 5.01 (1.21×)
EDM2-S 512 / 1 1.19 / 1.81 (1.52×)
EDM2-XXL 512 / 1 4.59 / 7.31 (1.59×)
SD-v1-4 512 / 1 2.73 / 4.39 (1.61×)
SD-XL 1024 / 1 6.91 / 19.49 (2.82×)

6. Related Work
Guidance techniques are indispensable in modern diffusion
models, significantly improving conditional generation qual-
ity. Classifier guidance (CG), introduced by Dhariwal &
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Nichol (2021), improves the quality of conditional samples
by using the gradient of an auxiliary classifier as a guidance
signal, enabling a trade-off between the FID and IS metric.
Classifier-free guidance (CFG) removes the need for an ex-
ternal classifier by training a noise prediction network to
handle both conditional and unconditional generation via
random conditioning dropout (Ho & Salimans, 2022). CFG
has shown significant empirical success and inspired numer-
ous extensions (Kynkäänniemi et al., 2024; Karras et al.,
2024a; Bansal et al., 2024; Zheng & Lan, 2024; Chung et al.,
2024; Ahn et al., 2024). Building on CFG, auto-guidance
(AutoG) employs a “bad version” of the noise prediction
network, such as a checkpoint from a lighter model, to
produce the guidance signal (Karras et al., 2024a). Au-
toG achieves state-of-the-art FID and IS scores compared to
other guidance methods. However, identifying an effective
“bad version” is non-trivial and may require an exhaustive
search. Universal guidance (Bansal et al., 2024) extends the
framework by utilizing arbitrary guidance signals without
retraining. While our work is in a completely different con-
text — focusing on building a theoretically sound guidance
theory — REG is similar to universal guidance in involving
∂ϵθ,t/∂xt in the implementation.

Theoretical analyses of unconditional and conditional diffu-
sion models are abundant, yet the motivation behind guid-
ance has been addressed only superficially in the litera-
ture (Dhariwal & Nichol, 2021; Ho & Salimans, 2022),
with its theory primarily developed through Gaussian mix-
ture case studies (Wu et al., 2024; Bradley & Nakkiran,
2024; Chidambaram et al., 2024). Guidance was commonly
described as being motivated by sampling from a scaled
distribution p̄θ that places greater emphasis on regions align-
ing with the conditioning variable. Leveraging the score
function formula, it transforms sampling from the scaled
distribution into an updated noise prediction network ϵ̄θ,t,
which can be seamlessly integrated into the reverse denois-
ing process. However, recent works (Bradley & Nakkiran,
2024; Chidambaram et al., 2024; Xia et al., 2024) challenge
this interpretation by showing that using the modified ϵ̄θ,t in
the reverse denoising process does not yield sampling from
p̄θ. Our work attempts to reconcile this theory and practice
discrepancy by rebuilding the correct guidance theory from
scaling the joint distribution. We complement the findings
of Bradley & Nakkiran (2024); Chidambaram et al. (2024);
Xia et al. (2024) by providing the correct form of ϵ̄⋆θ,t to
ensure sampling from p̄θ.

Another related and concurrent work (Pavasovic et al., 2025)
demonstrates that, although CFG may reduce sample diver-
sity in low-dimensional settings, it proves beneficial in high-
dimensional regimes due to a ‘blessing of dimensionality’.
Their analysis reveals two distinct phases: an early phase
where CFG aids in accurate class selection, followed by a
later phase in which its impact becomes negligible.

7. Conclusions and Limitations
In this paper, we rebuild the guidance theory on the correct
theoretical foundation based on joint scaling and reconcile
the practice and theory gap. We demonstrate that guidance
methods are an approximation to the optimal solution under
no future foresight constraint. Leveraging this framework,
we introduce rectified gradient guidance (REG), a versatile
enhancement that consistently improves the performance of
existing guidance techniques. Comprehensive experiments
validate the effectiveness of REG. Our work resolves long-
standing misconceptions about guidance methods and paves
the way for its future advancements.

Our proposed REG is grounded in theoretical insights and
mainly serves as an experimental validation of our theory’s
correctness. Its practical use depends on application needs,
as it improves conditional generation performance with a
minor computational overhead due to gradient calculations.
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A. Remarks on Score Function Formula
We will illustrate the score function formula for the unconditional generation case, corresponding to the second line of
Eq. (7), noting that the first line of Eq. (7) associated with the conditional generation is similar.

The continuous-time SDE formulation of diffusion models (Song et al., 2021; Lu et al., 2022) describes the forward diffusion
process as a stochastic differential equation (SDE) and establishes the existence of a reverse-time SDE that is mathematically
equivalent to the forward-time SDE. The only unknown term in the reverse-time SDE is the score function ∇xt log qt(xt),
which is learned by the neural network ϵθ(xt, t) through proper parameterization involving noise schedules during training.
Notably, the score matching training objective uniformly samples t over the entire range [0, T ] with a weighting scheme.
This design ensures that the score function formula Eq. (7) holds approximately across the entire range [0, T ] by definition.

In contrast, the discrete-time DDPM formulation can, strictly speaking, only derive that Eq. (7) holds for t = 1, 2, · · · , T ,
but not for t = 0. A straightforward explanation is as follows: note that ϵθ(a, t = 1) is the noise prediction at the final time
step, used to update from x1 = a to x0, and ϵθ(·, t = 0) is never utilized in the reverse denoising process and unused during
training. Consider an exaggerated case where ϵθ(·, t = 0) = ∞, while ϵθ(·, t) for t = 1, 2, · · · , T behaves correctly and
enables perfect generation. In this case, the left-hand side of Eq. (7), ∇x0 log pθ(x0) equals ∇x0 log q(x0) and remains
proper and finite, while the right-hand side becomes infinite, illustrating the inconsistency of Eq. (7) for t = 0.

However, in practice, the score function formula Eq. (7) can be considered valid at t = 0 in the DDPM formulation, provided
sufficiently dense time grids (i.e., a large enough T ) are used. This is because Eq. (7) holds at t = 1, and for dense time
grids, both sides of Eq. (7) at t = 1 closely approximate their counterparts at t = 0. Consequently, Eq. (7) effectively holds
at t = 0. This perspective is also the discretized view of the SDE formulation. Our aim here is to highlight the correct way
to understand the score function formula.

B. Invalid Marginal Scaling
We will prove that Rt−1 is implicitly determined by Rt, i.e., Eq. (11), in this section. First, we calculate the derivative of
logarithm of Eq. (8), yielding:

∇xt
log p̄θ(xt|y) = ∇xt

log pθ(xt|y) +∇xt
logR(xt,y). (23)

Substituting the score function relationship shown in Eq. (7) into it, we obtain:

ϵ̄θ,t = ϵθ,t −
√
1− ᾱt∇xt

logRt(xt,y), (24)

where we use the short notation ϵ̄θ,t = ϵ̄θ,t(xt, t,y) and ϵθ = ϵθ(xt, t,y) as in the main text. The modified transition
kernel p̄θ(xt−1|xt,y) corresponding to this modified ϵ̄θ,t can be derived by analogy to Eq. (2) and Eq. (3):

p̄θ(xt−1|xt,y) = N (xt−1|µ̄θ,t, σ
2
t I),

µ̄θ,t =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵ̄θ

)
= µθ,t +

1− αt√
αt

∇xt logRt(xt,y),
(25)

where Eq. (24) has been used to simplify µ̄θ,t. Now, based on the defintion of the reverse denoising process, we have:

p̄θ(xt−1|y) =
∫

p̄θ(xt−1|xt,y) p̄θ(xt|y) dxt,

⇒ pθ(xt−1|y)Rt−1(xt−1,y) ∝
∫

N (xt−1|µ̄θ,t, σ
2
t I) pθ(xt|y)Rt(xt,y) dxt,

⇒ Rt−1(xt−1,y) ∝
1

pθ(xt−1|y)

∫
N (xt−1|µ̄θ,t, σ

2
t I) pθ(xt|y)Rt(xt,y) dxt,

⇒ Rt−1(xt−1,y) ∝
∫
N (xt−1|µ̄θ,t, σ

2
t I) pθ(xt|y)Rt(xt,y) dxt∫

N (xt−1|µθ,t, σ
2
t I) pθ(xt|y) dxt

,

⇒ Rt−1(xt−1,y) ∝
Epθ(xt|y)

[
N (xt−1|µ̄θ,t, σ

2
t I)Rt(xt,y)

]
Epθ(xt|y)

[
N (xt−1|µθ,t, σ

2
t I)

] .

(26)

Eq. (26) implies that when Rt is given, Rt−1 is implicitly determined up to a normalization constant. Note here we assume
the co-variance matrix is fixed to σ2

t I. Nevertheless, the same derivation can be applied to learnable co-variance matrix.
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C. Scaling the Joint Distribution: Proof of Theorem 4.1
Based on the discrete-DDPM formulation, we know the joint distribution is construcuted as a Markov chain:

p̄θ(x0:T |y) = p̄(xT |y)
T∏

t=1

p̄θ(xt−1|xt,y). (27)

When p̄θ(x0:T |y) is given, the decomposition to the initial p̄(xT |y) and the T transitions p̄θ(xt−1|xt,y) is unique. This is
because p̄θ(x0:T |y) is given, by doing marginalization, we obtain unique p̄θ(xt−1,xt|y) and p̄θ(xt|y). Then, based on the
conditional probability definition: p̄θ(xt−1|xt,y) = p̄θ(xt−1,xt|y)/p̄θ(xt|y), the transition kernel is also unique.

Thus, it suffices to demonstrate that the transition kernels presented in Eq. (15) satisfy the joint distribution specified in
Eq. (13) and that each kernel represents a valid distribution. Once these conditions are established, Eq. (15) is guaranteed to
be the unique solution. Now, we can derive:

p̄θ(x0:T |y) = p̄θ(xT |y)
T−1∏
t=0

p̄θ(xt|xt+1,y) =

T∏
t=0

p̄θ(xt|xt+1,y) =

T∏
t=0

Et(xt,y)

Et+1(xt+1,y)
pθ(xt|xt+1,y)

=
E0(x0,y)

ET+1(xT+1,y)

T∏
t=0

pθ(xt|xt+1,y) =
R0(x0,y)

E(y)
pθ(x0:T |y) ∝ pθ(x0:T |y),

(28)

where we have used the notational convention xT+1 = ∅ introduced earlier, E0(x0,y) = R0(x0,y), and
ET+1(xT+1,y) = E(y). The above equation states p̄θ(x0:T |y) ∝ R0(x0,y)pθ(x0:T |y), with 1/E(y) being the normal-
ization constant. Next, we proceed to demonstrate that Eq. (15) represents a valid distribution:∫

p̄θ(xt|xt+1,y)dxt =

∫
Et(xt,y)

Et+1(xt+1,y)
pθ(xt|xt+1,y)dxt

=
1

Et+1(xt+1,y)

∫
Et(xt,y)pθ(xt|xt+1,y)dxt

=
1

Et+1(xt+1,y)

∫
pθ(x0|xt,y)R0(x0,y)pθ(xt|xt+1,y)dxt dx0

=
1

Et+1(xt+1,y)

∫
pθ(x0,xt|xt+1,y)R0(x0,y)dxt dx0

=
1

Et+1(xt+1,y)

∫
pθ(x0|xt+1,y)R0(x0,y) dx0 =

Et+1(xt+1,y)

Et+1(xt+1,y)
= 1.

(29)

Next, we use induction to prove Eq. (16). To begin with, substituting t = T into Eq. (15) and noticing our introduced
convention xT+1 = ∅, we obtain p̄θ(xT |y) = ET (xT ,y)/E(y) · pθ(xT |y), which aligns with Eq. (16) at t = T . Now
suppose Eq. (16) holds for t, then for t− 1, we have:

p̄θ(xt−1|y) =
∫

p̄θ(xt−1|xt,y)p̄θ(xt|y) dxt =

∫
Et−1(xt−1,y)

Et(xt,y)
pθ(xt−1|xt,y)

Et(xt,y)

E(y)
pθ(xt|y) dxt

=

∫
Et−1(xt−1,y)

E(y)
pθ(xt−1,xt|y) dxt =

Et−1(xt−1,y)

Et(y)
pθ(xt−1|y),

(30)

which completes the induction. Finally, Eq. (17) is straightforward to prove by calculating the derivative of logarithm of
Eq. (16) and using the score function relationship shown in Eq. (7):

p̄θ(xt|y) =
Et(xt,y)

E(y)
p(xt|y)

⇒ log p̄θ(xt|y) = logEt(xt,y)− logE(y) + log p(xt|y)
⇒ ∇xt

log p̄θ(xt|y) = ∇xt
logEt(xt,y) +∇xt

log p(xt|y)

⇒ − ϵ̄⋆θ(xt, t,y)√
1− ᾱt

= ∇xt logEt(xt,y)−
ϵθ(xt, t,y)√

1− ᾱt

⇒ ϵ̄⋆θ(xt, t,y) = ϵθ(xt, t,y)−
√
1− ᾱt∇xt

logEt(xt,y).

(31)
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D. Approximation Error: Proof of Theorem 4.2 and Theorem 4.3
Proof of Theorem 4.2. We first notice that when using a deterministic sampler in the reverse denoising process, Et(xt,y)
becomes R0(x̂0,y), where x̂0 is the estimate of x0 at time t. Thus, we have:

√
1− ᾱt||∇xt

logEt(xt,y)−∇xt
logRt(xt,y)|| =

√
1− ᾱt||∇xt

logR0(x̂0,y)−∇xt
logRt(xt,y)||

≤
√
1− ᾱt||∇xt

logR0(x̂0,y)−∇x̂0
logR0(x̂0,y)||

+
√
1− ᾱt||∇x̂0

logR0(x̂0,y)−∇xt
logR0(xt,y)||

+
√
1− ᾱt||∇xt logR0(xt,y)−∇xt logRt(xt,y)|| .

(32)

Here we take CFG as an example, while similar proof can be adopted for AutoG and any CFG-variant guidance methodolo-
gies. For clarity, using the score function formula Eq. (7) with the reward Rt in CG shown in Eq. (9), we can derive:

−
√
1− ᾱt · ∇a logRt(a,y) = w (ϵθ(a, t,y)− ϵθ(a, t)) . (33)

Now let us deal with the right hand side of Eq. (32) one by one:

RHS Term 1 =
√
1− ᾱt||∇x̂0

logR0(x̂0,y) ·
dx̂0

dxt
−∇x̂0

logR0(x0,y)|| (Chain rule)

≤
√
1− ᾱt||

dx̂0

dxt
− I|| · ||∇x̂0

logR0(x̂0,y)|| (Extract the same term)

≤ w||dx̂0

dxt
− I|| · ||ϵθ(x̂0, 0,y)− ϵθ(x̂0, 0)|| (Use Eq. (33))

≤ 2wB||dx̂0

dxt
− I|| , (ϵθ,t is bounded by B)

RHS Term 2 = w · ||ϵθ(x̂0, 0,y)− ϵθ(x̂0, 0)− ϵθ(xt, 0,y) + ϵθ(xt, 0)|| (Use Eq. (33))
≤ w · ||ϵθ(x̂0, 0,y)− ϵθ(xt, 0,y)||+ w · ||ϵθ(xt, 0)− ϵθ(x̂0, 0)|| (Triangular inequality)
≤ 2wL||x̂0 − xt|| , (ϵθ,t is Lipschitz continuous)

RHS Term 3 = w · ||ϵθ(xt, 0,y)− ϵθ(xt, 0)− ϵθ(xt, t,y) + ϵθ(xt, t)|| (Use Eq. (33))
≤ w · ||ϵθ(xt, 0,y)− ϵθ(xt, t,y)||+ w · ||ϵθ(xt, t)− ϵθ(xt, 0)|| (Triangular inequality)
≤ 2wLt . (ϵθ,t is Lipschitz continuous)

(34)

Combining them together, we obtain:
√
1− ᾱt||∇xt

logEt(xt,y)−∇xt
logRt(xt,y)|| ≤ 2wB||dx̂0

dxt
− I||+ 2wL||x̂0 − xt||+ 2wLt . (⋆) (35)

If we denote ∆ = x̂0 − xt, then we obtain the bound shown in Eq. (18) in the main text. When the one-step prediction
x̂0 = 1√

ᾱt
(xt −

√
1− ᾱtϵθ(xt, t,y)) works well (e.g., at the end of denoising, t is close to 0), we can further simplify the

upper bound (⋆):

(⋆) =
2wB√
ᾱt

||(1−
√
ᾱt)I−

√
1− ᾱt

∂ϵθ(xt, t,y)

∂xt
||+ 2wL√

ᾱt
||(1−

√
ᾱt)xt −

√
1− ᾱtϵθ(xt, t,y)||+ 2wLt

≤ 2wB√
ᾱt

(1−
√
ᾱt +

√
1− ᾱt||

∂ϵθ(xt, t,y)

∂xt
||) + 2wL√

ᾱt
[(1−

√
ᾱt)||xt||+

√
1− ᾱt||ϵθ(xt, t,y)||] + 2wLt

≤ 2wB√
ᾱt

(1−
√
ᾱt +

√
1− ᾱtL) +

2wL√
ᾱt

[(1−
√
ᾱt)||xt||+

√
1− ᾱtB] + 2wLt

=
2wL√
ᾱt

(1−
√
ᾱt)︸ ︷︷ ︸

C1

||xt||+
2wB√
ᾱt

(1−
√
ᾱt) +

4wBL√
ᾱt

√
1− ᾱt + 2wLt︸ ︷︷ ︸

C2

.

(36)

By taking expectation of the above inequality with respect to pθ(xt|y), we obtain:

Epθ(xt|y)[||ϵ̄
⋆
θ,t − ϵ̄θ,t||] = Epθ(xt|y)[

√
1− ᾱt||∇xt

logEt(xt,y)−∇xt
logRt(xt,y)||]

≤ Epθ(xt|y)[C1||xt||+ C2]

= C1 · Epθ(xt|y)[||xt||] + C2 .

(37)
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Proof of Theorem 4.3. Using the definition of ϵ̄θ,t and ϵ̄⋆θ,t given in Eqs. (10) and (17), we obtain:

Epθ(xt|y)[ϵ̄
⋆
θ,t − ϵ̄θ,t] =

√
1− ᾱt · Epθ(xt|y)[∇xt log

Rt(xt,y)

Et(xt,y)
] . (38)

Now let us simplify the right-hand side. To begin with, we notice that chain rule states:∫
∂pθ(xt|y)

∂xt
log

Rt(xt,y)

Et(xt,y)
dxt +

∫
pθ(xt|y)

∂ log Rt(xt,y)
Et(xt,y)

∂xt
dxt =

∂

∂xt

∫
pθ(xt|y) log

Rt(xt,y)

Et(xt,y)
dxt . (39)

Moreover, the right-hand side of the above equation actually integrates out the variable xt, leaving it dependent solely on y.
Consequently, the derivative with respect to xt becomes zero, and Eq. (39) simplifies to:∫

∂pθ(xt|y)
∂xt

log
Rt(xt,y)

Et(xt,y)
dxt + Epθ(xt|y)[∇xt

log
Rt(xt,y)

Et(xt,y)
] = 0 ,

⇒ Epθ(xt|y)[∇xt
log

Rt(xt,y)

Et(xt,y)
] = −

∫
pθ(xt|y) · ∇xt

log pθ(xt|y) · log
Rt(xt,y)

Et(xt,y)
dxt ,

⇒ Epθ(xt|y)[∇xt log
Rt(xt,y)

Et(xt,y)
] = −Epθ(xt|y)[∇xt log pθ(xt|y) · log

Rt(xt,y)

Et(xt,y)
] ,

⇒ Epθ(xt|y)[∇xt
log

Rt(xt,y)

Et(xt,y)
] = −Epθ(xt|y)[−

ϵθ(xt, t,y)√
1− ᾱt

· log Rt(xt,y)

Et(xt,y)
] .

(40)

Thus, combining this equation with Eq. (38), we obtain:

Epθ(xt|y)[ϵ̄
⋆
θ,t − ϵ̄θ,t] = Epθ(xt|y)[ϵθ,t · log

Rt(xt,y)

Et(xt,y)
] . (41)

E. Experimental Settings and Additional Numerical Results
E.1. 1D and 2D Synthetic Examples

1D Synthetic Example. The 1D synthetic example is inspired by the work of Kynkäänniemi et al. (2024). We generate a
total of 8,000 samples from the conditional distribution q(x|y = 0) = 0.5×N (x|0.5, 0.252) + 0.5×N (x|1.5, 0.252), and
8,000 samples from the unconditional data distribution q(x) = 0.5×N (x| − 1, 0.52) + 0.5×N (x|1, 0.52). For learning
the conditional and unconditional distributions, we define separate noise prediction networks, ϵθ(xt, t, y) and ϵθ(xt, t). It is
possible to follow the convention in CFG (Ho & Salimans, 2022) by using a shared-weight noise prediction network with
label dropout during training, and we find no significant difference compared to our implementation in this specific case. We
emphasize that this example only considers a single class with label y = 0, and, similar to (Kynkäänniemi et al., 2024), we
regard the total number of classes and the distribution of other classes as irrelevant.

Figure 5. Guidance values are plotted along the X-axis in the range [−1.0, 2.0] at different time steps.

In our noise prediction networks, we employ sinusoidal embeddings for time, class labels, and the coordinate input, each with
a dimension of 128. These embeddings are concatenated and passed through an MLP with three hidden layers, each having
128 hidden units. We use 20 time steps with β linearly scheduled from 0.001 to 0.2 (i.e., αt is linear from α1 = 1− 0.001
to α25 = 1− 0.2 in the DDPM notation). Note that for experimental purposes, we deliberately limit the capacity of the
diffusion model by reducing the number of time steps since diffusion models with sufficient capacity can nearly perfectly
learn these examples without any guidance. The network is trained using AdamW with a learning rate of 0.001 for 200
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epochs. To evaluate ∇xt
logEt(xt, y) at a specific time step t, we follow the denoising process to generate 100 instances of

x0 given observing xt at t, and then evaluate the mean of their reward, according to Eq. (14).

We have plotted comparisons of the golden ∇ logEt, ∇ logRt with REG, and ∇ logRt without REG at various time steps
in Figure 5 to complement Figure 1 in the main text. The fitting results are further shown in Figure 6.

Figure 6. Histograms of 8000 samples drawn from a trained simple diffusion model are shown for three cases: (a) without any guidance,
(b) using the vanilla CFG without REG, and (c) using the vanilla CFG with our proposed REG. The target conditional data distribution is
0.5 × N (0.5, 0.252) + 0.5 × N (1.5, 0.252). While all approaches correctly recover the mean locations, our method achieves better
alignment of the peak heights, more accurately reflecting the target’s equal magnitude Gaussian components.

2D Synthetic Example. We are inspired by Pärnamaa (2023) and design the 2D synthetic example as follows: We
prepare the target shape (e.g. dinosaur) and extract the 2D coordinates from its SVG file. Then, we define a Gaussian
mixture with equal weight coefficients as the data generation distribution, with the mean of Gaussian mixture component
being every extracted grid coordinate, and the standard deviation being 0.05. This setup makes sure we can evaluate the
log probability for a given x0. In this example, we define a single noise prediction network with label dropout (dropout
probability of 0.2) during training, following the convention of CFG (Ho & Salimans, 2022). Similar to the 1D example, we
use sinusoidal embeddings for time, class labels, and the coordinate input, each with a dimension of 512. These embeddings
are concatenated and passed through an MLP with three hidden layers, each containing 128 units. We use 25 time steps with
β linearly scheduled from 0.001 to 0.2 (i.e., αt transitions linearly from α1 = 1− 0.001 to α25 = 1− 0.2 in the DDPM
notation). The diffusion model is trained using the AdamW optimizer with a learning rate of 0.0001 for 200 epochs.

Evaluating the golden ∇ logEt is performed via numerical integration using 500 samples. Empirically, we observe that
unusually large values of ∇ logEt occasionally appear. Increasing the number of samples in the numerical integration
(e.g., from 100 to 500) helps mitigate this issue, as it provides a more accurate approximation of the expectation in higher-
dimensional spaces. However, using 500 samples is already computationally expensive, as it requires not only evaluating
logEt but also computing its gradients through backpropagation. Thus, we exclude samples with abnormally large ∇ logEt

values when plotting Figure 2 as a straightforward remedy.

Since ∇ logEt in this case represents the derivative of a scalar with respect to a 2D vector, it can be visualized as a gradient
arrow in a 2D plane. However, as shown in Table 1, while the proposed REG consistently provides a better approximation
of the optimal solution, this improvement is barely visible in columns (d)-(f) of Figure 2.

E.2. Quantitative Results: Image Generation

We have summarized the models used in our experiments in Table 2. In the main text, REG is derived using the ϵ-
prediction parametrization, where we simplify the Jacobian matrix by using x̂0 = 1√

ᾱt
(xt −

√
1− ᾱtϵθ,t), leading to

Eq. (21). For EDM2 (Karras et al., 2024b), which uses the x0 parametrization, the REG correction term trivially becomes
∂(1T ·Dθ(xt, t, y))/∂xt, where Dθ represents the x0-prediction network as defined in EDM2 (Karras et al., 2022; 2024b).
Additionally, SD-v1-4 and SD-XL employ the PNDM sampler (Liu et al., 2022) and the Euler Discrete sampler, respectively,
which differ from DDPM. Nevertheless, we use Eq. (21) in these cases as well, and it performs effectively in practice.

We conduct our experiments using the open-source DiT (Peebles & Xie, 2023), EDM2 (Karras et al., 2024b), and
Huggingface Diffusers codebases, modifying their source code to support various guidance techniques. The interval
CFG (Kynkäänniemi et al., 2024) study provides the interval ranges for DiT and EDM2, which we adopt here for consistency.
For the “bad” models used in AutoG, we rely on the publicly available checkpoints shared by Karras et al. (2024a). However,
when the interval range or the “bad” model checkpoint is unavailable (e.g., in text-to-image tasks), we cannot reproduce the
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interval CFG and AutoG baselines. This limitation arises because interval CFG requires an exhaustive hyper-parameter
search to identify the interval range, and AutoG relies on a carefully designed “bad” model. For linear CFG, we set
the guidance weight to zero at the start of denoising and gradually increase the weight scale toward the end. For cosine
CFG (Gao et al., 2023), we use a power of 2 for class-conditional ImageNet generation and a power of 1 for text-to-image
generation, as we find that a power of 2 produces extremely poor results in text-to-image generation. In class-conditional
ImageNet generation, we evaluate FID and IS metrics using 50,000 generated images, following the protocols outlined in
DiT (Peebles & Xie, 2023) and EDM2 (Karras et al., 2024b). For text-to-image generation, we randomly select one caption
per image from the COCO-2017 validation dataset, creating 5,000 pairs of images and captions. FID and CLIP scores are
evaluated using TorchMetrics.

Additional Pareto front results for class-conditional ImageNet generation are presented in Figure 7. Qualitative examples of
generated images corresponding to various text prompts in the text-to-image generation task are illustrated in Figures 8–10.

Figure 7. Additional results for the Pareto front of FID versus IS are shown by varying the guidance weight w over a broad range for
different methods. Curves positioned further toward the bottom-right indicate superior performance.
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Figure 8. Generated images by different methods are shown under high guidance strength given the prompt “A medieval knight riding a
glowing unicorn through a stormy battlefield”.
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Figure 9. Generated images by different methods are shown under high guidance strength given the prompt “A floating island with a giant
tree whose roots hang down into the clouds”.
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Figure 10. Generated images by different methods are shown under high guidance strength given the prompt “A dog wearing sunglasses
and riding a skateboard on a sunny street”.
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