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ABSTRACT

Geological fields are challenging to model as they reflect complex multi-scale
sedimentation processes during the whole history of Earth’s existence. The ge-
ological objects that can be found in such fields have very different nature and
scale and are often represented by statistical means. In this work we investigate
the possibility to obtain meaningful representations for geological fields of differ-
ent kinds with the help of self-supervised learning (SSL). Specifically, we adapt a
self-supervised vision transformer architecture DINOv2 to a dataset of more than
twenty thousands synthetic 3D geological cubes describing four sedimentary en-
vironments to learn their representations without labels. We show that learned
embeddings cluster by sedimentary environment type and have high correlation
with important geostatistical properties, such as variograms. When used as fea-
tures for classification and regression, they match or exceed the performance of
supervised CNNs trained from scratch. Our results demonstrate that SSL can cap-
ture meaningful geological structure in 3D geological data and serve as a strong
foundation for downstream tasks, reducing the need for expensive labeled datasets
in geological modeling.

1 INTRODUCTION

Geological fields are difficult to model because they reflect complex multi-scale sedimentation pro-
cesses accumulated over geological time. Objects in such fields vary in nature and scale, and they
are often characterized through statistical descriptors such as variograms, correlation lengths, and
anisotropy. Traditional machine learning approaches in geoscience have relied heavily on supervised
convolutional neural networks (CNNs) trained for facies classification, seismic interpretation, or re-
gression of petrophysical properties. While effective, these methods demand large labeled datasets,
which are costly to obtain.

Self-supervised learning (SSL) provides an alternative that bypasses the need for manual labels by
exploiting invariances and data augmentations. Recent breakthroughs in SSL—contrastive learning
(SimCLR (Chen et al., 2020), MoCo (He et al., 2020), SwAV (Caron et al., 2020)), non-contrastive
predictive methods (BYOL (Grill et al., 2020)), and self-distillation frameworks (DINO (Caron et al.,
2021), DINOv2 (Oquab et al., 2023))—have shown remarkable success in computer vision. Vision
transformers (ViTs) (Dosovitskiy et al., 2021) trained with SSL objectives now deliver state-of-the-
art results on downstream tasks and generalize well in low-label regimes. Masked autoencoders
(MAE) (He et al., 2022) further extended SSL to reconstruction-based objectives.

Despite this progress, SSL has rarely been applied to geoscience, where data are volumetric, multi-
channel, and governed by physical laws. Early works have explored supervised CNNs for facies
classification (Liu, 2020), Bayesian CNNs for uncertainty quantification (Feng, 2021), and gener-
ative adversarial networks (GANs) or variational autoencoders (VAEs) for stochastic modeling of
porous media and sedimentary environments (Mosser, 2017; Laloy, 2018). More recently, there
have been first attempts to apply SSL to seismic data (Li, 2025), but systematic investigation of SSL
embeddings for geological cubes and their geostatistical properties remains absent.

In this work, we investigate whether SSL can produce meaningful representations of geological
fields. Specifically, we adapt the DINOv2 framework (Oquab et al., 2023) to a dataset of more than
20,000 synthetic 3D geological cubes describing four sedimentary environments. We show that the
resulting embeddings cluster by environment type and correlate with key geostatistical descriptors.
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These findings indicate that SSL can capture geologically meaningful structures in 3D data and
provide a strong foundation for downstream modeling.

Our main contributions:

• Applied SSL to representation learning of geological fields
• We found that learned representation states is well aligned with important geological statis-

tics

2 RELATED WORK

2.1 GEOLOGICAL DATA CLASSIFICATION

Depositional environments can be systematically classified into a particular reservoir architecture
type according to their modelling approach of sand-body that forms heterogeneity of different types.
Each type of heterogeneity influences fluid flow characteristics and hence sweep and recovery effi-
ciencies (Caers, 2005).

There are three main types of depositional environments depending on their location within the
sedimentary basin system. The information about them can be found in A.1.

Each environment exhibits characteristic depositional facies, energy regimes, and sediment textures
that affect porosity and permeability distribution within reservoir rocks. The classification also
includes process-based subdivisions, such as wave-dominated, tide-dominated and river-dominated
that controls facies architecture and stacking patterns (Galloway, 1975; Bhattacharya & Walker,
1992).

The present phase of research focuses only on some of the depositional environments that are com-
mon for petroleum industry and forms relatively simple reservoir architecture. For better under-
standing the authors of present paper refer to sedimentological description of each environment that
provided in Typical Facies Atlas (Tugarova & Zhukovskaya, 2019).

2.2 OVERVIEW OF GEOLOGICAL MODELING METHODS USING GEOSTATISTICS

Geostatistical modeling has become a foundational approach in geological reservoir characteriza-
tion, offering quantitative tools for describing spatial variability and uncertainty in subsurface prop-
erties. Unlike deterministic methods, geostatistical techniques rely on statistical representations of
spatial relationships—typically defined through variograms or covariance functions—to generate
multiple equiprobable realizations of geological variables such as facies, porosity, and permeability
(Journel & Huijbregts, 1978; Deutsch et al., 1992). Commonly applied methods include Sequen-
tial Indicator Simulation (SIS), which models categorical variables (e.g., facies types) by assigning
class values based on conditional probabilities derived from indicator transforms. Sequential Gaus-
sian Simulation (SGS) generates continuous property models by drawing values from a multivariate
Gaussian distribution conditioned on neighboring data. Truncated Gaussian Simulation creates re-
alistic geological patterns by applying thresholds to one or more Gaussian fields to define facies
distributions with spatial continuity (Caers, 2005).

These methods are based on variogram analysis. The variogram quantifies spatial continuity and the
degree of similarity between sampled data as a function of distance and direction. Variogram models
are defined for each property and depositional environment and are critical for preserving geological
realism in stochastic simulations. Key variogram parameters include the sill (total variance), range
(distance of spatial correlation), and nugget (microscale variability or measurement error).

The strength of geostatistical methods lies in their ability to capture heterogeneity and assess uncer-
tainty through stochastic realizations. By generating ensembles of models that honor both hard data
(e.g., well logs) and soft constraints (e.g., trends or facies proportions), geostatistics supports prob-
abilistic forecasting and risk-based decision-making in reservoir development (Chiles & Delfiner,
2012). Object-based modeling places predefined geological objects (e.g., channels, lobes) accord-
ing to geological rules and spatial statistics. Multiple-point geostatistics (MPS) uses training images
to replicate complex geological patterns by conditioning simulation on multiple neighboring points
rather than just pairwise correlations (Strebelle, 2002). More recently, machine learning-assisted
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workflows have been applied to learn spatial features directly from data and enhance the realism and
efficiency of model generation (Zhou et al., 2024).

Despite their broad application, geostatistical modeling techniques have several important limita-
tions that must be acknowledged during model construction. These methods rely heavily on vari-
ogram analysis, which assumes spatial stationarity. However, many sedimentary environments are
non-stationary and heterogeneous, making it difficult to define a single representative variogram
(Journel & Huijbregts, 1978). Sequential simulation methods (e.g., SIS, SGS) often neglect geolog-
ical architecture and may produce noisy or unrealistic facies distributions. In addition, Truncated
Gaussian Simulation is highly sensitive to threshold and correlation parameters, which may result
in non-geological facies shapes (Galli et al., 1994). While Multiple-Point Statistics (MPS) improves
pattern realism, it depends on training images that must be geologically representative and con-
sistent with conditioning data. These simulations are also computationally demanding (Strebelle,
2002). Object-based models require detailed assumptions about facies geometry, while machine
learning-based methods need large training datasets and often operate as ”black boxes,” which lim-
its interpretability (Zhou et al., 2024).

2.3 REPRESENTATION LEARNING

Representation learning has become a cornerstone of modern machine learning. Classical supervised
deep models such as CNNs demonstrated strong performance in vision tasks but required large an-
notated datasets. To reduce label dependence, SSL methods have emerged. Contrastive approaches
like SimCLR (Chen et al., 2020), MoCo (He et al., 2020), and SwAV (Caron et al., 2020) maximize
agreement between differently augmented views of the same sample. Non-contrastive predictive
methods such as BYOL (Grill et al., 2020) avoid negative pairs and learn stable representations.

A parallel line of work explores distillation-based SSL. DINO (Caron et al., 2021) introduced a
teacher–student framework with no labels, enabling vision transformers (ViTs) (Dosovitskiy et al.,
2021) to learn high-quality features. Its successor, DINOv2 (Oquab et al., 2023), scaled this
recipe with improved architectures and data pipelines, producing foundation models for vision.
Reconstruction-based SSL has also shown promise; Masked Autoencoders (MAE) (He et al., 2022)
reconstruct missing patches and have proven effective for large-scale pretraining. Beyond 2D vision,
SSL has been extended to scientific and geospatial domains. In medical imaging, SSL methods such
as contrastive 3D patch learning have improved performance in low-label MRI and CT tasks (Zhou
et al., 2021; Azizi et al., 2021). In geospatial representation learning, domain-specific pretext tasks
for remote sensing imagery have been proposed (Ayush et al., 2021). Despite these advances, appli-
cations of SSL to geological volumetric data remain rare.

3 METHODOLOGY

3.1 DATA GENERATION

In order to generate representative datasets for various depositional environments corresponding
to particular cells of a reservoir architecture matrix, a multi-stage modeling workflow was imple-
mented. This approach enables the assessment of geological uncertainty associated with sedimen-
tary heterogeneity and spatial distribution of reservoir properties.

The modeling process began with the compilation of a comprehensive database of geological and
geophysical parameters, collectively referred to as the Geological Context. This context includes
detailed descriptions of facies sequences and lithological characteristics, as well as supporting data
such as analog outcrop images, core descriptions, well logs, and stratigraphic motifs. These analog
datasets served as the basis for defining variable ranges and training the geostatistical models.

To simulate subsurface heterogeneity in 3D, synthetic data sets were constructed and loaded into
Petrel, a Schlumberger software platform widely used for reservoir characterization. Petrel enables
integration of geological, petrophysical, and geostatistical modeling techniques at different scales.
To learn more about the dataset acquisition, go to A.2.

Each depositional model was simulated in 5001 realizations, allowing for comprehensive assess-
ment of uncertainty arising from spatial configuration of geological bodies, connectivity, and prop-
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erty distribution. The parameters were varied systematically across realizations using probabilistic
ranges informed by analog data. Each realization includes property grids for facies, porosity, and
permeability—variables most sensitive to geological heterogeneity.

In total, our dataset comprises 20,004 synthetic 3D geological cubes with dimensions 150x144x80
voxels. Each cube has three channels: facies, porosity, and permeability. Such cubes can be treated
as multi-channel volumetric images analogous to 3D medical, where SSL has already shown some
potential (et al., 2021).

3.2 MODEL

We adapt DINOv2 (Caron et al., 2021; Oquab et al., 2023) to 3D volumetric inputs. DINOv2 is
a self-distillation framework in which a student network is trained to predict the embeddings of a
momentum-updated teacher given different augmented views of the same input. Specifically, we
encode 3D image into 2D image using CNN. 2D image then goes into ViT. We also design volu-
metric augmentations, including random cropping, rotation, and noise. We also employ multi-crop
training, combining global and local 3D views, following the original DINO recipe. We compare
DINOv2 against alternative I-JEPA (Assran, 2023) framework. This ensures that our conclusions
are not specific to a single SSL paradigm.

We implemented and trained:

• Supervised CNNs (3D ResNet) trained on labeled cubes.
• SSL models based on DINOv2 and I-JEPA

3.3 EVALUATION CRITERIA

We evaluate learned embeddings in three categories:

• Unsupervised analysis. We apply dimensionality reduction (t-SNE) to visualize clusters
with respect to sedimentary environment labels. To test whether embeddings encode geo-
logical realism, we calculate correlations with geostatistical descriptors.

• Strength of correlation between embeddings and geostatistical descriptors.

For supervised classification and regression we use frozen embeddings as input features to
lightweight classifiers/regressors (logistic/Ridge regression) for predicting environment type and
geostatistical properties. We benchmark against 3D CNNs trained end-to-end.
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4 RESULTS

4.1 REPRESENTATIONS

In this section, we describe representations learned by Supervised CNNs (representations comes
from the last layer before the prediction head) and SSL models based on DINOv2 and I-JEPA. We
analyze their meaningfullness as predicted

4.1.1 T-SNE DECOMPOSITION OF THE REPRESENTATIONS

We first reduce the representations dimensionality to 2 using T-SNE (Maaten & Hinton, 2008). Then
we visualize them as presented in Figure 1.

(a) CNN representations

(b) DINOv2 representations (c) I-JEPA representations

Barrier Islands

Shallow marine Shelf

Tidal flats

Wave-dominated deltas

Figure 1: T-SNE decomposition of representations. The points are distributed into 4 clusters, each
corresponding to the different geological depositional environment. (a) corresponds to CNN repre-
sentations, (b) to DINOv2 representations, (c) to I-JEPA representations.

4.1.2 GEOLOGICAL STATISTICS PREDICTION

There are total 20 geological statistics computed in this study for each 3D geological cube (see
Section B.1. In this section, we present the results of the Ridge regression, which take representation
as input and predict the statistics as output.

As described in the Section B.1, there are 4 different groups of the geological statistics:

1. Facies statistics (total 4 statistics) - described in B.1.1, presented in Figure 2.

2. Lorenz coefficient (total 5 statistics) - described in B.1.2, presented in Figure 3.

3. Average derivatives (total 6 statistics) - described in B.1.3, presented in Figure 4.
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4. Dykstra-Pasrsons coefficient (total 5 statistics) - described in B.1.4, presented in Figure 5.
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Figure 2: Prediction of the facies statistics from representations. Each points represents a geological
statistics from single 3D cube. X axis corresponds to the ground truth value computed as described
in the Section B.1.1. Y axis is the value of such statistics predicted from representations. The color
represents depositional environment as described in Figure 1.

The average scores for each representation method are presented in the Table 1.

Table 1: Prediction scores for the Ridge regression tasks and depositional environment classification
score (see Section 4.1.1).

Representations CNN DINOv2 I-JEPA
Depositional environment

classification score 1.0 1.0 0.92

Facies statistics
regression score 0.99 0.85 0.72

Lorenz coefficient
regression score 0.94 0.76 0.65

Derivatives coefficient
regression score 0.99 0.91 0.77

Dykstra-Parsons coefficient
regression score 0.93 0.86 0.73
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Figure 3: Prediction of the Lorenz coefficient from representations (see Section B.1.2).
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Figure 4: Prediction of the average derivatives from represenetaions (see Section B.1.3).

5 CONCLUSION AND DISCUSSION

The results show that self-supervised methods can extract non-trivial structure from synthetic geo-
logical realizations.

First, SSL representations separate depositional environments in latent space without direct super-
vision (see Figure 1). T-SNE visualizations display clear clusters aligned with depositional environ-
ments. This indicates that the DINOv2 framework captures depositional signatures.
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Figure 5: Prediction of the Dykstra-Parsons coefficient from representations (see Section B.1.4).

Second, the embeddings correlate strongly with geostatistical descriptors (see Figures 2, 3, 4, 5).
Ridge regression on SSL features in DINOv2 case yields good R2 scores without any supervision.
I-JEPA model also works here, but worse then DINO approach. This confirms that self-distillation
mechanisms preserve geological realism, not only categorical information. The supervised fine-
tuning of these models can improve the results.

Comparison of paradigms shows that DINOv2 generally outperforms I-JEPA in classification and
correlation tasks and in some cases (see Figure 4 and Table 1) can compete with CNN supervised
features.

It is worth noting that we used the most simple scenario to adapt 3D data to a 2D model. The
application of 3D ViT can improve the results, but will require much more memory and computa-
tion. Nevertheless, adapting image-based SSL to volumetric geological data is effective, despite the
non-natural and high-dimensional character of the inputs. Conceptually, this shows that geologi-
cal heterogeneity, traditionally represented by statistical descriptors, can also be encoded in learned
embeddings that are transferable across tasks.

Limitations remain. Model size and training cost are also significant compared to classical geosta-
tistical methods.

In addition, the trained represnetation models can be used for training autoencoders and variational
autoencoders. As it is known from the literature Hou et al. (2017), VAE trained in such a way results
in more realistic and less blurry images reconstruction. Thus, VAE trained on the geological 3D
cubes with DINOv2 perceptual loss will likely preserve geological statistics even without explicit
access to these statistics. This is the future direction of this study.

Overall, the study demonstrates that self-supervised vision transformers, when adapted to 3D geo-
logical cubes, provide representations that align with both geological categories and statistics. This
positions SSL as a promising direction for geological modeling under uncertainty.
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A APPENDIX A. DATASET GENERATION DETAILS

The selected depositional environments are characterized by varying geological contexts, including
the number of facies, SP log behavior according to the Muromtsev approach (Muromtsev, 1984),
structural and textural features, facies reservoir properties, and the spatial distribution of facies.

Barrier islands form from regressive bars and show upward grain-size coarsening, with lens-shaped
bodies aligned along the shoreline. They are associated with low-energy lagoonal settings are rep-
resented by shale sediments and non-reservoir.

Shallow marine shelf influenced by wave and tidal processes, display upward-coarsening trends
from distal to nearshore sublittoral zones.

Transitional environments represented by Tidal Flat Environments and Wave-Dominated Delta (Dis-
tal Deltaic Systems).
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A.1 CLASSIFICATION OF DEPOSITIONAL ENVIRONMENTS

Authors of ref. (Webber & Van Geuns, 1990) proposed a foundational framework for classifying
clastic depositional environments based on their internal reservoir architecture, focusing on the ge-
ometric and connectivity attributes of sedimentary bodies that directly influence fluid flow. This
approach moves beyond purely lithofacies-based interpretations, integrating sedimentological pro-
cesses with reservoir simulation needs.

The classification identifies three principal architectural types, each associated with distinct deposi-
tional systems and flow characteristics:

Layer-cake Architectures. These are extensive, laterally continuous units with relatively uniform
thickness, commonly associated with shoreface, shallow marine, and distal deltaic environments.
Their homogeneity and lateral connectivity typically promote efficient sweep and recovery (Webber
& Van Geuns, 1990; Allen, 1997).

Jigsaw Architectures. Found in fluvial and tidal channel systems, these are narrow, elongate bodies
with high aspect ratios and strong directional anisotropy. These reservoirs are often heterogeneous,
with variable connectivity and frequent internal baffles or barriers (Miall, 1996; Weber, 1986).

Labyrinth Architectures. These architectures form in depositional systems such as deltaic mouth
bars, turbidite lobes, or fan deltas. They typically display radial or fan-shaped geometries, vertical
stacking, and significant lateral facies transitions, resulting in complex reservoir compartmentaliza-
tion (Mutti & Normark, 1987; Webber & Van Geuns, 1990).

The classification highlights the importance of understanding depositional architecture as a control
on dynamic behavior, not just static heterogeneity. It also emphasizes the need to tailor simulation
grid designs and flow unit definitions to match the dominant architectural style of each depositional
system. This classification was adopted as the baseline framework for assigning depositional envi-
ronments in the current study:

Barrier islands. The geomorphology of these bodies is sheet-like and elongate, oriented parallel to
the shoreline, covering tens to hundreds of square kilometers (1 cell). The example is presented in
Figure 6.

Shallow marine shelf. The shallow marine shelf is also characterized by laterally continuous bodies,
but the number of facies in this model increases, thus shifting to cell 4. Vertical heterogeneity
becomes more pronounced, while lateral heterogeneity remains low. The example is presented in
Figure 7.

Tidal flats. This environment is characterized by discontinuous bodies due to the presence of chan-
nels. Channels often appear as sinuous, ribbon-like bodies in the subsurface, with thicknesses up to
20 meters and widths up to 500 meters (cell 2). The example is presented in Figure 8.

Wave-dominated deltas. This environment exhibits a jigsaw-like architecture, where incising chan-
nels cut through laterally continuous facies, fragmenting them into discontinuous bodies (cell 5).
The example is presented in Figure 9.
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Barrier Islands cube example

Figure 6: The example 3D cube from Barrier Island depositional environment.
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Figure 7: The example 3D cube from Shallow marine shelf depositional environment.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

55000 60000 65000 70000
x, m

57500

60000

62500

65000

67500

70000
y,

 m

(a)
Vertical view,

facies

55000 60000 65000 70000
x, m

(b)
Vertical view,

porosity 

55000 60000 65000 70000
x, m

(c)
Vertical view,

permeability K

0 2500 5000 7500
x, m

2380

2400

2420

2440

2460

2480

z, 
m

(d)
Horizontal cross-section,

facies

0 2500 5000 7500
x, m

(e)
Horizontal cross-section,

porosity 

0 2500 5000 7500
x, m

(f)
Horizontal cross-section,

permeability K

Tidal flats cube example

Figure 8: The example 3D cube from Tidal flats depositional environment.
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Wave-dominated deltas cube example

Figure 9: The example 3D cube from Wave-dominated deltas depositional environment.

A.2 METHODS USED

Facies modeling used methods of Sequential Indicator Simulation (SIS), Truncated Gaussian Simu-
lation (TGS), and Object-based modeling.
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Sequential Indicator Simulation (SIS) was used to model marine environments such as barrier island
and shallow marine shelf. This method incorporates both horizontal and vertical trends, along with
variogram parameter variation to reflect geological heterogeneity. The horizontal trend is closely
tied to the geometry of sedimentary bodies and the prevailing depositional regime; its shape varies
depending on the specific depositional environment, resulting in distinct model realizations. In this
case, one horizontal trend and nine vertical trends were applied to capture the vertical variation
in facies. The vertical trends were derived from analysis of lithological columns and spontaneous
potential (SP) logs, reflecting the variation in sandstone content, which ranged from 65% to 100%.
These trends represent upward increases or decreases in sand proportion typical of the modeled
environment. In addition, variogram range parameters were varied to control the size and continuity
of geological bodies, with major ranges from 400 to 10,000 meters and minor ranges from 100 to
5,000 meters, depending on the facies and depositional context.

Object-based modeling method was used for tidal flat environment, while combination of Truncated
Gaussian Simulation (TGS) and Object-based modeling was used for wave-dominated delta.

Object-based modeling simulates geological bodies as discrete geometrical objects, such as chan-
nels, lobes, or bars. For tidal flat, there is only one object for modeling, which are tidal channels.
Based on analysis of literature and analogue fields, boundary conditions for the channel facies were
defined. The key input variables included: the proportion of reservoir to non-reservoir facies, the
number of channels, their orientation, as well as amplitude, wavelength, width, and depth. Tidal flat
shales were modeled as background facies as a low-permeable and non-reservoir matrix surrounding
high-permeability features.

Truncated Gaussian simulation (TGS) is a geostatistical method used to model categorical variables,
such as facies, by transforming continuous. For shelf transition zones from proximal to distal part,
the TGS method was used. The core concept of TGS involves generating one or more Gaussian ran-
dom fields with predefined spatial correlation structures (variograms). These continuous variables
are then truncated based on a set of threshold values or lithotype rules, which assign each range of
Gaussian values to a specific facies type. This allows the model to reflect both the spatial continuity
of sedimentary bodies and the relative proportions and juxtapositions of facies. The result grid was
used as background to model channels with a help of object modeling.

Porosity and permeability modeling was performed using upscaled synthetic porosity logs and the
Sequential Gaussian Simulation (SGS) method, applied only to facies identified as reservoir rocks
for all depositional environments. For non-reservoir facies, porosity values were assigned as zero.
Each facies was assigned individual variogram ranges, consistent with those used in the facies
model.

In addition, the input data was transformed into a normal distribution. The transformation param-
eters—mean, standard deviation (std), and minimum/maximum values—were calibrated based on
well data, with the corresponding statistics on analogs fields. The modeling was carried out individ-
ually for each facies to ensure geological consistency.

For permeability modeling additional method co-located cokriging was used. It is a geostatistical
technique used to model permeability by leveraging a secondary variable (e.g. porosity) as a spatial
trend. The method estimates permeability at unsampled locations by combining sparse primary data
(measured permeability) with a collocated, more densely sampled secondary variable (porosity),
assuming a spatial correlation between the two. This allows for improved resolution and geological
realism in permeability models, especially where direct permeability measurements are limited.
applied with porosity as a secondary variable.

B APPENDIX B. GEOLOGICAL CONTEXT

B.1 GLOBAL GEOLOGICAL CONTEXT VARIABLES

In this section we describe 20 total statistics that we have computed for each 3D cube. They have
been used during supervised CNN training. They have also been used to estimate how meaningful
are different representation in the Section 4.1.2.
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B.1.1 FACIES STATISTICS

The facies fields are presented in Figures 6ad, 7ad, 8ad, 9ad. We compute 4 different statistics
related to facies:

1. Abruption (X) - mean derivative of the facies along X axis.
2. Abruption (Y) - mean derivative of the facies along Y axis.
3. Abruption (Z) - mean derivative of the facies along Z axis.
4. Collectior Fraction - fraction of facies 1 in the cube.

B.1.2 LORENZ COEFFICIENT

Lorenz coefficient describes vertical reservoir heterogeneity (Pyrcz & Deutsch, 2014). We first
compute it as 2D map for each cube. Then we compute the following 5 statistics over the obtained
map:

1. Lorenz (Mean) - mean Lorenz coefficient for given 3D cube.
2. Lorenz (St.D.) - standard deviation of the Lorenz coefficient for given 3D cube.
3. Lorenz (Median) - median Lorenz coefficient for given 3D cube.
4. Lorenz (Min) - minimal Lorenz coefficient for given 3D cube.
5. Lorenz (Max) - maximal Lorenz coefficient for given 3D cube.

B.1.3 AVERAGE DERIVATIVES

To estimate horizontal heterogeneity, we compute average derivatives of the porosity ϕ and perme-
ability K (see Figures 6, 7, 8, 9) over X, Y and Z axis, resulting in total 6 statistics:

1. Average ∂ϕ
∂x - average derivative of porosity over X axis.

2. Average ∂ϕ
∂y - average derivative of porosity over Y axis.

3. Average ∂ϕ
∂z - average derivative of porosity over Z axis.

4. Average ∂K
∂x - average derivative of permeability over X axis.

5. Average ∂K
∂y - average derivative of permeability over Y axis.

6. Average ∂K
∂z - average derivative of permeability over Z axis.

In addition, the logarithm function is applied to these derivatives.

B.1.4 DYKSTRA-PARSONS COEFFICIENT

Just like Lorenz coefficient, Dykstra-Parsons coefficient also describes vertical reservoir heterogene-
ity (Pyrcz & Deutsch, 2014). It is also first computed as 2D map for the reservoir. We then compute
another 5 statistics for each 3D cube.

1. D.P. (Mean) - mean Dykstra-Parsons coefficient for given 3D cube.
2. D.P. (St.D.) - standard deviation of the Dykstra-Parsons coefficient for given 3D cube.
3. D.P. (Median) - median Dykstra-Parsons coefficient for given 3D cube.
4. D.P. (Min) - minimal Dykstra-Parsons coefficient for given 3D cube.
5. D.P. (Max) - maximal Dykstra-Parsons coefficient for given 3D cube.
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