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Abstract

How do neural network image classifiers respond to simpler and simpler inputs? And what
do such responses reveal about the characteristics of the data and their interaction with
the learning process? To answer these questions, we need measures of input simplicity (or
inversely, complexity) and class-discriminative input information as well as a framework
to optimize these during training. Lastly, we need experiments that evaluate whether this
framework can simplify data to remove injected distractors and evaluate the impact of such
simplification on real-world data. In this work, we measure simplicity with the encoding bit
size given by a pretrained generative model, and minimize the bit size to simplify inputs
during training. At the same time, we minimize a gradient- and activation-based distance
metric between original and simplified inputs to retain discriminative information. We inves-
tigate the trade-off between input simplicity and task performance. For images with injected
distractors, such simplification naturally removes superfluous information. For real-world
datasets, qualitative analysis suggests the simplified images retain visually discriminative
features and quantitative analysis show they retain features that may be more robust in
some settings.

1 Introduction

A better understanding of the information deep neural networks use to learn can lead to new scientific
discoveries (Raghu & Schmidt, 2020), highlight differences between human and model behaviors (Makino
et al., 2022) and serve as powerful auditing tools (Geirhos et al., 2020; D’souza et al., 2021; Bastings et al.,
2021; Agarwal et al., 2021).

Removing information from the input deliberately is one way to illuminate what information content is
relevant for learning. For example, occluding specific regions, or removing certain frequency ranges from the
input gives insight into which input regions and frequency ranges are relevant for the network’s prediction
(Zintgraf et al., 2017; Makino et al., 2022; Banerjee et al., 2021a). These ablation techniques use simple
heuristics such as random removal (Hooker et al., 2019; Madsen et al., 2021), or exploit domain knowledge
about interpretable aspects of the input to create simpler versions of the input on which the network’s
prediction is analyzed (Banerjee et al., 2021b).

What if, instead of using heuristics, one learns to synthesize simpler inputs that retain task-relevant in-
formation? This way, we could gain intuition into the model behavior without relying on prior or domain
knowledge about what input content may be relevant for the network’s learning target. To achieve this,
one needs to define the precise meaning of “simplifying an input” and "retaining task-relevant information",
including metrics for simplicity and retention of task-relevant information.

In this work, we propose SimpleBits, an information-reduction method that learns to synthesize simplified
inputs which contain less information while remaining informative for the task. To measure simplicity, we use
a finding initially reported as a problem for density-based anomaly detection—that generative image models
tend to assign higher probability densities and hence lower bits to visually simpler inputs (Kirichenko et al.,
2020; Schirrmeister et al., 2020). Here, we use this to our advantage and minimize the encoding bit size
given by a generative network trained on a general image distribution to simplify inputs. To measure the
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retention of task-relevant information, we analyze several activation- and gradient-based metrics for input
similarity. Our analysis shows that gradient-weighted activation differences between the network activations
of the simplified and the original input are a suitable metric.
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Figure 1: SimpleBits overview. Top: SimpleBits simplifies images by removing information as measured by a
generative model while also retaining task-discriminative information, see Section 2 and 3. Wheel of the car
remains visible after SimpleBits simplification. Bottom: We apply SimpleBits as a per-instance simplifier
during training, where each image is simplified but the total number of images remain the same.
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Figure 2: Examples of SimpleBits applied to CIFAR10 training images. Simplified images with varying
degree of simplication by varying upper bound on Ltask, see Section 4. We observe that at lower bits per
dimension, only few discriminative features remain in the image.

We apply SimpleBits in a per-instance setting, where each image is processed to be a simplified version of
itself during training, see Figure 1. We use a variety of synthetic and real-world image datasets to evaluate
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the effect of SimpleBits on the network behavior and on the simplified input data. Our synthetic datasets
contain injected noise distractors that SimpleBits is supposed to remove, allowing a controlled evaluation of
the SimpleBits framework. For real-world datasets, we analyze the tradeoff between simplification and task
performance and the characteristics of the resulting simplified images, see Figure 2 for CIFAR10 examples.

Our evaluation provides the following insights:

1. Successful distractor removal. SimpleBits successfully removes superfluous information for tasks
with injected distractors.

2. Visually task-specific simplified images. On natural image datasets, qualitative analysis sug-
gests SimpleBits retains plausible task-relevant information across all datasets we tried.

3. Dataset-dependent simplification effects on accuracy. Increasing simplification leads to ac-
curacy decreases, as expected, and we report the trade-off between input simplification and task
performance for different datasets and problems.

4. SimpleBits learns to represent robust features in the simplified images. Evaluations
on CIFAR10-C, which consists of the CIFAR10 evaluation set with various corruptions applied
(Hendrycks & Dietterich, 2019), suggest that SimpleBits retains robust features.

Figure 3: Visualization of the bits-per-dimension (bpd) measure for image complexity, sorted from low to
high. Image samples are taken from MNIST, Fashion-MNIST, CIFAR10 and CIFAR100, in addition to a
completely black image sample. bpd is calculated from the density produced by a Glow (Kingma & Dhariwal,
2018) model pretrained on 80 Million Tiny Images. Switching to other types of generative models including
PixelCNN and diffusion models trained on other datasets produces consistent observations; see Figure S1 in
Supplementary Information for more details.

2 Measuring and Reducing Instance Complexity

How to define simplicity? We use the fact that generative image models tend to assign lower encoding bit sizes
to visually simpler inputs (Kirichenko et al., 2020; Schirrmeister et al., 2020). Concretely, the complexity of
an image x can be quantified as the negative log probability mass given by a pretrained generative model
with tractable likelihood, G, i.e. − log pG(x). − log pG(x) can be interpreted as the image encoding size in
bits per dimension (bpd) via Shannon’s theorem (Shannon, 1948): bpd(x) = − log2 pG(x)/d where d is the
dimension of the flattened x.

The simplification loss for an input x, given a pre-trained generative model G, is as follows:

Lsim(x) = − log pG(x) (1)

Figure 3 visualizes images and their corresponding bits-per-dimension (bpd) values given by a Glow network
(Kingma & Dhariwal, 2018) trained on 80 Million Tiny Images (Torralba et al., 2008) (see Supplementary
Section S1 for other models). This is the generative network used across all our experiments. A visual
inspection of Figure 3 suggests that lower bpd corresponds with simpler inputs, as also noted in prior
work (Serrà et al., 2020). The goal of our approach, SimpleBits, is to minimize bpd of input images while
preserving task-relevant information. In the following section, we will explore how to ensure the preservation
of task-relevant information.
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3 Measuring And Preserving Task-Relevant Instance Information

Figure 4: Result of matching different values on 2D binary classification problem with one discriminative and
one non-discriminative dimension. Matching the examplewise gradients leads to retaining nondiscriminative
information, matching the average gradient leads to losing the correspondence between individual simplified-
original example pairs, whereas matching weights times input leads to the desired behavior.

How to measure the preservation of task-relevant information? The task-relevant information learned by a
network must be reflected in the network activations and hence minimizing the effect of the simplification
on them may be a viable approach. However, different activations vary in their contribution to the final
prediction, due to the later processing in subsequent layers. Therefore, we will weight activation changes by
the gradient of the classification loss function in our information-preservation measure.

We propose to use the distance of the gradient-weighted network activations of the original and the simplified
input as our information-preservation measure. The gradient of the loss on the original input with regard
to the network activations ∂L(f(xorig),y))

∂h(xorig) is used as a proxy for the contribution of that activation to the
prediction f(xorig). Therefore, we try to reduce the distance of the activations weighted by that gradient,
i.e., reducing the distances of vorig = ∂L(f(xorig),y))

∂h(xorig) ◦ h(xorig) and vsimple = ∂L(f(xorig),y))
∂h(xorig) ◦ h(xsimple).

A variety of distance functions have recently been used to match gradients or weight changes, e.g., layerwise
cosine similarity (Zhao et al., 2021) or l2-normalized squared distance (Cazenavette et al., 2022). Here, we
use layerwise l2-normalized squared distance, concretely ||v

l
simple−v

l
orig||

2
2

||vl
orig
||22

for original and simplified values

for layer l, so for vlorig = ∂L(f(xorig),y))
∂hl(xorig) ◦ hl(xorig) and vlsimple = ∂L(f(xorig),y))

∂hl(xorig) ◦ hl(xsimple). Using the
layerwise l2-normalized squared distance instead of the cosine distance takes into account the magnitude of
the activations, which preliminary experiments showed to better ensure that the simplified images remain
visually interpretable. Overall, this results in the loss function:

Ltask(xsimple) =
∑
l

||∂L(f(xorig),y))
∂hl(xorig) ◦ (hl(xorig)− hl(xsimple))||22
|| ◦ ∂L(f(xorig),y))

∂hl(xorig) ◦ hl(xorig)||22
(2)

We will further motivate our measure with a 2D toy example. Our 2D binary classification problem has
one discriminative dimension (both classes have different distributions) and one nondiscriminative dimension
(both classes have the same distribution), see Fig. 4. Here, we propose the simplification should only retain
the input values of the discriminative dimension and map the nondiscriminative dimension to zero.

Commonly used methods to preserve information by matching gradients (as used in dataset condensation
methods that condense entire training datasets into smaller synthetic datasets) will fail to achieve the desired
result. Matching the per-example loss gradients undesirably retains the values of the nondiscriminative
dimension in the simplified examples. The loss gradient for example x and target y wrt. to weights w is
∂L(f(x),y)

∂w = ∂L(f(x),y)
∂f(x) · ∂f(x)

∂w = ∂L(f(x),y)
∂f(x) · x, so both dimensions x1 and x2 will be optimized to be the

same for the original and simplified examples. Instead matching the gradient averaged over all examples
maps all simplified examples of one class to the same point, losing the correspondence between simplified
and original examples. What does work as desired is matching w ◦ x as seen in Fig. 4, where only the
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Algorithm 1 One SimpleBits Joint Training Step
1: given generative network G, input and target batch X and y, the classifier clf and the image-to-image simplifier network.
2: Create a copy of the classifier and train it one step on real data, e.g. using SGD/Adam
3: copied_clf = train_one_step(copy(clf), X, y)
4: Simplify original data batch
5: Xsimple = simplifier(X)
6: Compute per-example simplification loss as in equation 1
7: sim_loss = log pG(Xsimple)
8: Compute per-example task loss as in equation 2
9: task_loss = Ltask(copied_clf, Xsimple, X, y)
10: Predict original data to know which examples are predicted correctly.
11: predicted_y = copied_clf(X)
12: Mask out simplification loss for examples with too high task loss or incorrectly predicted class.
13: sim_loss = sim_loss ◦ (task_loss < threshold) ◦ (predicted_y == y)
14: Compute average total loss over examples.
15: total_loss = average(sim_loss + task_loss)
16: Update simplifier using the total loss, e.g. with SGD/Adam
17: simplifier = update_simplifier(simplifier, total_loss)
18: Simplify original data batch with updated simplifier
19: Xsimple = simplifier(X)
20: Train one step with classification loss on simplified data, e.g. using SGD/Adam.
21: clf = train_one_step(clf, Xsimple, y)
22: Return updated simplifier and classifier
23: return simplifier, clf

discriminative dimension x1 is optimized to be the same for the simplified and the original examples. Noting
that the gradient of loss of the with regard to the inputs is ∂L(f(x),y)

∂x = ∂L(f(x),y)
∂f(x) ◦ ∂f(x)

∂x = ∂L(f(x),y)
∂f(x) ◦w, our

gradient-weighed activation matching can be seen as a generalization of the x◦w matching to deep networks.

In preliminary work, we also considered w ◦ ∂L(f(x),y)
∂w (weights times gradients wrt. to weights). We mainly

opted for the activation-based matching due to the faster computation as no examplewise weight gradients
need to be computed. Note that for the simple linear model derived above, both of these metrics are
equivalent ∂L(f(x),y)

∂w ◦ w = ∂L(f(x),y)
∂f(x) · ∂f(x)

∂w ◦ w = ∂L(f(x),y)
∂f(x) · x ◦ w = ∂L(f(x),y)

∂f(x) · x ◦ ∂f(x)
∂x = ∂L(f(x),y)

∂x · x.
We note that both of these metrics have been used elsewhere, e.g. the w ◦ ∂L(f(x),y)

∂w metric has been used
to identify important connections for pruning (Lee et al., 2019) and h(x) ◦ ∂L(f(x),y))

∂h(x) has been used in
interpretability work where mostly the original input activation x was used as h(x) (Shrikumar et al., 2017).

4 Per-Instance Simplification During Training

When plugged into the training of a classifier f , SimpleBits aims to simplify each image such that f can
still learn the original classification task from the simplified images. For that, we train an image-to-image
network simplifier to simultaneously optimize Lsim and Ltask while we train the classifier on the simplified
images. As the classifier guides the simplifier in learning what information is task-relevant, we also need to
enable the classifier to learn task-relevant information that the simplifier network has not included in the
simplified images at that point. For that, before computing Ltask on a paired batch of real and simplified
images, we first copy the current classifier state and train that copied classifier for one step on the real images
of that batch. Since only a copy of the classifier is trained in that step, the actual classifier still only learns
from the simplified images.

To achieve a tradeoff between simplification and preservation of task-relevant information, we set an upper
bound on the allowed Ltask. This intuitively defines how much task-relevant information may be lost due to
the simplification on each example and we vary it to investigate different tradeoffs. We only optimize the
simplification loss on an example as long as (a) the Ltask stays below the threshold on that same example
(b) the classifier predicts the correct class on that example. This was empirically more stable than using a
linear combination of the losses and also had the desired result of keeping task-relevant information in each
image rather than just in the dataset. Pseudocode for one training step can be found in Algorithm 1.
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5 Experiments

Our classifier architecture is a normalizer-free architecture to avoid interpretation difficulties that may arise
from normalization layers, such as image values being downscaled by the simplifier and then renormalized
again. We use Wide Residual Networks as described by Brock et al. (2021). The normalizer-free architecture
reaches 94.0% on CIFAR10 in our experiments, however we opt for a smaller variant for faster experiments
that reaches 91.7%; additional details are included in the Supplementary Section S2.1. For the simplifier
network, we extend the Wide ResNet architecture with 3 output heads at different stages of the network
that outputs encodings to be inverted by our generative model, a three-scale Glow architecture as mentioned
in Section 2. This leverages the learnt decoder of the Glow architecture for our simplifier, more details are
included in Supplementary Section S2.2.

5.1 SimpleBits Removes Injected Distractors

Original

SimpleBits
output

Original

Side-by-Side MNISTs (ground truth: MNIST) MNIST with Uniform Noise (ground truth: MNIST)

Interpolated MNIST and CIFAR10 (ground truth: MNIST) CIFAR10 with Stripes (ground truth: Stripes)

SimpleBits
output

Figure 5: Evaluation of SimpleBits as a distractor removal on four composite datasets. Shown are the
composite original images and the corresponding simplified images produced by SimpleBits trained alongside
the classifier. SimpleBits is able to almost entirely remove task-irrelevant image parts, namely FashionMNIST
(top left), random noise (top right), CIFAR10 (bottom left as well as bottom right).

We first evaluate whether our per-instance simplification during training successfully removes superfluous
information for tasks with injected distractors. To that end, we construct datasets to contain both useful
(ground truth) and redundant (distractor) information for task learning. We create four composite datasets
derived from three conventional datasets: MNIST (LeCun & Cortes, 2010), FashionMNIST (Xiao et al.,
2017) and CIFAR10 (Krizhevsky, 2009). Sample images, both constructed (input to the whole model) and
simplified (output of simplifier and input to classifier), are shown in Figure 5.

Side-by-Side MNIST constructs each image by horizontally concatenating one image from Fashion-MNIST
and one from MNIST. Each image is rescaled to 16x32, so the concatenated image size remains 32x32; the
order of concatenation is random. The ground truth target is MNIST labels, and therefore FashionMNIST
is an irrelevant distractor for the classification task. As seen in Figure 5, the simplifier effectively removes
the clothes side of the image.

MNIST with Uniform Noise adds uniform noise to the MNIST digits, preserving the MNIST digit as
the classification target. Hence the noise is the distractor and is expected to be removed. And indeed the
noise is no longer visible in the simplified outputs shown in Figure 5.

Interpolated MNIST and CIFAR10 is constructed by interpolating between MNIST and CIFAR10
images. MNIST digits are the classification target. The expectation is that the simplified images should
no longer contain any of the CIFAR10 image information. The result shows that most of the CIFAR10
information is removed, leaving only some information that is visually similar to parts of digits.
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Figure 6: Results for training image simplifications on real datasets. Dots show results for training with
varying upper bound on Ltask. Images with less bits per dimension lead to reduced accuracies, and such
reduction is more pronounced for complex datasets like CIFAR10.

Figure 7: SimpleBits examples of training for increased simplification by increasing loss bound for Ltask on
CIFAR10, SVHN, MNIST and Fashion-MNIST. Images produced by the simplifier at end of joint training,
shown are the first example of each class in the test set. Percentages left of each row indicate accuracies
after retraining on images produced by the same simplifier.

CIFAR10 with Stripes overlays either horizontal or vertical stripes onto CIFAR10 images, with the binary
classification label 0 for horizontal and 1 for vertical stripes. With this dataset the simplification mostly
only retains some horizontal and vertical stripes, which is enough to solve this task.
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Figure 8: Results on MIMIC-CXR Pleural Effusion vs. Healthy Diagnosis from Chest X-Rays.

5.2 Trade-off Curves on Conventional Datasets

We verified that SimpleBits is able to discern information relevance in inputs, and effectively removes re-
dundant content to better serve the classification task. In real-world datasets, however, the type, as well as
the amount of information redundancy in inputs is often unclear.

With the same framework, by varying the upper bound on the allowed Ltask we can study the trade-off
between task performance and level of simplification to better understand a given dataset. With lower upper
bounds, the training should resemble conventional training as Lsim will be mostly turned off. On the other
end, with higher upper bounds, the inputs should be more drastically simplified at the expense of accuracy
due to the loss of task-relevant information.

We experimented with MNIST, Fashion-MNIST, SVHN (Netzer et al., 2011) and CIFAR10, producing a
trade-off curve for each by setting the upper bound on the allowed Ltask various values for different training
runs. For each setting, we report the classification accuracy as a result of joint training of simplification and
classification and after retraining from scratch with only simplified images, as shown in Figure 6. We also
show the first simplified test image of each class, see Figure 7.

As expected, higher strengths of simplification lead to decreased task performance. Interestingly, such decay
is observed to be more pronounced for more complex datasets such as CIFAR10. This suggests either the
presence of a relatively small amount of information redundancy, or that naturally occurring noise in data
help with generalization, analogous to how injected noise from data augmentation helps learning features
invariant to translations and viewpoints, even though the augmentation itself does not contain additional
discriminative information.

Qualitative analysis of the simplified images in Figure 7 suggests that even with strong simplification, dis-
criminative information is retained in the images. At the strongest simplification level, with many details
removed, most classes are still visually identifiable.

We run three baselines to validate the efficacy of our simplification framework, as described in Supplementary
Section S5 and shown in Figure S4. Section S3 shows that our simplification has practical savings in image
storage. Training curves can be seen in Section S4. Additionally, we show that SimpleBits can also simplify
images in a dataset condensation setting, see Section S8 .
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5.3 SimpleBits is Able to Retain Good Accuracies on Corrupted CIFAR10
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Figure 9: Results of SimpleBits on CIFAR10-C. Top: Accuracies of classifiers trained with varying upper
bound on Ltask at the end of joint training. Blue lines indicate accuracies after SimpleBits training, with
the frozen simplifier network applied to the test data during evaluation. Black lines indicate baseline accu-
racy of a network trained without any simplification. Accuracies decrease with increasing simplification on
the CIFAR10 dataset, but accuracies do not decrease and even slightly increase for the simplified images
on CIFAR10-C. This may indicate the combination of the simplifier and the classifier have learned more
robust features. Bottom: Results per CIFAR10-C subset of the SimpleBits-trained model with strongest
simplification. SimpleBits has especially high accuracies on high-frequency noise and blurring corruptions.

We evaluated the performance of our SimpleBits-trained CIFAR10 models on the CIFAR10-C dataset, which
consists of the CIFAR10 evaluation set with various corruptions applied (Hendrycks & Dietterich, 2019). We
found that SimpleBits evaluated on the simplified images actually increased accuracy on CIFAR10-C with
increasing simplification, even slightly outperforming a regularly trained CIFAR10 classifier (see Figure 9).
SimpleBits has especially high accuracies on high-frequency noise and blurring corruptions. This suggests
that the combination of the simplifier and SimpleBits-trained classifier is able to retain features robust to
some corruptions on CIFAR10.

5.4 SimpleBits Retains Plausible Features on Chest X-Rays

We applied SimpleBits to the MIMIC-CXR-JPG dataset to classify Chest X-Rays of healthy patients and
those with pleural effusion. The classifier was able to maintain high accuracy across all levels of simplification,
and the simplified images still displayed plausible Chest-X-Ray features for pleural effusion, see Figure 8.
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6 Related Work

Our approach simplifying individual training images builds on Raghu et al. (2021), where they learn to
inject information into the classifier training. Per-instance simplification during training can be seen as a
instance of their framework combined with the idea of input simplification. In difference to their methods,
SimpleBits explicitly aims for interpretability through input simplification.

Other interpretability approaches that synthesize inputs include generating counterfactual inputs (Hvilshøj
et al., 2021; Dombrowski et al., 2021; Goyal et al., 2019) or inputs with exaggerated features (Singla et al.,
2020). SimpleBits differs in explicitly optimizing the inputs to be simpler.

Generative models have often been used in various ways for interpretability such as generating realistic-
looking inputs (Montavon et al., 2018) and by directly training generative classifiers (Hvilshøj et al., 2021;
Dombrowski et al., 2021), but we are not aware of any work except (Dubois et al., 2021) (discussed above) to
explicitly generate simpler inputs. A different approach to reduce input bits while retaining classification per-
formance is to train a compressor that only keeps information that is invariant to predefined label-preserving
augmentations. Dubois et al. (2021) implement this elegant approach in two ways. In their first variant, by
training a VAE to reconstruct an unaugmented input from augmented (e.g. rotated, translated, sheared)
versions. In their second variant, building on the CLIP (Radford et al., 2021) model, they view images with
the same associated text captions as augmented versions of each other. This allows the use of compressed
CLIP encodings for classification and achieves up to 1000x compression on Imagenet without decreasing
classification accuracy. Their approach focuses on achieving maximum compression while our approach is
focused on interpretability. Their approach requires access to predefined label-preserving augmentations and
has reduced classification performance in input space compared to latent/encoding space.

7 Conclusion

We propose SimpleBits, an information-based method to synthesize simplified inputs. Crucially, Sim-
pleBits does not require any domain-specific knowledge to constrain or dictate which input components
should be removed; instead SimpleBits itself learns to remove the components of inputs which are least
relevant for a given task.

Our simplification approach sheds light on the information required for a deep network classifier to learn
its task. It can remove injected distractors and reveal discriminative features. Further, we find that for our
approach the tradeoff between task performance and input simplification varies by dataset and setting — it
is more pronounced for more complex datasets.
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Supplementary Information for:
When Less is More: Simplifying Inputs Aids Neural

Network Understanding

Supplementary Outline

This document completes the presentation of the main paper with the following:

Supplementary
Section

Type of
Content

Relevant Section
in Main Text TL;DR

S1 Additional experiments Section 2 Example images with bpd values produced
by other generative models

S2 Implementation details Section 4 Architecture details for simplification dur-
ing training

S3, S4, S5 Additional experiments Section 5.2 Baselines, training curves, file size analysis
S7 Additional experiments Section 5.2 SimpleBits applied to Vision Transformers
S6 More figures Figure 2 Uncurated sets of simplified images at end

of joint training
S8 Additional experiments - SimpleBits applied to Dataset Condensa-

tion

S1 BPDs of Other Generative Models

Figure S1 shows that the bits per dimension produced by other generative models than Glow also correlate
well with visual complexity, validating our measure. This is consistent with prior work that found bpds
of generative models trained on natural image datasets are strongly influenced by general natural image
characteristics independent of any specific dataset (Kirichenko et al., 2020; Schirrmeister et al., 2020; Havtorn
et al., 2021).

S2 Architecture Details for Per-Instance Simplification During Training

S2.1 Classifier Network

Our classification network is based on the Wide ResNet architecture (Zagoruyko & Komodakis, 2016). We
used a version with relatively few parameters with depth = 16 and widen_factor = 2 to allow for fast
iteration on experimentation. We used ELU instead of ReLU nonlinearities.

Additionally, we removed batch normalization to avoid interference of normalization layers with the simpli-
fication process. We followed the method from Brock et al. (2021) to create a normalizer-free Wide ResNet.
We reparameterize the convolutional layers using Scaled Weight Standardization:

Ŵij = Wij − µi√
Nσi

, (S1)

where µi = (1/N)
∑
jWij , σ2

i = (1/N)
∑
j(Wij − µi)2, and N denotes the fan-in. Further as in Brock

et al. (2021), "activation functions are also scaled by a non-linearity specific scalar gain γ, which ensures
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Figure S1: Visualization of the bits-per-dimension (bpd) measure for image complexity, sorted from low to
high. Image samples are taken from MNIST, Fashion-MNIST, CIFAR10 and CIFAR100, in addition to a
completely black image sample. bpd is calculated from the density produced by a Glow (Kingma & Dhariwal,
2018) model pretrained on 80 Million Tiny Images, a PixelCNN model trained on CIFAR10, and a diffusion
model trained on CIFAR10.

that the combination of the γ-scaled activation function and a Scaled Weight Standardized layer is variance
preserving." Finally, the output of the residual branch is downscaled by 0.2, so the function to compute the
output becomes hi+1 = hi + 0.2 · fi(hi), where hi denotes the inputs to the ith residual block, and fi denotes
the function computed by the ith residual branch. Unlike Brock et al. (2021), we did not multiply scalars βi
with the input of the residual branch or learned zero-initialized scalars to multiply with the output of the
residual branch, as we did not find these two parts helpful in our setting. We also did not attempt to use
Stochastic Depth (Huang et al., 2016), which may further improve upon the accuracies reported here. Due
to our small batch sizes (32), we also did not use adaptive gradient clipping.

With this setup, the normalizer-free Wide ResNet with depth = 28 and widen_factor = 10 reached 94.0%
on CIFAR10. To enable faster experiments, we instead use a smaller architecture with depth = 16 and
widen_factor = 2 which reached 91.2% on CIFAR10.

S2.2 Simplifier Network

For the simplifier network, we extend the Wide ResNet architecture with 3 output heads at different stages of
the network that output encodings to be inverted by our generative model, a three-scale Glow architecture
as mentioned in Section 2. This leverages the learnt decoder of the Glow architecture for our simplifier.
Concretely, our simplifier network predicts scaling and translation coefficients for the Glow encodings of the
original image. We invert the scaled and translated encodings using the same Glow network to obtain our
simplified images.

S3 PNG-compressed File Sizes of Simplified Images

We validated that simplified images actually occupy less storage space. We saved images in the PNG file
format and calculated the file size. Figure S2 shows the average PNG file size of the simplified images
obtained from our simplification framework. Concretely, we PNG-compressed the images at the end of the
joint simplification and classification training and then computed the average file size. Varying the upper
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Figure S2: Simplified CIFAR10 images result in smaller storage space when converted into PNG files. Plotted
are the average PNG file sizes of the simplified images after joint simplification and classification training (see
Section 4), against bpd values produced by Glow, the generative model. Runs with different simplification
loss weight λsim lead to different average file sizes.
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Figure S3: Learning curves for retraining on simplified images on CIFAR10.

bound on Ltask leads to different average bpd values and also different file sizes, with larger bounds resulting
in smaller file sizes.

S4 Learning Curves for Retraining

Figure S3 shows learning curves during retraining on the simplified images on CIFAR10. There are no
noticeable differences in training speed for more or less simplified images.

S5 Simplifier Baselines

We implemented three simpler baselines to check whether the losses used in SimpleBits during training
help retain task-relevant information. In the first baseline, we train the simplifier to simultaneously reduce
bpd of the simplified image and the mean squared error between the simplified and the original image.
Afterwards we train the classifier on the simplified images and evaluate on the original images the same
way as during retraining of SimpleBits. In the second baseline, we blur the original images with a gaussian
kernel, which also reduces their bpd. We vary the sigma/standard deviation for the gaussian kernel to
trade off smoothness and task-informativeness. In the third baseline, we use lossy JPEG compression with
varying quality levels. As in SimpleBits and the other baselines, we estimate the bits per dimension of the
lossy-JPEG-compressed images through our pretrained Glow network for a fair comparison. The gaussian
blurring and JPEG compression each replace the simplifier, so these are fixed simplifier baselines without
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Figure S4: Comparison between SimpleBits and two simpler baselines: In the first one, the simplifier network
is trained to simultaneously reduce bpd of the simplified image and the mean squared error between the
simplified and the original image. In the second one, gaussian blurring is applied to the input images,
different runs vary in the standard deviation used to create the gaussian blurring kernel. In the third one,
we use JPEG compression with varying quality levels. Tradeoff curves are mostly worse for the baselines
than for SimpleBits .

training a simplifier. While these three baselines also retain some task-relevant information allowing the
classifier to retain above-chance accuracies (see Figure S4), the tradeoff between bpd and accuracy is mostly
worse than for SimpleBits, especially on CIFAR10 and SVHN. This shows the losses used in SimpleBits help
retain more task-relevant information compared to these baselines.

S6 More Images Simplified During Training

We show a larger number of images that were simplified on CIFAR10 during training with the largest
simplification loss weight λsim = 2.0 in Figures S5 and S6.

S7 SimpleBits with Vision Transformers

To validate that SimpleBits also works with non-convolutional architectures, we trained a Vision Transformer
(ViT) with SimpleBits on CIFAR10 1. As Figure S7 shows, while accuracies are lower on CIFAR10 as
expected for training a ViT from scratch, SimpleBits still shows a accuracy - bits per dimension tradeoff
and the simplified images qualitatively contain discriminative information. Interestingly, they look similar,
yet different from the simplified images resulting when applying SimpleBits to convolutional networks. This
suggests the simplified images may reveal what information different architectures are more likely to learn.

Additionally, we also evaluated how the bits-per-dimension/accuracy tradeoff changes when we retrain one
type of architecture (Vision Transformers or residual convolutional networks) on simplified images obtained
from applying SimpleBits to the other type of architecture. Figure S8 show that in all variants on CIFAR10,
the networks learn above-chance accuracies, indicating that the simplified images always contain discrimi-
native information that both architectures can exploit. When retraining the convolutional networks, there
is a larger decrease in accuracy when using the simplified images obtained via vision transformers. This
may indicate that the simplified images of vision transformers are more architecture-specific. An interesting
future work can be to more deeply investigate what the simplified images reveal about the inductive biases
of different types of network architectures.

1Implementation taken from https://github.com/omihub777/ViT-CIFAR/blob/f5c8f122b4a825bf284bc9b471ec895cc9f847ae/
vit.py
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Figure S5: Uncurated set of simplified images with λsim = 2.0, 6 per class. Rows alternate between original
and simplified images.

S8 SimpleBits applied to Dataset Condensation

Now we investigate how SimpleBits affects training on a small synthetic condensed dataset. Multiple methods
have been developed for dataset condensation (Zhao et al., 2021; Zhao & Bilen, 2021; Wang et al., 2018;
Maclaurin et al., 2015), via backpropagation through training (Wang et al., 2018; Maclaurin et al., 2015),
gradient matching (Zhao & Bilen, 2021), or kernel based meta-learning (Nguyen et al., 2021). Due to its
small size, one can visualize the full condensed dataset to understand what information is preserved for
learning. Our aim here is to combine SimpleBits with dataset condensation to see if we could obtain a both
smaller and simpler training dataset than the original.

In this setting, we jointly condense our training dataset to a smaller number of synthetic training inputs
and simplify the synthetic inputs according to our simplification loss (Eq. 1). Concretely, we add the
simplification loss Lsim to the gradient matching loss proposed by Zhao & Bilen (2021). The gradient
matching loss computes the layerwise cosine distance between the gradient of the classification loss wrt. to
the classifier parameters θ produced by a batch of original images Xorig and a batch of synthetic images
Xsyn:

Lmatch(Xorig,Xsyn) =
D(∇θl(f(Xorig),y),∇θl(f(Xsyn),y)).

(S2)

where D is the layerwise cosine distance. The matching loss is computed separately per class.

Overall, with our simplification loss, we get:
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Figure S6: Uncurated set of correctly predicted simplified images with λsim = 2.0, 6 per class. Rows alternate
between original and simplified images.

Lsyn(Xorig,Xsyn) = Lmatch(Xorig,Xsyn)

+
∑

xsyn∈Xsyn

− log pG(xsyn) (S3)

We perform dataset condensation on MNIST, Fashion-MNIST, SVHN and CIFAR10 with varying λsim for
the simplification loss. We also apply dataset condensation to the chest radiograph dataset MIMIC-CXR-
JPG (Johnson et al., 2019a;b) for predicting pleural effusion and gender. We use the networks from (Zhao
et al., 2021), but use Adam (Kingma & Ba, 2015) for optimization.

S8.1 SimpleBits Retains Condensation Performance While Greatly Simplifying Data

In Figure S9, we examine the accuracy for each condensed-and-simplified dataset. We observe that for the
natural image datasets, accuracies are mostly retained when decreasing the number of bits per image. Note
that the setting with highest bpd is a reimplementation of Zhao et al. (2021) and therefore a baseline without
simplification loss. We visualize examples in Figure S9 and observe that the jointly condensed and simplified
images look visually smoother, indicating that higher frequency patterns visible in the original images are
not needed to reach the same accuracy. These visualizations are also noticeably more smooth than the results
for per-instance simplification Figure 5, which suggests that data condensation may already favor features
that are less complex. Further condensed sets are in Section S8.2 and a continual learning evaluation in S8.3.

Evaluation of a Medical Chest Radiograph Dataset We also evaluate jointly condensing and simpli-
fying for a dataset of chest radiograph images (Johnson et al., 2019a;b). This dataset has known radiologic
features for the presence of pleural effusion (Jany & Welte, 2019; Raasch et al., 1982) and difference in
gender (Bellemare et al., 2003). In Figure S10, we visualize both the condensed (top row) and the jointly
condensed and simplified dataset (bottom row). The overlayed shows that a visible difference between
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Figure S7: Examples of SimpleBits applied to CIFAR10 training images with a Vision Transformer. Conven-
tions as in Figure 2. We observe that simplified images seem to retain discriminative information, yet look
slightly different from the ones in Figure 2, suggesting SimpleBits SimpleBits reveals architecture-specific
discriminative information.
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Figure S8: Cross-architecture results retraining an architecture (Vision Transformers or residual convolu-
tional networks) on simplified images resulting SimpleBits applied to another architecture.

presence of feature. For pleural effusion, a larger white region on the bottom of the lung occurs in the
simplified pathological image, while for gender, lungs appear slightly smaller for the simplified female image.

S8.2 More Condensed Datasets

We also show condensed datasets for MNIST and SVHN (Figure S12), some interesting condensed datasets
that resulted when we varied the architecture (Figure S13) or the condensation loss (from gradient matching
to either negative gradient product or single-training-step unrolling, Figure S14).

S8.3 Evaluation of Condensed Datasets for Continual Learning

We also evaluate the simplified condensed datasets in a continual learning setting, following (Zhao & Bilen,
2021). In this task-incremental continual learning setting, the model is trained on different classification
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Figure S9: Dataset condensation accuracies (when retraining with the condensed dataset) vs. data sim-
plicity. Top: Each dot represents a data condensation experiment run with a particular weight for the
simplification loss, which results in more or less complex datasets. Accuracies can be retained even with sub-
stantially reduced bits per dimension. In the 1-image-per-class case (top left figure), arrows highlight the
settings that are visualized in the bottom figure. Bottom: Condensed datasets with varying simplification
loss weight. Each row represents the whole condensed dataset (1 image per class), with high (top row) or
low (bottom row) bits per dimension. Lower bits per dimension datasets are visually simpler and smoother
while retaining the accuracy.

Figure S10: Condensed dataset for pleural effusion and gender prediction from chest radiographs in MIMIC-
CXR. Condensed images for the classes look very similar. Color-coded mixed rightmost images reveal the
differences between the classes. Green highlighted region at the lower end of the lung consistent with typical
radiologic features for pleural effusion (white region indicating fluid on lungs), red highlighted around lung
for gender indicate smaller lung volume for the female class.
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Continual Learning Results
ours w. KD SVHN bpd: 11.9, MNIST BPD: 4.3
ours w.o. KD
ours w. KD SVHN bpd: 3.9, MNIST BPD: 2.5
ours w.o. KD
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no condensed dataset
Orig w. KD
Orig w.o. KD

Figure S11: Continual Learning Results without Condensed Dataset (regular sequential training). Conven-
tions as in Figure S15. Accuracies substantially worse without any condensed dataset.

datasets sequentially. When training on a new dataset, the model is additionally trained on the condensed
versions of the previous datasets.

The continual learning experiment reproduces the setting from (Zhao & Bilen, 2021) to first train on SVHN,
then on MNIST and finally on USPS (Hull, 1994), using the average accuracy across all three datasets of
the classifier at the end of training as the final accuracy (see (Zhao & Bilen, 2021) for details).

We created a simpler and faster continual training pipeline that achieves comparable results to Zhao &
Bilen (2021). First, we train 3 times for 50 epochs on SVHN, with a cosine annealing learning rate schedule
(Loshchilov & Hutter, 2017) that is restarted at each time with lr = 0.1. Then for each MNIST and USPS,
we train one cosine annealing cycle of 50 epochs for lr = 0.1.

We first verified that we can reproduce the prior continual learning results with our simpler training pipeline
and find that our training pipeline indeed even slightly outperforms the reported final results (96.0% vs.
95.2% with, and 95.4% vs 93.0% without knowledge distillation) despite slightly inferior performance in the
first training stage (before any continual learning, 93.6% vs 94.1%), see following subsection. When using
different SVHN and MNIST condensed datasets, we find that we can retain the original continual learning
accuracies even with condensed datasets with substantially less (∼9x less) bits per dimension (see Fig.S15).

Without Condensed Dataset Our training pipeline still exhibits forgetting when not using any condensed
datasets of previously trained-on datasets. As Figure S11 shows, the accuracies are far lower than with just
regular sequential training. We performed this ablation to ensure forgetting still occurs in our training
pipeline.
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Figure S12: Dataset condensation results with varying simplification loss weight. Top: Individual dots
represent accuracies for setting with different simplification loss weights. Accuracies can be retained even
with substantially reduced bits per dimension. For 1 image per class, arrows highlight the settings that are
visualized below. Below: Condensed datasets with varying simplification loss weight. Per dataset, showing
condensed datasets with high (top row) and low (bottom row) bits per dimension. Lower bits per dimension
datasets are visually simpler and smoother while mostly retaining accuracies.
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Figure S13: Dataset condensation on CIFAR10 with varying architecture.
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Figure S14: Dataset condensation on CIFAR10 with varying condensation loss and varying outer loop steps,
i.e. how many steps the classifier is trained at each training epoch (default 1 in the 1 image per class setting),
after each step the condensation loss is again optimized.
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Figure S15: Continual Learning Results. Results for first training on SVHN, then MNIST and then USPS for
condensed datasets with varying bits per dimension. Solid lines are with and dashed lines without knowledge
distillation. Note that continual learning accuracies remain similar also for substantially reduced bits per
dimension. Ablations show that accuracies degrade without any condensed dataset, see supplementary.
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