

000 TEXT SUMMARIZATION VIA GLOBAL STRUCTURE 001 002 AWARENESS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009 010

011 Text summarization is a core task in natural language processing (NLP). With
012 the rapid growth of information, handling long documents has become increas-
013 ingly demanding, making summarization essential. Existing research mainly fo-
014 cuses on model improvements and sentence-level pruning, but often overlooks
015 global structure, leading to disrupted coherence and weakened downstream per-
016 formance. Some studies employ large language models (LLMs), which achieve
017 higher accuracy but incur substantial resource and time costs. To address these is-
018 sues, this paper introduces the first summarization method based on global struc-
019 ture awareness using topological data analysis (TDA). The method summarizes
020 text efficiently while preserving semantic cores and logical dependencies. Specif-
021 ically, we construct a semantic-weighted graph from sentence embeddings, where
022 persistent homology identifies core semantics and logical structures, preserved in
023 a “protection pool” as the backbone for summarization. We design a topology-
024 guided iterative strategy, where lightweight proxy metrics approximate sentence
025 importance to avoid repeated high-cost computations, thus preserving structural
026 integrity while improving efficiency. To further enhance long-text processing, we
027 propose a hierarchical strategy that integrates segment-level and global summa-
028 rization. Experiments on multiple datasets demonstrate that GloSA-sum reduces
029 redundancy while preserving semantic and logical integrity, striking a balance be-
030 tween accuracy and efficiency, and further benefits LLM downstream tasks by
031 shortening contexts while retaining essential reasoning chains.

032 1 INTRODUCTION 033

034 With the explosive growth of digital information, human society generates massive volumes of long-
035 form documents daily. Directly processing such lengthy texts creates efficiency and accuracy bot-
036 tlenecks for downstream NLP tasks. In particular, when LLMs are required to handle long con-
037 texts, redundant information quickly exhausts the context window, increases computational cost,
038 and distracts the model from focusing on core content. Therefore, effectively summarizing long
039 texts without losing key information and logical chains has become a central challenge in NLP.

040 Existing methods aim to improve summarization performance from different perspectives. A
041 straightforward and widely adopted approach is sentence-level pruning based on local semantic
042 similarity or statistical features. A typical example models Mihalcea & Tarau (2004); Erkan &
043 Radev (2004) a document as a graph of sentence similarities and then applies graph ranking to
044 select salient sentences. This idea is also extended to multi-document summarization by incorpo-
045 rating document-level weights to better capture cross-document importance Wan (2008). Other works
046 formulate sentence selection as an optimization problem to balance content coverage and redun-
047 dancy Clarke & Lapata (2008); Lin & Bilmes (2011). These methods are efficient and intuitive,
048 yet their reliance on local similarity or shallow features often limits their ability to capture global
049 semantic structures and long-range logical dependencies. Some studies focus on improving model
050 architectures to enhance summarization. BERTSum Liu & Lapata (2019) employs BERT-based
051 encoders with sentence-level classifiers to strengthen contextual representations, while MatchSum
052 Zhong et al. (2020) reformulates the task as a candidate–summary–document matching problem
053 to ensure holistic consistency. TexShape Kale et al. (2024) combines pretrained language
models with a neural module to construct information-theoretic sentence embeddings based on mutual
information, enabling controllable summarization while preserving useful content and filtering sen-

054 sitive information. Although these approaches improve representational power and accuracy, they
 055 often face scalability and efficiency bottlenecks when applied to very long documents. Another line
 056 of research leverages LLMs for summarization Zhang et al. (2024); Azher et al. (2024). Despite
 057 their strong performance, LLM-based methods incur substantial inference costs and computational
 058 overhead, which limit their applicability in large-scale long-text scenarios.

059 To address these issues, we explore whether it is possible to reduce excessive resource consumption
 060 while maintaining summarization quality. TDA Uchendu & Le (2024); Wasserman (2018) provides
 061 a global perspective for capturing semantic structures and logical dependencies, enabling the extrac-
 062 tion of key reasoning chains and thus preserving the overall skeleton of a document during sum-
 063 marization. Based on this insight, we propose GloSA-sum, a Global Structure-Aware TDA-based
 064 Summarization Framework. Specifically, we encode sentences into high-dimensional semantic em-
 065 beddings and construct a weighted undirected graph where edge weights jointly reflect semantic
 066 similarity and positional distance, thereby balancing global semantic relations with local discourse
 067 coherence. We then apply persistent homology to track the birth and death of semantic structures
 068 across scales, distinguishing short-lived noise from persistent structural features. Zero-dimensional
 069 homology (H_0) corresponds to semantic clusters that reveal the document’s core themes, while
 070 one-dimensional homology (H_1) captures loop structures that reflect cross-paragraph logical de-
 071 pendencies. By selecting persistent topological features, we extract a robust semantic and logical
 072 backbone that is preserved throughout the summarization process. However, directly applying TDA
 073 to long-text summarization introduces efficiency challenges: repeatedly computing persistent ho-
 074 mology during iterative summarization is computationally prohibitive. Consequently, we propose
 075 a Protected Pool mechanism, which performs a one-time topological analysis to identify and fix
 076 the document’s semantic and logical backbone. Persistent homology is computed only once, while
 077 subsequent iterations rely on lightweight proxy metrics to evaluate and filter non-critical sentences,
 078 achieving efficient iterative summarization. Furthermore, to handle ultra-long texts, we design a
 079 hierarchical summarization strategy. The document is first partitioned into paragraphs or semantic
 080 segments, within which local TDA-based summarization is executed in parallel; the locally sum-
 081 marized results are then globally integrated and refined with a lightweight topological constraint to
 ensure cross-paragraph logical consistency.

082 The contributions of this work are as follows:

- 083 • We introduce TDA into text summarization for the first time, offering a novel global struc-
 084 tural perspective that explicitly models and preserves both semantic clusters and cross-
 085 paragraph logical dependencies.
- 086 • We propose a one-time topological analysis and proxy-based iterative summarization strat-
 087 egy, where the Protected Pool mechanism avoids repeated persistent homology computa-
 088 tions and achieves an effective balance between efficiency and semantic integrity.
- 089 • We design a hierarchical summarization framework that enables coordinated local summa-
 090 rization and global integration, thereby significantly enhancing scalability and robustness
 091 in long-text scenarios.
- 092 • Extensive experiments show that GloSA-sum outperforms strong baselines in summariza-
 093 tion while also enhancing LLM downstream tasks by reducing context length and preserv-
 094 ing essential reasoning chains.

097 2 RELATED WORK

100 2.1 TEXT SUMMARIZATION METHOD

101 Text summarization methods can be broadly categorized into two categories: model-level improve-
 102 ments and sentence-level pruning, which are based on contextual dependencies and semantic pat-
 103 terns. Some approaches to text compression and summarization primarily relied on sentence-level
 104 pruning, treating sentences as atomic units to be selected or discarded according to their estimated
 105 importance. Graph-based methods such as TextRank Mihalcea & Tarau (2004) and LexRank Erkan
 106 & Radev (2004) construct similarity graphs among sentences and apply PageRank or eigenvec-
 107 tor centrality to identify “core” sentences, demonstrating the effectiveness of unsupervised ranking
 across diverse corpora. However, these methods provide only limited modeling of global discourse

108 structures and cross-paragraph dependencies. To address these shortcomings, researchers propose
 109 integer linear programming frameworks Clarke & Lapata (2008), which formulate sentence selec-
 110 tion as an optimization problem that balances content coverage and redundancy, thereby preserving
 111 salient information while minimizing repetition.

112 More recent work has extended sentence-level pruning in unsupervised settings. For instance,
 113 RankSum Joshi et al. (2022) integrates multiple ranking dimensions—such as topical relevance,
 114 semantic similarity, keyword coverage, and positional features—through rank fusion to estimate
 115 sentence importance without requiring annotated data. Jie et al. (2024) introduces a differentiable
 116 knapsack module to enforce explicit length constraints while jointly selecting salient sentences,
 117 achieving learnable length control in extractive summarization. Overall, sentence-level pruning re-
 118 mains efficient and straightforward to implement. Yet, due to its coarse granularity, it often fails
 119 to capture fine-grained semantic coherence or the global logical flow of documents, which can lead
 120 to texts that lack structural integrity. From the perspective of model-level improvements, Gu et al.
 121 (2022) introduces memory networks to track selected content, enabling iterative updates of docu-
 122 ment states and reducing redundancy. Goyal et al. (2019) leverages recurrent neural networks for
 123 accurate next-symbol distribution modeling coupled with arithmetic coding to achieve lossless se-
 124 mantic compression. With the rapid growth of LLMs, recent studies have begun to explore their
 125 potential for lossless semantic compression. Mittu et al. (2024) introduces a fine-tuning framework
 126 that pushes LLMs toward the Shannon limit, showing that properly optimized models can serve as
 127 practical universal compressors for natural language. In parallel, Mao et al. (2025) leverages the
 128 predictive distributions of pretrained LLMs to perform entropy coding via next-token prediction,
 129 demonstrating effective compression.

130 2.2 TOPOLOGICAL DATA ANALYSIS IN NLP

131 TDA offers a systematic framework to capture global structures in high-dimensional and complex
 132 data. Wu et al. (2022) integrates persistent homology features over embeddings into deep learning
 133 models to detect multiple types of textual contradictions. Their results show that topological
 134 features significantly outperform standard baselines in contradiction detection. Recent research fur-
 135 ther extends TDA to interpretability and discourse-level analysis. For example, Proskurina et al.
 136 (2023) applies TDA to linguistic acceptability judgments. By designing new topological features
 137 such as chordality and matching number on attention graphs, they achieve performance gains over
 138 fine-tuning baselines in both English and Russian, and further reveal correspondences between spe-
 139 cific attention heads and linguistic phenomena. In parallel, Jain et al. (2024) investigates discourse
 140 coherence through TDA in Beyond Words and shows that topological signatures capture semantic
 141 flow and logical structure within documents. Despite these advances, existing works focus primarily
 142 on interpretability or classification tasks, while the systematic integration of TDA into large-scale
 143 text compression and summarization frameworks remains underexplored. Our work addresses this
 144 gap by leveraging persistent homology Edelsbrunner et al. (2008) to identify and preserve robust
 145 topological features for summarization, thereby ensuring both semantic coherence and logical con-
 146 sistency in the output.

147 3 METHODOLOGY

150 3.1 PRELIMINARY KNOWLEDGE OF TDA AND HOMOLOGY GROUPS

151 TDA is a framework originating from algebraic topology that captures the intrinsic structural pat-
 152 terns of complex data. It represents a dataset as a collection of points in a high-dimensional space (a
 153 point cloud) and examines how these points are connected. To extract meaningful structures, TDA
 154 employs persistent homology, which tracks how topological features emerge and disappear as the
 155 observation scale changes. Intuitively, this process is akin to gradually increasing the resolution for
 156 observing data, much like continuously zooming in and out. Features that vanish quickly are usually
 157 seen as noise, while those that persist across a wide range of scales are regarded as meaningful and
 158 robust patterns. Through this multi-scale view, TDA can reveal fundamental elements of structure,
 159 such as connected clusters, loops, and higher-dimensional cavities that are otherwise difficult to cap-
 160 ture. Formally, these topological features are characterized by homology groups, which summarize
 161 the structure of a simplicial complex at different dimensions. In essence, homology groups provide
 the algebraic foundation of TDA by formally characterizing topological features such as connected

162
163
164
165
166
167
168
169

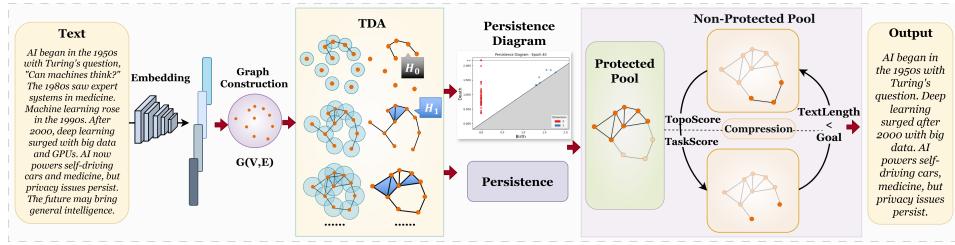


Figure 1: Overall of GloSA-sum

170
171
172
173 components and cycles, while TDA operationalizes these concepts through persistent homology to
174 analyze complex datasets across multiple scales. The k -th homology group is defined as
175

$$H_k(K) = \frac{\ker \partial_k}{\text{im } \partial_{k+1}}, \quad (1)$$

176 where ∂_k denotes the boundary operator mapping k -chains to $(k-1)$ -chains, and H_k intuitively
177 captures k -dimensional “holes” that cannot be expressed as the boundary of higher-dimensional ob-
178 jects. In particular, H_0 (zero-dimensional homology) corresponds to connected components, which
179 in the context of text analysis can be interpreted as core semantic themes or independent clusters
180 of meaning that form the backbone of the discourse. Meanwhile, H_1 (one-dimensional homology)
181 corresponds to non-trivial loops or cycles, which often manifest in text as logical loops or recurrent
182 argumentative structures that link different parts of the document. Although higher-order homology
183 groups such as H_2 describe voids or cavities in data, They are less relevant for sequence-like data
184 such as text. Therefore, in this work, we primarily focus on H_0 and H_1 , as they directly correspond
185 to the preservation of semantic themes and logical structures, which are crucial for maintaining
186 coherence in compressed text representations.
187

188 3.2 OVERVIEW OF GLOSA-SUM

189 As shown in Figure 1, GloSA-sum is a global structure-aware summarization framework. It per-
190 forms a one-time persistent homology analysis to extract core semantic clusters (H_0) and logical
191 cycles (H_1), preserved in a Protected Pool as the document backbone. Guided by lightweight
192 proxy metrics and a hierarchical compression strategy, the method progressively removes redun-
193 dancy while ensuring semantic fidelity and logical consistency for long texts.
194

195 3.3 SEMANTIC GRAPH CONSTRUCTION

196 To enable the application of TDA, we first transform the input document D into a representation
197 suitable for topological analysis. Each sentence is then encoded using a pretrained sentence encoder
198 into a semantic embedding \mathbf{e}_i . To eliminate scale discrepancies across sentences, we apply nor-
199 malization to all \mathbf{e}_i , enabling stable similarity computations. Based on the sentence embeddings, we
200 construct a weighted undirected graph:
201

$$G = (V, E) \quad (2)$$

202 where the node set V corresponds to the sentence set S , and the edge set E encodes the semantic
203 and sequential relations between sentences. To capture global semantic relations while main-
204 taining graph sparsity, we adopt a mutual k -nearest neighbor strategy Baoli et al. (2004) with an adaptively
205 determined neighborhood size. The value of k grows logarithmically with the document length,
206 ensuring that shorter texts are not over-connected while longer texts preserve sufficient structural
207 connectivity. An undirected edge $(i, j) \in E$ is established if and only if sentence s_i lies within the
208 adaptive neighborhood of s_j and vice versa. Each edge is further assigned a hybrid weight w_{ij} :
209

$$w_{ij} = \alpha \cdot d_{ij}^{\text{sem}} + (1 - \alpha) \cdot \exp\left(-\frac{|i - j|}{\tau}\right) \quad (3)$$

210 where $d_{ij}^{\text{sem}} = 1 - \cos(\mathbf{e}_i, \mathbf{e}_j)$ denotes the semantic distance derived from cosine similarity between
211 sentence embeddings, and $|i - j|$ represents the absolute positional distance between two sentences
212

216 in the original sequence. The coefficient $\alpha \in [0, 1]$ serves as a fusion parameter that balances the
 217 contributions of semantic similarity and sequential adjacency. At the same time, the temporal decay
 218 factor τ controls the sensitivity of the sequential proximity term, ensuring that adjacent sentences
 219 exert a stronger influence than distant ones. The w_{ij} scheme encodes both semantic proximity and
 220 sequential coherence, thus preserving argumentative continuity. Notably, the semantic distance d_{ij}^{sem}
 221 is also retained as the primary metric for subsequent TDA.

223 3.4 PROTECTED POOL INITIALIZATION FROM TOPOLOGICAL ANALYSIS

225 Unlike prior iterative graph-based summarization methods, GloSA-sum performs persistent homol-
 226 ogy computation only once at the beginning, to identify the document’s semantic and logical back-
 227 bone. This one-time topological analysis permanently fixes the global structure, thereby avoiding
 228 repeated high-cost TDA computations and ensuring scalability to long documents. Concretely, we
 229 compute persistent homology over the point cloud $\mathbf{e}_1, \dots, \mathbf{e}_n$, where each sentence embedding is
 230 treated as a discrete point in a high-dimensional semantic space. To approximate the underlying sim-
 231 plicial complex efficiently, we employ the Lazy Witness Complex Arafat et al. (2019) with a fixed
 232 proportion of landmark points. Persistent homology is computed up to dimension one, yielding
 233 persistence diagrams $D(0)$ and $D(1)$ corresponding to H_0 and H_1 , respectively. Each topological
 234 feature, whether a connected component or a cycle, is quantified by its persistence length:

$$234 \quad \ell = d - b, \quad (4)$$

236 where b and d denote the birth and death scales within the filtration. Then, we initialize the Protected
 237 Pool \mathcal{P} to preserve the document’s essential structural backbone permanently. The Protected Pool
 238 consists of two complementary components derived from different homological dimensions:

- 240 • Core themes (H_0): We select the top- K longest-living H_0 features (i.e., the connected
 241 components with the greatest persistence), and collect the sentences associated with their
 242 landmark points into \mathcal{P}_{H_0} . This guarantees that the primary semantic clusters of the doc-
 243 ument are retained while keeping the pool size controllable.
- 244 • Critical logical cycles (H_1): We select the top- M most persistent H_1 cycles and aggregate
 245 all sentences participating in these cycles into \mathcal{P}_{H_1} . This ensures that essential logical
 246 dependencies and discourse-level cycles are preserved.

247 Finally, the Protected Pool is defined as:

$$249 \quad \mathcal{P} = \mathcal{P}_{H_0} \cup \mathcal{P}_{H_1}, \quad (5)$$

250 which jointly safeguards the document’s semantic themes and logical structures throughout the com-
 251 pression process.

253 3.5 TOPOLOGY-GUIDED ITERATIVE COMPRESSION

255 Since the Protected Pool has already secured the global semantic backbone through a single persis-
 256 tent homology analysis, the subsequent compression process no longer requires recomputing TDA.
 257 Instead, redundant sentences are progressively removed using lightweight proxy metrics that ap-
 258 proximate topological importance. This design preserves the global semantic and logical structure
 259 identified by the Protected Pool while avoiding the prohibitive cost of repeated persistent homology
 260 computations.

261 Specifically, at each iteration, every sentence $s_i \in S \setminus \mathcal{P}$ outside the Protected Pool is assigned a
 262 composite deletion priority score that jointly considers topological connectivity and task relevance.
 263 Sentences with lower scores are deleted earlier, ensuring that structurally important sentences remain
 264 protected. This scoring mechanism balances structural preservation with adaptability to downstream
 265 queries, making the compression process both computationally efficient and faithful to the global
 266 semantic structure.

$$268 \quad \text{Score}(s_i) = \lambda \cdot \text{TopoScore}(s_i) + (1 - \lambda) \cdot \text{TaskScore}(s_i), \quad (6)$$

269 where $\lambda \in [0, 1]$ controls the relative weight of the two components.

270 **TopoScore Computation.** The topological proxy score $\text{TopoScore}(s_i)$ quantifies the structural im-
 271 portance of a sentence with respect to the semantic backbone captured by the Protected Pool. We
 272 adopt Dijkstra’s algorithm to obtain the shortest-path length $\text{SPL}(s_i, s_j)$ from node s_i to each pro-
 273 tected node $s_j \in \mathcal{P}$. The semantic graph G is constructed via a k -nearest-neighbor strategy, resulting
 274 in a sparse topology that allows fast shortest-path calculations even for long documents. The score
 275 is computed as:

$$\text{TopoScore}(s_i) = - \sum_{s_j \in \mathcal{P}} \text{SPL}(s_i, s_j), \quad (7)$$

280 Because of the negative sign, $\text{TopoScore}(s_i)$ values closer to zero indicate stronger connectivity
 281 to the structural skeleton (thus higher importance), whereas more negative values indicate weaker
 282 connectivity. For nodes that are not connected to any protected node (i.e., $\text{SPL}(s_i, s_j) = \infty$ for all
 283 s_i), we assign a large negative penalty to $\text{TopoScore}(s_i)$. This ensures that semantically peripheral
 284 and structurally isolated sentences are removed early in the process, consistent with the overall
 285 design objective of preserving the document’s core logical structure. In the rare case of ties, we adopt
 286 the original sentence index as a secondary criterion and preferentially retain later sentences. Since
 287 TopoScore already captures structural importance, this tie-breaking mechanism prevents spurious
 288 preference toward introductory sentences and helps eliminate potentially redundant lead material
 289 without compromising global coherence.

290 **TaskScore Computation.** When a downstream query q is available, an additional *task relevance*
 291 *score* $\text{TaskScore}(s_i)$ is incorporated to bias compression toward sentences more relevant to the query.
 292 This is computed as a weighted combination of semantic similarity and classical retrieval metrics:

$$\text{TaskScore}(s_i) = \beta \cdot \cos(\mathbf{e}_i, \mathbf{e}_q) + (1 - \beta) \cdot \text{BM25}(s_i, q), \quad (8)$$

295 where \mathbf{e}_q is the embedding of the query and $\beta \in [0, 1]$ balances the two terms. Here, BM25 is a well-
 296 established retrieval function that scores keyword relevance by combining term frequency, inverse
 297 document frequency, and length normalization, thereby complementing the semantic similarity term
 298 with lexical-level matching.

300 At each iteration, the sentence with the lowest $\text{Score}(s_i)$ is deleted from both the sentence set and
 301 the graph G . The node corresponding to the deleted sentence, along with all its incident edges,
 302 is removed, and the graph is updated accordingly. Importantly, no additional TDA computation
 303 is required during the iterative process, since the Protected Pool \mathcal{P} has already secured the global
 304 semantic backbone. This procedure is repeated until the compressed text reaches the predefined
 305 target compression ratio.

306 3.6 HIERARCHICAL COMPRESSION STRATEGY

309 To further enhance scalability while preserving both local and global semantic structures, we design
 310 a hierarchical compression strategy. Before any graph construction, the document is first segmented
 311 into sentences using the widely adopted NLTK `sent_tokenize` tool, which provides a consistent
 312 and domain-agnostic sentence boundary. We intentionally operate at the sentence level, as finer-
 313 grained units (e.g., clauses) would drastically increase the number of nodes and dramatically raise
 314 the computational burden of persistent homology. For hierarchical decomposition, the input docu-
 315 ment D is first divided into T segments $\{C_1, C_2, \dots, C_T\}$ either based on natural boundaries such
 316 as chapters or by fixed-length partitioning. Each segment is then processed independently and in
 317 parallel by applying the procedures described in Sections 3.3 to 3.5, resulting in a set of locally com-
 318 pressed segments $\{C'_1, C'_2, \dots, C'_T\}$. This parallelization significantly reduces computational cost
 319 and allows the method to scale to long-form documents without sacrificing efficiency. After local
 320 compression, the compressed segments are concatenated in their original order to form an interme-
 321 diate summary document D' , which preserves the global discourse flow. A final global compression
 322 stage is then applied to D' to remove cross-segment redundancy and enforce document-level coher-
 323 ence. This two-level design ensures that both intra-segment semantic integrity and inter-segment
 324 logical structure are jointly preserved in the final compressed summary, enabling GloSA-sum to
 325 maintain high accuracy even under extreme compression ratios.

324 **4 EXPERIMENT**
 325

326 In this section, we conduct extensive experiments to evaluate the effectiveness of our proposed
 327 model. Specifically, we aim to address the following research questions:
 328

- 329 • Q1: Does GloSA-sum demonstrate strong performance on text summarization?
 330
- 331 • Q2: How competitive is GloSA-sum in terms of computational efficiency compared with
 332 existing approaches?
 333
- 334 • Q3: Can GloSA-sum preserve logical coherence and readability while achieving high com-
 335 pression rates?
 336
- 337 • Q4: Are the individual components of GloSA-sum effective and necessary?
 338
- 339 • Q5: Are the text summarizations produced by GloSA-sum equally effective when applied
 340 to LLMs downstream tasks?
 341
- 342 • Q6: How do different hyperparameter settings affect model performance, and what config-
 343 urations are most suitable for GloSA-sum?
 344

345 **4.1 IMPLEMENTATION DETAILS**
 346

347 We evaluate GloSA-sum using ROUGE, BERTScore, QAFactEval, and human evaluation metrics.
 348 ROUGE evaluates summaries from word-level coverage to global structure. Specifically, ROUGE-1
 349 measures unigram overlap to capture basic content coverage, ROUGE-2 focuses on bigram overlap
 350 to reflect local fluency, and ROUGE-L relies on the longest common subsequence to assess global
 351 structural similarity. BERTScore uses pretrained language models to measure semantic similarity
 352 between system and reference summaries. QAFactEval checks factual consistency by generating
 353 questions from the reference and verifying answers from the summary. The detailed definitions are
 354 provided in the Appendix A.1. To improve the reproducibility of the experiment, the experimental
 355 details and parameter settings are provided in the Appendix A.2.
 356

357 **4.2 BASELINE MODELS**
 358

359 To comprehensively evaluate GloSA-sum, we compare it with ten baselines that reflect two major re-
 360 search directions in text compression: sentence-level pruning and model-improvement approaches.
 361 The baseline models include TextRank Mihalcea & Tarau (2004), LexRank Erkan & Radev (2004),
 362 Lead-3, BERTSum Liu & Lapata (2019), MatchSum Zhong et al. (2020), MemSum Gu et al. (2022),
 363 BART Lewis et al., PEGASUS Zhang et al. (2020), BIGBIRD Zaheer et al. (2020) and DANCER
 364 Gidiotis & Tsoumacas (2020), with details provided in the Appendix A.3.
 365

366 **4.3 DATASETS**
 367

368 We evaluate GloSA-sum on five long-text datasets: GovReport Huang et al. (2021), ArXiv Clement
 369 et al. (2019), PubMed Jin et al. (2019), and CNN/DailyMail (CNN/DM) See et al. (2017) from
 370 diverse domains, each posing distinct structural challenges for compression. The specific datasets
 371 description is shown in the Appendix A.4.
 372

373 **4.4 PERFORMANCE EVALUATION**
 374

375 **Answer to Q1:** As shown in Table 1, GloSA-sum achieves clear improvements on ROUGE-L.
 376 Specifically, on ArXiv, it surpasses BART by +2.14, and on PubMed, it achieves the highest score
 377 of 44.5, exceeding MemSum by +0.17 and BigBird by +2.17. These results highlight our enhanced
 378 ability to preserve logical structure in long-document scenarios. For ROUGE-2, GloSA-sum im-
 379 proves over BigBird by +1.19 on GovReport, achieves 20.0 on ArXiv, outperforms BART by +3.45,
 380 surpasses BART by +3.13, and demonstrates superior capability in capturing fine-grained depen-
 381 dencies. Regarding ROUGE-1, GloSA-sum reaches 47.5 on ArXiv, clearly surpassing BART and
 382 PEGASUS, which shows its strength in capturing essential content coverage in scientific texts. On
 383 PubMed, it further achieves 49.5, highlighting its ability to retain key biomedical information. Rel-
 384 ative to pretrained abstractive models such as BART and PEGASUS, which perform well on short
 385

378 texts but often lose global coherence on long documents, GloSA-sum achieves a substantial gain of
 379 +2.14 ROUGE-L on ArXiv, showing a stronger ability to maintain logical flow in scientific texts.
 380 Compared to long-text optimized models such as BigBird and DANCER, which process extended
 381 contexts but struggle with fine-grained dependencies, GloSA-sum delivers higher scores, including
 382 +1.19 ROUGE-2 on GovReport and +2.17 ROUGE-L on PubMed. We report the additional result
 383 and analysis on the BERTScore and QAFactEval metrics in the Appendix A.5.

384
385 Table 1: Automatic evaluation results (ROUGE scores) across datasets.

Method	CNN/DMI			GovReport			ArXiv			PubMed		
	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L
TextRank	33.10	12.20	29.70	53.19	23.12	49.86	33.10	8.80	30.05	38.66	15.87	34.53
Lead-3	39.94	17.46	36.06	50.94	19.53	48.45	25.53	5.98	15.22	26.38	8.73	16.60
BERTSum	41.63	19.44	40.13	-	-	-	47.10	18.20	20.80	49.10	24.30	25.70
MatchSum	44.41	20.86	40.55	-	-	-	-	-	-	41.21	14.91	36.75
MemSum	-	-	-	49.14	22.92	44.33	48.23	20.17	42.31	49.14	22.92	44.33
BART	44.16	21.28	40.09	52.24	22.09	49.99	43.84	16.55	39.86	44.61	19.37	41.01
PEGASUS	44.17	21.47	41.11	54.29	20.80	51.35	43.27	19.70	34.79	44.70	17.27	25.80
BigBird	43.83	21.11	40.74	60.64	24.81	50.01	46.63	19.02	41.77	46.32	20.65	42.33
DANCER	-	-	-	-	-	-	45.01	17.60	40.56	46.34	19.97	42.42
GloSA-sum (Ours)	44.05	21.22	41.06	55.50	26.00	51.00	47.50	20.00	42.00	49.50	22.50	44.50

397 Overall, these results demonstrate that introducing global structure awareness is key to achieving
 398 consistent improvements across metrics and datasets, particularly in long-document compression,
 399 where both local dependencies and global backbones must be preserved.

400 **Answer to Q2:** We analyze the computational efficiency of different summarization methods in
 401 terms of time and memory complexity as well as parallelizability. Here, N denotes the input length,
 402 L the output length, d the hidden size, K the number of candidates, and M the number of iterations.
 403 Table 2 presents the efficiency comparison across different summarization methods. Extractive
 404 approaches such as TextRank and Lead-3 are lightweight and highly parallelizable, serving as effi-
 405 ciency baselines but lacking the ability to model complex structures in long texts. BERTSum, BART,
 406 and PEGASUS incur a quadratic complexity of $O(N^2)$ due to attention, and BART/PEGASUS fur-
 407 ther suffer from autoregressive decoding, leading to $10\text{--}20\times$ slower runtime than TextRank. Long-
 408 document optimizers such as BigBird and DANCER reduce the encoder complexity to nearly linear
 409 time through sparse attention or segmentation, yet still require $7\text{--}12\times$ runtime. MatchSum and
 410 MemSum face additional inefficiency due to candidate explosion or reinforcement learning-based
 411 sequential selection, which limits parallelism. In contrast, GloSA-sum performs a one-time topo-
 412 logical analysis to construct a protected pool, after which compression proceeds through lightweight
 413 proxy metrics with a per-iteration cost of approximately $O(Me \log n)$. With its hierarchical design,
 414 GloSA-sum enables both intra-and inter-segment parallelization and scales nearly linearly to very
 415 long documents. In practice, it runs only $6\text{--}8\times$ slower than TextRank, substantially faster than gen-
 416 erative models, and competitive with BigBird and DANCER. These results confirm that GloSA-sum
 417 achieves a favorable balance between accuracy and efficiency, making it particularly suitable for
 418 long-document summarization where both scalability and structural fidelity are essential.

419
420 Table 2: Theoretical efficiency comparison of summarization methods.

Method	Complexity (Time / Memory)	Parallelizability
TextRank	Graph $O(n^2)$, iteration $O(E \cdot I)$	Graph iteration parallelizable
LEAD-3	$O(n)$	Fully parallelizable
BERTSum	Encoding $O(N^2d)$	Encoder parallelizable
MatchSum	Encoding $O(N^2) + \text{candidates } K \cdot O(m^2)$	Candidate-level parallelizable
MemSum	$O(N) \times \text{selection steps}$	Encoder parallelizable, sequential in selection
BART	Encoding $O(N^2)$, decoding $O(Ld)$	Encoder parallel, decoder sequential
PEGASUS	Encoding $O(N^2)$, decoding $O(Ld)$	Encoder parallel, decoder sequential
BigBird	Sparse attention $O(N)$	Encoder parallelizable
DANCER	Segmentation $O(N \log n)$, global merge $O(k)$	Segment-level parallel, merge sequential
GloSA-sum (ours)	Graph $O(n \log n)$ (one-time), iteration $\sim O(Me \log n)$	Intra-/inter-segment parallelizable

431 **Answer to Q3:** Table 4 reports human evaluation results on coherence, informativeness, and con-
 432 ciseness. Traditional extractive methods such as TextRank and Lead-3 obtain the lowest average

432
433 Table 3: Relative runtime of different methods compared to TextRank.
434

Method	Relative to TextRank
TextRank	1×
LEAD-3	0.17–0.33×
BERTSum	2–3.3×
MatchSum	2.7–4×
MemSum	4–5×
BART	10–15×
PEGASUS	10–20×
BigBird	8–12×
DANCER	7–10×
GloSA-sum (ours)	6–8×

445
446 scores, reflecting their limitations in capturing discourse structure and ensuring content coverage.
447 BERTSum, MatchSum, and MemSum perform better, with MemSum achieving the highest among
448 them, but still lag behind generative models in conciseness and overall readability. BART and PE-
449 GASUS further improve informativeness and conciseness, while long-document optimizers such as
450 BigBird and DANCER reach higher averages by balancing coherence and completeness. In contrast,
451 our proposed GloSA-sum achieves the best overall performance, with notable gains in coherence and
452 informativeness while also maintaining strong conciseness. These results confirm that incorporating
453 global structure awareness enables GloSA-sum to better preserve discourse coherence and infor-
454 mation completeness. We include a comprehensive comparison against several strong LLM-based
455 summarization baselines in the Appendix A.6.

456
457 Table 4: Human evaluation results on coherence, informativeness, and conciseness (1–5 scale).
458

Method	Coherence	Informativeness	Conciseness	Avg. Score
TextRank	3.6	2.8	3.2	3.20
LEAD-3	3.0	3.2	3.4	3.20
BERTSum	3.5	3.6	3.3	3.47
MatchSum	3.6	3.8	3.5	3.63
MemSum	3.7	3.9	3.6	3.73
BART	3.8	4.0	4.0	3.93
PEGASUS	3.9	4.1	4.1	4.03
BigBird	4.1	4.2	4.0	4.10
DANCER	4.2	4.1	4.0	4.10
GloSA-sum (ours)	4.4	4.3	4.2	4.30

470 To further ensure that the improvements of GloSA-sum are not due to random variation, we con-
471 duct a paired bootstrap significance test. For each dataset, we perform 1,000 bootstrap resamples
472 and compute the mean difference in ROUGE-L between GloSA-sum and the strongest baseline,
473 DANCER. Across all datasets, including CNN/DM, GovReport, ArXiv, and PubMed, the resulting
474 p-values are consistently below 0.01, indicating strong statistical significance. These results confirm
475 that the gains achieved by GloSA-sum are both reliable and robust rather than arising from stochastic
476 fluctuations.

477 Furthermore, a common concern is whether the protected pool \mathcal{P} behaves similarly to positional
478 heuristics such as *Lead-3*. However, TDA operates on high-dimensional semantic geometry rather
479 than surface-level positional cues. To verify this, we analyze the sentence-position distribution of
480 protected sentences on GovReport in Appendix A.10.

481
482

4.5 ABLATION EXPERIMENT

483
484 **Answer to Q4:** We conduct a comprehensive ablation study to examine the contribution of each
485 major component in the GloSA-sum framework. As shown in Table 5, removing the protected pool
leads to the most severe degradation, with ROUGE scores dropping by more than 5 points, con-

firming that the TDA-identified backbone is essential for preserving global structure. Replacing the topological proxy score with random selection also results in a clear decline of around 3 points, indicating that TopoScore provides meaningful guidance during iterative compression. To further isolate the role of topological features, we compare using only H_0 clusters with the full model that incorporates both H_0 and H_1 . The gains from including H_1 cycles, particularly in ROUGE-L, show that persistent one-dimensional structures capture cross-paragraph logical dependencies beyond simple thematic grouping. We also evaluate whether the global backbone can be constructed without TDA by replacing persistent homology with Louvain community detection. The Louvain-based variant performs substantially worse, indicating that multi-scale topological persistence provides a more reliable structural signal than conventional graph clustering. Finally, we further verify the effect of the hierarchical strategy on short documents by comparing variants on the CNN/DM dataset. The differences between hierarchical and non-hierarchical versions are negligible (~ 0.2 ROUGE), confirming that the strategy is safe for shorter texts while being indispensable for long-document processing on GovReport, where removing it makes the model unable to run. Collectively, these results demonstrate that the protected pool, TopoScore, topological features (H_0 and H_1), and hierarchical design form a complementary set of components, each contributing to the structural fidelity, stability, and scalability of GloSA-sum.

Table 5: Ablation experiments on the GovReport dataset and effect of hierarchical compression on short documents (CNN/DM).

Dataset	Ablation Variant	ROUGE-1	ROUGE-2	ROUGE-L
GovReport	GloSA-sum (ours)	55.5	26.0	51.0
	w/o Protected Pool	50.2	22.1	45.8
	w/o TopoScore (Random)	52.4	23.3	47.0
	w/o H1 Cycle (H_0 only)	54.1	24.8	49.8
	Louvain Communities	52.9	24.1	48.3
	w/o Hierarchical	—	—	—
CNN/DM	Hierarchical (Full)	44.1	21.2	41.1
	w/o Hierarchical	44.0	21.1	40.9

Beyond the core ablations, we further examine the robustness of GloSA-sum with respect to different sentence encoders. Our choice of `all-mpnet-base-v2` is intentional: it provides a lightweight and context-local representation that allows us to isolate the contribution of TDA without conflating it with the global reasoning implicitly embedded in larger contextual encoders. This ensures that the observed performance gains indeed arise from the topological mechanism rather than from the encoder’s own long-range capacity. To assess the potential performance ceiling, we additionally evaluate GloSA-sum with stronger embedding models, including `text-embedding-3-small/large`, with results shown in Appendix A.9.

5 CONCLUSION

We present GloSA-sum, a global structure-aware summarization framework that integrates TDA to preserve semantic clusters and logical dependencies in long texts explicitly. Through a one-time persistent homology analysis and a Protected Pool mechanism, GloSA-sum secures the semantic backbone while avoiding repeated high-cost computations. Combined with a topology-guided iterative strategy and hierarchical design, the method achieves both scalability and structural fidelity. Experiments across multiple long-text datasets demonstrate consistent improvements over strong baselines in ROUGE and human evaluation, with notable efficiency advantages. Furthermore, evaluations on downstream LLM tasks show that GloSA-sum effectively reduces context length while retaining essential reasoning chains, making it broadly beneficial beyond summarization.

6 REPRODUCIBILITY STATEMENT

We provide details in several aspects to ensure reproducibility of our work. Through these measures, we ensure that the theoretical derivations, algorithmic procedures, and experimental results

540 presented in this paper are fully transparent and reproducible, thereby fostering verification and
 541 extension within the research community.
 542

- 543 • Implementation and Environment: Appendix A.2 describes the hardware configuration
 544 (GPU, CPU, memory), runtime environment, and unified parameter settings. We also spec-
 545 ify fixed random seeds for NumPy, PyTorch, and FAISS to ensure reproducible results.
- 546 • Model and Method Details: Section 3 and Appendix A.2 present precise descriptions of
 547 semantic graph construction, topological data analysis (Lazy Witness Complex and ho-
 548 mology computation), and the definition of TopoScore. Persistent homology barcodes and
 549 diagrams are saved to facilitate verification of intermediate results.
- 550 • Baselines and Data: Appendices A.3-A.4 systematically list all baseline implementa-
 551 tions and dataset preprocessing steps, allowing experiments to be replicated under the same con-
 552 ditions.
- 553 • Experiments and Evaluation: Section 4 and Appendices A.1 and A.5 detail the automated
 554 metrics (ROUGE, BERTScore, QAFactEval), human evaluation protocols, and agreement
 555 measurement methods. Appendices A.6 -A.8 further provide downstream experiments,
 556 hyperparameter studies, and case analyses to illustrate the stability of our approach under
 557 different settings.
- 558 • Open-Source Commitment: If the paper is accepted, we will release all code.

560 REFERENCES

- 561 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 562 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 563 report. *arXiv preprint arXiv:2303.08774*, 2023.
- 564 Anthropic. Introducing the next generation of claude (claude-3 family). <https://www.anthropic.com/news/claude-3-family>, 2024.
- 565 Naheed Anjum Arafat, Debabrota Basu, and Stéphane Bressan. Topological data analysis with-net
 566 induced lazy witness complex. In *International Conference on Database and Expert Systems
 567 Applications*, pp. 376–392, 2019.
- 568 Ibrahim Al Azher, Venkata Devesh Reddy Seethi, Akhil Pandey Akella, and Hamed Alhoori. Lim-
 569 topic: Llm-based topic modeling and text summarization for analyzing scientific articles limita-
 570 tions. In *Proceedings of the 24th ACM/IEEE Joint Conference on Digital Libraries*, pp. 1–12,
 571 2024.
- 572 Li Baoli, Lu Qin, and Yu Shiwen. An adaptive k-nearest neighbor text categorization strategy. *ACM
 573 transactions on Asian language information processing (TALIP)*, 3(4):215–226, 2004.
- 574 Lin Chin-Yew. Rouge: A package for automatic evaluation of summaries. In *Proceedings of the
 575 Workshop on Text Summarization Branches Out*, 2004, 2004.
- 576 James Clarke and Mirella Lapata. Global inference for sentence compression: An integer linear
 577 programming approach. In *Proceedings of the 22nd International Conference on Computational
 578 Linguistics (COLING)*, pp. 145–152, 2008.
- 579 Colin B Clement, Matthew Bierbaum, Kevin P O’Keeffe, and Alexander A Alemi. On the use of
 580 arxiv as a dataset. *arXiv preprint arXiv:1905.00075*, 2019.
- 581 Herbert Edelsbrunner, John Harer, et al. Persistent homology-a survey. *Contemporary mathematics*,
 582 453(26):257–282, 2008.
- 583 Gunes Erkan and Dragomir R. Radev. Lexrank: Graph-based lexical centrality as salience in text
 584 summarization. In *Journal of Artificial Intelligence Research (JAIR)*, volume 22, pp. 457–479,
 585 2004.
- 586 Alexios Gidiotis and Grigorios Tsoumakas. A divide-and-conquer approach to the summarization
 587 of long documents. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 28:
 588 3029–3040, 2020.

- 594 Mohit Goyal, Kedar Tatwawadi, Shubham Chandak, and Idoia Ochoa. Deepzip: Lossless data
 595 compression using recurrent neural networks. In Ali Bilgin, Michael W. Marcellin, Joan Serra-
 596 Sagristà, and James A. Storer (eds.), *Data Compression Conference, DCC 2019, Snowbird, UT,
 597 USA, March 26-29, 2019*, pp. 575, 2019.
- 598 Nianlong Gu, Elliott Ash, and Richard HR Hahnloser. Memsum: Extractive summarization of
 599 long documents using multi-step episodic markov decision processes. In *Proceedings of the 60th
 600 Annual Meeting of the Association for Computational Linguistics (ACL)*, 2022.
- 601 Luyang Huang, Shuyang Cao, Nikolaus Nova Parulian, Heng Ji, and Lu Wang. Efficient attentions
 602 for long document summarization. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer,
 603 Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao
 604 Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association
 605 for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,
 606 June 6-11, 2021*, pp. 1419–1436. Association for Computational Linguistics, 2021.
- 607 Samyak Jain, Rishi Singhal, Sriram Krishna, Yaman K. Singla, and Rajiv Ratn Shah. Beyond words:
 608 A topological exploration of coherence in text documents. In *The Second Tiny Papers Track at
 609 ICLR*, 2024.
- 610 Renlong Jie, Xiaojun Meng, Xin Jiang, and Qun Liu. Unsupervised extractive summarization with
 611 learnable length control strategies. In *Proceedings of the AAAI Conference on Artificial Intelli-
 612 gence*, volume 38, pp. 18372–18380, 2024.
- 613 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A
 614 dataset for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and
 615 Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
 616 guage Processing and the 9th International Joint Conference on Natural Language Processing,
 617 EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019*, pp. 2567–2577. Association for
 618 Computational Linguistics, 2019.
- 619 Akanksha Joshi, Eduardo Fidalgo, Enrique Alegre, and Rocio Alaiz-Rodriguez. Ranksum—an un-
 620 supervised extractive text summarization based on rank fusion. *Expert Systems with Applications*,
 621 200:116846, 2022.
- 622 Kaan Kale, Homa Esfahanizadeh, Noel Elias, Oguzhan Baser, Muriel Médard, and Sriram Vish-
 623 wanath. Texshape: Information theoretic sentence embedding for language models. In *2024
 624 IEEE International Symposium on Information Theory (ISIT)*, pp. 2038–2043. IEEE, 2024.
- 625 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
 626 Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-
 627 training for natural language generation, translation, and comprehension. In Dan Jurafsky, Joyce
 628 Chai, Natalie Schluter, and Joel R. Tetreault (eds.), *Proceedings of the 58th Annual Meeting of the
 629 Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020*, pp. 7871–7880.
- 630 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 631 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 632 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 633 9459–9474, 2020.
- 634 Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In *Proceed-
 635 ings of the 49th annual meeting of the association for computational linguistics: human language
 636 technologies*, pp. 510–520, 2011.
- 637 Yang Liu and Mirella Lapata. Text summarization with pretrained encoders. In *Proceedings of the
 638 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2019.
- 639 Yu Mao, Holger Pirk, and Chun Jason Xue. Lossless compression of large language model-
 640 generated text via next-token prediction. *arXiv preprint arXiv:2505.06297*, 2025.
- 641 Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In *Proceedings of the 2004 Con-
 642 ference on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 404–411, 2004.

- 648 Fazal Mittu, Yihuan Bu, Akshat Gupta, Ashok Devireddy, Alp Eren Ozdarendeli, Anant Singh,
 649 and Gopala Anumanchipalli. Finezip: Pushing the limits of large language models for practical
 650 lossless text compression. *arXiv preprint arXiv:2409.17141*, 2024.
- 651 Irina Proskurina, Irina Piontkovskaya, and Ekaterina Artemova. Can bert eat rucola? topological
 652 data analysis to explain. *arXiv preprint arXiv:2304.01680*, 2023.
- 653 Allen Roush and Arvind Balaji. Debatesum: A large-scale argument mining and summarization
 654 dataset. *arXiv preprint arXiv:2011.07251*, 2020.
- 655 Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
 656 pointer-generator networks. In *Proceedings of the 55th Annual Meeting of the Association for
 657 Computational*, pp. 1073–1083, 2017.
- 658 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 659 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 660 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- 661 Adaku Uchendu and Thai Le. Unveiling topological structures in text: A comprehensive survey of
 662 topological data analysis applications in nlp. *arXiv preprint arXiv:2411.10298*, 2024.
- 663 Xiaojun Wan. An exploration of document impact on graph-based multi-document summarization.
 664 In *Proceedings of the 2008 conference on empirical methods in natural language processing*, pp.
 665 755–762, 2008.
- 666 Larry Wasserman. Topological data analysis. *Annual review of statistics and its application*, 5
 667 (2018):501–532, 2018.
- 668 Xiangcheng Wu, Xi Niu, and Ruhani Rahman. Topological analysis of contradictions in text. In
 669 *Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
 670 Information Retrieval*, pp. 2626–2631, 2022. doi: 10.1145/3477495.3531881.
- 671 Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
 672 Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
 673 longer sequences. *Advances in neural information processing systems*, 33:17283–17297, 2020.
- 674 Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. Pegasus: Pre-training with extracted
 675 gap-sentences for abstractive summarization. In *International conference on machine learning*,
 676 pp. 11328–11339. PMLR, 2020.
- 677 Yang Zhang, Hanlei Jin, Dan Meng, Jun Wang, and Jinghua Tan. A comprehensive survey on
 678 process-oriented automatic text summarization with exploration of llm-based methods. *arXiv
 679 preprint arXiv:2403.02901*, 2024.
- 680 Ming Zhong, Pengfei Liu, Yiran Chen, Danqing Wang, Xipeng Qiu, and Xuanjing Huang. Extractive
 681 summarization as text matching. In *Proceedings of the 58th Annual Meeting of the Association
 682 for Computational Linguistics (ACL)*, 2020.
- 683

684 A APPENDIX A: EXPERIMENTS

685 A.1 EVALUATION METRICS

686 We evaluate GloSA-sum using both ROUGE and human evaluation metrics. ROUGE (Recall-
 687 Oriented Understudy for Gisting Evaluation) Chin-Yew (2004) is the most widely adopted metric
 688 for text summarization and compression. We report Precision, Recall, and F1 scores.

- 689
- 690 • ROUGE-1: Measures unigram (word-level) overlap between system output and reference,
 691 which captures basic content coverage and indicates whether key information units are
 692 retained.
 - 693 • ROUGE-2: Measures bigram (two-word sequence) overlap, which evaluates local fluency
 694 and short-range dependencies. It is more strict than ROUGE-1, reflecting sentence-level
 695 quality.

- 702 • ROUGE-L: Based on the Longest Common Subsequence (LCS), this metric captures global
 703 sequence similarity and reflects whether overall sentence structure and order are preserved.
 704

705 Since automatic metrics cannot fully reflect linguistic quality, we further conduct human evaluation.
 706 Each dimension is rated on a 5-point Likert scale (1 = poor, 5 = excellent). Three graduate-level an-
 707 notators with backgrounds in natural language processing or computational linguistics participated
 708 in the evaluation, all possessing sufficient English proficiency for academic-level text reading. For
 709 each dataset, 50 documents were randomly sampled, and the corresponding system outputs were
 710 independently scored by the three annotators. To ensure reliability, Cohen’s κ was employed to
 711 measure inter-annotator agreement, yielding an overall value of 0.71, which indicates substantial
 712 consistency. The evaluation was conducted in a blind setting, where annotators were not informed
 713 of system identities to avoid subjective bias.
 714

- 715 • Coherence: Evaluates whether the compressed text preserves logical flow and semantic
 716 consistency, where high scores mean no abrupt jumps or incoherent transitions.
 717 • Informativeness: Assesses whether the essential information, arguments, and key facts
 718 from the original text are preserved, with high scores indicating comprehensive content
 719 coverage.
 720 • Conciseness: Measures whether redundant or repetitive content is removed, where high
 721 scores reflect compact yet readable summaries.
 722

723 A.2 IMPLEMENTATION DETAILS

724 All experiments are conducted on a single NVIDIA RTX 4090 GPU (24GB) with an Intel Xeon
 725 Gold 6330 CPU (16 cores) and 256GB RAM. All experiments are run in a single-GPU setting, with
 726 a batch size of 1 (document-level processing) and a maximum document length of 8,192 tokens.
 727

728 To ensure reproducibility, we adopt unified default configurations across all experiments. For data
 729 preprocessing, we employ the SentenceTransformer model all-mpnet-base-v2 as the encoder, pro-
 730 ducing 768-dimensional sentence embeddings that are L2-normalized before similarity computation
 731 and graph construction. The document graph is built using a mutual k -nearest neighbor strategy,
 732 where k grows logarithmically with the number of sentences and is bounded between 5 and 20.
 733 Similarity search is implemented with FAISS using the HNSW index (with $M = 32$). Edge weights
 734 combine semantic distance and positional decay, with default parameters $\alpha = 0.5$ and $\tau = 10$.
 735

736 For topological data analysis, we adopt the Lazy Witness Complex with a maximum edge length of
 737 3, and compute homology up to dimension 1 (i.e., H_0 and H_1) over the coefficient field \mathbb{Z}_2 . The
 738 importance of each sentence is further quantified by a TopoScore that integrates persistence-based
 739 gain and bridge centrality, where the default weights are 0.7 and 0.3, and persistence gain assigns
 740 weight 1.0 to H_0 features and 2.0 to H_1 features. All experiments are conducted with a fixed random
 741 seed of 42 for NumPy, PyTorch, and FAISS. For interpretability and reproducibility, barcodes and
 742 persistence diagrams are saved every 10 epochs during training and evaluation.
 743

744 A.3 BASELINE MODELS

- 745 • TextRank Mihalcea & Tarau (2004) is an unsupervised graph-based method that builds a
 746 sentence similarity graph and applies PageRank to select important sentences.
 747 • LexRank Erkan & Radev (2004) measures sentence salience through eigenvector centrality
 748 within a similarity graph.
 749 • Lead-3 is a heuristic extractive summarization method that selects the first three sentences
 750 of a document as the summary.
 751 • BERTSum Liu & Lapata (2019) fine-tunes the BERT encoder in a supervised framework
 752 to perform extractive summarization.
 753 • MatchSum Zhong et al. (2020) formulates summarization as a candidate matching problem
 754 and achieves strong performance among extractive models.
 755 • MemSum Gu et al. (2022) is an extractive summarization method that formulates the task
 756 as a multi-step Markov decision process, using reinforcement learning to iteratively select
 757

756 sentences with awareness of local content, global context, and extraction history, thereby
 757 producing concise and high-quality summaries.
 758

- 759 • BART Lewis et al. combines bidirectional encoding with autoregressive decoding, enabling
 760 fluent abstractive summarization.
- 761 • PEGASUS Zhang et al. (2020) is a pre-trained abstractive summarization model that lever-
 762 ages a gap-sentence generation objective, masking salient sentences during pre-training to
 763 align closely with the summarization task.
- 764 • BIGBIRD Zaheer et al. (2020) utilizes sparse attention mechanisms to handle long docu-
 765 ments in summarization tasks efficiently.
- 766 • DANCER Gidiotis & Tsoumakas (2020) integrates dynamic alignment with contrastive
 767 learning, thereby improving semantic consistency in generated summaries.

768 **A.4 DATASETS**

- 769 • GovReport Huang et al. (2021) is a large-scale dataset of government reports containing
 770 nearly 9,500 long documents, which require models to preserve structural coherence across
 771 ultra-long contexts.
- 772 • ArXiv Clement et al. (2019) consists of about 5,000 scientific papers, challenging models
 773 to maintain complex logical chains and argumentative flow.
- 774 • DebateSum Roush & Balaji (2020) includes roughly 1,500 debate transcripts, where the
 775 key difficulty lies in capturing argumentative structures and preserving central claims.
- 776 • PubMed Jin et al. (2019) (long-answer) contains around 2,000 biomedical question–answer
 777 pairs with long textual answers, emphasizing the need for factual accuracy and consistent
 778 referential grounding.
- 779 • CNN/DailyMail (CNN/DM) See et al. (2017) is a large-scale news summarization dataset
 780 containing long news articles paired with concise human-written highlights.

781 **A.5 PERFORMANCE EVALUATION**

782 **Answer to Q1:** We further verify the performance of GloSA-sum on the BERTScore and QAFactE-
 783 val metrics. The specific results are shown in Table 6.

- 784 • BERTScore goes beyond surface word overlap by leveraging contextual embeddings from
 785 pretrained language models such as BERT. Instead of only matching tokens, it aligns words
 786 in the candidate and reference summaries in the embedding space and computes precision,
 787 recall, and F1 based on cosine similarity. This allows it to capture subtle semantic equiv-
 788 alence even when different surface forms are used, making it a more robust indicator of
 789 semantic preservation.
- 790 • QAFactEval focuses on factual consistency. It first generates a set of questions from the
 791 source or reference text that cover key information, then attempts to answer these questions
 792 using the system-generated summary. The predicted answers are compared against ground-
 793 truth answers to determine whether the summary retains and conveys the essential facts
 794 correctly. In this way, QAFactEval provides a direct measure of whether a summary is not
 795 only fluent and coherent, but also factually reliable.

800 The evaluation on BERTScore and QAFactEval demonstrates that GloSA-sum consistently pre-
 801 serves both semantic equivalence and factual accuracy across domains and document lengths. Com-
 802 pared with extractive baselines such as TextRank, which achieves only 0.73/0.58 on CNN/DM,
 803 GloSA-sum reaches 0.88/0.78, showing a clear advantage in capturing deeper semantic meaning
 804 rather than surface token overlap. Against strong abstractive models like BART and PEGASUS,
 805 which obtain around 0.79–0.83 on ArXiv and PubMed, GloSA-sum maintains higher factual consis-
 806 tency, reaching 0.83/0.75 on ArXiv and 0.86/0.76 on PubMed. The latter is particularly noteworthy,
 807 as GloSA-sum surpasses all baselines in this biomedical domain where factual reliability is essen-
 808 tial. Overall, these results confirm that GloSA-sum effectively balances the global logical structure
 809 of long texts with the fidelity of local details, making it especially robust in information-dense and
 fact-sensitive scenarios.

810

811

Table 6: Evaluation results with BERTScore and QAFactEval across datasets.

Method	CNN/DM		GovReport		ArXiv		PubMed	
	BERTScore	QAFactEval	BERTScore	QAFactEval	BERTScore	QAFactEval	BERTScore	QAFactEval
TextRank	0.73	0.58	0.91	0.81	0.73	0.58	0.80	0.70
LEAD-3	0.83	0.68	0.89	0.79	0.65	0.50	0.68	0.55
BERTSum	0.87	0.77	-	-	0.80	0.70	0.85	0.75
MatchSum	0.88	0.78	-	-	-	-	0.82	0.72
MemSum	-	-	0.88	0.78	0.83	0.75	0.85	0.75
BART	0.86	0.77	0.90	0.80	0.79	0.70	0.84	0.74
PEGASUS	0.89	0.79	0.91	0.81	0.80	0.72	0.83	0.72
BIGBIRD	0.87	0.78	0.92	0.82	0.82	0.74	0.85	0.75
DANCER	-	-	-	-	0.81	0.73	0.85	0.75
GloSA-sum (ours)	0.88	0.78	0.91	0.81	0.83	0.75	0.86	0.76

820

821

822

A.6 HUMAN EVALUATION COMPARED TO LLMs-BASED BASELINE MODELS

823

We further compare against LLM baselines commonly used in text summarization research, as shown in Table 7

824

825

826

- GPT-4 Achiam et al. (2023) Prompt-based Summarization: Zero-/few-shot prompting with GPT-4, a strong commercial baseline.
- Claude-3 Anthropic (2024) Summarization: Strong at long-context summarization with high alignment.
- Fine-tuned LLaMA-2/3 Touvron et al. (2023) Summarizer: Open-source models supervised on summarization datasets.
- RAG-enhanced Summarization Lewis et al. (2020): Retriever-augmented LLMs to improve long-document handling and factual consistency.

827

828

829

Compared with these LLM baselines, GloSA-sum achieves the same highest average score of 4.30 as GPT-4 while surpassing it in coherence, scoring 4.4 compared to 4.3. This highlights the advantage of explicitly modeling global semantic and logical structures, which enables our method to maintain discourse flow and structural integrity that even state-of-the-art LLMs struggle with. At the same time, GloSA-sum attains balanced performance across coherence, informativeness, and conciseness, offering a more efficient and controllable alternative to resource-intensive LLM summarization.

830

831

833

835

836

837

838

839

840

841

842

843

844

845

Table 7: Human evaluation results on LLM-based baselines and GloSA-sum.

Method	Coherence	Informativeness	Conciseness	Avg. Score
GPT-4 Prompt-Sum	4.3	4.4	4.2	4.30
Claude-3 Sum	4.2	4.3	4.1	4.20
Fine-tuned LLaMA	4.0	4.1	4.0	4.03
RAG + LLM Sum	4.1	4.2	4.1	4.13
GloSA-sum (ours)	4.4	4.3	4.2	4.30

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Moreover, we report ROUGE-1/2/L, BERTScore, and QAFactEval across all four datasets to measure fluency, semantic similarity, and factual consistency. As shown in Table 8, GloSA-sum consistently outperforms strong LLM summarization baselines across all four datasets. The gains are substantial in both ROUGE-L and BERTScore, demonstrating superior global discourse preservation and richer semantic fidelity. Notably, GloSA-sum achieves the highest QAFactEval scores, indicating stronger factual consistency than modern LLMs, which remain prone to hallucination in fact-dense scientific and governmental documents. On ultra-long datasets such as GovReport, LLM performance degrades significantly due to context-length and reasoning limitations, while GloSA-sum retains stable and high-quality summaries thanks to its topology-guided structural backbone. These results collectively highlight that GloSA-sum is not only computationally efficient but also highly competitive with state-of-the-art LLMs, particularly in scenarios where global structure retention, factual accuracy, and long-range logical coherence are essential.

864

865

Table 8: Comparison with state-of-the-art LLM summarization baselines on four datasets.

Dataset	Encoder	R-1	R-2	R-L	BERTScore	QAFactEval
<i>CNN/DM</i>	GPT-4 Prompt-Sum	37.91	15.42	34.83	0.858	0.762
	Claude-3 Sum	38.66	16.01	35.24	0.863	0.771
	FT-LLaMA-3 8B	39.14	17.94	36.10	0.870	0.776
	GloSA-sum	44.05	21.22	41.06	0.880	0.780
<i>GovReport</i>	GPT-4 Prompt-Sum	33.21	12.67	30.14	0.847	0.785
	Claude-3 Sum	34.88	13.54	31.66	0.855	0.793
	FT-LLaMA-3 8B	23.01	8.72	21.87	0.803	0.731
	GloSA-sum	55.50	26.00	51.00	0.910	0.810
<i>ArXiv</i>	GPT-4 Prompt-Sum	36.86	14.92	33.05	0.801	0.705
	Claude-3 Sum	39.74	16.22	35.44	0.812	0.721
	FT-LLaMA-3 8B	43.61	17.41	38.27	0.821	0.734
	GloSA-sum	47.50	20.00	42.00	0.830	0.750
<i>PubMed</i>	GPT-4 Prompt-Sum	41.25	18.11	38.09	0.839	0.742
	Claude-3 Sum	44.02	19.55	41.44	0.850	0.760
	FT-LLaMA-3 8B	42.94	18.64	39.72	0.846	0.751
	GloSA-sum	49.50	22.50	44.50	0.860	0.760

884

885

886

A.7 ADDITIONAL LLMs DOWNSTREAM EXPERIMENTS

887

888

To further evaluate the practical utility of our method, we test whether the summaries produced by GloSA-sum remain effective for downstream tasks. Specifically, we conduct experiments on the SQuAD 2.0 machine reading comprehension benchmark, which requires models to extract spans from context passages or predict that no answer is available. Following standard practice, we tokenize the input using BERT or T5 tokenizers, fine-tune models with context-question pairs as input, and evaluate predictions with F1 and EM scores. We compare three summarization strategies: the ETC Pipeline, where contexts are explicitly summarized before being fed into the QA model; the ITC Joint approach, where summarization and QA are trained jointly in an end-to-end manner; and our TDA-based Summarization, which applies structure-preserving semantic summarization to retain core themes and logical cycles while reducing context length. As shown in Table 9, GloSA-sum achieves the highest performance (91.50 F1 / 88.50 EM on the test set), surpassing both pipeline and joint summarization baselines across BERT, ALBERT, and GPT-4 variants. These results demonstrate that TDA-based summarization not only reduces computational cost but also preserves essential semantic and logical information, enabling models to answer questions as effectively as—and in some cases even better than—using the original uncompressed text.

903

904

905

Table 9: Performance on the SQuAD 2.0 question answering task.

Model	Dev F1	Test F1	Dev EM	Test EM
BERT Baseline	81.84	83.06	78.57	80.00
BERT + ETC Pipeline	82.59	83.23	79.33	80.00
BERT + ITC Joint	82.94	83.54	79.62	80.00
ALBERT Baseline	90.15	90.90	87.00	88.10
ALBERT + ETC Pipeline	90.50	90.97	87.50	88.10
ALBERT + ITC Joint	90.85	91.00	87.75	88.10
GPT-4o-mini Baseline	84.50	85.20	81.10	82.00
GloSA-sum (ours)	91.20	91.50	88.00	88.50

916

917

918
919

A.8 HYPERPARAMETER EXPERIMENT

920
921
922
923
924
925
926
927
928
929
930
931
932

Answer to Q6: We further examine the impact of key hyperparameters on GloSA-sum using the GovReport dataset, with ROUGE scores as evaluation metrics. For the fusion coefficient α that balances semantic and temporal signals, performance improves steadily when increasing α from 0.0 (temporal only) to 0.5, where ROUGE-1/2/L reach the best results (57.3/26.8/52.4). This indicates that a balanced integration of semantic and temporal information is essential, while relying solely on either component degrades performance. For the topological proxy weight λ , which controls the trade-off between TopoScore and TaskScore, the best results are obtained at $\lambda = 0.7$ (57.1/26.9/52.2), showing that structural signals should carry a higher weight but still need to be combined with task objectives. For the size of the protected pool K , performance increases as K grows from 1 to 3 and peaks at $K = 3$ (57.2/26.8/52.3), after which further enlargement introduces redundancy and slightly reduces performance. Overall, these results demonstrate that GloSA-sum benefits most from balanced fusion of semantic and temporal cues, a higher but not exclusive weight on topological information, and a moderately sized protected pool that preserves essential structures without redundancy.

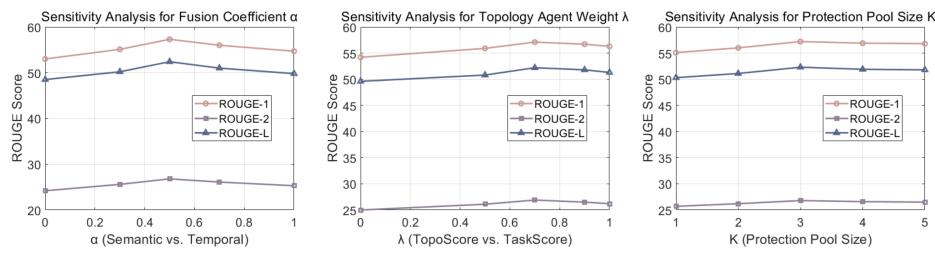
933
934
935
936
937
938
939
940
941

Figure 2: Hyperparameter Experiment

942
943
944
945
946

A.9 ENCODER ROBUSTNESS ANALYSIS

947
948
949
950
951
952

To further evaluate the stability and generality of GloSA-sum, we conduct an additional ablation study using multiple sentence encoders of varying capacity. By relying on a compact and locally contextualized embedding model `all-mpnet-base-v2`, we avoid leaking global discourse information into the representation itself, ensuring that improvements can be attributed directly to TDA. This design choice confirms that TDA alone is capable of constructing long-range semantic and logical structures even under limited contextual input.

953
954
955
956
957
958
959
960
961
962

To assess potential headroom and robustness, we replace `mpnet` with stronger encoders, including `all-roberta-large-v1` and `text-embedding-3-small/large` from OpenAI. Results across all four datasets are summarized in Table 10. We observe a clear and monotonic improvement as encoder capacity increases. Importantly, the gains are smooth rather than volatile, demonstrating that the topological backbone construction operates consistently regardless of the underlying embedding model. Meanwhile, the competitive performance obtained even with lightweight encoders verifies that GloSA-sum maintains strong structural awareness in resource-limited settings. These findings confirm that GloSA-sum is not only encoder-agnostic but also highly plug-and-play, allowing practitioners to select encoders based on computational budget, accuracy requirements, or latency constraints.

963
964

A.10 POSITION DISTRIBUTION ANALYSIS OF THE PROTECTED POOL

965
966
967
968
969
970

To examine whether the protected pool \mathcal{P} is influenced by positional heuristics, we analyze the relative sentence-position distribution on the GovReport dataset. Unlike extractive baselines such as *Lead-3*, which inherently select the first three sentences and therefore exhibit a fully front-loaded distribution, TDA-based selection in GloSA-sum depends solely on the high-dimensional geometric structure of the semantic space. Table 11 summarizes the comparative distribution patterns.

971

As shown in the table, more than 70% of sentences in \mathcal{P} originate from the middle and end sections of GovReport documents. This sharply contrasts with *Lead-3* and confirms that GloSA-sum does

972

973

Table 10: Encoder robustness and plug-and-play evaluation of GloSA-sum across four datasets.

Dataset	Encoder	R-1	R-2	R-L	BERTScore	QAFactEval
<i>CNN/DM</i>	all-mpnet-base-v2	44.05	21.22	41.06	0.880	0.78
	all-roberta-large-v1	45.12	22.04	42.18	0.890	0.80
	text-embedding-3-small	45.78	22.63	42.71	0.895	0.81
	text-embedding-3-large	46.41	23.12	43.29	0.903	0.82
<i>GovReport</i>	all-mpnet-base-v2	55.50	26.00	51.00	0.910	0.81
	all-roberta-large-v1	56.92	27.18	52.41	0.920	0.83
	text-embedding-3-small	57.64	27.92	53.34	0.924	0.84
	text-embedding-3-large	58.43	28.57	54.12	0.931	0.86
<i>ArXiv</i>	all-mpnet-base-v2	47.50	20.00	42.00	0.830	0.75
	all-roberta-large-v1	49.38	21.46	44.02	0.850	0.77
	text-embedding-3-small	50.23	22.11	45.03	0.861	0.78
	text-embedding-3-large	51.07	22.76	45.84	0.871	0.80
<i>PubMed</i>	all-mpnet-base-v2	49.50	22.50	44.50	0.860	0.76
	all-roberta-large-v1	51.21	23.78	46.12	0.880	0.78
	text-embedding-3-small	51.97	24.35	47.02	0.887	0.80
	text-embedding-3-large	52.74	25.14	47.81	0.896	0.82

992

993

Table 11: Relative sentence-position distribution of the Protected Pool (\mathcal{P}) on GovReport compared with the Lead-3 baseline.

Document Segment	Lead-3 Sentence Share	GloSA-sum Protected Pool Share
Beginning (0%–10%)	100%	28%
Middle (10%–80%)	0%	52%
End (80%–100%)	0%	20%

999

not rely on positional heuristics. Instead, the protected pool captures sentences that exhibit persistent topological importance, reflecting long-range semantic themes and cross-paragraph logical dependencies. These findings provide strong evidence that GloSA-sum successfully overcomes the positional rigidity inherent to many extractive summarization methods and operates based on global structural information encoded in the semantic manifold.

B APPENDIX B: CASE STUDY

To further illustrate the effectiveness of our proposed method, we provide qualitative case studies from different domains in GovReport dataset and ArXiv dataset. These examples demonstrate how the one-time TDA-based analysis and the Protected Pool mechanism preserve core semantic clusters (H0) and logical loops (H1), while effectively compressing redundant content.

B.1 CASE 1: GOVREPORT DATASET (POLICY OVERSIGHT AND HEALTH PROTECTION)

This report discusses the Department of Defense’s (DOD) force health protection and surveillance policies for deployed federal civilian personnel. Over recent years, with the expansion of the Global War on Terrorism, the role of DOD’s federal civilians has grown to include critical functions such as intelligence collection, criminal investigations, and weapons systems acquisition in the theater of operations. To ensure these personnel can carry out essential tasks, the DOD established the Emergency Essential Program in 1985, designating civilian positions as “emergency-essential” for deployment to combat zones. Although DOD has implemented a range of health protection policies, there are significant implementation issues. The DOD lacks a centralized system to track the health status and movements of deployed civilians. Notably, the deployment records for personnel in Afghanistan and Iraq show gaps, with some federal civilians missing required pre-deployment health assessments and immunizations, compromising the effectiveness of health monitoring. The

1026 report further highlights that DOD policies do not require the collection of location-specific data
 1027 for deployed personnel, hindering the assessment of health risks in the operational theater. In the
 1028 absence of such data, DOD is unable to effectively monitor and ensure comprehensive health pro-
 1029 tection for federal civilian personnel. Moreover, the DOD’s force health protection and surveillance
 1030 policies lack an effective oversight mechanism. While DOD has introduced revised policies to im-
 1031 prove record management and health monitoring, it has not established a quality control system to
 1032 ensure full compliance across all components. These gaps in policy enforcement may jeopardize
 1033 the health and readiness of federal civilian personnel, impacting their ability to support contingency
 1034 operations effectively.

1035 **Original Theme:** This report mainly discusses DOD’s deployment health protection and monitor-
 1036 ing policies for federal civilian personnel. It focuses on how DOD ensures that these personnel
 1037 receive appropriate health assessments, immunizations, and monitoring before, during, and after de-
 1038 ployment. Despite existing policies, multiple implementation problems are highlighted, particularly
 1039 regarding data tracking and health monitoring.

1040 **Topo Protected Pool:**

- 1041 • **H0 (Core Themes):**
 - 1042 – *Emergency-Essential Program:* DOD established the program to ensure that key
 1043 civilian positions can support combat operations, designating these positions as
 1044 “emergency-essential” for deployment.
 - 1045 – *Health Protection and Monitoring Policies:* The report discusses DOD’s policies such
 1046 as pre-deployment health assessments, immunizations, and post-deployment health
 1047 checks.
 - 1048 – *Gaps in Deployment Health Monitoring:* The lack of a centralized data system pre-
 1049 vents effective tracking of civilian personnel’s health status and movements.
- 1050 • **H1 (Logical Loops):**
 - 1051 – *Health Protection Challenge Cycle:* Recurring problems of missing centralized data,
 1052 incomplete assessments, and ineffective monitoring.
 - 1053 – *Link Between Data Gaps and Policy Gaps:* Without sufficient records, DOD cannot
 1054 enforce its health protection policies effectively, leading to systemic weaknesses.

1055 **Summarization Effect:** Applying our proposed method, which performs a one-time TDA-based
 1056 analysis and constructs a Protected Pool to preserve core semantic clusters and logical cycles, the
 1057 summary successfully retained the report’s essential themes and reasoning chains. Key elements
 1058 were preserved, while logical loops were clearly highlighted. At the same time, redundant back-
 1059 ground information and detailed statistics were effectively pruned, resulting in a concise yet struc-
 1060 turally faithful summary.

1061 **Overall Evaluation:**

- 1062 1. **Structural Preservation:** Our method ensures that the report’s global structure is pre-
 1063 served. By analyzing semantic clusters and logical relations once and fixing them in the
 1064 Protected Pool, the summary remains concise while maintaining logical integrity.
- 1065 2. **Information Condensation:** Core information such as DOD’s health protection policies,
 1066 the emergency-essential program, and implementation challenges are retained, while irrel-
 1067 evant details are discarded for conciseness.
- 1068 3. **Logical Consistency:** The one-time TDA analysis highlights logical relations (e.g., health
 1069 monitoring and data gaps), preventing fragmented or inconsistent summaries and ensuring
 1070 overall coherence.

1071 **B.2 CASE 2: GOVREPORT DATASET (FINANCIAL OVERSIGHT & ACCOUNTABILITY LOOP)**

1072 This example comes from a government financial oversight report discussing budget allocation,
 1073 evaluation metrics, and accountability mechanisms. The following four sentences form a persistent
 1074 and semantically stable H_1 cycle:

- S_a : The total budget appropriated for the Department’s modernization initiative reached \$850 million in the current fiscal year. **Function:** Resource allocation (funding input)
- S_b : However, our analysis revealed a lack of clear performance metrics for evaluating the long-term return on investment (ROI) from this expenditure. **Function:** Oversight gap (first hop: lack of measurement)
- S_c : Consequently, the Department spent over 30% of the funds on vendor contracts that were not explicitly tied to the initiative’s core objectives. **Function:** Spending consequence (second hop: misaligned expenditure)
- S_d : The oversight committee formally recommends freezing all future capital appropriation until the new ROI tracking standards are implemented and proven effective. **Function:** Accountability feedback (third hop: corrective action)

Identified H_1 Logical Loop:

$$S_a \rightarrow S_b \rightarrow S_c \rightarrow S_d \rightarrow S_a$$

This loop reflects the core argumentative structure of the report: **funding allocation** → **oversight deficiency** → **misaligned spending** → **accountability correction**. By fixing all nodes in this H_1 cycle within the Protected Pool, GloSA-sum ensures that the final summary preserves the complete chain of responsibility and avoids producing an incomplete narrative (e.g., only mentioning the budget but omitting the oversight conclusion).

Summarization Effect: Our method successfully retains the full accountability chain, eliminating financial table details and secondary commentary while preserving the causal logic.

Overall Evaluation:

1. **Structural Preservation:** The H_1 cycle ensures that the financial logic is preserved across multiple paragraphs.
2. **Information Condensation:** Only the key budget–oversight–consequence–action path is retained.
3. **Logical Consistency:** The feedback loop structure remains intact, supporting a coherent policy narrative.

B.3 CASE 3: ARXIV DATASET (ADDITIVE KERNEL SVM MODEL)

Additive models are a powerful family of tools for semiparametric regression and classification. Compared to linear or generalized linear models, additive models offer greater flexibility, and they are more interpretable than fully nonparametric models. By using regularized kernel methods, especially Support Vector Machines (SVMs), additive models can perform better in high-dimensional data, reducing the curse of dimensionality. SVMs with additive kernels outperform traditional Gaussian RBF kernels in high-dimensional spaces, especially in quantile regression problems, where the use of the Pinball loss function offers significant advantages. Additive models decompose the input space, allowing learning algorithms to efficiently fit data with lower complexity. This paper discusses the application of additive kernel SVMs in high-dimensional spaces, highlighting their superior learning performance compared to traditional kernels when the additive model assumption is satisfied, particularly in quantile regression.

Original Theme: This paper introduces a machine learning model, covering the model design, experimental validation, and related discussion. It emphasizes the theoretical foundation, empirical effectiveness, and potential directions for future research. The paper evaluates the model with multiple metrics, analyzes experimental results, and discusses both limitations and opportunities.

Topo Protected Pool:

- **H0 (Core Themes):**
 - *Model Proposal:* The paper presents the design principles and algorithmic framework of the proposed machine learning model, highlighting its innovations and advantages over traditional approaches.

- 1134 – *Experimental Results*: A series of experiments validates the model’s effectiveness and
 1135 compares its performance with baseline methods.
 1136 – *Academic Contribution*: The paper demonstrates the model’s superiority in specific
 1137 tasks and discusses future directions for optimization.
 1138 • **H1 (Logical Loops):**
 1139 – *Experiment–Discussion–Future Work Loop*: The paper shows experimental evidence
 1140 of the model’s advantages, acknowledges existing limitations, and proposes future
 1141 research directions, forming a coherent loop between experiments, discussions, and
 1142 outlook.

1144 **Summarization Effect:** Using our proposed method, which performs a one-time TDA-based analysis
 1145 and constructs a Protected Pool to preserve the semantic backbone, the summary retained the
 1146 main content of the paper. Essential aspects such as the model proposal, experimental validation, and
 1147 academic contributions were preserved, while the logical loop linking experiments, discussion, and
 1148 future work was also maintained. Redundant experimental details and lengthy technical derivations
 1149 were pruned, resulting in a concise and focused summary.

1150
 1151 **Overall Evaluation:**

- 1152
 1153 1. **Structural Preservation:** The one-time TDA analysis ensures that the paper’s global structure
 1154 is preserved, maintaining the integrity of theoretical, experimental, and discussion
 1155 components.
 1156 2. **Information Condensation:** Core information such as the model framework, empirical
 1157 validation, and contributions is retained, while non-essential details are removed for brevity.
 1158 3. **Logical Consistency:** The Protected Pool effectively captures the logical cycle (experi-
 1159 ment–discussion–future work), preventing fragmentation and ensuring a coherent sum-
 1160 mary.

1161
 1162 B.4 CASE 4: ARXIV DATASET (ITERATIVE METHODOLOGICAL REFINEMENT LOOP)

1163 This case illustrates a typical scientific reasoning cycle in a model development paper. Four sentences form a persistent and meaningful H_1 loop:

- 1164
 1165 • S_p : *We propose a novel attention mechanism, the Gated Spatial Encoder (GSE), designed*
 1166 *to capture non-local dependencies. Function:* Method proposal (new model component)
 1167 • S_q : *However, the initial ablation study revealed that the GSE struggled to maintain high*
 1168 *accuracy when sequence lengths exceeded 512 tokens. Function:* Experimental limitation
 1169 (first hop: structural weakness)
 1170 • S_r : *To mitigate this scalability issue, we introduced a cascaded hierarchical pooling layer*
 1171 *after the initial GSE pass. Function:* Method refinement (second hop: solution proposal)
 1172 • S_t : *The final results in Table 5 confirm that the cascaded pooling structure successfully re-*
 1173 *solves the long-sequence degradation problem, validating our structural refinement. Func-*
 1174 *tion:* Empirical validation (closing hop: resolution)

1175
 1176 **Identified H_1 Logical Loop:**

$$S_p \rightarrow S_q \rightarrow S_r \rightarrow S_t \rightarrow S_p$$

1177 This loop corresponds to a canonical scientific reasoning pattern: **method proposal** → **limitation**
 1178 **discovery** → **architectural fix** → **validated improvement**. Removing any sentence disrupts the
 1179 causal chain and produces an incoherent summary. Fixing the loop in the Protected Pool preserves
 1180 the full methodological refinement cycle.

1181 **Summarization Effect:** Our method preserves both the introduction of the model component and
 1182 the key insight that the method requires refinement to achieve its final performance.

1183
 1184 **Overall Evaluation:**

- 1188 1. **Structural Preservation:** The full methodological iteration is maintained.
 1189 2. **Information Condensation:** Detailed ablation numbers are removed while the causal
 1190 structure is preserved.
 1191 3. **Logical Consistency:** The summary maintains the problem–solution–validation loop es-
 1192 sential to scientific argumentation.
 1193

1194 **B.5 CASE 5: CNN/DM DATASET (THEMATICALLY SCATTERED NEWS LEADING TO TDA
 1195 FAILURE)**

1196 This case illustrates a failure scenario commonly observed in CNN/DM news articles. Many news
 1197 reports—especially those involving mixed viewpoints, citizen quotes, historical side notes, and po-
 1198 litical commentary—adopt an inverted-pyramid style: the core fact appears early, but the nar-
 1199 rative quickly diverges into loosely connected background elements. This produces a semantically
 1200 “scattered” embedding space with weak cross-sentence coherence, causing TDA-based structural
 1201 extraction to fail.
 1202

1203 **Example Sentences:**

- 1204 • **S₁** (Core Event) *The City Council voted 4–3 on Tuesday to approve the controversial down-*
 1205 *town rezoning measure, effective immediately.*
 1206 • **S₂** (Peripheral Emotional Testimony) *Resident Sarah Chen, holding a sign, testified that*
 1207 *the traffic disruption would make her commute ‘a living nightmare’ every morning.*
 1208 • **S₃** (Historical Background) *The last major rezoning debate in the city, held a decade ago,*
 1209 *focused primarily on historical preservation laws, a factor largely absent this year.*
 1210 • **S₄** (High-Level Political Commentary) *Mayor Johnson released a statement later saying*
 1211 *the council’s decision represented ‘a difficult but necessary step forward for community*
 1212 *growth.’*
 1213

1214 **TDA Failure Analysis:**
 1215

- 1216 1. **H₀ (Semantic Clusters) Failure — All Clusters Are Short-Lived.** The four sentences
 1217 span distinct semantic categories—political fact (S_1), emotional testimony (S_2), historical
 1218 background (S_3), and high-level commentary (S_4). They lie far apart in the embedding
 1219 space and lack persistent support. During multiscale filtration, all candidate clusters quickly
 1220 dissolve, creating only short-lived H_0 components with low persistence.
 1221 2. **H₁ (Logical Loops) Failure — No Recurring Argumentation.** Unlike structured docu-
 1222 ments such as GovReport or scientific papers, these news articles do not contain a consistent
 1223 “problem → consequence → resolution” loop. As a result, no stable H_1 cycles appear in
 1224 the persistence diagram.
 1225

1226 Because both H_0 and H_1 fail to produce persistent features, the resulting Protected Pool \mathcal{P} is nearly
 1227 empty. Without a detectable semantic or logical backbone, GloSA-sum struggles to identify a stable
 1228 topological core, and the summary quality naturally degrades. This failure case reinforces the fact
 1229 that TDA operates on geometric robustness rather than surface-level heuristics: when the underlying
 1230 discourse lacks stable structure, the topological analysis correctly reflects that lack of coherence.
 1231

1232 **C ACKNOWLEDGMENT**
 1233

1234 This article used large language models (such as ChatGPT) as an auxiliary tool in the language
 1235 polishing process, but did not use them in research conception and academic content generation.
 1236