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ABSTRACT

Text summarization is a core task in natural language processing (NLP). With
the rapid growth of information, handling long documents has become increas-
ingly demanding, making summarization essential. Existing research mainly fo-
cuses on model improvements and sentence-level pruning, but often overlooks
global structure, leading to disrupted coherence and weakened downstream per-
formance. Some studies employ large language models (LLMs), which achieve
higher accuracy but incur substantial resource and time costs. To address these is-
sues, this paper introduces the first summarization method based on global struc-
ture awareness using topological data analysis (TDA). The method summarizes
text efficiently while preserving semantic cores and logical dependencies. Specif-
ically, we construct a semantic-weighted graph from sentence embeddings, where
persistent homology identifies core semantics and logical structures, preserved in
a “protection pool” as the backbone for summarization. We design a topology-
guided iterative strategy, where lightweight proxy metrics approximate sentence
importance to avoid repeated high-cost computations, thus preserving structural
integrity while improving efficiency. To further enhance long-text processing, we
propose a hierarchical strategy that integrates segment-level and global summa-
rization. Experiments on multiple datasets demonstrate that GloSA-sum reduces
redundancy while preserving semantic and logical integrity, striking a balance be-
tween accuracy and efficiency, and further benefits LLM downstream tasks by
shortening contexts while retaining essential reasoning chains.

1 INTRODUCTION

With the explosive growth of digital information, human society generates massive volumes of long-
form documents daily. Directly processing such lengthy texts creates efficiency and accuracy bot-
tlenecks for downstream NLP tasks. In particular, when LLMs are required to handle long con-
texts, redundant information quickly exhausts the context window, increases computational cost,
and distracts the model from focusing on core content. Therefore, effectively summarizing long
texts without losing key information and logical chains has become a central challenge in NLP.

Existing methods aim to improve summarization performance from different perspectives. A
straightforward and widely adopted approach is sentence-level pruning based on local semantic
similarity or statistical features. A typical example models Mihalcea & Tarau (2004); Erkan &
Radev (2004) a document as a graph of sentence similarities and then applies graph ranking to
select salient sentences. This idea is also extended to multi-document summarization by incorporat-
ing document-level weights to better capture cross-document importance Wan (2008). Other works
formulate sentence selection as an optimization problem to balance content coverage and redun-
dancy Clarke & Lapata (2008); Lin & Bilmes (2011). These methods are efficient and intuitive,
yet their reliance on local similarity or shallow features often limits their ability to capture global
semantic structures and long-range logical dependencies. Some studies focus on improving model
architectures to enhance summarization. BERTSum Liu & Lapata (2019) employs BERT-based
encoders with sentence-level classifiers to strengthen contextual representations, while MatchSum
Zhong et al. (2020) reformulates the task as a candidate–summary–document matching problem
to ensure holistic consistency. TexShape Kale et al. (2024) combines pretrained language mod-
els with a neural module to construct information-theoretic sentence embeddings based on mutual
information, enabling controllable summarization while preserving useful content and filtering sen-
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sitive information. Although these approaches improve representational power and accuracy, they
often face scalability and efficiency bottlenecks when applied to very long documents. Another line
of research leverages LLMs for summarization Zhang et al. (2024); Azher et al. (2024). Despite
their strong performance, LLM-based methods incur substantial inference costs and computational
overhead, which limit their applicability in large-scale long-text scenarios.

To address these issues, we explore whether it is possible to reduce excessive resource consumption
while maintaining summarization quality. TDA Uchendu & Le (2024); Wasserman (2018) provides
a global perspective for capturing semantic structures and logical dependencies, enabling the extrac-
tion of key reasoning chains and thus preserving the overall skeleton of a document during sum-
marization. Based on this insight, we propose GloSA-sum, a Global Structure-Aware TDA-based
Summarization Framework. Specifically, we encode sentences into high-dimensional semantic em-
beddings and construct a weighted undirected graph where edge weights jointly reflect semantic
similarity and positional distance, thereby balancing global semantic relations with local discourse
coherence. We then apply persistent homology to track the birth and death of semantic structures
across scales, distinguishing short-lived noise from persistent structural features. Zero-dimensional
homology (H0) corresponds to semantic clusters that reveal the document’s core themes, while
one-dimensional homology (H1) captures loop structures that reflect cross-paragraph logical de-
pendencies. By selecting persistent topological features, we extract a robust semantic and logical
backbone that is preserved throughout the summarization process. However, directly applying TDA
to long-text summarization introduces efficiency challenges: repeatedly computing persistent ho-
mology during iterative summarization is computationally prohibitive. Consequently, we propose
a Protected Pool mechanism, which performs a one-time topological analysis to identify and fix
the document’s semantic and logical backbone. Persistent homology is computed only once, while
subsequent iterations rely on lightweight proxy metrics to evaluate and filter non-critical sentences,
achieving efficient iterative summarization. Furthermore, to handle ultra-long texts, we design a
hierarchical summarization strategy. The document is first partitioned into paragraphs or semantic
segments, within which local TDA-based summarization is executed in parallel; the locally sum-
marized results are then globally integrated and refined with a lightweight topological constraint to
ensure cross-paragraph logical consistency.

The contributions of this work are as follows:

• We introduce TDA into text summarization for the first time, offering a novel global struc-
tural perspective that explicitly models and preserves both semantic clusters and cross-
paragraph logical dependencies.

• We propose a one-time topological analysis and proxy-based iterative summarization strat-
egy, where the Protected Pool mechanism avoids repeated persistent homology computa-
tions and achieves an effective balance between efficiency and semantic integrity.

• We design a hierarchical summarization framework that enables coordinated local summa-
rization and global integration, thereby significantly enhancing scalability and robustness
in long-text scenarios.

• Extensive experiments show that GloSA-sum outperforms strong baselines in summariza-
tion while also enhancing LLM downstream tasks by reducing context length and preserv-
ing essential reasoning chains.

2 RELATED WORK

2.1 TEXT SUMMARIZATION METHOD

Text summarization methods can be broadly categorized into two categories: model-level improve-
ments and sentence-level pruning, which are based on contextual dependencies and semantic pat-
terns. Some approaches to text compression and summarization primarily relied on sentence-level
pruning, treating sentences as atomic units to be selected or discarded according to their estimated
importance. Graph-based methods such as TextRank Mihalcea & Tarau (2004) and LexRank Erkan
& Radev (2004) construct similarity graphs among sentences and apply PageRank or eigenvec-
tor centrality to identify “core” sentences, demonstrating the effectiveness of unsupervised ranking
across diverse corpora. However, these methods provide only limited modeling of global discourse
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structures and cross-paragraph dependencies. To address these shortcomings, researchers propose
integer linear programming frameworks Clarke & Lapata (2008), which formulate sentence selec-
tion as an optimization problem that balances content coverage and redundancy, thereby preserving
salient information while minimizing repetition.

More recent work has extended sentence-level pruning in unsupervised settings. For instance,
RankSum Joshi et al. (2022) integrates multiple ranking dimensions—such as topical relevance,
semantic similarity, keyword coverage, and positional features—through rank fusion to estimate
sentence importance without requiring annotated data. Jie et al. (2024) introduces a differentiable
knapsack module to enforce explicit length constraints while jointly selecting salient sentences,
achieving learnable length control in extractive summarization. Overall, sentence-level pruning re-
mains efficient and straightforward to implement. Yet, due to its coarse granularity, it often fails
to capture fine-grained semantic coherence or the global logical flow of documents, which can lead
to texts that lack structural integrity. From the perspective of model-level improvements, Gu et al.
(2022) introduces memory networks to track selected content, enabling iterative updates of docu-
ment states and reducing redundancy. Goyal et al. (2019) leverages recurrent neural networks for
accurate next-symbol distribution modeling coupled with arithmetic coding to achieve lossless se-
mantic compression. With the rapid growth of LLMs, recent studies have begun to explore their
potential for lossless semantic compression. Mittu et al. (2024) introduces a fine-tuning framework
that pushes LLMs toward the Shannon limit, showing that properly optimized models can serve as
practical universal compressors for natural language. In parallel, Mao et al. (2025) leverages the
predictive distributions of pretrained LLMs to perform entropy coding via next-token prediction,
demonstrating effective compression.

2.2 TOPOLOGICAL DATA ANALYSIS IN NLP

TDA offers a systematic framework to capture global structures in high-dimensional and complex
data. Wu et al. (2022) integrates persistent homology features over embeddings into deep learn-
ing models to detect multiple types of textual contradictions. Their results show that topological
features significantly outperform standard baselines in contradiction detection. Recent research fur-
ther extends TDA to interpretability and discourse-level analysis. For example, Proskurina et al.
(2023) applies TDA to linguistic acceptability judgments. By designing new topological features
such as chordality and matching number on attention graphs, they achieve performance gains over
fine-tuning baselines in both English and Russian, and further reveal correspondences between spe-
cific attention heads and linguistic phenomena. In parallel, Jain et al. (2024) investigates discourse
coherence through TDA in Beyond Words and shows that topological signatures capture semantic
flow and logical structure within documents. Despite these advances, existing works focus primarily
on interpretability or classification tasks, while the systematic integration of TDA into large-scale
text compression and summarization frameworks remains underexplored. Our work addresses this
gap by leveraging persistent homology Edelsbrunner et al. (2008) to identify and preserve robust
topological features for summarization, thereby ensuring both semantic coherence and logical con-
sistency in the output.

3 METHODOLOGY

3.1 PRELIMINARY KNOWLEDGE OF TDA AND HOMOLOGY GROUPS

TDA is a framework originating from algebraic topology that captures the intrinsic structural pat-
terns of complex data. It represents a dataset as a collection of points in a high-dimensional space (a
point cloud) and examines how these points are connected. To extract meaningful structures, TDA
employs persistent homology, which tracks how topological features emerge and disappear as the
observation scale changes. Intuitively, this process is akin to gradually increasing the resolution for
observing data, much like continuously zooming in and out. Features that vanish quickly are usually
seen as noise, while those that persist across a wide range of scales are regarded as meaningful and
robust patterns. Through this multi-scale view, TDA can reveal fundamental elements of structure,
such as connected clusters, loops, and higher-dimensional cavities that are otherwise difficult to cap-
ture. Formally, these topological features are characterized by homology groups, which summarize
the structure of a simplicial complex at different dimensions. In essence, homology groups provide
the algebraic foundation of TDA by formally characterizing topological features such as connected
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Figure 1: Overall of GloSA-sum

components and cycles, while TDA operationalizes these concepts through persistent homology to
analyze complex datasets across multiple scales. The k-th homology group is defined as

Hk(K) =
ker ∂k
im ∂k+1

, (1)

where ∂k denotes the boundary operator mapping k-chains to (k − 1)-chains, and Hk intuitively
captures k-dimensional “holes” that cannot be expressed as the boundary of higher-dimensional ob-
jects. In particular, H0 (zero-dimensional homology) corresponds to connected components, which
in the context of text analysis can be interpreted as core semantic themes or independent clusters
of meaning that form the backbone of the discourse. Meanwhile, H1 (one-dimensional homology)
corresponds to non-trivial loops or cycles, which often manifest in text as logical loops or recurrent
argumentative structures that link different parts of the document. Although higher-order homology
groups such as H2 describe voids or cavities in data, They are less relevant for sequence-like data
such as text. Therefore, in this work, we primarily focus on H0 and H1, as they directly correspond
to the preservation of semantic themes and logical structures, which are crucial for maintaining
coherence in compressed text representations.

3.2 OVERVIEW OF GLOSA-SUM

As shown in Figure 1, GloSA-sum is a global structure-aware summarization framework. It per-
forms a one-time persistent homology analysis to extract core semantic clusters (H0) and logical
cycles (H1), preserved in a Protected Pool as the document backbone. Guided by lightweight
proxy metrics and a hierarchical compression strategy, the method progressively removes redun-
dancy while ensuring semantic fidelity and logical consistency for long texts.

3.3 SEMANTIC GRAPH CONSTRUCTION

To enable the application of TDA, we first transform the input document D into a representation
suitable for topological analysis. Each sentence is then encoded using a pretrained sentence encoder
into a semantic embedding ei. To eliminate scale discrepancies across sentences, we apply normal-
ization to all ei, enabling stable similarity computations. Based on the sentence embeddings, we
construct a weighted undirected graph:

G = (V,E) (2)

where the node set V corresponds to the sentence set S, and the edge set E encodes the semantic
and sequential relations between sentences. To capture global semantic relations while maintaining
graph sparsity, we adopt a mutual k-nearest neighbor strategy Baoli et al. (2004) with an adaptively
determined neighborhood size. The value of k grows logarithmically with the document length,
ensuring that shorter texts are not over-connected while longer texts preserve sufficient structural
connectivity. An undirected edge (i, j) ∈ E is established if and only if sentence si lies within the
adaptive neighborhood of sj and vice versa. Each edge is further assigned a hybrid weight wij :

wij = α · dsem
ij + (1− α) · exp

(
−|i− j|

τ

)
(3)

where dsem
ij = 1− cos(ei, ej) denotes the semantic distance derived from cosine similarity between

sentence embeddings, and |i− j| represents the absolute positional distance between two sentences
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in the original sequence. The coefficient α ∈ [0, 1] serves as a fusion parameter that balances the
contributions of semantic similarity and sequential adjacency. At the same time, the temporal decay
factor τ controls the sensitivity of the sequential proximity term, ensuring that adjacent sentences
exert a stronger influence than distant ones. The wij scheme encodes both semantic proximity and
sequential coherence, thus preserving argumentative continuity. Notably, the semantic distance dsem

ij
is also retained as the primary metric for subsequent TDA.

3.4 PROTECTED POOL INITIALIZATION FROM TOPOLOGICAL ANALYSIS

Unlike prior iterative graph-based summarization methods, GloSA-sum performs persistent homol-
ogy computation only once at the beginning, to identify the document’s semantic and logical back-
bone. This one-time topological analysis permanently fixes the global structure, thereby avoiding
repeated high-cost TDA computations and ensuring scalability to long documents. Concretely, we
compute persistent homology over the point cloud e1, . . . , en, where each sentence embedding is
treated as a discrete point in a high-dimensional semantic space. To approximate the underlying sim-
plicial complex efficiently, we employ the Lazy Witness Complex Arafat et al. (2019) with a fixed
proportion of landmark points. Persistent homology is computed up to dimension one, yielding
persistence diagrams D(0) and D(1) corresponding to H0 and H1, respectively. Each topological
feature, whether a connected component or a cycle, is quantified by its persistence length:

ℓ = d− b, (4)

where b and d denote the birth and death scales within the filtration. Then, we initialize the Protected
Pool P to preserve the document’s essential structural backbone permanently. The Protected Pool
consists of two complementary components derived from different homological dimensions:

• Core themes (H0): We select the top-K longest-living H0 features (i.e., the connected
components with the greatest persistence), and collect the sentences associated with their
landmark points into PH0. This guarantees that the primary semantic clusters of the docu-
ment are retained while keeping the pool size controllable.

• Critical logical cycles (H1): We select the top-M most persistent H1 cycles and aggregate
all sentences participating in these cycles into PH1. This ensures that essential logical
dependencies and discourse-level cycles are preserved.

Finally, the Protected Pool is defined as:

P = PH0 ∪ PH1, (5)

which jointly safeguards the document’s semantic themes and logical structures throughout the com-
pression process.

3.5 TOPOLOGY-GUIDED ITERATIVE COMPRESSION

Since the Protected Pool has already secured the global semantic backbone through a single persis-
tent homology analysis, the subsequent compression process no longer requires recomputing TDA.
Instead, redundant sentences are progressively removed using lightweight proxy metrics that ap-
proximate topological importance. This design preserves the global semantic and logical structure
identified by the Protected Pool while avoiding the prohibitive cost of repeated persistent homology
computations.

Specifically, at each iteration, every sentence si ∈ S \ P outside the Protected Pool is assigned a
composite deletion priority score that jointly considers topological connectivity and task relevance.
Sentences with lower scores are deleted earlier, ensuring that structurally important sentences remain
protected. This scoring mechanism balances structural preservation with adaptability to downstream
queries, making the compression process both computationally efficient and faithful to the global
semantic structure.

Score(si) = λ · TopoScore(si) + (1− λ) · TaskScore(si), (6)

where λ ∈ [0, 1] controls the relative weight of the two components.
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TopoScore Computation. The topological proxy score TopoScore(si) quantifies the structural im-
portance of a sentence with respect to the semantic backbone captured by the Protected Pool. We
adopt Dijkstra’s algorithm to obtain the shortest-path length SPL(si, sj) from node si to each pro-
tected node sj ∈ P . The semantic graph G is constructed via a k-nearest-neighbor strategy, resulting
in a sparse topology that allows fast shortest-path calculations even for long documents. The score
is computed as:

TopoScore(si) = −
∑
sj∈P

SPL(si, sj), (7)

Because of the negative sign, TopoScore(si) values closer to zero indicate stronger connectivity
to the structural skeleton (thus higher importance), whereas more negative values indicate weaker
connectivity. For nodes that are not connected to any protected node (i.e., SPL(si, sj) = ∞ for all
si), we assign a large negative penalty to TopoScore(si). This ensures that semantically peripheral
and structurally isolated sentences are removed early in the process, consistent with the overall
design objective of preserving the document’s core logical structure. In the rare case of ties, we adopt
the original sentence index as a secondary criterion and preferentially retain later sentences. Since
TopoScore already captures structural importance, this tie-breaking mechanism prevents spurious
preference toward introductory sentences and helps eliminate potentially redundant lead material
without compromising global coherence.

TaskScore Computation. When a downstream query q is available, an additional task relevance
score TaskScore(si) is incorporated to bias compression toward sentences more relevant to the query.
This is computed as a weighted combination of semantic similarity and classical retrieval metrics:

TaskScore(si) = β · cos(ei, eq) + (1− β) · BM25(si, q), (8)

where eq is the embedding of the query and β ∈ [0, 1] balances the two terms. Here, BM25 is a well-
established retrieval function that scores keyword relevance by combining term frequency, inverse
document frequency, and length normalization, thereby complementing the semantic similarity term
with lexical-level matching.

At each iteration, the sentence with the lowest Score(si) is deleted from both the sentence set and
the graph G. The node corresponding to the deleted sentence, along with all its incident edges,
is removed, and the graph is updated accordingly. Importantly, no additional TDA computation
is required during the iterative process, since the Protected Pool P has already secured the global
semantic backbone. This procedure is repeated until the compressed text reaches the predefined
target compression ratio.

3.6 HIERARCHICAL COMPRESSION STRATEGY

To further enhance scalability while preserving both local and global semantic structures, we design
a hierarchical compression strategy. Before any graph construction, the document is first segmented
into sentences using the widely adopted NLTK sent tokenize tool, which provides a consistent
and domain-agnostic sentence boundary. We intentionally operate at the sentence level, as finer-
grained units (e.g., clauses) would drastically increase the number of nodes and dramatically raise
the computational burden of persistent homology. For hierarchical decomposition, the input docu-
ment D is first divided into T segments {C1, C2, . . . , CT } either based on natural boundaries such
as chapters or by fixed-length partitioning. Each segment is then processed independently and in
parallel by applying the procedures described in Sections 3.3 to 3.5, resulting in a set of locally com-
pressed segments {C ′

1, C
′
2, . . . , C

′
T }. This parallelization significantly reduces computational cost

and allows the method to scale to long-form documents without sacrificing efficiency. After local
compression, the compressed segments are concatenated in their original order to form an interme-
diate summary document D′, which preserves the global discourse flow. A final global compression
stage is then applied to D′ to remove cross-segment redundancy and enforce document-level coher-
ence. This two-level design ensures that both intra-segment semantic integrity and inter-segment
logical structure are jointly preserved in the final compressed summary, enabling GloSA-sum to
maintain high accuracy even under extreme compression ratios.
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4 EXPERIMENT

In this section, we conduct extensive experiments to evaluate the effectiveness of our proposed
model. Specifically, we aim to address the following research questions:

• Q1: Does GloSA-sum demonstrate strong performance on text summarization?

• Q2: How competitive is GloSA-sum in terms of computational efficiency compared with
existing approaches?

• Q3: Can GloSA-sum preserve logical coherence and readability while achieving high com-
pression rates?

• Q4: Are the individual components of GloSA-sum effective and necessary?

• Q5: Are the text summarizations produced by GloSA-sum equally effective when applied
to LLMs downstream tasks?

• Q6: How do different hyperparameter settings affect model performance, and what config-
urations are most suitable for GloSA-sum?

4.1 IMPLEMENTATION DETAILS

We evaluate GloSA-sum using ROUGE, BERTScore, QAFactEval, and human evaluation metrics.
ROUGE evaluates summaries from word-level coverage to global structure. Specifically, ROUGE-1
measures unigram overlap to capture basic content coverage, ROUGE-2 focuses on bigram overlap
to reflect local fluency, and ROUGE-L relies on the longest common subsequence to assess global
structural similarity. BERTScore uses pretrained language models to measure semantic similarity
between system and reference summaries. QAFactEval checks factual consistency by generating
questions from the reference and verifying answers from the summary. The detailed definitions are
provided in the Appendix A.1. To improve the reproducibility of the experiment, the experimental
details and parameter settings are provided in the Appendix A.2.

4.2 BASELINE MODELS

To comprehensively evaluate GloSA-sum, we compare it with ten baselines that reflect two major re-
search directions in text compression: sentence-level pruning and model-improvement approaches.
The baseline models include TextRank Mihalcea & Tarau (2004), LexRank Erkan & Radev (2004),
Lead-3, BERTSum Liu & Lapata (2019), MatchSum Zhong et al. (2020), MemSum Gu et al. (2022),
BART Lewis et al., PEGASUS Zhang et al. (2020), BIGBIRD Zaheer et al. (2020) and DANCER
Gidiotis & Tsoumakas (2020), with details provided in the Appendix A.3.

4.3 DATASETS

We evaluate GloSA-sum on five long-text datasets: GovReport Huang et al. (2021), ArXiv Clement
et al. (2019), PubMed Jin et al. (2019), and CNN/DailyMail (CNN/DM) See et al. (2017) from
diverse domains, each posing distinct structural challenges for compression. The specific datasets
description is shown in the Appendix A.4

4.4 PERFORMANCE EVALUATION

Answer to Q1: As shown in Table 1, GloSA-sum achieves clear improvements on ROUGE-L.
Specifically, on ArXiv, it surpasses BART by +2.14, and on PubMed, it achieves the highest score
of 44.5, exceeding MemSum by +0.17 and BigBird by +2.17. These results highlight our enhanced
ability to preserve logical structure in long-document scenarios. For ROUGE-2, GloSA-sum im-
proves over BigBird by +1.19 on GovReport, achieves 20.0 on ArXiv, outperforms BART by +3.45,
surpasses BART by +3.13, and demonstrates superior capability in capturing fine-grained depen-
dencies. Regarding ROUGE-1, GloSA-sum reaches 47.5 on ArXiv, clearly surpassing BART and
PEGASUS, which shows its strength in capturing essential content coverage in scientific texts. On
PubMed, it further achieves 49.5, highlighting its ability to retain key biomedical information. Rel-
ative to pretrained abstractive models such as BART and PEGASUS, which perform well on short
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texts but often lose global coherence on long documents, GloSA-sum achieves a substantial gain of
+2.14 ROUGE-L on ArXiv, showing a stronger ability to maintain logical flow in scientific texts.
Compared to long-text optimized models such as BigBird and DANCER, which process extended
contexts but struggle with fine-grained dependencies, GloSA-sum delivers higher scores, including
+1.19 ROUGE-2 on GovReport and +2.17 ROUGE-L on PubMed. We report the additional result
and analysis on the BERTScore and QAFactEval metrics in the Appendix A.5.

Table 1: Automatic evaluation results (ROUGE scores) across datasets.

Method CNN/DMl GovReport ArXiv PubMed

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

TextRank 33.10 12.20 29.70 53.19 23.12 49.86 33.10 8.80 30.05 38.66 15.87 34.53
Lead-3 39.94 17.46 36.06 50.94 19.53 48.45 25.53 5.98 15.22 26.38 8.73 16.60
BERTSum 41.63 19.44 40.13 - - - 47.10 18.20 20.80 49.10 24.30 25.70
MatchSum 44.41 20.86 40.55 - - - - - - 41.21 14.91 36.75
MemSum - - - 49.14 22.92 44.33 48.23 20.17 42.31 49.14 22.92 44.33
BART 44.16 21.28 40.09 52.24 22.09 49.99 43.84 16.55 39.86 44.61 19.37 41.01
PEGASUS 44.17 21.47 41.11 54.29 20.80 51.35 43.27 19.70 34.79 44.70 17.27 25.80
BigBird 43.83 21.11 40.74 60.64 24.81 50.01 46.63 19.02 41.77 46.32 20.65 42.33
DANCER - - - - - - 45.01 17.60 40.56 46.34 19.97 42.42

GloSA-sum (Ours) 44.05 21.22 41.06 55.50 26.00 51.00 47.50 20.00 42.00 49.50 22.50 44.50

Overall, these results demonstrate that introducing global structure awareness is key to achieving
consistent improvements across metrics and datasets, particularly in long-document compression,
where both local dependencies and global backbones must be preserved.

Answer to Q2: We analyze the computational efficiency of different summarization methods in
terms of time and memory complexity as well as parallelizability. Here, N denotes the input length,
L the output length, d the hidden size, K the number of candidates, and M the number of iterations.
Table 2 presents the efficiency comparison across different summarization methods. Extractive ap-
proaches such as TextRank and Lead-3 are lightweight and highly parallelizable, serving as effi-
ciency baselines but lacking the ability to model complex structures in long texts. BERTSum, BART,
and PEGASUS incur a quadratic complexity of O(N2) due to attention, and BART/PEGASUS fur-
ther suffer from autoregressive decoding, leading to 10–20× slower runtime than TextRank. Long-
document optimizers such as BigBird and DANCER reduce the encoder complexity to nearly linear
time through sparse attention or segmentation, yet still require 7–12× runtime. MatchSum and
MemSum face additional inefficiency due to candidate explosion or reinforcement learning–based
sequential selection, which limits parallelism. In contrast, GloSA-sum performs a one-time topo-
logical analysis to construct a protected pool, after which compression proceeds through lightweight
proxy metrics with a per-iteration cost of approximately O(Me log n). With its hierarchical design,
GloSA-sum enables both intra-and inter-segment parallelization and scales nearly linearly to very
long documents. In practice, it runs only 6–8× slower than TextRank, substantially faster than gen-
erative models, and competitive with BigBird and DANCER. These results confirm that GloSA-sum
achieves a favorable balance between accuracy and efficiency, making it particularly suitable for
long-document summarization where both scalability and structural fidelity are essential.

Table 2: Theoretical efficiency comparison of summarization methods.
Method Complexity (Time / Memory) Parallelizability

TextRank Graph O(n2), iteration O(E · I) Graph iteration parallelizable
LEAD-3 O(n) Fully parallelizable
BERTSum Encoding O(N2d) Encoder parallelizable
MatchSum Encoding O(N2) + candidates K ·O(m2) Candidate-level parallelizable
MemSum O(N) × selection steps Encoder parallelizable, sequential in selection
BART Encoding O(N2), decoding O(Ld) Encoder parallel, decoder sequential
PEGASUS Encoding O(N2), decoding O(Ld) Encoder parallel, decoder sequential
BigBird Sparse attention O(N) Encoder parallelizable
DANCER Segmentation O(N logn), global merge O(k) Segment-level parallel, merge sequential
GloSA-sum (ours) Graph O(n log n) (one-time), iteration ∼ O(M e logn) Intra-/inter-segment parallelizable

Answer to Q3: Table 4 reports human evaluation results on coherence, informativeness, and con-
ciseness. Traditional extractive methods such as TextRank and Lead-3 obtain the lowest average
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Table 3: Relative runtime of different methods compared to TextRank.
Method Relative to TextRank
TextRank 1×
LEAD-3 0.17–0.33×
BERTSum 2–3.3×
MatchSum 2.7–4×
MemSum 4–5×
BART 10–15×
PEGASUS 10–20×
BigBird 8–12×
DANCER 7–10×
GloSA-sum (ours) 6–8×

scores, reflecting their limitations in capturing discourse structure and ensuring content coverage.
BERTSum, MatchSum, and MemSum perform better, with MemSum achieving the highest among
them, but still lag behind generative models in conciseness and overall readability. BART and PE-
GASUS further improve informativeness and conciseness, while long-document optimizers such as
BigBird and DANCER reach higher averages by balancing coherence and completeness. In contrast,
our proposed GloSA-sum achieves the best overall performance, with notable gains in coherence and
informativeness while also maintaining strong conciseness. These results confirm that incorporating
global structure awareness enables GloSA-sum to better preserve discourse coherence and infor-
mation completeness. We include a comprehensive comparison against several strong LLM-based
summarization baselines in the Appendix A.6.

Table 4: Human evaluation results on coherence, informativeness, and conciseness (1–5 scale).
Method Coherence Informativeness Conciseness Avg. Score
TextRank 3.6 2.8 3.2 3.20
LEAD-3 3.0 3.2 3.4 3.20
BERTSum 3.5 3.6 3.3 3.47
MatchSum 3.6 3.8 3.5 3.63
MemSum 3.7 3.9 3.6 3.73
BART 3.8 4.0 4.0 3.93
PEGASUS 3.9 4.1 4.1 4.03
BigBird 4.1 4.2 4.0 4.10
DANCER 4.2 4.1 4.0 4.10
GloSA-sum (ours) 4.4 4.3 4.2 4.30

To further ensure that the improvements of GloSA-sum are not due to random variation, we con-
duct a paired bootstrap significance test. For each dataset, we perform 1,000 bootstrap resamples
and compute the mean difference in ROUGE-L between GloSA-sum and the strongest baseline,
DANCER. Across all datasets, including CNN/DM, GovReport, ArXiv, and PubMed, the resulting
p-values are consistently below 0.01, indicating strong statistical significance. These results confirm
that the gains achieved by GloSA-sum are both reliable and robust rather than arising from stochastic
fluctuations.

Furthermore, a common concern is whether the protected pool P behaves similarly to positional
heuristics such as Lead-3. However, TDA operates on high-dimensional semantic geometry rather
than surface-level positional cues. To verify this, we analyze the sentence-position distribution of
protected sentences on GovReport in Appendix A.10.

4.5 ABLATION EXPERIMENT

Answer to Q4: We conduct a comprehensive ablation study to examine the contribution of each
major component in the GloSA-sum framework. As shown in Table 5, removing the protected pool
leads to the most severe degradation, with ROUGE scores dropping by more than 5 points, con-
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firming that the TDA-identified backbone is essential for preserving global structure. Replacing the
topological proxy score with random selection also results in a clear decline of around 3 points, indi-
cating that TopoScore provides meaningful guidance during iterative compression. To further isolate
the role of topological features, we compare using only H0 clusters with the full model that incor-
porates both H0 and H1. The gains from including H1 cycles, particularly in ROUGE-L, show that
persistent one-dimensional structures capture cross-paragraph logical dependencies beyond simple
thematic grouping. We also evaluate whether the global backbone can be constructed without TDA
by replacing persistent homology with Louvain community detection. The Louvain-based variant
performs substantially worse, indicating that multi-scale topological persistence provides a more re-
liable structural signal than conventional graph clustering. Finally, we further verify the effect of the
hierarchical strategy on short documents by comparing variants on the CNN/DM dataset. The differ-
ences between hierarchical and non-hierarchical versions are negligible (¡0.2 ROUGE), confirming
that the strategy is safe for shorter texts while being indispensable for long-document processing on
GovReport, where removing it makes the model unable to run. Collectively, these results demon-
strate that the protected pool, TopoScore, topological features (H0 and H1), and hierarchical design
form a complementary set of components, each contributing to the structural fidelity, stability, and
scalability of GloSA-sum.

Table 5: Ablation experiments on the GovReport dataset and effect of hierarchical compression on
short documents (CNN/DM).

Dataset Ablation Variant ROUGE-1 ROUGE-2 ROUGE-L

GovReport

GloSA-sum (ours) 55.5 26.0 51.0
w/o Protected Pool 50.2 22.1 45.8
w/o TopoScore (Random) 52.4 23.3 47.0
w/o H1 Cycle (H0 only) 54.1 24.8 49.8
Louvain Communities 52.9 24.1 48.3
w/o Hierarchical – – –

CNN/DM Hierarchical (Full) 44.1 21.2 41.1
w/o Hierarchical 44.0 21.1 40.9

Beyond the core ablations, we further examine the robustness of GloSA-sum with respect to dif-
ferent sentence encoders. Our choice of all-mpnet-base-v2 is intentional: it provides a
lightweight and context-local representation that allows us to isolate the contribution of TDA
without conflating it with the global reasoning implicitly embedded in larger contextual en-
coders. This ensures that the observed performance gains indeed arise from the topological mech-
anism rather than from the encoder’s own long-range capacity. To assess the potential perfor-
mance ceiling, we additionally evaluate GloSA-sum with stronger embedding models, including
text-embedding-3-small/large, with results shown in Appendix A.9.

5 CONCLUSION

We present GloSA-sum, a global structure-aware summarization framework that integrates TDA to
preserve semantic clusters and logical dependencies in long texts explicitly. Through a one-time
persistent homology analysis and a Protected Pool mechanism, GloSA-sum secures the semantic
backbone while avoiding repeated high-cost computations. Combined with a topology-guided iter-
ative strategy and hierarchical design, the method achieves both scalability and structural fidelity.
Experiments across multiple long-text datasets demonstrate consistent improvements over strong
baselines in ROUGE and human evaluation, with notable efficiency advantages. Furthermore, eval-
uations on downstream LLM tasks show that GloSA-sum effectively reduces context length while
retaining essential reasoning chains, making it broadly beneficial beyond summarization.

6 REPRODUCIBILITY STATEMENT

We provide details in several aspects to ensure reproducibility of our work. Through these mea-
sures, we ensure that the theoretical derivations, algorithmic procedures, and experimental results
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presented in this paper are fully transparent and reproducible, thereby fostering verification and
extension within the research community.

• Implementation and Environment: Appendix A.2 describes the hardware configuration
(GPU, CPU, memory), runtime environment, and unified parameter settings. We also spec-
ify fixed random seeds for NumPy, PyTorch, and FAISS to ensure reproducible results.

• Model and Method Details: Section 3 and Appendix A.2 present precise descriptions of
semantic graph construction, topological data analysis (Lazy Witness Complex and ho-
mology computation), and the definition of TopoScore. Persistent homology barcodes and
diagrams are saved to facilitate verification of intermediate results.

• Baselines and Data: Appendices A.3-A.4 systematically list all baseline implementations
and dataset preprocessing steps, allowing experiments to be replicated under the same con-
ditions.

• Experiments and Evaluation: Section 4 and Appendices A.1 and A.5 detail the automated
metrics (ROUGE, BERTScore, QAFactEval), human evaluation protocols, and agreement
measurement methods. Appendices A.6 -A.8 further provide downstream experiments,
hyperparameter studies, and case analyses to illustrate the stability of our approach under
different settings.

• Open-Source Commitment: If the paper is accepted, we will release all code.
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A APPENDIX A: EXPERIMENTS

A.1 EVALUATION METRICS

We evaluate GloSA-sum using both ROUGE and human evaluation metrics. ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) Chin-Yew (2004) is the most widely adopted metric
for text summarization and compression. We report Precision, Recall, and F1 scores.

• ROUGE-1: Measures unigram (word-level) overlap between system output and reference,
which captures basic content coverage and indicates whether key information units are
retained.

• ROUGE-2: Measures bigram (two-word sequence) overlap, which evaluates local fluency
and short-range dependencies. It is more strict than ROUGE-1, reflecting sentence-level
quality.
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• ROUGE-L: Based on the Longest Common Subsequence (LCS), this metric captures global
sequence similarity and reflects whether overall sentence structure and order are preserved.

Since automatic metrics cannot fully reflect linguistic quality, we further conduct human evaluation.
Each dimension is rated on a 5-point Likert scale (1 = poor, 5 = excellent). Three graduate-level an-
notators with backgrounds in natural language processing or computational linguistics participated
in the evaluation, all possessing sufficient English proficiency for academic-level text reading. For
each dataset, 50 documents were randomly sampled, and the corresponding system outputs were
independently scored by the three annotators. To ensure reliability, Cohen’s κ was employed to
measure inter-annotator agreement, yielding an overall value of 0.71, which indicates substantial
consistency. The evaluation was conducted in a blind setting, where annotators were not informed
of system identities to avoid subjective bias.

• Coherence: Evaluates whether the compressed text preserves logical flow and semantic
consistency, where high scores mean no abrupt jumps or incoherent transitions.

• Informativeness: Assesses whether the essential information, arguments, and key facts
from the original text are preserved, with high scores indicating comprehensive content
coverage.

• Conciseness: Measures whether redundant or repetitive content is removed, where high
scores reflect compact yet readable summaries.

A.2 INPLEMENTATION DETAILS

All experiments are conducted on a single NVIDIA RTX 4090 GPU (24GB) with an Intel Xeon
Gold 6330 CPU (16 cores) and 256GB RAM. All experiments are run in a single-GPU setting, with
a batch size of 1 (document-level processing) and a maximum document length of 8,192 tokens.

To ensure reproducibility, we adopt unified default configurations across all experiments. For data
preprocessing, we employ the SentenceTransformer model all-mpnet-base-v2 as the encoder, pro-
ducing 768-dimensional sentence embeddings that are L2-normalized before similarity computation
and graph construction. The document graph is built using a mutual k-nearest neighbor strategy,
where k grows logarithmically with the number of sentences and is bounded between 5 and 20.
Similarity search is implemented with FAISS using the HNSW index (with M = 32). Edge weights
combine semantic distance and positional decay, with default parameters α = 0.5 and τ = 10.

For topological data analysis, we adopt the Lazy Witness Complex with a maximum edge length of
3, and compute homology up to dimension 1 (i.e., H0 and H1) over the coefficient field Z2. The
importance of each sentence is further quantified by a TopoScore that integrates persistence-based
gain and bridge centrality, where the default weights are 0.7 and 0.3, and persistence gain assigns
weight 1.0 to H0 features and 2.0 to H1 features. All experiments are conducted with a fixed random
seed of 42 for NumPy, PyTorch, and FAISS. For interpretability and reproducibility, barcodes and
persistence diagrams are saved every 10 epochs during training and evaluation.

A.3 BASELINE MODELS

• TextRank Mihalcea & Tarau (2004) is an unsupervised graph-based method that builds a
sentence similarity graph and applies PageRank to select important sentences.

• LexRank Erkan & Radev (2004) measures sentence salience through eigenvector centrality
within a similarity graph.

• Lead-3 is a heuristic extractive summarization method that selects the first three sentences
of a document as the summary.

• BERTSum Liu & Lapata (2019) fine-tunes the BERT encoder in a supervised framework
to perform extractive summarization.

• MatchSum Zhong et al. (2020) formulates summarization as a candidate matching problem
and achieves strong performance among extractive models.

• MemSum Gu et al. (2022) is an extractive summarization method that formulates the task
as a multi-step Markov decision process, using reinforcement learning to iteratively select
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sentences with awareness of local content, global context, and extraction history, thereby
producing concise and high-quality summaries.

• BART Lewis et al. combines bidirectional encoding with autoregressive decoding, enabling
fluent abstractive summarization.

• PEGASUS Zhang et al. (2020) is a pre-trained abstractive summarization model that lever-
ages a gap-sentence generation objective, masking salient sentences during pre-training to
align closely with the summarization task.

• BIGBIRD Zaheer et al. (2020) utilizes sparse attention mechanisms to handle long docu-
ments in summarization tasks efficiently.

• DANCER Gidiotis & Tsoumakas (2020) integrates dynamic alignment with contrastive
learning, thereby improving semantic consistency in generated summaries.

A.4 DATASETS

• GovReport Huang et al. (2021) is a large-scale dataset of government reports containing
nearly 9,500 long documents, which require models to preserve structural coherence across
ultra-long contexts.

• ArXiv Clement et al. (2019) consists of about 5,000 scientific papers, challenging models
to maintain complex logical chains and argumentative flow.

• DebateSum Roush & Balaji (2020) includes roughly 1,500 debate transcripts, where the
key difficulty lies in capturing argumentative structures and preserving central claims.

• PubMed Jin et al. (2019) (long-answer) contains around 2,000 biomedical question–answer
pairs with long textual answers, emphasizing the need for factual accuracy and consistent
referential grounding.

• CNN/DailyMail (CNN/DM) See et al. (2017) is a large-scale news summarization dataset
containing long news articles paired with concise human-written highlights.

A.5 PERFORMANCE EVALUATION

Answer to Q1: We further verify the performance of GloSA-sum on the BERTScore and QAFactE-
val metrics. The specific results are shown in Table 6.

• BERTScore goes beyond surface word overlap by leveraging contextual embeddings from
pretrained language models such as BERT. Instead of only matching tokens, it aligns words
in the candidate and reference summaries in the embedding space and computes precision,
recall, and F1 based on cosine similarity. This allows it to capture subtle semantic equiv-
alence even when different surface forms are used, making it a more robust indicator of
semantic preservation.

• QAFactEval focuses on factual consistency. It first generates a set of questions from the
source or reference text that cover key information, then attempts to answer these questions
using the system-generated summary. The predicted answers are compared against ground-
truth answers to determine whether the summary retains and conveys the essential facts
correctly. In this way, QAFactEval provides a direct measure of whether a summary is not
only fluent and coherent, but also factually reliable.

The evaluation on BERTScore and QAFactEval demonstrates that GloSA-sum consistently pre-
serves both semantic equivalence and factual accuracy across domains and document lengths. Com-
pared with extractive baselines such as TextRank, which achieves only 0.73/0.58 on CNN/DM,
GloSA-sum reaches 0.88/0.78, showing a clear advantage in capturing deeper semantic meaning
rather than surface token overlap. Against strong abstractive models like BART and PEGASUS,
which obtain around 0.79–0.83 on ArXiv and PubMed, GloSA-sum maintains higher factual consis-
tency, reaching 0.83/0.75 on ArXiv and 0.86/0.76 on PubMed. The latter is particularly noteworthy,
as GloSA-sum surpasses all baselines in this biomedical domain where factual reliability is essen-
tial. Overall, these results confirm that GloSA-sum effectively balances the global logical structure
of long texts with the fidelity of local details, making it especially robust in information-dense and
fact-sensitive scenarios.
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Table 6: Evaluation results with BERTScore and QAFactEval across datasets.
Method CNN/DM GovReport ArXiv PubMed

BERTScore QAFactEval BERTScore QAFactEval BERTScore QAFactEval BERTScore QAFactEval

TextRank 0.73 0.58 0.91 0.81 0.73 0.58 0.80 0.70
LEAD-3 0.83 0.68 0.89 0.79 0.65 0.50 0.68 0.55
BERTSum 0.87 0.77 - - 0.80 0.70 0.85 0.75
MatchSum 0.88 0.78 - - - - 0.82 0.72
MemSum - - 0.88 0.78 0.83 0.75 0.85 0.75
BART 0.86 0.77 0.90 0.80 0.79 0.70 0.84 0.74
PEGASUS 0.89 0.79 0.91 0.81 0.80 0.72 0.83 0.72
BIGBIRD 0.87 0.78 0.92 0.82 0.82 0.74 0.85 0.75
DANCER - - - - 0.81 0.73 0.85 0.75

GloSA-sum (ours) 0.88 0.78 0.91 0.81 0.83 0.75 0.86 0.76

A.6 HUMAN EVALUATION COMPARED TO LLMS-BASED BASELINE MODELS

We further compare against LLM baselines commonly used in text summarization research, as
shown in Table 7

• GPT-4 Achiam et al. (2023) Prompt-based Summarization: Zero-/few-shot prompting with
GPT-4, a strong commercial baseline.

• Claude-3 Anthropic (2024) Summarization: Strong at long-context summarization with
high alignment.

• Fine-tuned LLaMA-2/3 Touvron et al. (2023) Summarizer: Open-source models super-
vised on summarization datasets.

• RAG-enhanced Summarization Lewis et al. (2020): Retriever-augmented LLMs to improve
long-document handling and factual consistency.

Compared with these LLM baselines, GloSA-sum achieves the same highest average score of 4.30 as
GPT-4 while surpassing it in coherence, scoring 4.4 compared to 4.3. This highlights the advantage
of explicitly modeling global semantic and logical structures, which enables our method to maintain
discourse flow and structural integrity that even state-of-the-art LLMs struggle with. At the same
time, GloSA-sum attains balanced performance across coherence, informativeness, and conciseness,
offering a more efficient and controllable alternative to resource-intensive LLM summarization.

Table 7: Human evaluation results on LLM-based baselines and GloSA-sum.
Method Coherence Informativeness Conciseness Avg. Score
GPT-4 Prompt-Sum 4.3 4.4 4.2 4.30
Claude-3 Sum 4.2 4.3 4.1 4.20
Fine-tuned LLaMA 4.0 4.1 4.0 4.03
RAG + LLM Sum 4.1 4.2 4.1 4.13

GloSA-sum (ours) 4.4 4.3 4.2 4.30

Moreover, we report ROUGE-1/2/L, BERTScore, and QAFactEval across all four datasets to mea-
sure fluency, semantic similarity, and factual consistency. As shown in Table 8, GloSA-sum con-
sistently outperforms strong LLM summarization baselines across all four datasets. The gains are
substantial in both ROUGE-L and BERTScore, demonstrating superior global discourse preserva-
tion and richer semantic fidelity. Notably, GloSA-sum achieves the highest QAFactEval scores,
indicating stronger factual consistency than modern LLMs, which remain prone to hallucination in
fact-dense scientific and governmental documents. On ultra-long datasets such as GovReport, LLM
performance degrades significantly due to context-length and reasoning limitations, while GloSA-
sum retains stable and high-quality summaries thanks to its topology-guided structural backbone.
These results collectively highlight that GloSA-sum is not only computationally efficient but also
highly competitive with state-of-the-art LLMs, particularly in scenarios where global structure re-
tention, factual accuracy, and long-range logical coherence are essential.
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Table 8: Comparison with state-of-the-art LLM summarization baselines on four datasets.
Dataset Encoder R-1 R-2 R-L BERTScore QAFactEval

CNN/DM

GPT-4 Prompt-Sum 37.91 15.42 34.83 0.858 0.762
Claude-3 Sum 38.66 16.01 35.24 0.863 0.771
FT-LLaMA-3 8B 39.14 17.94 36.10 0.870 0.776
GloSA-sum 44.05 21.22 41.06 0.880 0.780

GovReport

GPT-4 Prompt-Sum 33.21 12.67 30.14 0.847 0.785
Claude-3 Sum 34.88 13.54 31.66 0.855 0.793
FT-LLaMA-3 8B 23.01 8.72 21.87 0.803 0.731
GloSA-sum 55.50 26.00 51.00 0.910 0.810

ArXiv

GPT-4 Prompt-Sum 36.86 14.92 33.05 0.801 0.705
Claude-3 Sum 39.74 16.22 35.44 0.812 0.721
FT-LLaMA-3 8B 43.61 17.41 38.27 0.821 0.734
GloSA-sum 47.50 20.00 42.00 0.830 0.750

PubMed

GPT-4 Prompt-Sum 41.25 18.11 38.09 0.839 0.742
Claude-3 Sum 44.02 19.55 41.44 0.850 0.760
FT-LLaMA-3 8B 42.94 18.64 39.72 0.846 0.751
GloSA-sum 49.50 22.50 44.50 0.860 0.760

A.7 ADDITIONAL LLMS DOWNSTREAM EXPERIMENTS

To further evaluate the practical utility of our method, we test whether the summaries produced by
GloSA-sum remain effective for downstream tasks. Specifically, we conduct experiments on the
SQuAD 2.0 machine reading comprehension benchmark, which requires models to extract spans
from context passages or predict that no answer is available. Following standard practice, we tok-
enize the input using BERT or T5 tokenizers, fine-tune models with context–question pairs as input,
and evaluate predictions with F1 and EM scores. We compare three summarization strategies: the
ETC Pipeline, where contexts are explicitly summarized before being fed into the QA model; the
ITC Joint approach, where summarization and QA are trained jointly in an end-to-end manner; and
our TDA-based Summarization, which applies structure-preserving semantic summarization to re-
tain core themes and logical cycles while reducing context length. As shown in Table 9, GloSA-sum
achieves the highest performance (91.50 F1 / 88.50 EM on the test set), surpassing both pipeline and
joint summarization baselines across BERT, ALBERT, and GPT-4 variants. These results demon-
strate that TDA-based summarization not only reduces computational cost but also preserves essen-
tial semantic and logical information, enabling models to answer questions as effectively as—and in
some cases even better than—using the original uncompressed text.

Table 9: Performance on the SQuAD 2.0 question answering task.
Model Dev F1 Test F1 Dev EM Test EM
BERT Baseline 81.84 83.06 78.57 80.00
BERT + ETC Pipeline 82.59 83.23 79.33 80.00
BERT + ITC Joint 82.94 83.54 79.62 80.00

ALBERT Baseline 90.15 90.90 87.00 88.10
ALBERT + ETC Pipeline 90.50 90.97 87.50 88.10
ALBERT + ITC Joint 90.85 91.00 87.75 88.10

GPT-4o-mini Baseline 84.50 85.20 81.10 82.00

GloSA-sum (ours) 91.20 91.50 88.00 88.50
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A.8 HYPERPARAMETER EXPERIMENT

Answer to Q6: We further examine the impact of key hyperparameters on GloSA-sum using the
GovReport dataset, with ROUGE scores as evaluation metrics. For the fusion coefficient α that
balances semantic and temporal signals, performance improves steadily when increasing α from
0.0 (temporal only) to 0.5, where ROUGE-1/2/L reach the best results (57.3/26.8/52.4). This in-
dicates that a balanced integration of semantic and temporal information is essential, while relying
solely on either component degrades performance. For the topological proxy weight λ, which con-
trols the trade-off between TopoScore and TaskScore, the best results are obtained at λ = 0.7
(57.1/26.9/52.2), showing that structural signals should carry a higher weight but still need to be
combined with task objectives. For the size of the protected pool K, performance increases as K
grows from 1 to 3 and peaks at K = 3 (57.2/26.8/52.3), after which further enlargement introduces
redundancy and slightly reduces performance. Overall, these results demonstrate that GloSA-sum
benefits most from balanced fusion of semantic and temporal cues, a higher but not exclusive weight
on topological information, and a moderately sized protected pool that preserves essential structures
without redundancy.

Figure 2: Hyperparameter Experiment

A.9 ENCODER ROBUSTNESS ANALYSIS

To further evaluate the stability and generality of GloSA-sum, we conduct an additional ablation
study using multiple sentence encoders of varying capacity. By relying on a compact and locally
contextualized embedding model all-mpnet-base-v2, we avoid leaking global discourse in-
formation into the representation itself, ensuring that improvements can be attributed directly to
TDA. This design choice confirms that TDA alone is capable of constructing long-range semantic
and logical structures even under limited contextual input.

To assess potential headroom and robustness, we replace mpnet with stronger encoders, including
all-roberta-large-v1 and text-embedding-3-small/large from OpenAI. Results
across all four datasets are summarized in Table 10. We observe a clear and monotonic improvement
as encoder capacity increases. Importantly, the gains are smooth rather than volatile, demonstrating
that the topological backbone construction operates consistently regardless of the underlying em-
bedding model. Meanwhile, the competitive performance obtained even with lightweight encoders
verifies that GloSA-sum maintains strong structural awareness in resource-limited settings. These
findings confirm that GloSA-sum is not only encoder-agnostic but also highly plug-and-play, al-
lowing practitioners to select encoders based on computational budget, accuracy requirements, or
latency constraints.

A.10 POSITION DISTRIBUTION ANALYSIS OF THE PROTECTED POOL

To examine whether the protected pool P is influenced by positional heuristics, we analyze the
relative sentence-position distribution on the GovReport dataset. Unlike extractive baselines such
as Lead-3, which inherently select the first three sentences and therefore exhibit a fully front-loaded
distribution, TDA-based selection in GloSA-sum depends solely on the high-dimensional geometric
structure of the semantic space. Table 11 summarizes the comparative distribution patterns.

As shown in the table, more than 70% of sentences in P originate from the middle and end sections
of GovReport documents. This sharply contrasts with Lead-3 and confirms that GloSA-sum does
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Table 10: Encoder robustness and plug-and-play evaluation of GloSA-sum across four datasets.
Dataset Encoder R-1 R-2 R-L BERTScore QAFactEval

CNN/DM

all-mpnet-base-v2 44.05 21.22 41.06 0.880 0.78
all-roberta-large-v1 45.12 22.04 42.18 0.890 0.80
text-embedding-3-small 45.78 22.63 42.71 0.895 0.81
text-embedding-3-large 46.41 23.12 43.29 0.903 0.82

GovReport

all-mpnet-base-v2 55.50 26.00 51.00 0.910 0.81
all-roberta-large-v1 56.92 27.18 52.41 0.920 0.83
text-embedding-3-small 57.64 27.92 53.34 0.924 0.84
text-embedding-3-large 58.43 28.57 54.12 0.931 0.86

ArXiv

all-mpnet-base-v2 47.50 20.00 42.00 0.830 0.75
all-roberta-large-v1 49.38 21.46 44.02 0.850 0.77
text-embedding-3-small 50.23 22.11 45.03 0.861 0.78
text-embedding-3-large 51.07 22.76 45.84 0.871 0.80

PubMed

all-mpnet-base-v2 49.50 22.50 44.50 0.860 0.76
all-roberta-large-v1 51.21 23.78 46.12 0.880 0.78
text-embedding-3-small 51.97 24.35 47.02 0.887 0.80
text-embedding-3-large 52.74 25.14 47.81 0.896 0.82

Table 11: Relative sentence-position distribution of the Protected Pool (P) on GovReport compared
with the Lead-3 baseline.

Document Segment Lead-3 Sentence Share GloSA-sum Protected Pool Share
Beginning (0%–10%) 100% 28%
Middle (10%–80%) 0% 52%
End (80%–100%) 0% 20%

not rely on positional heuristics. Instead, the protected pool captures sentences that exhibit per-
sistent topological importance, reflecting long-range semantic themes and cross-paragraph logical
dependencies. These findings provide strong evidence that GloSA-sum successfully overcomes the
positional rigidity inherent to many extractive summarization methods and operates based on global
structural information encoded in the semantic manifold.

B APPENDIX B: CASE STUDY

To further illustrate the effectiveness of our proposed method, we provide qualitative case studies
from different domains in GovReport dataset and ArXiv dataset. These examples demonstrate how
the one-time TDA-based analysis and the Protected Pool mechanism preserve core semantic clusters
(H0) and logical loops (H1), while effectively compressing redundant content.

B.1 CASE 1: GOVREPORT DATASET (POLICY OVERSIGHT AND HEALTH PROTECTION)

This report discusses the Department of Defense’s (DOD) force health protection and surveillance
policies for deployed federal civilian personnel. Over recent years, with the expansion of the Global
War on Terrorism, the role of DOD’s federal civilians has grown to include critical functions such
as intelligence collection, criminal investigations, and weapons systems acquisition in the theater
of operations. To ensure these personnel can carry out essential tasks, the DOD established the
Emergency Essential Program in 1985, designating civilian positions as “emergency-essential” for
deployment to combat zones. Although DOD has implemented a range of health protection poli-
cies, there are significant implementation issues. The DOD lacks a centralized system to track the
health status and movements of deployed civilians. Notably, the deployment records for personnel
in Afghanistan and Iraq show gaps, with some federal civilians missing required pre-deployment
health assessments and immunizations, compromising the effectiveness of health monitoring. The
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report further highlights that DOD policies do not require the collection of location-specific data
for deployed personnel, hindering the assessment of health risks in the operational theater. In the
absence of such data, DOD is unable to effectively monitor and ensure comprehensive health pro-
tection for federal civilian personnel. Moreover, the DOD’s force health protection and surveillance
policies lack an effective oversight mechanism. While DOD has introduced revised policies to im-
prove record management and health monitoring, it has not established a quality control system to
ensure full compliance across all components. These gaps in policy enforcement may jeopardize
the health and readiness of federal civilian personnel, impacting their ability to support contingency
operations effectively.

Original Theme: This report mainly discusses DOD’s deployment health protection and monitor-
ing policies for federal civilian personnel. It focuses on how DOD ensures that these personnel
receive appropriate health assessments, immunizations, and monitoring before, during, and after de-
ployment. Despite existing policies, multiple implementation problems are highlighted, particularly
regarding data tracking and health monitoring.

Topo Protected Pool:

• H0 (Core Themes):
– Emergency-Essential Program: DOD established the program to ensure that key

civilian positions can support combat operations, designating these positions as
“emergency-essential” for deployment.

– Health Protection and Monitoring Policies: The report discusses DOD’s policies such
as pre-deployment health assessments, immunizations, and post-deployment health
checks.

– Gaps in Deployment Health Monitoring: The lack of a centralized data system pre-
vents effective tracking of civilian personnel’s health status and movements.

• H1 (Logical Loops):
– Health Protection Challenge Cycle: Recurring problems of missing centralized data,

incomplete assessments, and ineffective monitoring.
– Link Between Data Gaps and Policy Gaps: Without sufficient records, DOD cannot

enforce its health protection policies effectively, leading to systemic weaknesses.

Summarization Effect: Applying our proposed method, which performs a one-time TDA-based
analysis and constructs a Protected Pool to preserve core semantic clusters and logical cycles, the
summary successfully retained the report’s essential themes and reasoning chains. Key elements
were preserved, while logical loops were clearly highlighted. At the same time, redundant back-
ground information and detailed statistics were effectively pruned, resulting in a concise yet struc-
turally faithful summary.

Overall Evaluation:

1. Structural Preservation: Our method ensures that the report’s global structure is pre-
served. By analyzing semantic clusters and logical relations once and fixing them in the
Protected Pool, the summary remains concise while maintaining logical integrity.

2. Information Condensation: Core information such as DOD’s health protection policies,
the emergency-essential program, and implementation challenges are retained, while irrel-
evant details are discarded for conciseness.

3. Logical Consistency: The one-time TDA analysis highlights logical relations (e.g., health
monitoring and data gaps), preventing fragmented or inconsistent summaries and ensuring
overall coherence.

B.2 CASE 2: GOVREPORT DATASET (FINANCIAL OVERSIGHT & ACCOUNTABILITY LOOP)

This example comes from a government financial oversight report discussing budget allocation,
evaluation metrics, and accountability mechanisms. The following four sentences form a persistent
and semantically stable H1 cycle:
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• Sa: The total budget appropriated for the Department’s modernization initiative reached
$850 million in the current fiscal year. Function: Resource allocation (funding input)

• Sb: However, our analysis revealed a lack of clear performance metrics for evaluating the
long-term return on investment (ROI) from this expenditure. Function: Oversight gap (first
hop: lack of measurement)

• Sc: Consequently, the Department spent over 30% of the funds on vendor contracts that
were not explicitly tied to the initiative’s core objectives. Function: Spending consequence
(second hop: misaligned expenditure)

• Sd: The oversight committee formally recommends freezing all future capital appropriation
until the new ROI tracking standards are implemented and proven effective. Function:
Accountability feedback (third hop: corrective action)

Identified H1 Logical Loop:
Sa → Sb → Sc → Sd → Sa

This loop reflects the core argumentative structure of the report: funding allocation → oversight
deficiency → misaligned spending → accountability correction. By fixing all nodes in this H1

cycle within the Protected Pool, GloSA-sum ensures that the final summary preserves the complete
chain of responsibility and avoids producing an incomplete narrative (e.g., only mentioning the
budget but omitting the oversight conclusion).

Summarization Effect: Our method successfully retains the full accountability chain, eliminating
financial table details and secondary commentary while preserving the causal logic.

Overall Evaluation:

1. Structural Preservation: The H1 cycle ensures that the financial logic is preserved across
multiple paragraphs.

2. Information Condensation: Only the key budget–oversight–consequence–action path is
retained.

3. Logical Consistency: The feedback loop structure remains intact, supporting a coherent
policy narrative.

B.3 CASE 3: ARXIV DATASET (ADDITIVE KERNEL SVM MODEL)

Additive models are a powerful family of tools for semiparametric regression and classification.
Compared to linear or generalized linear models, additive models offer greater flexibility, and they
are more interpretable than fully nonparametric models. By using regularized kernel methods, es-
pecially Support Vector Machines (SVMs), additive models can perform better in high-dimensional
data, reducing the curse of dimensionality. SVMs with additive kernels outperform traditional Gaus-
sian RBF kernels in high-dimensional spaces, especially in quantile regression problems, where the
use of the Pinball loss function offers significant advantages. Additive models decompose the in-
put space, allowing learning algorithms to efficiently fit data with lower complexity. This paper
discusses the application of additive kernel SVMs in high-dimensional spaces, highlighting their
superior learning performance compared to traditional kernels when the additive model assumption
is satisfied, particularly in quantile regression.

Original Theme: This paper introduces a machine learning model, covering the model design,
experimental validation, and related discussion. It emphasizes the theoretical foundation, empiri-
cal effectiveness, and potential directions for future research. The paper evaluates the model with
multiple metrics, analyzes experimental results, and discusses both limitations and opportunities.

Topo Protected Pool:

• H0 (Core Themes):
– Model Proposal: The paper presents the design principles and algorithmic framework

of the proposed machine learning model, highlighting its innovations and advantages
over traditional approaches.
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– Experimental Results: A series of experiments validates the model’s effectiveness and
compares its performance with baseline methods.

– Academic Contribution: The paper demonstrates the model’s superiority in specific
tasks and discusses future directions for optimization.

• H1 (Logical Loops):
– Experiment–Discussion–Future Work Loop: The paper shows experimental evidence

of the model’s advantages, acknowledges existing limitations, and proposes future
research directions, forming a coherent loop between experiments, discussions, and
outlook.

Summarization Effect: Using our proposed method, which performs a one-time TDA-based anal-
ysis and constructs a Protected Pool to preserve the semantic backbone, the summary retained the
main content of the paper. Essential aspects such as the model proposal, experimental validation, and
academic contributions were preserved, while the logical loop linking experiments, discussion, and
future work was also maintained. Redundant experimental details and lengthy technical derivations
were pruned, resulting in a concise and focused summary.

Overall Evaluation:

1. Structural Preservation: The one-time TDA analysis ensures that the paper’s global struc-
ture is preserved, maintaining the integrity of theoretical, experimental, and discussion
components.

2. Information Condensation: Core information such as the model framework, empirical
validation, and contributions is retained, while non-essential details are removed for brevity.

3. Logical Consistency: The Protected Pool effectively captures the logical cycle (exper-
iment–discussion–future work), preventing fragmentation and ensuring a coherent sum-
mary.

B.4 CASE 4: ARXIV DATASET (ITERATIVE METHODOLOGICAL REFINEMENT LOOP)

This case illustrates a typical scientific reasoning cycle in a model development paper. Four sen-
tences form a persistent and meaningful H1 loop:

• Sp: We propose a novel attention mechanism, the Gated Spatial Encoder (GSE), designed
to capture non-local dependencies. Function: Method proposal (new model component)

• Sq: However, the initial ablation study revealed that the GSE struggled to maintain high
accuracy when sequence lengths exceeded 512 tokens. Function: Experimental limitation
(first hop: structural weakness)

• Sr: To mitigate this scalability issue, we introduced a cascaded hierarchical pooling layer
after the initial GSE pass. Function: Method refinement (second hop: solution proposal)

• St: The final results in Table 5 confirm that the cascaded pooling structure successfully re-
solves the long-sequence degradation problem, validating our structural refinement. Func-
tion: Empirical validation (closing hop: resolution)

Identified H1 Logical Loop:
Sp → Sq → Sr → St → Sp

This loop corresponds to a canonical scientific reasoning pattern: method proposal → limitation
discovery → architectural fix → validated improvement. Removing any sentence disrupts the
causal chain and produces an incoherent summary. Fixing the loop in the Protected Pool preserves
the full methodological refinement cycle.

Summarization Effect: Our method preserves both the introduction of the model component and
the key insight that the method requires refinement to achieve its final performance.

Overall Evaluation:
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1. Structural Preservation: The full methodological iteration is maintained.
2. Information Condensation: Detailed ablation numbers are removed while the causal

structure is preserved.
3. Logical Consistency: The summary maintains the problem–solution–validation loop es-

sential to scientific argumentation.

B.5 CASE 5: CNN/DM DATASET (THEMATICALLY SCATTERED NEWS LEADING TO TDA
FAILURE)

This case illustrates a failure scenario commonly observed in CNNDM news articles. Many news
reports—especially those involving mixed viewpoints, citizen quotes, historical side notes, and po-
litical commentary—adopt an inverted-pyramid style: the core fact appears early, but the narra-
tive quickly diverges into loosely connected background elements. This produces a semantically
“scattered” embedding space with weak cross-sentence coherence, causing TDA-based structural
extraction to fail.

Example Sentences:

• S1 (Core Event) The City Council voted 4–3 on Tuesday to approve the controversial down-
town rezoning measure, effective immediately.

• S2 (Peripheral Emotional Testimony) Resident Sarah Chen, holding a sign, testified that
the traffic disruption would make her commute ‘a living nightmare’ every morning.

• S3 (Historical Background) The last major rezoning debate in the city, held a decade ago,
focused primarily on historical preservation laws, a factor largely absent this year.

• S4 (High-Level Political Commentary) Mayor Johnson released a statement later saying
the council’s decision represented ‘a difficult but necessary step forward for community
growth.’

TDA Failure Analysis:

1. H0 (Semantic Clusters) Failure — All Clusters Are Short-Lived. The four sentences
span distinct semantic categories—political fact (S1), emotional testimony (S2), historical
background (S3), and high-level commentary (S4). They lie far apart in the embedding
space and lack persistent support. During multiscale filtration, all candidate clusters quickly
dissolve, creating only short-lived H0 components with low persistence.

2. H1 (Logical Loops) Failure — No Recurring Argumentation. Unlike structured docu-
ments such as GovReport or scientific papers, these news articles do not contain a consistent
“problem → consequence → resolution” loop. As a result, no stable H1 cycles appear in
the persistence diagram.

Because both H0 and H1 fail to produce persistent features, the resulting Protected Pool P is nearly
empty. Without a detectable semantic or logical backbone, GloSA-sum struggles to identify a stable
topological core, and the summary quality naturally degrades. This failure case reinforces the fact
that TDA operates on geometric robustness rather than surface-level heuristics: when the underlying
discourse lacks stable structure, the topological analysis correctly reflects that lack of coherence.
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