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Abstract

Powerful domain-independent planners have been developed
to solve various types of planning problems. These planners
often require a model of the acting agent’s actions, given in
some planning domain description language. Manually design-
ing such an action model is a notoriously challenging task.5

An alternative is to automatically learn action models from
observation. Such an action model is called safe if plans con-
sistent with it are also consistent with the real, unknown action
model. Algorithms for learning such safe action models exist,
yet they cannot handle domains with conditional or universal10

effects, which are common constructs in many planning prob-
lems. We prove that learning non-trivial safe action models
with conditional effects may require an exponential number
of samples. Then, we identify reasonable assumptions under
which such learning is tractable and propose SAM Learning15

of Conditional Effects (Conditional-SAM) the first algorithm
capable of doing so. We analyze this Conditional-SAM theo-
retically and evaluate it experimentally. Our results show that
the action models learned by Conditional-SAM can be used
to solve perfectly most of the test set problems in most of the20

experimented domains.

1 Introduction
Planning is the fundamental task of choosing which actions
to perform in order to achieve a desired outcome. An au-
tomated domain-independent planner refers to an Artificial25

Intelligence (AI) algorithm capable of solving a wide range
of planning problems (Ghallab, Nau, and Traverso 2016).
Developing a domain-independent planner is a long-term
goal of AI research. Researchers developed many domain-
independent planners for various types of planning problems.30

Such planners include Fast Downward (Helmert 2006), Fast
Forward (Hoffmann 2001), ENHSP (Scala et al. 2016), and
more. These planners require a model of the acting agent’s
actions, given in some domain description language such as
the Planning Domain Definition Language (PDDL) (Ghal-35

lab et al. 1998)). Defining an agent’s action model to solve
real-world problems is extremely hard. Researchers acknowl-
edged this modeling challenge and algorithms for learning
action models from observations have been proposed (Cress-
well and Gregory 2011; Aineto, Celorrio, and Onaindia 2019;40

Yang, Wu, and Jiang 2007; Juba, Le, and Stern 2021; Mor-
doch, Stern, and Juba 2023). Since the learned model may
differ from the domain’s actual action model, using it to

plan raises two challenges: completeness and soundness. The
completeness challenge is that the learned model may be 45

too restrictive, in the sense that it does not allow generating
plans for solvable planning problems. The soundness chal-
lenge is that the learned model may be too permissive, in
the sense that it allows plans that either cannot be applied in
the domain or do not reach a state that satisfies the problem 50

goals. There is an inherent trade-off between the soundness
and completeness of the learned model. In problem settings
where execution failures are unacceptable or are very costly,
e.g., autonomous vehicles, high-end robotics, and medical
treatment planning, soundness becomes a hard constraint. We 55

focus on such cases, and aim to learn an action model that
satisfies the strongest form of soundness: every plan allowed
by the learned model must be applicable and yield the same
states in the real, unknown, model. An action model that
satisfies this requirement has been called safe (Juba, Le, and 60

Stern 2021; Juba and Stern 2022; Mordoch, Stern, and Juba
2023).1 We view this as a “safety” notion in part since it
enables more conventional notions of safety to be enforced
during planning, and provides assurance that they will carry
over to the actual execution. 65

Algorithms from the Safe Action Model Learning (SAM)
family (Stern and Juba 2017; Juba, Le, and Stern 2021; Juba
and Stern 2022; Mordoch, Stern, and Juba 2023) address the
challenge of learning safe action models under different sets
of assumptions. However, these algorithms are not suitable 70

for learning actions that may include conditional effects. A
conditional effect is an effect that occurs only when a specific
condition holds. For example, consider an AI for planning
treatments to patients and the action of giving a flu medicine
to a patient, where that medicine causes an allergic reaction 75

in patients with a certain rare blood type. This action’s effects
include not having the flu, but there is also a conditional
effect specifying that an allergic reaction occurs if the patient
has a rare blood type. Clearly, if the patient has a rare blood
type, we would want to avoid applying this type of treatment. 80

A safe action model would never permit the execution of the
action in these cases.

Previous works on action model learning with conditional
1This notion of safety has different definitions in different con-

texts. For example, safe Reinforcement Learning often refers to
ensuring that some safety function of the current state never goes
below some threshold value (Wachi and Sui 2020).



effects (Oates and Cohen 1996; Zhuo et al. 2010) made no
safety guarantees for the learned models. This work addresses85

this gap by exploring the problem of learning safe action mod-
els for PDDL (Ghallab et al. 1998) domains with conditional
effects. Specifically, we introduce the Conditional-SAM algo-
rithm, which is guaranteed to outputs a safe action model. We
show that Conditional-SAM requires an asymptotically opti-90

mal number of trajectories when the size of the antecedents
for the conditional effects is restricted, which is the only
case where the problem is tractable. Then, we describe how
Conditional-SAM can be extended to support lifted action
models (i.e., parameterized) and effects with universally95

quantified variables. Finally, we demonstrate the usefulness
of Conditional-SAM in practice on a set of benchmark plan-
ning problems that have conditional and universal effects.
Our results show that given a few observations, the model
Conditional-SAM learns is logically identical to the real ac-100

tion models and can be used to solve test problems for most
of the experimented domains.

2 Preliminaries
We focus on planning problems in domains where action out-
comes are deterministic, the states are fully observable, and105

contain Boolean variables only. Such problems are commonly
modeled using a fragment of the ADL (Action Description
Language) (Pednault 1989) and formulated in PDDL (Plan-
ning Domain Definition Language) (Ghallab et al. 1998). In
PDDL, a planning problem is described by a PDDL domain110

and a PDDL problem. A PDDL domain is a tuple D = ⟨F,A⟩
where F is a finite set of Boolean variables, referred to as flu-
ents and A is a set of actions. A literal refers to either a fluent
or its negation. Let L be the set of every possible literal. A
state is a conjunction of literals that includes, for every fluent115

f , either f or ¬f . The value of a fluent f is a state s is true if
s includes f and false otherwise. An action a ∈ A is a triple
⟨name(a), pre(a), eff(a)⟩ corresponding to the name of the
action, its preconditions, and effects. The preconditions of an
action a, pre(a), is a conjunction of literals that are sufficient120

and necessary conditions for applying a. If the preconditions
of a are satisfied in a state s we say that a is applicable in s.
If an action has no preconditions, then it is applicable in any
state. The effects of an action a, eff(a), specify the outcome
of applying a. An effect is defined by a tuple ⟨c, e⟩ where c125

is called the antecedent (condition) and e is called the result.
Both c and e are conjunctions of literals. The semantics of an
effect ⟨c, e⟩ for an action a is that if a is applied in a state s
where the antecedent c holds then the result e will be true in
the next state. The antecedent can also be true, representing130

that the result occurs regardless of the state where the action
has been applied. An effect where the antecedent is not true
is called a conditional effect. The outcome of applying a to
a state s, denoted a(s), is a state in which the value of every
fluent is as in state s except those fluents changed by the135

action’s effects.
A PDDL problem is defined by a tuple P = ⟨I,G,D⟩

where I is the initial state of the world, G is a conjunction of
literals that define the desired goal, and D is a PDDL domain.
A plan Π = ⟨a1, a2, ...an⟩ is a sequence of actions. A plan140

Π is called valid for a PDDL problem P = ⟨I,G,D⟩ if a1

is applicable in I , ai is applicable in ai−1(· · · (a1(I)) · · · ),
and G ⊆ an(an−1(· · · (a1(I)) · · · )).

An action model for a PDDL domain D = ⟨F,A⟩ is a
pair M = ⟨preM , effM ⟩ where preM maps every action in 145

A to a (possibly empty) conjunction of literals in F , and
effM maps actions in A to a (possibly empty) set of effects
over F . The real action model of a domain, denoted M∗, is
the action model where for every action a is mapped to its
real precondition and effects, i.e., preM∗(a) = pre(a) and 150

effM∗(a) = eff(a). For an action a, state s, and action model
M , we denote by aM (s) the state that results from applying
a in s assuming that M is the real action model.

Definition 1 (Safe Action Model). An action model M is
safe w.r.t. an action model M ′ if for every state s and action 155

a it holds that if a is applicable in s according to M then (1)
it is also applicable in s according to M ′, and (2) applying
a in s results in exactly the same state according to both M
and M ′. Formally:

preM (a) ⊆ s→
(
pre′M (a) ⊆ s ∧ aM (s) = a′

M (s)
)

(1)

An action model is said to be safe in a domain if it is safe 160

w.r.t. its real action model. This paper deals with the case
where the planning agent does not know the real action model
of a given domain, yet it aims to learn an action model that is
safe in it. A major benefit of learning such a safe action model
is that any plan generated with the learned action model for 165

any problem in the same domain is also valid with respect
to the real, unknown, action model. Following prior works
on learning action models (Amir and Chang 2008; Cresswell,
McCluskey, and West 2013; Aineto, Jiménez, and Onaindia
2018) in general and safe action models in particular (Stern 170

and Juba 2017; Juba, Le, and Stern 2021; Mordoch, Stern,
and Juba 2023), we assume as input a set of observations of
previously executed plans, represented as a set of trajectories.
A trajectory T = ⟨s0, a1, s1, . . . an, sn⟩ is an alternating se-
quence of states (s0, . . . , sn) and actions (a1, . . . , an) that 175

starts and ends with a state. The trajectory created by ap-
plying π to a state s is the sequence

〈
s0, a1, . . . , a|π|, s|π|

〉
such that s0 = s and for all 0 < i ≤ |π|, si = ai(si−1).
A trajectory is often represented as a set of action triplets{
⟨si−1, ai, si⟩

}|π|
i=1

. 180

Problem Definition and Assumptions
We deal with the problem of learning a safe action model for a
domain D given a set of trajectories T collected by executing
plans for different problems in D. Ideally, the learned action
model will be able to generalize beyond the given set of 185

trajectories and enable finding plans for other problems in D.
We make the following assumptions:
1. The given trajectories are fully observable and noise-free.
2. For each literal l′ and action a, there is at most one effect

of a for which l′ is a result. 190

3. The maximal number of literals in an antecedent is at
most n, a fixed parameter known in advance.

Assumption 1 means we observe all the actions and the
values of all the fluents in all states in every trajectory in
O. This assumption is common in the action model learning 195

literature and lifting it in the context of conditional effects



is left for future work. Assumption 2 means that there are
no disjunctive antecedents, i.e., multiple effects for the same
action having the same result but with different antecedents.
The implication of this assumption is that if (c, e) is an effect200

of some action a, then no conjunction of literals except c is
an antecedent of the literals in the result e. Formally:

∀l′, a : ((c, e) ∈ eff(a) : l′ ∈ e)

→ (∄(c′, e′) ∈ eff(a) : l′ ∈ e′ ∧ c ̸= c′) (2)

This assumption crucially improves the efficiency of learning.
We discuss relaxing this assumption later. Assumption 3
means that a human modeler must specify an upper bound205

on the number of literals in an antecedent for the domain at
hand. Specifying such a bound is significantly easier than
manually defining the entire action model. We prove later
that without the third assumption, learning conditional effects
is intractable.210

3 Approach
Conditional-SAM learns an action model by applying the
following rules:
Definition 2 (Conditional-SAM Inductive Rules). For every
action triplet ⟨s, a, s′⟩ ∈ T215

1. [Not a precondition] For every literal l /∈ s, l /∈ pre(a)
2. [Not a result] For every literal l′ /∈ s′, ∄(c, e) ∈ eff(a)

where (c ∧ s ⊬ ⊥) ∧ (l′ ∈ e)
3. [Must be an effect] For every literal l′ ∈ s′ \ s, ∃(c, e) ∈

eff(a) : (c ∧ s ⊬ ⊥) ∧ (l′ ∈ e)220

4. [Not an antecedent] For every literal l′ ∈ s′ \ s, and
conjunction of literals c: if c∧s ⊢ ⊥, then ∄(c′, e) ∈ eff(a)
such that c ⊆ c′ and l′ ∈ e.

The first three rules generalize the SAM-Learning (Juba, Le,
and Stern 2021) inductive rules to support conditional effects.225

The fourth inductive rule is derived from Assumption 2 (no
disjunctive conditional effects): if we observe l′ as the result
of the action, any conjunction of literals c that is not satisfied
in s cannot be the antecedent of the conditional effect for l′.
Example 1. Consider a domain with three fluents f1, f2,230

and f3, where the size of antecedents is bounded by 1 (i.e.,
n = 1), and assume a Boolean vector of size 3 repre-
sents a state. Now, assume we observed an action triplet
⟨(T, T, F ), a, (F, T, F )⟩. Using the first inductive rule, we
infer that ¬f1, ¬f2, and f3 are not preconditions of the action235

a. By applying the second inductive rule, a cannot include
an effect (c, e) such that c is consistent with f1 ∧ f2 ∧ ¬f3
and the result is either f1, ¬f2, or f3. Since n = 1, this
rules out the conditional effects where c is one of the follow-
ing {true, f1, f2,¬f3} and e is either f1 or ¬f2 or f3, e.g.,240

(c, e) = (f1,¬f2). According to the third inductive rule there
exists (c, e) ∈ eff(a) such that c is one of {true, f1, f2,¬f3}
and e = ¬f1. Finally, according to the fourth inductive rule
(¬f2,¬f1) and (f3,¬f1) cannot be conditional effects.

Conditional-SAM Algorithm245

Next, we describe the Conditional-SAM algorithm, which
uses the Conditional-SAM inductive learning rules (Defini-
tion 2). The pseudo-code for Conditional-SAM is given in

Algorithm 1. Let A(T ), L(T ) be the set of actions and liter-
als observed in the trajectories T . Conditional-SAM main- 250

tains three data structures: pre(a) and PosAnte(·, a) for every
action a, and MustBeResult(a, l) for action a and literal l.
pre(a) is a set of literals, representing which literals may be
preconditions of a. It is initialized to all the literals l ∈ L(T ).
PosAnte(l, a) is a set of conjunctions of literals, representing 255

all the conjunctions that may be antecedents of a conditional
effect of a that results in l.2 This data structure is initialized
to include every conjunction of literals of size n or less. Must-
BeResult(a) maintains the set of literals observed to be a
result of applying a. This data structure is initialized as an 260

empty set. Conditional-SAM updates these data structures by
applying the Conditional-SAM inductive learning rules for
each action triplet in the given trajectories. That is, it removes
literals from pre(·) according to Rule 1, removes conjunc-
tions of literals from PosAnte(l, a) using Rules 2 and 4, and 265

adds literals to MustBeResult(a) using Rule 3.
Then, Conditional-SAM iterates over every action a ∈

A(T ) using pre(a), PosAnte(·, a), and MustBeResult(a) to
generate the preconditions and effects of a in the resulting
safe action model. This part of Conditional-SAM is encapsu- 270

lated in the function BuildActionModel, listed in Algorithm 2.
BuildActionModel stores the preconditions and effects of the
resulting safe action model in pre∗(a) and eff∗(a), respec-
tively. Initially, eff∗(a) is an empty set and pre∗(a) is set to
be pre(a). Then, it iterates over every literal l and considers 275

adding an effect to eff∗(a) with a l as a result, as follows. Let
PA be the subset of PosAnte(l, a) containing only conjunc-
tions that are disjoint from pre(a). Conditional-SAM uses
PA to compute two formulas, Ante and NotAnte. NotAnte is
the conjunction of the negation of every clause c in PA, and 280

Ante is the conjunction of all the clauses c ∈ PA. Observe
that applying a in a state where Ante is true guarantees that l
will be true in the subsequent state. Similarly, applying a in a
state where NotAnte is true guarantees that l will not be true
in the subsequent state unless it was true before. To minimize 285

the number of clauses and their size, we apply unit propaga-
tion on each of them. Afterward, the function verifies whether
l ∈ MustBeResult(a). If so, the tuple (Ante, l) is added to
eff(a). If PosAnte(l, a) includes more than a single clause of
possible antecedents, then there is an ambiguity on which 290

antecedent causes l. To mitigate this, Conditional-SAM adds
to pre∗(a) the disjunction (l∨NotAnte∨Ante). This disjunc-
tion is composed of three parts as follows: First, allowing
the action to be applicable if the result, l, is observed in the
pre-state. Second, the action is permitted if none of the an- 295

tecedents hold in the pre-state. Last, a is applicable if all the
antecedents hold in the pre-state. If one of the above holds,
the action can be executed.

If l was not observed as a result of the action, i.e., l /∈
MustBeResult(a), the function adds (l∨NotAnte) to pre∗(a). 300

Since we have yet to observe l as a result of the action, then
l /∈ eff(a); Thus, to prevent l from triggering unexpectedly,

2According to Assumption 2, in the real action model there
can be only one such conjunction. Conditional-SAM maintains in
PosAnte(l, a) a set of conjunctions since it does not know the real
action model.



we do not permit the action to be executed if Ante is true. Af-
ter repeating this for every action, BuildActionModel returns
the safe action model comprising pre∗ and eff∗.305

Algorithm 1: Conditional-SAM Algorithm
1: Input: T , n
2: Output: A safe action model.
3: for a ∈ A(T ) do
4: pre(a)← L(T )
5: MustBeResult(a)← ∅
6: PosAnte(l, a) ←

⋃n
i=1{l1 ∧ ... ∧ li|∀1 ≤ j ≤ i : lj ∈

L(T )} ∪ {true}
7: for ⟨s, a, s′⟩ ∈ T do
8: for l such that l /∈ s do
9: pre(a)← pre(a) \ {l} ▷ Rule 1

10: for l ∈ s′ \ s do ▷ Rule 3
11: MustBeResult(a)← MustBeResult(a) ∪ {l}
12: for l′ /∈ s′ and c ∈ PosAnte(l′, a) s.t. (c ∧ s ⊬ ⊥) do
13: PosAnte(l′, a)← PosAnte(l′, a) \ c

▷ Rule 2
14: for l′ ∈ s′ \ s and c ∈ PosAnte(l′, a) s.t. c ∧ s ⊢ ⊥ do ▷

Rule 4
15: PosAnte(l′, a)← PosAnte(l′, a) \ c
16: return BuildActionModel(pre,MustBeResult,PosAnte)

Algorithm 2: BuildActionModel
1: Input: pre,MustBeResult,PosAnte
2: Output: pre∗ and eff∗ for all actions.
3: for a ∈ A(T ) do
4: eff(a)← ∅; pre∗(a)←

∧
l∈pre(a) l

5: for l ∈ L(T ) \ pre(a) where PosAnte(l, a) ̸= ∅ do
6: PA← {c ∈ PosAnte(l, a)|(pre(a) ∩ c) = ∅}
7: NotAnte←

∧
c∈PA ¬c

8: Ante←
∧

c∈PA c
9: Minimize clauses Ante and NotAnte using unit propaga-

tion.
10: if l ∈ MustBeResult(a) then
11: Add to eff(a): (Ante, l)
12: if PA is not a single clause then
13: pre∗(a)← pre∗(a) ∧ (l ∨ NotAnte ∨ Ante)
14: else
15: pre∗(a)← pre∗(a) ∧ (l ∨ NotAnte)
16: return ⟨pre∗, eff⟩

Example 2. Given a domain with 3 literals and an action a
where pre(a) = ∅, l1 ∈ MustBeResult(a), PosAnte(l1, a) =
{{l2}, {l3}}, PosAnte(l2, a) = ∅, and PosAnte(l3, a) = ∅.
The resulting preconditions and effects after applying Buil-
dActionModel are pre∗(a) = (l1) ∨ (¬l2 ∧ ¬l3) ∨ (l2 ∧ l3)310

and eff∗(a) = (l2 ∧ l3, l1), i.e., when l2 ∧ l3 then l1.
Theorem 3.1. The action model M ′ learned by
Conditional-SAM is safe w.r.t the action model that
generated the input trajectories T .

A proof is provided in the supplementary material. Note315

that the real model does not have actions with disjunctive an-
tecedents (Assumption 2), but the safe action model we learn
may include such actions. This highlights that the learned

model may be different from the real model. Nevertheless,
the learned model is guaranteed to be safe w.r.t to it. 320

4 Theoretical Analysis
Next, we analyze the Conditional-SAM algorithm. We prove
that under a fixed antecedent size (n) its space, runtime, and
sample complexity are tractable, and show that our sample
complexity bound is tight. 325

Lemma 4.1. The space complexity of Conditional-SAM is
O
(
|A||L|n+1

(
e
n

)n)
, where e is the base of the natural loga-

rithm.
Lemma 4.2. The runtime complexity of Conditional-SAM is
O
(
|A||L|n

(
e
n )

n
)
+ |T ||L|n+1

(
e
n )

n
))

330

As can be seen from Lemmas 4.1 and 4.2, the complexity
of the algorithm is independent of the number of effects and is
only affected by the maximal size of the antecedents and the
number of literals and actions in the domain. The complexity
does, however, increase exponentially with n. 335

Theorem 4.3. Let D be a distribution over pairs ⟨P,Π⟩
where P is a problem from a fixed domain D and Π is a plan
solving P . Given

m ≥ 1

ϵ

(
ln(3)|F ||A|+ 2 ln(2)|F ||A|

(
2|F |e
n

)n

+ ln
1

δ

)
trajectories obtained by executing Π for m independent
draws from D, Conditional-SAM returns an action model 340

M ′ such that with probability 1− δ, for a new P drawn from
D, the probability that there exists a plan consistent with M ′

solving P is at least 1− ϵ.
We supply the proofs for the space, runtime, and sample

complexity in the supplementary material. At a high level, the 345

sample complexity follows since the learned preconditions of
each action of a plan Π sampled from D are satisfied and the
action model is safe. Either at least one literal is deleted from
pre or at least one clause c is deleted from some PosAnte(e, a)
when such an action a would be used by the plan Π. Thus 350

if a specific literal or clause would prohibit the action with
probability greater than ϵ, that literal/clause is eliminated
with high probability given a sample of the specified size.

Conditional-SAM, therefore enjoys approximate com-
pleteness with high probability so long as the number of 355

training trajectories is sufficiently large. The one unsatisfying
aspect of our bound is that the number of trajectories is expo-
nential in the size of the antecedents of the conditions in the
conditional effects we consider. Unfortunately, we find that
this is unavoidable and our bound is asymptotically optimal 360

(for any fixed n) for safe action model learning for domains
with conditional effects:
Theorem 4.4. Any learning algorithm that is guaranteed
to return a safe action model must be given at least m ≥
Ω( 1ϵ (|F ||A||(|F |/3n)n|+log 1

δ )) samples to be able to guar- 365

antee that with probability at least 1− δ the learned model
permits a plan solving Π drawn from D with probability at
least 1− ϵ for 0 < ϵ, δ < 1/4.

The full proof of the lower bound is in the supplemental
material. At a high level, the hard distribution involves initial 370



states that have all |A| “goal” fluents set to false, all but one
(uniformly random) of the (p− |A|)/2 “forbidden” fluents
true, and exactly n out of the (p − |A|)/2 “flag” fluents
(uniformly at random) true. With probability 4ϵ, the goal
includes a single goal fluent, chosen uniformly at random,375

that should be set to true. All other goal fluents, as well as the
one forbidden fluent, must be set to false. The corresponding
Π consists of a plan with a single action, where the agent
takes an action corresponding to the fluent to be set true in the
goal. Otherwise there is an empty goal, where the agent takes380

a no-op action. For any problem with a non-empty goal that
we did not observe in the training set, no safe action model
can permit taking the action needed to achieve the goal. We
need to observe at least a 3/4 fraction of the possible goals
for a safe action model to attain probability 1− ϵ.385

5 Learning Lifted Action Models
It is common to define PDDL domains and problems in a
lifted manner. A lifted domain defines fluents and actions in
a parameterized manner, where every parameter has a type.
For example, the action (stop ?f - floor) and the fluent (destin390

?person - passenger ?floor - floor) from the IPC Miconic
domain are parameterized by objects of type floor and person.
A state is a conjunction of grounded fluents, which are pairs
of the form ⟨l, bl⟩ where l is a fluent, and bl is a function
that maps parameters of l to concrete objects. A plan is a395

sequence of grounded actions, which are pairs in the form
⟨a, ba⟩ where a is an action and ba maps action parameters
to objects. A trajectory is an alternating sequence of states
and grounded actions.

Generally, the parameters in an action’s preconditions400

and effects are bound to the action’s parameters. Thus, pre-
conditions and effects of an action in a lifted domain are
parameter-bound literals. A parameter-bound literal for an
action a is a pair (l, bla) where l is a literal and bla is a
function that maps every parameter of l to a parameter in405

a. Let bindings(a) be the function that returns all parameter-
bound literals that can be bound to a. For a grounded action
aG = ⟨a, ba⟩ and parameter-bound literal l ∈ bindings(a),
we define g(aG, l) to be the grounded literal resulting from
assigning the objects in the parameters of aG to the parame-410

ters of l. Given a conjunction of parameter-bound literals c,
g(aG, c) returns the corresponding conjunction of grounded
literals cG such that ∀l ∈ c : g(aG, l) ∈ cG. Similarly, for
a pair of conjunctions of parameter-bound literals (c, e) we
define g(aG, c, e) to be the pair (cG, eG) that are the corre-415

sponding conjunctions of grounded literals. SAM learning
has already been extended to learn lifted classical planning
domains (Juba, Le, and Stern 2021) without conditional ef-
fects. We extend Conditional-SAM to support lifted domains
in a similar manner, based on the following extension to the420

Conditional-SAM inductive rules (Def. 2).

Definition 3 (Lifted Conditional-SAM Inductive Rules). For
every action triplet ⟨s, aG = ⟨a, ba⟩ , s′⟩ ∈ T ,
1. [Not a precondition] For every l ∈ bindings(a) s.t.

g(aG, l) /∈ s, l /∈ pre(a)425

2. [Not a result] For every l′ ∈ bindings(a) s.t. g(aG, l′) /∈
s′, ∄(c, e) ∈ eff(a) where (g(aG, c) ∧ s ⊬ ⊥) ∧ (l′ ∈ e)

3. [Must be an effect] For every l′ ∈ bindings(a), if
g(aG, l′) ∈ s′ \s then ∃(c, e) ∈ eff(a), where (g(aG, c)∧
s ⊬ ⊥) ∧ (l′ ∈ e) 430

4. [Not an antecedent] For every l′ ∈ bindings(a) and set
of literals c ⊆ bindings(a) if g(aG, l′) ∈ s′ \ s and
g(aG, c) ∧ s ⊢ ⊥ then ∄(c′, e) ∈ eff(a) such that c ⊆ c′

and l′ ∈ e

The rest of the Conditional-SAM algorithm remains essen- 435

tially the same, where MustBeResult and PosAnte may now
contain parameter-bound literals.

6 Learning Effects with Universal Quantifiers
Some PDDL domains and planners support universal quan-
tifiers which allow actions’ preconditions and effects to in- 440

clude additional parameters that are not bound to the actions’
parameters. More formally, Universally quantified precondi-
tions and effects define one or more universally quantified
variables (UQV) that may be bound to any parameter of a
literal used in them. The result of universally quantified con- 445

ditional effects must include at least one UQV. Otherwise,
if only the antecedents include UQVs, then we can interpret
such antecedents as disjunctive universal preconditions. To
clarify the formulation of universal effects, suppose that we
need to represent an elevator with a stopping functionality 450

that ensures that all waiting passengers get in or out once the
elevator stops. Figure 1 presents the stop action schema to
implement this functionality. The UQV in this example is ?p.

(:action stop
:parameters (?f - floor)
:precondition (and (lift-at ?f))
:effect
(and (forall (?p - passenger)

(when
(and (boarded ?p) (destin ?p ?f))
(and (not (boarded ?p)) (served ?p))))))

Figure 1: Parts of the action stop from Miconic domain that
contains universally conditional effects.

We focus below on learning universal effects since they 455

are more common, but our approach also supports learning
universal preconditions. Note that universal effects may be
unconditional and might occur every time the action is exe-
cuted, in which case the antecedent is the trivial antecedent
true. Conditional-SAM can learn these universal effects as 460

well. We briefly describe how Conditional-SAM can be ex-
tended to support universal effects.

In general, the number of UQVs a universal effect can
define is exponential in the arity of the domain fluents. Still,
universal effects with more than two UQV are rare. Thus, 465

we will assume the number of UQVs in a universal effect is
a known fixed constant k. To support universal effects, the
bindings(a) function is modified to also return parameter-
bound literals that bind one or more literal parameters to
UQVs that may be used in action a’s effects. Similarly, the 470

g(aG, l) function is modified such that if l is a parameter-
bound literal that includes UQVs then g(aG, l) returns a set of
grounded literals matching the grounded action’s parameters



combined with the UQVs. In addition, g(aG, c, e) returns a
set of matching pairs (cG, eG) if either c or e include one or475

more UQVs. We now present the changes in the inductive
rules to support universally quantified variables.

Definition 4 (Conditional-SAM Inductive Rules with UQVs).
For every action triplet ⟨s, aG = ⟨a, ba⟩ , s′⟩ ∈ T :
1. For every l ∈ bindings(a) such that ∃lG ∈ g(aG, l) where480

lG /∈ s, then l /∈ pre(a)3

2. For every l′ ∈ bindings(a) such that ∃l′G ∈ g(aG, l′)
and l′G /∈ s′ then ∄(c, e) ∈ eff(a) such that ∃(cG, eG) ∈
g(aG, c, e) where (cG ∧ s ⊬ ⊥) ∧ (l′G ∈ eG)

3. For every l′ ∈ bindings(a) if ∃l′G ∈ g(aG, l′) such that485

l′G ∈ s′ \ s then ∃(c, e) ∈ eff(a), where ∃(cG, eG) ∈
g(aG, c, e) such that cG ∧ s ⊬ ⊥ ∧ l′G ∈ eG

4. For every l′ ∈ bindings(a) and c ⊆ bindings(a) if
∃(l′g, cG) ∈ g(aG, c, l′) such that l′G ∈ s′ \ s and
cG ∧ s ⊢ ⊥ then ∄(c′, e) ∈ eff(a) such that c ⊆ c′ and490

l′ ∈ e

Here too, the core Conditional-SAM algorithm remains
the same, where MustBeResultand PosAntemay now contain
parameter-bound literals that include UQVs. We assume that
for each action the algorithm is aware of the types of objects495

that might include universal effects.

7 Experimental Results
We implemented Conditional-SAM and conducted experi-
ments on six planning domains that include conditional ef-
fects. Specifically, we used the CityCar, Nurikabe, and Main-500

tenance domains from the International Planning Compe-
tition (IPC) 2014 (Vallati et al. 2015); the Briefcase and
Miconic are from AIPS-2000 (Bacchus 2001), and Satellite,
which is an ADL version of the classical IPC (Long and Fox
2003) domain. 4. Table 1 presents relevant information about505

the domains we experimented on. The column ‘Domain‘ rep-
resents the domain’s name that was experimented on, and
the columns ‘|A|‘ and ‘|P |‘ present the number of actions
and predicates in the domain respectively. The column ‘#
U.E.‘ presents the number of universally conditional effects510

present in the domains (The satellite domain has conditional
effects that do not contain UQVs) and the column ‘n‘ is the
maximal number of antecedents for the conditional effects
in the domains. The column |T | represents the size of the
trajectories dataset of the domain. The column |t| is the av-515

erage number of action triplets in a trajectory (the standard
deviation is displayed in brackets).

For each domain, we generated our problems dataset using
a PDDL problem generator (Seipp, Torralba, and Hoffmann
2022).5 Using the problem generator, we created a dataset520

of 100 problems that were used to create the trajectories.
To solve the generated problems and create the input tra-
jectories, we used two well-known classical planners that

3The first inductive rule enables learning universal preconditions
4All the domains are available in https://github.com/AI-

Planning/classical-domains We provide an extensive explanation of
the experimented domains as well as domains that were not used in
our experiments in the supplementary material.

5Action costs were ignored in all domains we experimented on.

support ADL, Fast-Downward (FD) (Helmert 2006) using
FF heuristic and context-enhanced additive heuristic, and 525

Fast-Forward (FF) (Hoffmann 2001) with a Greedy BFS con-
figuration. We restricted the solvers to solve the problems in
up to 60 seconds. For the Nurikabe domain, only 52 problems
were solved with our planners, resulting in a smaller dataset.

We split our dataset into train and test sets, trained 530

Conditional-SAM on the trajectories in the train set, and used
the generated action models to solve the test set problems.
To validate the correctness of the generated plans we used
VAL (Howey, Long, and Fox 2004). We followed a 5-fold
cross-validation methodology by repeating each experiment 535

5 times, sampling different trajectories for learning and test-
ing. All the presented results are averaged over the five folds.
The experiments were run on a Linux machine with 8 cores
and 16 GB of RAM.

Domain |A| |P | # U.E. n |T | |t|
Satellite 5 8 0 1 100 36.2 (6.1)
Maintenance 1 3 1 1 100 5.6 (1.3)
Miconic 3 6 2 2 100 46.7 (4.9)
Citycar 7 10 1 1 100 19.7 (4.0)
Briefcase 3 3 1 1 100 76.6 (15.6)
Nurikabe 4 12 2 3 52 78.2 (5.17)

Table 1: Statistics regarding the experimented domains.

Domain %S %TO %NS %ERROR Planner Rsem

Satellite 100 0 0 0 FD / FF 0.99
Maintenance 100 0 0 0 FF 1.00
Miconic 100 0 0 0 FF / FD 1.00
Citycar 25 75 0 0 FD 0.99
Briefcase 16 25 0 59 FF 1.00
Nurikabe - - - - - -

Table 2: Experimental results for Conditional-SAM.

Evaluation Metrics 540

We evaluated our algorithm using two metrics: the percent-
age of the test set problems solved using Conditional-SAM’s
learned model, and the correctness of the learned model using
precision and recall measures. A test set problem is regarded
as solved if one of the planners we used (FD and FF) was 545

able to solve it with the learned action model. Measuring
the syntactic precision and recall of the learned model, i.e.,
measuring the textual difference between the real and learned
domains, may not represent the usefulness of the learned do-
main in solving problems. Instead, we measure the semantic 550

precision and recall of the learned model’s preconditions and
effects, as follows. For each state in our trajectories, we try
to apply the actions of the learned and real action models
on the state. We measure the precision and recall based on
which action is applicable in the tested states. Formally, the 555

semantic precision and recall of the preconditions are:

P sem
pre (a) =

|appM∗(a) ∩ appM (a)|
|appM (a)|

Rsem
pre (a) =

|appM∗(a) ∩ appM (a)|
|appM∗(a)|
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Figure 2: Satellite solving statistics.
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Figure 3: Miconic solving statistics.

Where appM (a) denotes the states in a set of trajectories
where a is applicable according to the action model M . Fi-
nally, average the results over all actions of the domain.

Since Conditional-SAM learns a safe action model, the560

semantic precision of the preconditions is always one.
Furthermore, the Conditional-SAM’s safety property indi-
cates that whenever an action is applicable according to
Conditional-SAM its effects are identical to the real domain’s
effects. Thus the precision and recall of the effects is always565

one as well. Thus, our evaluation below only presents seman-
tic recall of the actions’ preconditions.

Results
Table 2 displays the experimental results with the maximal
number of trajectories given as input. The column %S rep-570

resents the percent of the problems that were solved by the
planners, %TO represents the percentage of problems in
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Figure 4: CityCar solving statistics.
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Figure 5: Briefcase solving statistics.

which the planner had timed out (i.e., reached our 60 seconds
time limit), and %NS represents the percent of problems
that were declared unsolvable with the learned domain. This 575

is caused when the learned domain is too restrictive and
thus some problems cannot be solved with it. The column
%ERROR represents the percentage of problems in which
the solver encountered an error while solving the test set prob-
lems. Such errors were caused when the planner was killed 580

due to extensive resource consumption. The column Planner
represents the planner that had the best performance and their
results are being presented. Finally, the column Rpre denotes
the preconditions’ semantic recall.

For the Satellite, Maintenance, and Miconic domains, all 585

the test set problems were solved perfectly using the domain
learned with Conditional-SAM. The results for CityCar and
Briefcase are significantly worse, where the percent of prob-
lems that were solved are 25% and 19%, repsectively. A pos-
sible explanation for these results is that the learned domain 590

returned by Conditional-SAM may contain complex univer-
sal preconditions. These preconditions affect the solvers in
their ability to solve the test set problems. Indeed, every prob-
lem that was not solved in CityCar domain was not solved
due to our timeout restrictions. Similarly, in Briefcase do- 595

main in many occasions, the planning process was terminated
because it consumed too many resources (expressed in the
%ERROR column). However, the calculated preconditions’
semantic recall for both domains is 0.99. That suggests that
while the learned domains may appear to be more complex 600

than their original counterpart, they are nearly semantically
identical. For the Nurikabe domain, Conditional-SAM could
not solve any test problem with the learned domain. This may
be because this domain has the largest antecedents (n = 3).

Figures 2, 3, 4, 5 presents the solving statistics as a function 605

of the number of trajectories used to train Conditional-SAM
for the domains Satellite, Miconic, CityCar, and Briefcase.
We do not present the results for the Maintenance domain
graphically since after a single trajectory all the test set prob-
lems were solved perfectly. We note that for both Satellite 610

and Miconic domains, the percentage of problems increases
monotonically, on the other hand, for CityCar domain, we
observe a decrease in the number of solved problems as the
number of trajectories increases. We note that with one tra-
jectory the domain Conditional-SAM learns does not contain 615

the action destroy_road which has universal effects. Without
this action the domain was less complex and the planners



could solve more test set problems. Once the action was
learned the domain became much more complex which re-
sulted in the increase. Finally, we note that the poor results620

observed in the Briefcase domain were due to insufficient
resources as can be observed in Figure 5 with 59% of the test
set problems not being solved since the planning process was
killed due to high resource consumption.

8 Supporting Disjunctive Antecedents625

We focused on conditional effects where the result can appear
only once in each action (Assumption 2. There are cases
where such an assumption does not hold. For example, in our
flu treatment action imagine that now the allergic reaction
can appear if the patient has a rare blood type or if they are630

sleep deprived. In this case, our action would look as follows:

(:action treat-flu-symptoms-X
:parameters (?p - patient ?b_type - bloodType)
:precondition (and (has-flu ?p))
:effect
(and (when (is-rare-blood-type ?b_type)

(allergic-reaction ?p))
(when (sleep-deprived ?p)

(allergic-reaction ?p))
(and (not (has-flu ?p)))))

Figure 6: An action representing a flu medicine with a condi-
tional effect.

In Figure 6 we present the action treat-flu-symptoms-X that
now contains disjunctive antecedents. Supporting disjunctive
antecedents requires altering the first assumption to address635

only the actions’ preconditions and completely removing the
second assumption. Removing the second assumption affects
Conditional-SAM’s fourth inductive rule since it no longer
holds that if a conjunction of literals does not hold in a state,
it cannot be and antecedent of the observed result. That is640

since now conditional effects might be disjunctive.
Supporting the new capability requires a minor change to

the Conditional-SAM algorithm. We change the initialization
process of PosAnte to have every possible CNF clause with
up to n antecedents, i.e., now PosAnte includes CNFs and645

not just conjunctions of literals. The rest of the algorithm is
not affected. We note that this change highly increases the al-
gorithm’s complexity since now it has to eliminate every pos-
sible CNF expression before it can determine the correct set
of antecedents. Note that the available benchmark domains650

do not contain disjunctive antecedents for conditional effects.
Furthermore, due to its prohibitive complexity, we decided
not to support disjunctive antecedents in Conditional-SAM
and leave this functionality for future work.

9 Related Work655

Several prior works learn action models from trajectories.
The Action-Relation Modelling System (ARMS) (Yang, Wu,
and Jiang 2007) algorithm learns a PDDL description of ac-
tion models by extracting a set of weighted constraints from
the input plan examples. The Simultaneous Learning and660

Filtering (SLAF) (Amir and Chang 2008) algorithm is a dif-
ferent algorithm for learning action models designed for par-
tially observable deterministic domains. The Learning Object-

Centred Models (LOCM, LOCM2) (Cresswell, McCluskey,
and West 2013; Cresswell and Gregory 2011) is another ac- 665

tion model learning algorithm that analyzes plan sequences,
where each action appears as an action name and arguments
in the form of a vector of object names. FAMA (Aineto,
Celorrio, and Onaindia 2019) is a state-of-the-art algorithm
that learns action models with minimal state and action ob- 670

servability. FAMA can learn from gapped action sequences
of actions, and in the extreme, FAMA can even learn when
only given the initial and the final states as input.

The algorithms presented above learn action models that do
not guarantee that the actions learned are applicable accord- 675

ing to the agent’s actual action model definition. Contrary to
these algorithms, the SAM family of algorithms is designed
to learn action models in a setting where execution failures
must be avoided (Stern and Juba 2017; Juba, Le, and Stern
2021; Juba and Stern 2022). To this end, SAM generates 680

a conservative action model. Planning with such an action
model produces sound plans but may failu to find a plan even
if such exists (i.e., it is incomplete).

To the best of our knowledge, there is no work focus-
ing on learning safe action models with conditional effects. 685

In (Oates and Cohen 1996), the authors created an algorithm
that can learn planning operators for STRIPS (Fikes and
Nilsson 1971) by interacting with the environments and per-
forming random actions, and using search techniques to learn
the context-dependent operators. This approach uses random 690

walks which are costly in case that the agent cannot recover
from failures. Furthermore, the resulting action model gen-
erated is grounded while our approach learns a lifted PDDL
domain. In (Zhuo et al. 2010), the authors’ main focus was
learning action models with quantifiers and implications. The 695

authors also proved that their algorithm could learn simple
conditional effects with only one antecedent. Since the au-
thors’ goal is to reduce the domain compilation time for
domain experts, the domains their algorithm outputs may be
incomplete or even wrong. This means that their algorithm 700

does not work in mission-critical settings.

10 Conclusions and Future Work
In this work, we presented Conditional-SAM, an algo-
rithm that can learn action models for domains that in-
clude conditional and universal effects. We showed that 705

Conditional-SAM learns a safe action model w.r.t the real un-
known action model and runs in reasonable time. Moreover,
we presented tight sample complexity results, showing that
Conditional-SAM is, in a sense, asympotitcally optimal. Our
experimental results show that using a small number of trajec- 710

tories, Conditional-SAM learns an action model that solves
the test set problems. In future works, we aim to explore
methods to improve the algorithm’s scalability and support
domains with more expressive conditional effects that might
contain unbounded disjunctive antecedents or even include 715

numeric conditions and effects.
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