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ABSTRACT

The efficacy of deep learning techniques is contingent upon copious volumes
of data (labeled or unlabeled). Nevertheless, access to such data is frequently
restricted in practical domains such as medical applications. This presents a
formidable obstacle: How can we effectively train a deep neural network on a
relatively small dataset while improving generalization? Recent works explored
evolutionary or iterative training paradigms, which reinitialize a subset of the pa-
rameters to improve generalization performance for small datasets. While effec-
tive, these methods randomly select the subset of parameters and maintain a fixed
mask throughout iterative training, which can be suboptimal. Motivated by the
process of neurogenesis in the brain, we propose a novel iterative training frame-
work, Selective Knowledge Evolution (SKE), that employs a data-aware dynamic
masking scheme to eliminate redundant connections by estimating their signif-
icance, thereby increasing the model’s capacity for further learning via random
weight reinitialization. The experimental results demonstrate that our approach
outperforms existing methods in accuracy and robustness, highlighting its poten-
tial for real-world applications where collecting data is challenging. 1

1 INTRODUCTION

Deep neural networks (DNNs) have become essential for solving complex problems in various fields,
such as image and speech recognition, natural language processing, and robotics (LeCun et al.,
2015). With the increasing availability of data, DNNs have achieved unprecedented performance,
surpassing human-level performance in some applications (Silver et al., 2016). However, the success
of DNNs is limited when dealing with small datasets, where the model tends to overfit and fails to
generalize to new data. For example, it is often difficult to obtain a large amount of data in medical
diagnosis due to the complexity and high cost of the procedures involved. In such cases, lack of
generalization can be dangerous, which can lead to incorrect diagnosis and treatment.

Recently, several studies based on weight reinitialization methods (Han et al., 2016; Furlanello
et al., 2018) have been proposed in the literature to improve generalization by iteratively refining
the learned solution through partial weight reinitialization. These methods select and retain a sub-
set of parameters while randomly reinitializing the rest of the network during iterative/evolutionary
training schemes. For example, a state-of-the-art method named Knowledge Evolution (KE) (Taha
et al., 2021) improves generalization by randomly splitting the network into fit and reset subnetworks
and constantly reinitializing the reset subnetwork after each iteration. However, the KE approach
is limited by its reliance on a predetermined mask creation, where a random subset of parameters
is selected and kept constant throughout the iterative training process. This constraint may impede
the model’s ability to learn effectively from small datasets, ultimately limiting its generalization
capabilities. These limitations raise two important questions: 1) Can we leverage an evolutionary
training paradigm to evolve or adapt the mask over generations, instead of using a fixed mask, in
order to enhance the generalization performance of deep learning models trained on small datasets?
2) Can we utilize the available data and the internal state of the model to dynamically determine the
important parameters for each generation, rather than randomly presetting them?

In our quest to address these questions, we draw inspiration from the phenomenon of neurogen-
esis in the brain. Neurogenesis, the process of dynamically generating or eliminating neurons in

1Upon acceptance, the source code will be made available.
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response to environmental demands, has been found to play a crucial role in learning and memory
consolidation (Shors et al., 2001; Garthe et al., 2016; Kempermann et al., 2015). This intricate pro-
cess enables the brain to adapt to new experiences and stimuli, enhancing generalizability. Recent
advances in neuroscience have shed light on the non-random integration of new neurons within the
brain (Yasuda et al., 2011). For instance, in rodents, neurogenesis-dependent refinement of synaptic
connections has been observed in the hippocampus, where the integration of new neurons leads to
the elimination of less active synaptic connections (Aimone et al., 2014; Vadodaria & Gage, 2014).
Selective neurogenesis is critical to improving generalization ability by providing a diverse pool of
neurons with distinct properties that can integrate into existing neural networks and contribute to
adaptive learning (Toni et al., 2008). Although the precise mechanisms that govern selective neu-
rogenesis are not fully understood, these findings suggest that selective neurogenesis in the human
brain enhances generalization capabilities through its dynamic and selective nature. Thus, by emu-
lating the characteristics of selective neurogenesis, we unlock its potential to improve generalization
in deep neural networks.

Therefore, we present a novel iterative training approach called Selective Knowledge Evolution
(SKE), which distinguishes itself from the conventional Knowledge Evolution (KE) method through
its mask computation. Unlike a predetermined fixed mask, SKE utilizes a data-aware dynamic mask-
ing criterion that evolves and adapts the mask over generations. Through extensive experiments on
multiple datasets, we demonstrate that our proposed training paradigm greatly improves the per-
formance and generalization of the models. Furthermore, SKE effectively addresses overfitting on
relatively small datasets, alleviating the need for extensive data collection.

The main contributions of the paper are as follows.

• Selective Knowledge Evolution (SKE) is an evolutionary training paradigm that incorpo-
rates data-aware dynamic masking to selectively transfer knowledge across generations.

• Our proposed training paradigm facilitates the learning of generalizable features and in-
creases the overall performance of DNNs across small datasets.

• SKE exhibits robustness in solving more common challenges in real-world problems, in-
cluding learning with class imbalance, natural corruption, and adversarial attacks.

2 RELATED WORK

Iterative training and weight reinitialization for DNNs is a prominent area of research (Taha et al.,
2021; Furlanello et al., 2018; Oh et al., 2022; Zaidi et al., 2023) that focuses mainly on improving
generalization performance by partially refining the learned solution or fully iterating the learned
solution. Dense-Sparse-Dense (DSD) (Han et al., 2016) propose a three-phase approach where
weights with small magnitudes are pruned after initial training to induce sparsity and retrain the
network by reinitializing the pruned weights to zero. Oh et al. (2022) proposed a weight reinitializa-
tion method to enhance cross-domain few-shot learning performance. Zaidi et al. (2022)conducted
an extensive investigation into the conditions under which reinitialization proves beneficial. BANs
(Born Again Neural Networks) (Furlanello et al., 2018) is a knowledge-distillation-based method
that follows a similar iterative training paradigm. However, the critical difference between our work
and BANs is that it employs the class-logits distribution instead of the network weights to transfer
knowledge between successive networks. Recently, Knowledge Evolution (KE) (Taha et al., 2021)
splits model weights into fit and reset parts randomly and iteratively reinitializes the reset part dur-
ing training. The splitting method can be arbitrary (weight-level splitting (WELS)) or structured
(Kernel-level convolutional-aware splitting (KELS)). This approach involves perturbing the reset
hypothesis to evolve the knowledge within the fit hypothesis over multiple generations. Our frame-
work (SKE) distinguishes itself from the conventional Knowledge Evolution (KE) method through
its mask computation. SKE utilizes data-aware dynamic masking that adapts the mask over genera-
tions and transfers selective knowledge.

Additionally, we distance our work from the existing literature on neural architecture search (NAS)
(Gordon et al., 2018) and growing neural networks (Evci et al., 2022). Specifically, we focus on
a fixed network architecture, assuming that the connections and parameter count remain constant
throughout our analysis. Finally, our work distinguishes itself from the dynamic sparse training
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Figure 1: Schematics of proposed Selective Knowledge Evolution (SKE) framework. Our frame-
work utilizes a data-aware dynamic masking scheme to remove redundant connections and increase
the network’s capacity for further learning by incorporating random weight reinitialization. Thus,
effectively improving the performance and generalization of deep neural networks on small datasets.

literature (Evci et al., 2020; Liu et al., 2021) as our goal is not to acheive sparsity rather to improve
generalization on small datasets.

3 METHODOLOGY

3.1 EVOLUTIONARY TRAINING PARADIGM

We first introduce the evolutionary/iterative training paradigm as envisioned in KE (Taha et al.,
2021). Evolutionary training paradigms allow neural networks to be trained for many generations,
where each generation focuses on optimizing the model to converge towards a local minimum while
progressively improving generalization. Each generation within the training process is denoted as g,
where g ranges from 1 to the total number of generations, N .

We define a deep neural network f with L layers and is characterized by the set of parameters Θ. We
assume a dataset D consisting of n input-output pairs, denoted {(xi, yi)}ni=1. For a classification
task, we define the cross entropy loss for training the network as:

Lce = −
1

n

n∑
i=1

[yi log(softmax(f(xi; Θ))) + (1− yi) log(1− softmax(f(xi; Θ)))] (1)

where ŷi = f(xi) is the predicted output of the network for input xi. We initialize the weights and
biases of the network randomly.

KE starts by introducing a binary mask M , which partitions the weights of the neural network into
two hypotheses before starting training: the fit hypothesis Hfit and the reset hypothesis Hreset. This
partitioning is expressed as follows:

Hfit = M⊙Θ and Hreset = (1−M)⊙Θ (2)

Here, the element-wise multiplication operator ⊙ is applied to the mask M and the parameter set Θ
to obtain the fit hypothesis Hfit. Similarly, the reset hypothesis Hreset is obtained by element-wise
multiplying the complement of the mask (1 − M) with the parameter set Θ. These parameters
are chosen at random before the start of the first generation. This binary mask M is kept constant
throughout the evolutionary training; i.e., the parameters belonging to the fit and reset hypotheses
remain in that category across all generations.

We use the stochastic gradient descent (SGD) algorithm to train the network with a learning rate α.
We run SGD for e epochs on the dataset D. The beginning of every new generation is characterized
by introducing perturbations applied to the network weights to induce a high loss. This is done by
reinitializing the parameters in the reset hypothesis while transferring or retaining the parameters
belonging to the fit hypothesis. This dynamic process triggers a subsequent round of optimization,
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guiding the neural network toward the search for a new minimum in the parameter space. The
initialization of the network f for the next generation fg is as follows:

Θg ←M⊙Θg−1 + (1−M)⊙ΘReinit (3)

where Θg−1 and Θg are the parameters of the network f belonging to the previous generation and
current generation, respectively. ΘReinit corresponds to the randomly initialized tensor sampled
from a uniform distribution. We then train the next generation of the network fg using SGD with
the same hyperparameters and epochs as the first generation.

3.2 SELECTIVE KNOWLEDGE EVOLUTION (SKE) WITH DATA-AWARE DYNAMIC MASKING

Unlike KE, we propose a methodology that offers a distinct advantage regarding binary mask com-
putation and parameter reinitialization. Motivated by the symbiotic link between generalization and
selective neurogenesis in biological neural networks (Yasuda et al., 2011), we introduce a Data-
aware Dynamic Masking (DDM) that emulates the process of selective neurogenesis in evolutionary
training. The benefits of DDM’s way of reinitialization are two-fold. 1) It takes advantage of the
evolutionary training paradigm and adapts the mask dynamically in each generation rather than us-
ing a predetermined mask. This introduces flexibility in the network and improves the generalization
performance of deep learning models trained on small datasets. 2) Our masking scheme leverages a
model’s data and internal state to dynamically determine the important parameters for a given task,
rather than relying on random pre-setting, to enhance the performance of deep learning models on
small datasets. Our way of masking offers a priori knowledge of where and what parameters and
layers should be reinitialized in the general case.

The mask M is calculated at the beginning of each generation in a data-dependent manner. We assess
the importance or sensitivity of each connection in the network to the specific task by employing
the SNIP method (Lee et al., 2018). SNIP decouples the connection weight from the loss function
to identify relevant connections. We randomly sample a small subset of data (π) from the current
dataset to evaluate connection sensitivity. We define a connection sensitivity mask M ∈ {0, 1}|Θ|,
where |Θ| denotes the number of parameters in the network. The mask is designed to maintain a
sparsity constraint k, which specifies the percentage of parameters to retain. The computation of
connection sensitivity is performed as follows:

gj(Θ;π) = lim
δ→0

Lce(M⊙Θ;π)− Lce ((M− δej)⊙Θ;π)

δ

∣∣∣∣
M=1

(4)

where j corresponds to the parameter index and ej is the mask vector of the index j, where the
magnitude of the derivatives is then used to calculate the saliency criteria (sj):

sj =
|gj(Θ;π)|∑m
k=1 |gk(Θ;π)|

. (5)

After calculating the saliency values, we apply the sparsity constraint k to the connection sensi-
tivity mask, which ensures that only the top-k task-specific connections are retained. The sparsity
constraint k is defined as follows:

Mj = 1 [sj − s̃κ ≥ 0] , ∀j ∈ {1 . . .m}, (6)

where s̃k is the kth largest element in the saliency vector s and 1[.] is the indicator function. Sub-
sequently, using the saliency values obtained from the connection sensitivity analysis, we select and
preserve the top-k important connections. The parameters associated with the connections deemed
less important for the current generation are then reinitialized. This process effectively induces
selective neurogenesis, allowing the network to adapt and free up its capacity for learning more gen-
eralized representations in subsequent generations. Finally, the network for subsequent generation
is initialized as shown in Equation 3.

Intuitively, we incorporated selective neurogenesis as a replacement mechanism, reinitializing the
input and output synaptic weights of specific subsets of network parameters dynamically during the
evolutionary training process (Tran et al., 2022). Due to the challenges associated with where, how,
and when to create neurons (Evci et al., 2022), we explore data-aware dynamic masking to drive
neuron creation and removal, which could improve learning. We first select the crucial parameters
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based on the computed saliency mask. Ideally, we would like the mask to keep the knowledge
learned from the previous generation as much as possible and to have enough learning capacity
to accommodate the learning happening in the new generation. The additional learning capacity
facilitates the fast adoption of generalized knowledge and reinforces the knowledge retained from
the previous generation. In this way, selective neurogenesis is achieved that inherently adapts the
network connectivity patterns in a data-dependent way to learn generalized representations without
altering overall network size.

The network with the new initialization undergoes next-generation training with the same data for
the e epochs, where e is kept the same for each generation. The network is trained with the loss
function shown in Equation 1. Thus, we favor the preservation of the task-specific connections more
precisely than the mask criteria used in KE that can guide the network towards those desirable traits
that efficiently improve the performance and generalization of DNNs in small datasets.

4 EXPERIMENTS AND RESULTS

Here, we provide the details on the experimental setup, implementation details, and datasets used in
our empirical evaluation.

Datasets: We evaluate the proposed method using five datasets: Flower102 (Nilsback & Zisser-
man, 2008), CUB-200-2011 (Wah et al., 2011), MIT64 (Quattoni & Torralba, 2009), Stanford Dogs
(Khosla et al., 2011), FGVC-Aircraft (Maji et al., 2013). The summaries of the statistics of the data
set are mentioned in Appendix.

Implementation Details: Since our framework is a direct extension of the KE, we follow the same
experimental setup. The efficacy of our framework is demonstrated in two widely used architectures:
ResNet18 and ResNet50 (He et al., 2016). We randomly initialize the networks and optimize them
with stochastic gradient descent (SGD) with momentum 0.9 and weight decay 1e − 4. We use the
cosine learning rate decay with an initial learning rate lr = {0.1, 0.256} on specific datasets. The
networks are trained iteratively for N generations (N=11) with a batch size b=32 for e=200 epochs
without early stopping. The standard data augmentation technique, such as flipping and random
cropping, are used. We employ SNIP (Lee et al., 2018) with network sparsity k to find the critical
subset of parameters at the end of each generation. For the importance estimation, we use 20% of
the whole dataset as a subset (π). For all our experiments, we reinitialize a fixed 20% parameters of
the network globally. All training settings (lr, b, e) are constant throughout generations.

Baselines: To evaluate and benchmark the effectiveness of our proposed approach, we conduct
a comprehensive evaluation by comparing it against several existing methods that involve itera-
tive retraining and reinitialization. Specifically, we benchmark our method against the following
techniques: 1) Dense-Sparse-Dense Networks (DSD) (Han et al., 2016); 2) Born Again Networks
(BANs) (Furlanello et al., 2018); and 3) Knowledge Evolution (KE) (Taha et al., 2021) (KELS). We
also compare our method against a non-iterative approach known as the Long Baseline (LB), which
undergoes training for the same number of epochs as the corresponding iterative methods. Since
our framework is built on top of KE, we follow the same procedure in all our experiments unless
specified.

4.1 CLASSIFICATION

Table 1 presents the quantitative classification evaluation results using ResNet18. fg denotes the
result at the end of gth generation. We compare the performance at the end of f3 (representing short-
term benefits) and f10 (representing long-term benefits) to assess the effectiveness of our approach.
We compare SKE with two different configurations: (1) using naive cross-entropy loss (CE), and
(2) incorporating label smoothing (Smth) regularizer with a hyperparameter α = 0.1 (Müller et al.,
2019).

The Selective Knowledge Evolution (SKE) framework demonstrates flexibility and consistently im-
proves performance over the considered baselines across datasets. Interestingly, KE underperforms
in terms of performance compared to long baseline (LB) with equal computation cost. This discrep-
ancy may be attributed to the use of fixed masking criteria throughout evolutionary training, limiting
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Table 1: Compares the results of our method with the other weight reinitialization methods on
ResNet18. g in fg indicates the number of generations the model is trained.

Methods Small Datasets

CUB Aircraft Dog Flower MIT

CE (f1) 53.57 ±0.20 51.28 ±0.65 63.83±0.12 48.48±0.65 55.28±0.19

CE + DSD 53.00±0.32 57.24±0.21 63.58±0.14 51.39±0.19 53.21±0.37

CE + BAN (f10) 53.71±0.35 53.19±0.22 64.16±0.13 48.53±0.17 55.65±0.28

CE + KE (f10) 58.11±0.25 53.21±0.43 64.56±0.31 56.15±0.19 58.33±0.43

CE + SKE (f10) 59.72±0.21 55.87±0.47 65.76±0.13 58.10±0.24 61.78±0.36

Smth (f1) 58.92 ±0.24 57.16 ±0.91 63.64 ±0.16 51.02 ±0.09 57.74±0.39

Smth + LB (f3) 66.03±0.13 62.55±0.25 65.39±0.55 59.51±0.17 59.53±0.60

Smth + KE (f3) 62.88±0.39 60.56±0.36 64.23±0.05 56.87±0.65 58.78±0.54

Smth + SKE (f3) 68.56±0.24 64.37±0.19 65.72±0.15 62.13±0.23 62.62±0.51

Smth + LB (f10) 69.80±0.13 65.29±0.51 66.19±0.03 66.89±0.23 61.29±0.49

Smth + KE (f10) 66.51±0.070 63.32±0.30 63.86±0.21 62.56±0.17 59.58±0.62

Smth + SKE (f10) 71.37±0.22 66.63±0.37 66.81±0.20 68.36±0.14 64.10±0.58

Table 2: Compares the results of the SKE framework with the KE and longer baselines for ResNet50
on large datasets. g in fg indicates the number of generations the model is trained.

Methods Large datasets

CIFAR10 CIFAR100 TinyImageNet

Smth (f1) 94.32 73.83 54.15
Smth + LB (f10) 93.60 74.21 51.16
Smth + KE (f10) 93.50 73.92 52.56
Smth + SKE (f10) 94.61 75.05 54.50

the model’s adaptability. In contrast, SKE outperforms both longer baselines and KE, consistently
improving generalization performance across all datasets.

Similarly, we compare the performance of our method with the label smoothing regularizer (Smth)
applied to the baselines. Table 1 shows that our method consistently outperforms the baselines with
label smoothing on all datasets across generations. The combination of our selective knowledge
evolution approach with label smoothing regularization leads to improved performance compared to
using CE. These results demonstrate the efficacy of the data-aware dynamic masking and selective
reinitialization employed by SKE. By adapting task-specific parameters in each generation, SKE
achieves superior performance and enhances the model’s generalization.

4.2 RESULTS ON LARGE DATASETS

Our work is a direct extension of KE (Taha et al., 2021), which focuses explicitly on improving
generalization in the low data regime. However, we also thoroughly evaluate our method on large
datasets such as Tiny-ImageNet (Le & Yang, 2015), CIFAR10, and CIFAR100 (Krizhevsky et al.,
2009) using ResNet50 to assess its scalability. Table 2 compares the effectiveness of our method
(SKE) with Knowledge Evolution (KE) and longer baseline (LB) in larger data sets. For each model,
we trained it on top of the baseline for a specific number of generations (f10), where N indicates
the number of generations. The proposed approach exhibits promising performance and generaliza-
tion across various large-scale datasets, such as TinyImageNet, when compared to KE and longer
baselines. Furthermore, while the performance of KE and longer baselines (LB) falls below the
normal standard training (f1), the SKE framework demonstrates comparable or slightly improved
performance in this scenario. This suggests that a selective way of reinitializing benefits iterative
training and can effectively handle the complexities and challenges associated with larger datasets
and architectures.
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Figure 2: Robustness to natural corruptions on CIFAR10-C (Hendrycks & Dietterich, 2019). SKE
is more robust against the majority of corruptions compared to the baselines.

5 ROBUSTNESS ANALYSES

5.1 ROBUSTNESS TO NATURAL CORRUPTIONS

In practical applications, deep neural networks often operate in dynamic environments character-
ized by variations such as lighting and weather conditions. Consequently, it is crucial to assess the
robustness of DNNs to data distributions that undergo natural corruption. We investigate the ro-
bustness of DNNs to 15 common types of corruptions using the CIFAR-10-C dataset (Hendrycks &
Dietterich, 2019). Our models are trained on clean images of CUB dataset and evaluated on CIFAR-
10-C (Hendrycks & Dietterich, 2019). To quantify the performance under natural corruption, we
use the Mean Corruption Accuracy (mCA) metric.

mCA =
1

Nc ×Ns

Nc∑
c=1

Ns∑
s=1

Ac,s (7)

where Nc and Ns represent the number of corruptions (in this case, 19) and the number
of severity levels (in this case, 5), respectively. Figure 2 illustrates the average accuracy
of the models across 19 different corruptions at five severity levels. Notably, our proposed
method (SKE) achieves a higher mCE (27.7%) compared to the longer baseline (23.4%) and
KE (16%), demonstrating its effectiveness in improving the robustness to various types of cor-
ruption. These findings highlight the benefits of selectively reinitializing network parameters
using a data-aware masking approach, resulting in enhanced robustness to natural corruptions.
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Figure 3: Robustness to adversarial attacks

5.2 ROBUSTNESS
TO ADVERSARIAL ATTACKS

DNNs are vulnerable to adversarial attacks,
where imperceptible perturbations are added
to the input during inference to deceive the
network and induce false predictions (Szegedy
et al., 2013). Therefore, we investigate the
robustness of DNNs trained against adversar-
ial attacks using the PGD-10 attack (Madry
et al., 2017) on models trained on the CI-
FAR10 dataset. We vary the intensity of the
PGD attack and evaluate the models’ perfor-
mance. As shown in Figure 3(left), our pro-
posed framework (SKE) exhibits greater resis-
tance to adversarial attacks across different at-
tack strengths compared to KE and the long
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Figure 4: Layer-wise percentage overlap of the retained parameters in consecutive generations.

baseline. This highlights the efficacy of our framework in training models that can learn high-level
abstractions robust to small perturbations in the input data.

5.3 ROBUSTNESS OF CONNECTION SELECTION ACROSS TRAINING STEPS

Unlike KE, which employs a randomly predetermined and fixed masking strategy, SKE provides a
notable advantage through the utilization of Data-aware Dynamic Masking (DDM) for parameter
reinitialization. Therefore, it is crucial to investigate whether SKE fully leverages the benefits of the
evolutionary training paradigm by dynamically adapting the mask in each generation.

The proposed SKE framework employs SNIP (Lee et al., 2018)) as a masking criterion to selectively
regulate the parameters that have the least impact on performance at each generation of training. To
examine this, we analyze the CUB200 dataset using the ResNet18 architecture. We save the mask
generated by SNIP after the end of every generation. Visualizing the mask generated by the SKE
framework can be challenging due to the large number of parameters in each layer of the backbone.
To assess the consistency of connections across generations, we adopt a metric based on the percent-
age of overlap of retained parameters between the masks created in consecutive generations. This
metric provides a quantitative analysis of the degree of flexibility induced by SKE in the evolutionary
training process.

Figure 4 illustrates the layer-wise percentage overlap of retained parameters between consecutive
generations in the SKE framework. The results reveal that the earlier layers consistently exhibit a
high overlap percentage across all generations, indicating a consistent selection of connections.

Table 3: Evaluating the performance of SKE with dif-
ferent importance estimation.

Importance Criteria CUB200 Flower

LB 69.80 ±0.13 66.89 ±0.23

Random (KE) 66.51 ±0.07 62.56 ±0.17

FIM 67.73 ±0.28 65.96 ±0.20

Weight Magnitude 64.18 ±0.19 66.90 ±0.11

SNIP 71.87 ±0.22 68.36 ±0.14

The overlap percentage decreases in the
later layers (specifically, layer 4 in
ResNet) as the model learns class-specific
information. This observation suggests
that the mask adapts to capture task-
specific features while maintaining stabil-
ity in the earlier layers. Interestingly, we
observe that the overlap percentage of the
mask progressively increases as the evo-
lutionary training progresses. Specifically,
the overlap between the 9th and 10th gen-
erations is higher compared to the overlap
between the 1st and 2nd generations. This
observation suggests that the mask becomes more saturated and stable as the model state converges
to a lower-loss landscape. This flexible nature of the SKE framework, allowing for the regulation of
connections in both early and later layers, contributes to its effectiveness in improving generalization
performance.
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5.4 EFFECT OF IMPORTANCE ESTIMATION METHOD

We conducted an investigation into the effectiveness of different methods to estimate the importance
of parameters within our proposed training paradigm. Specifically, we explore the Fisher Importance
(FIM), weight magnitude, random selection, and SNIP (Lee et al., 2018) criteria. In Table 3, we
present the performance and generalization results of the model trained with these various selection
methods on the CUB200 dataset using the ResNet18 architecture.

Our findings demonstrate that the use of SNIP as data-aware dynamic masking yields superior per-
formance compared to all other baseline methods. Surprisingly, the importance criteria based on
weight magnitude exhibited inferior performance compared to random selection. However, the lot-
tery ticket hypothesis (Frankle & Carbin, 2018) suggests the existence of sparse subnets within
neural networks. Remarkably, when these subnets are trained in isolation, they can achieve a final
performance accuracy comparable to that of the entire network in the same or even fewer train-
ing epochs. In particular, neurons within these winning subnets demonstrate higher rates of weight
changes relative to other neurons. This observation raises the possibility of selectively reinitializ-
ing neurons that undergo minimal weight changes during training, as they contribute the least to
loss function. Merely relying on the ℓ1 norm, which fails to capture the rate of weight changes,
as described by the lottery ticket hypothesis, may not adequately capture the notion of importance.
Therefore, our findings suggest that the utilization of SNIP for data-aware dynamic masking proves
to be more effective, as it considers the rate of weight changes in determining the importance of
parameters. This approach aligns better with the lottery ticket hypothesis and leads to improved
performance and enhanced generalization capabilities in our experimental evaluations.

5.5 EFFECT OF VARYING THE RATIO OF REINITIALIZED PARAMETERS.

Table 4: Performance evaluation with vary-
ing the percentage of reinitialized parameters
during training using ResNet18. Test accu-
racy at the end of 10 generations is reported
on Aircraft and CUB datasets.

Reinit. Params (%) Aircraft CUB

5 65.34 69.95
10 66.10 70.15
20 66.63 71.37
30 64.13 68.42
40 62.79 66.87

Table 4 shows the effect of varying the number of
reinitialized parameters on the performance and gen-
eralization of the model. We train the model in evo-
lutionary settings using the SKE framework by vary-
ing different percentages of reinitialized parameters
(5%, 10%, 20%, 30%, and 40%). Experiments were
carried out with ResNet18. The results show that
the reinitialization of a 5% percentage of parameters
has no impact on performance, while reinitialization
of more than 30% has less impact on test accuracy.
We find that reinitialization 20% of the parameters
results in the best performance.

6 CONCLUSION

We present Selective Knowledge Evolution (SKE),
an iterative/evolutionary training paradigm designed
to improve the generalization of deep networks on small datasets. Our framework incorporates selec-
tive neurogenesis at the end of each generation, employing a data-aware dynamic masking scheme
to remove redundant connections according to their importance. This enables the model to increase
its capacity for further learning through random weight reinitialization, emphasizing the acquisition
of generalizable features. Empirical results demonstrate that the proposed framework substantially
enhances performance and generalization across small datasets, achieving comparable results on
large-scale datasets compared to other reinitializing techniques. Moreover, SKE exhibits improved
robustness in challenging real-world scenarios, including adversarial attacks and learning with class
imbalances, while enhancing generalization on natural corruption data. Additionally, exploring the
potential of growing networks presents an intriguing avenue for future research. Finally, our in-
tention was to first demonstrate the practical effectiveness of our proposed method. We hope that
theoretical advancements on this topic will be subjects of future study.
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A APPENDIX

A.1 EVOLUTION OF MASK ACROSS GENERATIONS

In this section, we present the evolutionary process of the mask over multiple generations and its
impact on the performance and generalization capabilities of the DNNs. We evaluate the effective-
ness of our proposed method, Selective Knowledge Evolution (SKE), in dynamically adapting and
evolving the mask throughout the training process. The ResNet18 architecture with CUB200 is used
for this evaluation.

Figure 5 illustrates the evolution of the mask across generations. As the training progresses, the
mask undergoes iterative updates based on the data-aware dynamic masking criteria employed by
SKE. The mask becomes more refined and selective with each generation, preserving important
connections while pruning less relevant ones.
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Figure 5: Layer-wise percentage overlap of the retained parameters between first and corresponding
generations.

To quantify the evolution of the mask, we measure the overlap percentage of parameters retained be-
tween the first and the corresponding generations. We observe a gradual decrease in overlap from the
initial generation to subsequent generations, indicating the emergence of masks in an evolutionary
training scenario. This progressive mask evolution contributes to the network’s enhanced capacity
for learning and generalization, evident from the test accuracy.

In conclusion, our results highlight the evolutionary nature of the mask throughout generations in
the SKE framework. The dynamic adaptation and refinement of the mask lead to effective masking
and improved performance and generalization of the DNN. These findings support the effective-
ness of our approach in leveraging the evolutionary training paradigm to enhance the learning and
generalization capabilities of deep neural networks compared to KE.

Algorithm 1 Selective Knowledge Evolution (SKE)
input: Train Data Dt ∀ t ∈ {1, ..., T}, Model fΘ.

Sparsity factor k, learning rate η, Binary Mask M , parameters Θ, Small subset of dataset
(π= 0.2|Dt|)

1: for all Generation g ∈ {1, 2, .., N} do
2: fg ← Train fΘ for e epochs with learning rate η; ▷ Training step
3: M ← Importance Estimation(fg, π, k)
4: Retain the task specific weights based on M ▷ Knowledge Selection
5: Randomly reinitialize the non-important parameters in fg .
6: Model with this new initialization for next generation training

A.2 DIFFERENCE WITH TRANSFER LEARNING

Our approach, Selective Knowledge Evolution (SKE), indeed differs widely from the domain of
transfer learning. Unlike transfer learning, which primarily focuses on leveraging pre-trained mod-
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Table 5: Comparison of SKE with transfer learning.
Baselines CUB Aircraft Dog Flower

Smth + transfer learning (f3) 65.63 ±0.21 61.02 ±0.23 63.84 ±0.17 57.62 ±0.19

Smth + SKE (f3) 68.56 ±0.24 64.37 ±0.19 65.72 ±0.15 62.13 ±0.23

els trained on large datasets from different domains to boost task performance on downstream tasks,
SKE is intricately designed to tackle the intricate challenge of enhancing generalization in the pres-
ence of inherently limited or small datasets. A key issue with transfer learning arises when the pre-
trained model’s source domain vastly differs from the target domain of interest. This discrepancy
between domains often leads to domain shifts, where the knowledge transferred from the pre-trained
model fails to adapt well to the specificities of the target domain, thereby resulting in suboptimal
performance.

In particular, in scenarios like medical applications, obtaining sufficient labeled data that closely
aligns with the task at hand is exceptionally challenging. Though transfer leaning is predominantly
used in this field, the need for domain expertise, privacy concerns, and the uniqueness of each
application domain make it exceedingly difficult to find a pre-trained model that seamlessly fits.
Furthermore, the presence of domain shift between the source and target might lead to compromised
performance affecting the accuracy and generalization of the model on a specific task with limited
data.

SKE, on the other hand, offers a novel solution to these intricate challenges. By employing data-
aware dynamic masking and selective reinitialization, SKE fosters the gradual evolution of the net-
work, enabling it to adapt more effectively to the characteristics of the specific dataset. This process
circumvents the problems of domain shifts that often plague transfer learning methods. Thus, while
transfer learning remains valuable in contexts with abundant and well-aligned data, SKE stands out
as a specialized approach to address the unique hurdles faced in scenarios of limited data availability,
where the domain shift problem can severely hinder model performance and generalization.

Furthermore, we have included a comparative analysis in Table 5 involving an instance of transfer
learning within the iterative training process. In this particular case, weights are directly transferred
from one generation to the next without undergoing reinitialization.

This comparison serves to highlight the unique effectiveness of the Selective Knowl-
edge Evolution (SKE) method. Our results distinctly demonstrate that SKE enhances
the process of generalization, showcasing superior performance in comparison to the
approach of directly transferring the complete network’s weights across generations.
This outcome further underscores the distinct advantage of SKE in evolving the net-
work’s capacity for better adaptation and learning in the evolutionary training paradigm.
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Figure 6: Convergence Behavior of SKE with
ResNet18 trained on CUB dataset

A.3 CONVERGENCE BEHAVIOR OF
SKE COMPARED TO TRANSFER LEARNING

In Figure 6, we present the convergence be-
haviour of the Selective Knowledge Evolution
(SKE) algorithm juxtaposed with vanilla fine-
tuning. The x-axis delineates different gener-
ations during the training process, while the
y-axis represents the performance at the end
of each generation. We observe that the con-
vergence of vanilla fine-tuning unfolds at a
more gradual pace. In contrast, SKE demon-
strates a faster convergence rate. Across gener-
ations, SKE consistently surpasses vanilla fine-
tuning, delivering a heightened performance
level within a shorter training duration. The utilization of data-aware dynamic masking through
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Table 6: Additional comparison with the layerwise reinitialization methods.
Baselines CUB Aircraft Dog Flower

LW (N8) 70.50 ±0.26 67.10 ±0.32 65.76 ±0.36 66.92 ±0.20

LLF (N8) 71.30 ±0.14 68.87 ±0.12 66.35 ±0.22 67.20 ±0.24

SKE (N8) 70.87 ±0.16 66.10 ±0.25 66.56 ±0.18 68.50 ±0.27

SNIP in SKE amplifies this efficiency, enabling the model to concentrate on the most pertinent
information for effective generalization.

A.4 ADDITIONAL COMPARISON WITH THE LAYERWISE REINITIALIZATION METHODS

For a more thorough evaluation, we compare SKE with the layerwise reinitialization methods and
provide a detailed comparison to showcase the advantages and uniqueness of our proposed approach.

Zhou et al. (2022) (LLF) propose the forget and relearn hypothesis, which aims to harmonize various
existing iterative algorithms by framing them through the lens of forgetting. This approach oper-
ates on the premise that initial layers capture generalized features, while subsequent layers tend to
memorize specific details. Accordingly, they advocate for the repeated reinitialization and retraining
of later layers, effectively erasing information related to challenging instances. Similarly, the LW
(Alabdulmohsin et al., 2021) approach progressively reinitializes all layers. Table 6 demonstrates a
comparison with these methods.

Notably, SKE showcases comparable, or slightly enhanced performance compared to LW and LLF.
Also, these methods (LLF, LW) are underpinned by architecture-specific assumptions that are in-
dependent of the data. They rely on the assumed properties that are inherent to the model and its
learning. These methods lack a priori knowledge of where and what features, layers, etc. should
be reinitialized in general settings. Furthermore, as the model’s architecture scales, the complex-
ity of these methods increases accordingly, potentially leading to scalability challenges like which
layers to reinitialize. Our proposed method, in contrast, leverages data-aware connection sensitivity
through the employment of SNIP, enabling us to select connections for reinitialization dynamically
based on their redundancy, contributing to improved generalization.

A.5 ROBUSTNESS TO CLASS IMBALANCE DATASET

In real-world applications, class imbalance is a common characteristic of
the input distribution, where certain classes are more prevalent than others.
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Figure 7: Robustness to Class Imbalance

This inherent class imbalance can affect the
training of DNNs, as they tend to be biased
towards the majority classes, thereby neglect-
ing the minority classes (Chrysakis & Moens,
2020). To address this issue, we explore the
contribution of reinitialization to model train-
ing with class imbalance. We incorporate class
imbalance using the power law model on CI-
FAR10. The number of training samples for
a class c is determined by the formula nc =
a/(b + c)γ , where γ represents the imbalance
ratio, and a and b are offset parameters spec-
ifying the largest and smallest class sizes. We
set a fixed gamma value of 1 in our experiments
to maintain a power law class distribution. The
offset parameters a, b are chosen such that the
maximum and minimum class counts are 5000
and 250, respectively.We used balaced accu-
racy as a metric to measure the robustness of
the model under class imbalance scenario. Our
findings in Figure 7 demonstrate that the SKE

14



Under review as a conference paper at ICLR 2024

framework consistently outperforms KE and longer baselines in scenarios with class imbalance.
This highlights the effectiveness of SKE in addressing the challenges posed by imbalanced class
distributions and underscores its potential for practical applications.

A.6 EVALUATING THE EFFECTIVENESS OF THE SPARSE MODEL

In this section, we assess the effectiveness of the sparse model (containing 20% fewer parameters
than the full/dense model) obtained through the selective neurogenesis process during the inference
phase. We examine the sparse and dense models’ test performance compared to the original KE
framework. For this, we measure the performance of the ResNet18 model trained on CUB200. Ta-
ble 7 presents the accuracy results obtained by the sparse model compared to the dense model. Sur-
prisingly, despite the considerable reduction in the number of parameters, the sparse model achieves
comparable accuracy compared to the dense model in the SKE framework. Furthermore, SKE
demonstrates superior performance in both the full and sparse model scenarios compared to the KE.
This indicates that the selective neurogenesis process successfully retains the critical connections
necessary for accurate predictions while eliminating redundant or less informative connections. Our
evaluation demonstrates that the sparse model obtained through the selective neurogenesis process
offers several benefits during inference. It maintains high accuracy while achieving improved com-
putational efficiency compared to the KE. These results highlight the practicality and efficacy of
leveraging selective neurogenesis for creating efficient and compact deep learning models that can
be readily deployed in real-world scenarios.

Table 7: Evaluating the effectiveness of the sparse model.
Method Full model Sparse model

KE (f10) 66.51 66.21
SKE (f10) 71.37 70.08

A.7 VARYING THE QUANTITY OF DATA USED FOR IMPORTANCE ESTIMATION

In our experiments, we randomly sampled 20% of the dataset to estimate the importance of the
parameters after the end of each generation. Here, we analyze the impact of the number of data
used to determine the important estimation on the final performance. Similar to Lee et al. (2018),
we used as few as 128 samples to estimate the important parameters using SNIP. Table 8 shows that
SKE is not sensitive to the variation in the input data used to estimate the importance as the final
performance remains unchanged.

A.8 SUMMARY OF DATASETS AND IMPLEMENTATION DETAILS

Taha et al. (2021) employs various image resizing techniques for different datasets; however, they
do not provide specific details about the resizing parameters in their paper. To ensure consistency
across our experiments, we resize all datasets to a fixed size of (256, 256). Moreover, to fine-tune
the hyperparameters, we utilize a validation split, and the reported results are based on the test set
whenever it is available.

For experiments on large datasets, we used the following settings. The experiments were conducted
on three different datasets: CIFAR-10/100, Tiny-ImageNet. For CIFAR-10/100, the training was
performed for 160 epochs. A batch size of 64 was used, along with a step-based learning rate
scheduler. The learning rate decay was applied between epochs 80 and 120, with a decay factor
of 10. The momentum was set to 0.9, and l2 regularization was applied with a coefficient of 5e-4.
Initial learning rate used was 0.1. There were no warmup epochs in this case.

For the Tiny-ImageNet dataset, the training was also conducted for 160 epochs. The batch size was
reduced to 32, and a step-based learning rate scheduler was used. Similar to CIFAR-10/100, the
learning rate decay occurred between epochs 80 and 120, with a decay factor of 10. The momentum
and l2 regularization were set to 0.9 and 5e-4, respectively. Additionally, 20 warmup epochs were
applied. Throughout all experiments, a resetting ratio of 20% is used for all generation. All the
training and evaluation is done on NVIDIA RTX-2080 Ti GPU. The time required to approximately
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Table 8: Evaluation with varying the quantity of data for importance estimation. Test accuracy at
the end of 10 generations is shown on Aircraft and CUB datasets.

# samples Aircraft CUB

SKE 0.2 |D| 66.63 71.37
128 66.45 71.26

train 10 generation of SKE on CUB200 with ResNet18 is approximately 1.68 hours. It’s worth
mentioning that for comparing our method with other baselines, we utilized the results presented in
the KE paper (Taha et al., 2021) as a point of reference. For the hyperparameters used in training
small datasets, please refer to Section 4.

Table 9: shows the statistics of five classification datasets.
Datasets Classes Train Validation Test Total

CUB-200 (Wah et al., 2011) 200 5994 N/A 5794 11788
Flower-102 (Nilsback & Zisserman, 2008) 102 1020 1020 6149 8189
MIT67 (Quattoni & Torralba, 2009) 67 5360 N/A 1340 6700
Aircraft (Maji et al., 2013) 100 3334 3333 3333 10000
Standford-Dogs (Khosla et al., 2011) 120 12000 N/A 8580 20580
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