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Abstract

Large language models (LLMs) are widely ap-001
plied in various natural language processing002
tasks such as question answering and machine003
translation. However, due to the lack of labeled004
data and the difficulty of manual annotation005
for biochemical properties, the performance006
for molecule generation tasks is still limited,007
especially for tasks involving multi-properties008
constraints. In this work, we present a two-step009
framework PEIT (Property Enhanced Instruc-010
tion Tuning) to improve LLMs for molecular-011
related tasks. In the first step, we use tex-012
tual descriptions, SMILES, and biochemical013
properties as multimodal inputs to pre-train a014
model called PEIT-GEN, by aligning multi-015
modal representations to synthesize instruc-016
tion data. In the second step, we fine-tune017
existing open-source LLMs with the synthe-018
sized data, the resulting PEIT-LLM can han-019
dle molecule captioning, text-based molecule020
generation, molecular property prediction, and021
our newly proposed multi-constraint molecule022
generation tasks. Experimental results show023
that our pre-trained PEIT-GEN outperforms024
MolT5, BioT5, MolCA and Text+Chem-T5 in025
molecule captioning, demonstrating modalities026
align well between textual descriptions, struc-027
tures, and biochemical properties. Furthermore,028
PEIT-LLM shows promising improvements in029
multi-task molecule generation, demonstrating030
the effectiveness of the PEIT framework for031
various molecular tasks.032

1 Introduction033

Large language models (LLMs) such as GPT-034

4 (OpenAI, 2023), PaLM (Chowdhery et al., 2023)035

and LLaMa (Touvron et al., 2023; Dubey et al.,036

2024) have revolutionized the landscape of arti-037

ficial intelligence and natural language process-038

ing (NLP), allowing machines to understand and039

generate human language with remarkable flu-040

ency and coherence. Based on encoded world041

knowledge (Petroni et al., 2019) and powerful042

instruct-following (Zhang et al., 2023) capabilities 043

of LLMs, recent work has successfully used LLM 044

for molecular-related tasks, achieving promising 045

results (Fang et al., 2023; Zhang et al., 2024a). 046

Despite the success, LLMs still have limitations 047

in tasks involving the generation of molecules with 048

restricted properties, therefore limiting its potential 049

applications such as drug discovery (Zhavoronkov, 050

2018; Elton et al., 2019). The challenges for tack- 051

ling such tasks mainly lie in three aspects: (1) Ex- 052

isting studies have shown limitations of LLMs in 053

understanding molecular representations (Grisoni, 054

2023), which makes it more challenging for han- 055

dling such tasks with precise properties; (2) While 056

there is some known SMILES-property pairing 057

data, it often remains limited to predicting a sin- 058

gle property and lacks datasets encompassing a 059

wide range of properties (Wu et al., 2018). More- 060

over, most of these datasets do not include pre- 061

cisely described textual data, making it challenging 062

to identify accurate tri-modal data pairs (Krenn 063

et al., 2020); (3) To our knowledge, there are no 064

suitable datasets or evaluation methods for multi- 065

constraint molecule generation using LLMs, which 066

poses challenges in standardizing and assessing 067

such molecule generation tasks with these mod- 068

els (Jin et al., 2018; Elton et al., 2019). 069

To address these challenges, we propose a frame- 070

work called PEIT (Property Enhanced Instruction 071

Tuning) to generate multi-modal molecular instruc- 072

tion datasets in bulk, aiming to enhance the capa- 073

bilities of LLMs in multi-task molecule generation. 074

Using the PEIT framework, our pre-trained model 075

can handle both general tasks (e.g., molecule cap- 076

tioning (Edwards et al., 2022)) and property-related 077

tasks such as property prediction (Chang and Ye, 078

2024). This makes it suitable for constructing data 079

to evaluate multi-constraint molecule generation 080

capabilities and for serving as instruction tuning 081

data to improve existing open-source LLMs. 082

The overall structure of the proposed PEIT 083
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Figure 1: Left: Overall PEIT framework. We first pre-train the PEIT-GEN and construct instruction data via
template filling. Then we fine-tune the open-source LLMs through instruction tuning, the resulting PEIT-LLM is
used for multi-task molecule generation. Right: The process of PEIT-GEN pre-training, see details in Section 3.2.

framework is shown in the left of Figure 1. Specif-084

ically, it consists of two components: (1) We pre-085

train a model called PEIT-GEN through multi-086

modal representation alignment, which integrates087

text-based (molecular descriptions), structure-088

based (SMILES), and property-based (property-089

value pairs) information to generate diverse un-090

structured text, sequence, and property data; (2)091

By using the synthesized instruction data, we fine-092

tune open-source LLMs and develop PEIT-LLM,093

which can be applied to various molecule genera-094

tion tasks mentioned above, including our proposed095

multi-constraint molecule generation.096

Experimental results demonstrate that our pre-097

trained PEIT-GEN achieves competitive or bet-098

ter results in molecule captioning tasks, compar-099

ing to a variety of biomolecular models including100

MolT5 (Edwards et al., 2022), BioT5 (Pei et al.,101

2023), GIT-Mol (Liu et al., 2024), MolXPT (Liu102

et al., 2023b), MolCA (Liu et al., 2023c),103

and Text+Chem-T5 (Christofidellis et al., 2023).104

Additionally, PEIT-LLM based on LLaMa3.1-105

8B (Dubey et al., 2024) exhibits superior per-106

formance compared to specialized models Mol-107

Instructions (Fang et al., 2023) and general-purpose108

LLMs including LLaMa3 (Dubey et al., 2024) and109

Qwen2.5 (Yang et al., 2024) in molecular property110

prediction and our newly proposed multi-constraint111

molecule generation tasks.112

Our contributions can be summarized as follows:113

1) We propose PEIT, a novel framework that114

enables LLMs to align the textual descriptions,115

SMILES sequences, and biochemical properties116

through multi-modal representation alignment, 117

thereby facilitating multi-task molecule generation. 118

2) We propose a novel molecular design task 119

called multi-constraint molecule generation, sim- 120

ulating the real drug discovery process by setting 121

multiple property constraints to guide LLMs in gen- 122

erating molecules that meet specific requirements. 123

The property values of output molecules can be 124

verified using RDKit (Landrum et al., 2013). 125

3) PEIT achieves promising results in various 126

benchmarks. It surpasses baselines by 2.3% on 127

BLEU-2 in molecule captioning, showing a advan- 128

tage of 21.76 Levenshtein over baselines in text- 129

based molecule generation, giving best results in 130

five-property constraint molecule generation. 131

2 Related Work 132

Molecule generation. Molecule generation tasks 133

mainly fall into two categories: (1) text-based 134

molecule generation that uses textual descriptions 135

to generate molecules that match the given descrip- 136

tion (Liu et al., 2023b, 2024). MolT5 (Edwards 137

et al., 2022) was the first proposed to realize trans- 138

lation between textual description and molecular 139

SMILES. BioT5 aims to enhance molecular under- 140

standing by incorporating protein modality. They 141

also perform molecule captioning, which is equiv- 142

alent to the inverse task of text-based molecule 143

generation. (2) property-guided molecule genera- 144

tion is the inverse process of molecular property 145

prediction, where molecules are generated based 146

on specific biochemical property constraints. No- 147

tably, SPMM (Chang and Ye, 2024) was the first 148
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to establish a connection between 53 biochemical149

properties and SMILES sequences, making multi-150

constraint molecule generation possible. However,151

few existing models can simultaneously perform152

text-based or multi-constraint molecule generation153

and molecule captioning.154

Molecular property prediction. Deep learning155

models have been developed for molecular prop-156

erty prediction each with their own advantages and157

limitations. Transformer-based models design at-158

tention mechanism to capture contextual contexts159

from large-scale SMILES sequences (Ross et al.,160

2022). The molecular graph can be directly ob-161

tained from SMILES sequences via RDKit (Lan-162

drum et al., 2013). Graph-based models develop163

diverse graph neural networks to learn differen-164

tiable representations (Wang et al., 2022). However,165

these methods ignore the potential that incorporat-166

ing textual knowledge enables to realize new drug167

design objectives (Zeng et al., 2022; Liu et al.,168

2023a). Recently, a novel molecular pre-trained169

model named SPMM (Chang and Ye, 2024) that170

extends the application of multimodal pre-training171

approaches by aligning molecular structures and172

biochemical properties. This paper extends the mul-173

timodal pre-training to patterns of text-sequence-174

property triplets, which is defined flexibly by LLM-175

understandable textual prompts.176

Instruction tuning. Specialized datasets construc-177

tion seems the effective way to enable LLMs to178

better perform the molecular-related tasks. For179

instance, Mol-Instructions (Fang et al., 2023) pro-180

vides a large-scale biomolecular instruction dataset181

designed for LLMs, which contains a variety of182

instruction data ranging from small molecules, pro-183

teins, and biomolecular texts. MolReGPT (Li et al.,184

2023) generates a specialized instruction dataset185

for chemical reaction prediction and molecular syn-186

thesis tasks by integrating molecular structure in-187

formation with relevant chemical reaction descrip-188

tions. However, they rely on few-shot learning with189

ChatGPT (OpenAI, 2023) to guide the model’s gen-190

eration. How to generate reliable data related to191

molecular knowledge remains a challenge of in-192

struction tuning for existing open source LLMs.193

3 Method194

3.1 Overview of PEIT Framework195

The overview of PEIT framework is shown in Fig-196

ure 1 (left), which consists of PEIT-GEN and PEIT-197

LLM. In PEIT-GEN, we generate a large number198

of “SMILES-text” and “SMILES-property” pairs to 199

serve as multi-modal data. Then we design multiple 200

multi-modal alignment objectives to pre-train PEIT- 201

GEN. In PEIT-LLM, by using the pre-trained PEIT- 202

GEN, we can predict a large number of triplets to 203

generate more diverse SMILES inputs, and then 204

construct diverse instruction data based on template 205

filling. By utilizing the synthesized instruction data, 206

PEIT-LLM enables the supervised fine-tuning of 207

open-source LLMs including LLaMa (Dubey et al., 208

2024) and Qwen (Yang et al., 2024), enhancing the 209

capabilities for multi-task molecule generation. 210

3.2 Pre-training of PEIT-GEN 211

The pre-training stage of PEIT-GEN is shown in 212

the right of Figure 1. For a given molecule, differ- 213

ent representations offer unique and complemen- 214

tary features, which are crucial for comprehensive 215

molecule understanding. PEIT-GEN aims to in- 216

tegrate information from three modalities simul- 217

taneously, including textual information T (text), 218

molecular structure S (SMILES), and biochemi- 219

cal properties P (property-value). Such ability can 220

help synthesizing sufficient instruction data for fur- 221

ther enhancing the ability of LLMs. In particular, 222

PEIT-GEN consists of three Transformer encoders 223

Enct, Encs, Encp and two decoders Dect, Decp, 224

and we design different training objectives to align 225

features from different modalities. 226

Cross-modal representation matching. Follow- 227

ing SPMM (Chang and Ye, 2024), we leverage pre- 228

trained models SciBERT (Beltagy et al., 2019) as 229

trainable Enct for encoding textual data, BERT (De- 230

vlin et al., 2019) as Encs and Encp for encoding 231

SMILES and properties. Then we obtain feature 232

representations across all three modalities, estab- 233

lishing the foundation for feature alignment. 234

We propose cross-modal representation match- 235

ing to align the representations from different per- 236

spectives by the same molecule. In particular, we 237

introduce the SMILES-text matching loss Lst
match 238

and the SMILES-property matching loss Lsp
match, 239

which serve as objectives for training the encoders. 240

In this way, the model can effectively learn cross- 241

modal relationships and improve performance in 242

multi-modal tasks by aligning the feature spaces. 243

The matching loss is calculated as follows: 244

Lst
match = ℓCE

(
ystmatch,MLP(Encs(S)⊕ Enct(T ))

)
,
(1) 245246

Lsp
match = ℓCE

(
yspmatch,MLP(Encs(S)⊕ Encp(P))

)
,

(2) 247
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where ystmatch and yspmatch are labels as 0 or 1, indi-248

cating whether the corresponding SMILES-text or249

SMILES-property pairs are matching. Enc(·) in-250

dicates the representation of the data (i.e., [CLS]251

token of Transformer encoder), ⊕ is the concatena-252

tion operation, and MLP(·) is the trainable multi-253

layer perception. The encoders are optimized by254

the cross-entropy loss ℓCE using the given data from255

different modalities.256

Multi-modal contrastive learning. The represen-257

tation matching can be viewed as an explicit 2-258

way classification training. We further utilize con-259

trastive learning to directly enhancing the represen-260

tation by pulling semantically close neighbors to-261

gether and pushing apart non-neighbors from data262

of different modalities. To calculate the similarity263

between the encoded features of different modali-264

ties, we extract the encoded features and then com-265

pute the instance-level similarities through the in-266

ner product:267

sim(S, T ) = (MLPs(Encs(S)))TMLPt(Enct(T )),

(3)268269

sim(S,P) = (MLPs(Encs(S)))TMLPp(Encp(P)),

(4)270

where MLPs, MLPt and MLPp are multi-layer271

perceptions applied to SMILES, text, and property272

representations, respectively. Then, for the given273

SMILES S, text T , and property P , we compute274

the cross-modal batch-level similarities as follows:275

ss2t =
exp(sim(S,T )/τ)∑M
i=1 exp(sim(S,Ti)/τ)

, (5)276

277
ss2p =

exp(sim(S,P)/τ)∑N
i=1 exp(sim(S,Pi)/τ)

, (6)278

where M and N represent the total number of texts279

and property in the batch of data pairs, respectively.280

τ is the temperature controlling the sharpness of281

the similarity. The intra-modal similarities ss2s,282

sp2p, and st2t can be computed in similar manners.283

Based on the cross-modal and intra-modal batch-284

level similarities, the contrastive loss is formulated285

by calculating the cross-entropy according to one-286

hot encoded similarity vectors y, where the value287

is 1 for pairs derived from the same molecule or 0288

for all other combinations:289

Lst
contrastive =

1

2
(ℓCE(ys2t, ss2t) + ℓCE(yt2s, st2s)

+ ℓCE(ys2s, ss2s) + ℓCE(yt2t, st2t)),
(7)290

Lsp
contrastive =

1

2
(ℓCE(ys2p, ss2p) + ℓCE(yp2s, sp2s)

+ ℓCE(ys2s, ss2s) + ℓCE(yp2p, sp2p)).
(8)291

Cross-modal causal language modeling. To fur- 292

ther strengthen the model’s capability in molecule 293

captioning, we employ the causal language model- 294

ing (CLM) to enhance the model performance on 295

text generation. Specifically, we design decoders to 296

generate subsequent property and textual descrip- 297

tion sequences, under the guidance of SMILES 298

features through cross-attention. 299

Specifically, given a pair of text and property, the 300

calculation of vanilla self-attentions are as follows: 301

SelfAtt(T )
.
= softmax(W t

Qh(T )(W t
Kh(T ))T)W t

V h(T ),

SelfAtt(P)
.
= softmax(W p

Qh(P)(W p
Kh(P))T)W p

V h(P),

(9) 302

where h(·) denotes the hidden representations, WQ, 303

WK , and WV are the matrix for query, key, and 304

values among the same modality, respectively. 305

For text decoder Dect and property decoder 306

Decp, we propose cross-modal CLM objectives 307

which further integrates SMILES features for text 308

or property prediction via applying cross-attention: 309

CrossAtt(T )
.
= softmax(W t

Qh(T )(W s
Kh(S))T)W t

V h(T ),

CrossAtt(P)
.
= softmax(W p

Qh(P)(W s
Kh(S))T)W p

V h(P).

(10) 310

By introducing the SMILES features in attention 311

layers for CLM training, the cross-modal CLM loss 312

Lst
CLM and Lsp

CLM are computed as follows: 313

Lst
CLM = −

∑N
i=1

∑n
j=1 log Prob

(
w

(i)
j | Dect(w̃

(i)
:j ); θt

)
,

(11) 314315

Lsp
CLM = −

∑N
i=1

∑n
j=1 log Prob

(
w

(i)
j | Decp(w̃

(i)
:j ); θp

)
,

(12) 316

where Prob is the conditional probability to pre- 317

dict the word w
(i)
j in the vocabulary, N is the total 318

number of samples, n is the index of current words 319

in each sample, w̃(i)
:j is the sequence from begin to 320

the j-th word in the i-th sample, θt and θp are the 321

trainable parameters in two decoders. 322

Training. The overall training objective for pre- 323

training PEIT-GEN is to minimize the sum of all 324

three types of losses across three modalities: 325

L = Lst
match + Lsp

match + αLst
contrastive + αLsp

contrastive

+ βLst
CLM + βLsp

CLM,
(13) 326

where we follow SPMM (Chang and Ye, 2024) to 327

use parameters α and β for balancing loss terms. 328

3.3 Instruction Tuning for PEIT-LLM 329

Template Filling. The pre-trained PEIT-GEN 330

offers unstructured data in the format of “text- 331

SMILES-properties” (i.e., text-structure-property) 332
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triplets, which are stored in CSV files contain-333

ing text, molecular structures, and information on334

53 molecular biochemical properties. To obtain335

more task-specific data and to adapt to the strong336

instruction-following abilities of LLMs, we de-337

sign templates for different downstream tasks, as338

shown in Figure 5 in Appendix A. For text-based339

molecule generation as example, we fix a general340

question format and then extract molecular descrip-341

tions from unstructured data to fill the pre-defined342

template, resulting in a natural question as instruc-343

tions. The SMILES from unstructured triplets is344

used as the desired response. In this way, we can345

generate diverse task-specific instruction data in346

bulk for subsequent instruction-tuning.347

Multi-constraint molecule generation task.348

Molecule generation often requires to be conducted349

under multiple constraints rather than a single con-350

dition. In this work, we propose a new task to351

assess molecule generation through a variety of352

descriptors, by comparing the alignment between353

the generated molecules and specific criteria to354

evaluate the generative performance of LLMs. By355

using the large-scale unstructured data generated356

by PEIT-GEN, we can effectively synthesize suf-357

ficient data for evaluation. Specifically, we follow358

SPMM (Chang and Ye, 2024) and predict 5 com-359

mon properties out of the 53 available biochemi-360

cal properties for diverse SMILES, including Bal-361

abanJ, MolLogP, ExactMolWt, QED, and TPSA.362

Based on the template filling, the predicted multi-363

ple property-values can be used to construct data364

for multi-constraint molecule generation. By using365

instruction tuning, we guide the LLM to gener-366

ate molecules while using RDKit (Landrum et al.,367

2013) to verify the actual values of the generated368

properties. RMSE and R2 are used to compare369

these values with the constraints to assess the qual-370

ity of the generated molecules and their alignment371

with the given conditions. This allows us to sys-372

tematically evaluate performance of the LLM in373

multi-constraint molecule generation tasks.374

Supervised fine-tuning. We select LLaMa3.1-375

8B (Dubey et al., 2024) and Qwen2.5-7B (Yang376

et al., 2024) as base LLMs. We then perform stan-377

dard supervised fine-tuning (SFT; Ouyang et al.,378

2024) by using the “instruction-response” pairs. In379

practice, we construct totally 1 million instruction380

data of four different tasks (i.e., molecule caption-381

ing, text-based molecule generation, property pre-382

diction, and multi-constraint molecule generation)383

from 200k unstructured “text-SMILES-properties”384

Model MC TBMG MPP MCMG

MolT5 ✓ ✓ ✗ ✗

BioT5 ✓ ✓ ✗ ✗

MolXPT ✓ ✓ ✗ ✗

Git-Mol ✓ ✓ ✗ ✗

SPMM ✗ ✗ ✓ ✗

MolCA ✓ ✓ ✗ ✗

Text+Chem-T5 ✓ ✓ ✗ ✗

BioMedGPT ✓ ✗ ✗ ✗

InstructMol-GS ✓ ✗ ✗ ✗

MolReGPT ✓ ✓ ✗ ✗

Mol-Instructions ✓ ✓ ✓ (poor) ✓ (poor)
LLaMa, Qwen ✓ (limited) ✓ (poor) ✓ (poor) ✓ (poor)
PEIT-LLM (Ours) ✓ ✓ ✓ ✓

Table 1: Comparing PEIT-LLM with biomolecular
models and LLMs on molecular-related tasks. MC:
Molecule Captioning. TBMG: Text-Based Molecule
Generation. MPP: Molecular Property Prediction.
MCMG: Multi-Constraint Molecule Generation.

triplets obtained by PEIT-GEN. 385

3.4 Comparing PEIT-LLM with Biomolecular 386

Models and LLMs 387

Table 1 shows a comparison of our PEIT-LLM 388

with existing pre-trained models and general LLMs 389

on multiple molecular generation tasks. For most 390

of the pre-trained models such as MolT5 and 391

BioT5, they focus on molecule captioning and text- 392

based molecule generation, which can not han- 393

dle property-related tasks. SPMM is a special- 394

ized model for property prediction. However, it 395

lacks of generation ability due to the lack of textual 396

descriptions. Current LLMs such as LLaMa and 397

Qwen show strong performance on general NLP- 398

based tasks through conversations or instruction- 399

following. However, these general LLMs still have 400

limitations in tasks related to molecule generation 401

due to a lack of molecular knowledge. In contrast, 402

through fine-tuning on diverse instruction data with 403

rich molecular knowledge, PEIT-LLM can perform 404

multiple molecule generation tasks simultaneously. 405

4 Experiments 406

4.1 Experimental Setup 407

Dataset. For pre-training PEIT-GEN, we extract 408

approximately 480k molecular SMILES entries 409

from the ZINC dataset (Irwin et al., 2012) and then 410

generate SMILES-text pair data using MolT5 (Ed- 411

wards et al., 2022). Additionally, we calculate 53 412

biochemical property-value via RDKit, resulting 413

in nearly 480k “text-SMILES-properties” triplets 414

for pre-training. Following MolT5, we use the 415

CHEBI-20 dataset (Edwards et al., 2021) to evalu- 416

ate PEIT-GEN’s performance on molecule caption- 417

ing and molecular property prediction. We split the 418
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Model Data Size ↓ BLEU-2 ↑ BLEU-4 ↑ METEOR ↑ ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑

MolT5-small (Edwards et al., 2022) 100M 0.513 0.398 0.492 0.567 0.412 0.501
MolT5-large (Edwards et al., 2022) 100M 0.594 0.508 0.613 0.654 0.508 0.592
BioT5 (Pei et al., 2023) 33M 0.635 0.556 0.656 0.692 0.559 0.633
GIT-Mol (Liu et al., 2024)† 4.8M 0.352 0.263 0.533 0.575 0.485 0.560
MolXPT (Liu et al., 2023b)† 30M 0.594 0.505 0.626 0.660 0.511 0.597
MolCAw/ Galac (Liu et al., 2023c) 2.3M 0.616 0.524 0.639 0.674 0.533 0.615
Text+Chem-T5augm (Christofidellis et al., 2023) 11.5M 0.625 0.529 0.648 0.682 0.543 0.622
PEIT-GEN (Ours) 0.48M 0.598 0.534 0.676 0.700 0.582 0.653

Table 2: Results on CHEBI-20 molecule captioning with different pre-trained models. †Results are reported from
papers accordingly. The best results in each column are in bold, and the second-best results are underlined.

CHEBI-20 dataset into training, validation, and test419

sets with an 8:1:1 ratio, and we verify the property420

values of each molecule via RDKit. And we use421

MoleculeNet dataset (Wu et al., 2018) to further422

evaluate the generalization of PEIT-GEN. Details423

of these datasets are provided in Appendix B.424

For pre-training PEIT-LLM, we utilize the 200k425

tri-modal data generated by PEIT-GEN and employ426

template filling to generate 200k instruction data427

for each downstream task. For molecular property428

prediction, we select two biochemical properties429

with distinct differences for evaluation, generating430

200k instruction data for each property. Finally,431

we obtain a total of 1000k instruction data across432

four tasks for SFT training. Similar to PEIT-GEN,433

molecular property prediction tasks on PEIT-LLM434

can be validated by RDKit on CHEBI-20 dataset.435

Baseline Models. We compare our model1,436

PEIT-GEN and PEIT-LLM, against three types437

of baselines as follows: Baselines on molecule438

caption such as MolT5 (Edwards et al., 2022),439

BioT5 (Pei et al., 2023), MolCA (Liu et al., 2023c),440

Text+Chem-T5 (Christofidellis et al., 2023), GIT-441

Mol (Liu et al., 2024). Baselines on moleucu-442

lar property prediction such as SPMM (Chang443

and Ye, 2024), D-MPNN (Yang et al., 2019), Pre-444

trainGNN (Hu et al., 2019), GROVERlarge (Rong445

et al., 2020), ChemRL-GEM (Fang et al., 2022).446

Baselines of LLMs such as LLaMa3 (Touvron447

et al., 2023), Qwen2.5 (Yang et al., 2024), Mol-448

Instructions (Fang et al., 2023), InstructMol-449

GS (Cao et al., 2023), BioMedGPT (Zhang et al.,450

2024b). Details of these baselines and evaluation451

metric are in Appendix C and D, respectively.452

Implementation Details. For pre-training PEIT-453

GEN, the training batch is 16, temperature τ is454

0.07, and the momentum parameter is 0.995 with455

AdamW optimizer (Loshchilov, 2017). We pre-456

train PEIT-GEN with 20 epochs and then fine-tune457

it on CHEBI-20 training set for 200 epochs, with458

1Codes can be found in the supplementary materials.

Model BBBP BACE Clintox SIDER

D-MPNN (Yang et al., 2019) 71.0±0.3 80.9±0.6 90.6±0.6 57.0±0.7
N-GramRF (Liu et al., 2019) 69.7±0.6 77.9±1.5 77.5±4.0 66.8±0.7
N-GramXGB (Liu et al., 2019) 69.1±0.8 79.1±1.3 87.5±2.7 65.5±0.7
PretrainGNN (Hu et al., 2019) 68.7±1.3 84.5±0.7 72.6±1.5 62.7±0.8
GROVERlarge (Rong et al., 2020) 69.5±0.1 81.0±1.4 76.2±3.7 65.4±0.1
ChemRL-GEM (Fang et al., 2022) 72.4±0.4 85.6±1.1 90.1±1.3 67.2±0.4
ChemBERTa (Ahmad et al., 2022)† 72.8 79.9 56.3 -
MolFormer (Ross et al., 2022) 73.6±0.8 86.3±0.6 91.2±1.4 65.5±0.2
SPMM (Chang and Ye, 2024) 74.1±0.6 82.9±0.3 90.7±0.5 63.6±0.5
PEIT-GEN (Ours) 73.6±0.7 81.6±0.5 91.2±0.7 62.7±0.9

Table 3: Results on MoleculeNet dataset. †: The stan-
dard deviation and results on SIDER are not reported.

a learning rate of 5e-4. For supervised fine-tuning 459

PEIT-LLM, we use LLaMa-Factory (Zheng et al., 460

2024) framework and apply LoRA (Hu et al., 2022) 461

fine-tuning for 6 epoches with batch size as 3 and 462

learning rate as 5e-5. The parameter size of each 463

component in PEIT-GEN is provided in Table 6 of 464

Appendix E. All experiments are run on NVIDIA 465

4090 GPUs with 24GB memory. 466

4.2 Comparing PEIT-GEN with Pre-trained 467

Biomolecular Models 468

Molecule captioning. Results on CHEBI-20 469

molecule captioning are shown in Table 2. Our 470

model demonstrates superior performance in gener- 471

ating high-quality and relevant molecular caption. 472

PEIT-GEN achieved the best results in METEOR 473

and ROUGE, and the second-best performance in 474

BLEU-4. Compared to BioT5 which performs the 475

best in BLEU, our approach requires significantly 476

less data. This indicates that using domain-specific 477

models to generate paired data for pre-training is 478

more efficient than single-modality pre-training. 479

Molecular property prediction. We evaluate the 480

generalization capability of PEIT-GEN on Molecu- 481

leNet (Wu et al., 2018) benchmarking datasets, 482

and select four widely-used classification tasks for 483

comparison. Results in Table 3 demonstrate that 484

PEIT-GEN achieves superior AUROC on the Clin- 485

tox dataset compared to specialized models such 486

as MolFormer (Ross et al., 2022) and ChemRL- 487
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Model #Params BLEU-2 ↑ BLEU-4 ↑ METEOR ↑ ROUGE-1 ↑ ROUGE-2 ↑ ROUGE-L ↑

LLaMa3 (Touvron et al., 2023) 7B 0.032 0.002 0.117 0.121 0.010 0.065
LLaMa3.1 (Dubey et al., 2024) 8B 0.042 0.004 0.121 0.140 0.019 0.095
Qwen2.5 (Yang et al., 2024) 7B 0.049 0.007 0.188 0.177 0.029 0.112
Mol-Instructions (Fang et al., 2023) 8B 0.217 0.143 0.254 0.337 0.196 0.291
BioMedGPT (Zhang et al., 2024b) 10B 0.234 0.141 0.308 0.386 0.206 0.332
InstructMol-GS (Cao et al., 2023) 7B 0.475 0.371 0.509 0.566 0.394 0.502
MolReGPT (Li et al., 2023) N/A† 0.565 0.482 0.585 0.623 0.450 0.543
PEIT-LLM-Qwen2.5 (Ours) 7B 0.422 0.314 0.468 0.535 0.361 0.477
PEIT-LLM-LLaMa3.1 (Ours) 8B 0.461 0.356 0.502 0.569 0.396 0.505

Model #Params BLEU ↑ Validity ↑ Levenshtein ↓ MACCS FTS ↑ Morgan FTS ↑ RDKit FTS ↑

LLaMa3 (Touvron et al., 2023) 7B 0.261 0.330 45.788 0.372 0.127 0.213
LLaMa3.1 (Dubey et al., 2024) 8B 0.270 0.368 43.183 0.411 0.138 0.248
Qwen2.5 (Yang et al., 2024) 7B 0.217 0.245 50.550 0.403 0.110 0.276
Mol-Instructions (Fang et al., 2023) 8B 0.345 1.000 41.367 0.412 0.147 0.231
MolReGPT (Li et al., 2023) N/A† 0.790 0.887 24.910 0.847 0.624 0.708
PEIT-LLM-Qwen2.5 (Ours) 7B 0.810 0.950 21.133 0.832 0.619 0.735
PEIT-LLM-LLaMa3.1 (Ours) 8B 0.836 0.970 18.030 0.875 0.661 0.776

Table 4: Results on molecule captioning (top) and text-based molecule generation (bottom) tasks with different
LLMs. †: MolReGPT is based on closed-source ChatGPT-3.5 and its parameter size remains unknown.

Model
MolWt PP MolLogP PP Five-Property CG

(RMSE) ↓ (RMSE) ↓ (RMSE) ↓ (R2) ↑

LLaMa3 (Touvron et al., 2023) 491.542 561.523 79.125 -0.639
LLaMa3.1 (Dubey et al., 2024) 544.517 552.521 74.646 -0.652
Qwen2.5 (Yang et al., 2024) 100.161 132.141 75.991 -0.967
Mol-Instructions (Fang et al., 2023) 72.172 1.313 71.991 -0.352
PEIT-LLM-Qwen2.5 (ours) 14.164 0.164 19.750 0.550
PEIT-LLM-LLaMa3.1 (ours) 13.918 0.141 14.212 0.613

Table 5: Results on MolWt, MolLogP property predic-
tion (PP), and five-property constraint molecule genera-
tion (CG) with different LLMs.

GEM (Fang et al., 2022). Additionally, PEIT-GEN488

shows competitive performance on other subsets489

while utilizing less pre-training data the further ex-490

periment is provided in Table 7 of Appendix F),491

highlighting the strong generalization ability of492

PEIT-GEN in molecular property prediction tasks.493

4.3 Comparing PEIT-LLM with LLMs494

Molecule captioning. As shown in the top of495

Table 4, the comparison results show that our496

model outperforms general-purpose LLMs (Qwen-497

2.5 and LLaMa3.1) as well as Mol-Instructions498

and BioMedGPT, which were trained using a bio-499

chemical information instruction dataset for SFT.500

PEIT-LLM achieved the second-best performance501

on the ROUGE metric and demonstrated compet-502

itive results compared to InstructMol-GS, which503

was trained solely on the CHEBI-20 dataset and504

has a similar parameter scale as our base model.505

Case study is provided in Table 8 of Appendix H506

to further illustrate this point.507

Text-based molecule generation. The results for508

text-based molecule generation on the CHEBI-20509

test set are shown in bottom of Table 4. PEIT-510

LLM outperforms other baselines in numerical met- 511

rics such as BLEU score, Levenshtein Distance, 512

MACCS Fingerprint Similarity, Morgan Finger- 513

print Similarity, and RDKit Fingerprint Similarity. 514

Meanwhile Mol-Instructions show an advantage in 515

the Validity metric. This indicates that PEIT-LLM, 516

after multi-task instruction fine-tuning, has a strong 517

understanding of the key structural representations 518

of molecules as well as their textual descriptions. 519

Case study is provided in Table 9 of Appendix H 520

to further illustrate this point. This also indirectly 521

validates the effectiveness of the instruction data 522

synthesized by our proposed PEIT-GEN. 523

Molecular property prediction. For predicting 524

single property, due to the large number of prop- 525

erty, we selected two representative ones for pre- 526

diction. The property ExactMolWt with relatively 527

large numerical values (usually 100∼1000), and 528

property MolLogP with relatively small numerical 529

values (usually -5∼10) are shown in Table 5. The 530

results show that PEIT-LLM outperforms all other 531

LLMs in predicting specific biochemical proper- 532

ties, demonstrating that PEIT-LLM exhibits strong 533

sensitivity to molecular properties, showing ex- 534

cellent predictive performance for both proper- 535

ties with large numerical values and those with 536

smaller values. This confirms the feasibility of us- 537

ing multi-task SFT to enhance LLMs’ understand- 538

ing of molecular properties and further validates 539

the reliability of the molecular property instruc- 540

tion dataset. Case study is provided in Table 10 of 541

Appendix H to further illustrate this point. 542

Multi-constraint molecule generation. Results 543

for our proposed multi-constraint molecule genera- 544
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Figure 2: Ablation study on pre-training objectives.
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Figure 3: The impact of different amount of SFT steps
for PEIT-LLM on molecule captioning.

tion task is shown in Table 5. PEIT-LLM surpasses545

baselines by large margin in both RMSE and R2546

metrics. Case study is provided in Table 11 of Ap-547

pendix H to further illustrate this point. Note that548

this task requires the model to meet the demands549

of multiple properties with precise values, placing550

high demands on the model’s overall understand-551

ing capability. General-purpose LLMs, or those552

not specifically trained for this task, lack the re-553

quired information storage and fitting abilities. As554

demonstrated, through our property enhanced in-555

struction tuning, the model gain strong molecular556

understanding capabilities.557

4.4 Analyses558

Ablation study. Figure 2 shows the ablation study559

of SMILES-text matching loss Lst
match and cross-560

modal contrastive loss Lst
contrastive, which are not561

considered in SPMM due to the lack of textual de-562

scription modality (Lst
CLM and Lsp

CLM are necessary563

for caption generation via decoders, thus we do564

not consider them in ablation study). By removing565

these training objectives, the performance degrada-566

tion across all metrics, with a more significant de-567

cline when both are removed simultaneously. This568

demonstrates that both Lst
match and Lst

contrastive are569

helpful in cross-modal feature alignment, thereby570

w/o SFT 1 epoch 2 epochs 3 epochs 4 epochs 5 epochs 6 epochs

20

30

40

50

60

70

80

R
M

SE RMSE

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

R
2

R2

Figure 4: The impact of different amount of SFT steps
for PEIT-LLM on multi-constraint molecule generation.

enhancing the performance of molecule captioning. 571

Impact of SFT steps. Figure 3 and Figure 4 show 572

the results of PEIT-LLM with different SFT steps. 573

We find that the performance steadily improved at 574

first few epochs, showing that the instruction data 575

is useful for both molecule captioning and multi- 576

constraint molecule generation tasks. The perfor- 577

mance gradually saturates around epochs 5-6. This 578

indicates that the LLaMa-7B model achieves op- 579

timal performance with 1 million instruction data, 580

and further training might lead to over fitting. 581

Impact of SFT steps. Figure 3 and Figure 4 show 582

the results of PEIT-LLM with different SFT steps. 583

We find that the performance steadily improved at 584

first few epochs, showing that the instruction data 585

is useful for both molecule captioning and multi- 586

constraint molecule generation tasks. The perfor- 587

mance gradually saturates around epochs 5-6. This 588

indicates that the LLaMa-7B model achieves op- 589

timal performance with 1 million instruction data, 590

and further training might lead to over fitting. 591

5 Conclusion 592

We propose a novel framework PEIT that aims to 593

enable open-source LLMs to perceive multi-modal 594

features for multi-task molecule generation. For 595

this purpose, PEIT establishes cross-modal connec- 596

tions among molecular structures, textual descrip- 597

tion, and biochemical properties through multi- 598

modal representation alignment. Through template 599

filling, PEIT can help synthesizing diverse task- 600

specific instruction data for LLMs. We further in- 601

troduce a new multi-constraint molecule generation 602

task that requires generating novel molecules meet- 603

ing multiple property constraints. Experiments 604

show that PEIT achieves promising performances 605

on molecule captioning, text-based molecule gen- 606

eration, and property-related tasks compared with 607

various biomolecular models and LLMs. 608
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Limitations609

While PEIT is capable of achieving comparative or610

better performance over existing studies, it still has611

some limitations as follows: First, PEIT integrates612

the pre-trained PEIT-GEN model as part of the613

pipeline, so the performance of PEIT-GEN greatly614

affect the overall performance of PEIT-LLM. Sec-615

ond, PEIT-GEN uses three types of modality to con-616

struct the instruction data. However, some modal-617

ities data (e.g., knowledge graph and molecular618

images) might be more crucial than sequences for619

the molecular-related task. As a result, exploring620

the different modalities might lead to a different621

result. Lastly, the template utilized for instruction-622

tuning in this work still relies on manual design.623

Our approach is influenced by previous study that624

has been shown to be effective. Nevertheless, it625

would be intriguing to explore the development626

of automated methods for constructing superior627

instruction-tuning templates.628
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A Template Filling870

We show the templates in Figure 5 for synthesizing871

instruction data.872

B Details of Classification Tasks 873

Following SPMM (Chang and Ye, 2024) , we adopt 874

four commonly-used binary classification tasks to 875

evaluate the performance of PEIT-GEN, including 876

BBBP, BACE, Clintox, and SIDER dataset. The 877

BBBP dataset contains 2,050 molecular samples 878

and aims to predict whether these molecules can 879

cross the blood-brain barrier. The BACE dataset 880

includes 1,513 molecular samples and is used to 881

predict whether a molecule can inhibit the activity 882

of the BACE1 enzyme. The Clintox dataset con- 883

tains 1,478 molecular samples and is primarily used 884

to predict the toxicity of compounds. The SIDER 885

dataset consists of 1,427 drug samples and is used 886

to predict whether a drug will cause specific side 887

effects. Specifically, we use scaffold splitting and 888

each dataset is divided into a training set, validation 889

set, and test set in a ratio of 8:1:1, respectively. 890

C Details of Baselines 891

We compare our model against a variety of base- 892

lines which can be categorized as follows: 893

Baselines on molecule captioning task: 894

MolT5 (Edwards et al., 2022) is a framework for 895

pre-training models on unlabeled text and molecu- 896

lar data. It introduces tasks like molecule caption- 897

ing and generating molecules from text. 898

BioT5 (Pei et al., 2023) is a biology-focused pre- 899

trained language model trained on diverse biolog- 900

ical data, linking text with molecular and protein 901

information. 902

MolXPT (Liu et al., 2023b) is a pre-trained lan- 903

guage model for molecular science that enriches 904

both text and molecular SMILES representations 905

by replacing molecular names in the text with 906

SMILES notation. 907

GIT-Mol (Liu et al., 2024) is a multi-modal LLM 908

designed for molecular science, integrating graph, 909

image, and text data. It performs well in tasks like 910

molecule captioning, text-to-molecule generation, 911

image recognition, and property prediction. 912

MolCA (Liu et al., 2023c) is a model that com- 913

bines molecular graphs with textual descriptions, 914

excelling in molecular representation learning, 915

cross-modal reasoning, and tasks such as property 916

prediction, generation, and interaction. 917

Text+Chem-T5 (Christofidellis et al., 2023) is a 918

multimodal model based on the T5 architecture, 919

specifically designed for joint chemistry-text tasks. 920

By integrating chemical data with natural language 921

text, it enhances performance in chemical text un- 922
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Input：Can you predict the specific <Property
Name> value of the molecule <SMILES>?

Output: <Property Value>

Input：Can you give a Molecule SMILES
which with the value of <Propety Name> is
<Propety Value>, the value of <Property
Name> is <Propety Value>, ...?

Output: <SMILES>

Input：Can you predict the specific ExactMolWt values of the molecule
COc1ccccc1Nc1nc(N)nc(CSC(=S)N2CCN(c3ccccc3)CC2)n1?

Output: 437.64

Input：Can you give a molecule SMILES which with the value of BalabanJ is 2.04,
the value of ExactMolWt is 336.08, the value of MolLogP is 3.51, the value of TPSA
is 70.02, the value of QED is 0.87?

Output: Cc1cc(OCC(=O)Nc2ccc(F)c(F)c2)nc(C(C)C)n1

Molecular Property Prediction

Multi-Constraints Molecule Generation

<Property Name> <SMILES>
<Property Value>

<Propety Name> <Propety Value>

<Propety Name> <Propety Value>

<SMILES>

+

+
+

Templates Examples of Instruction DataTasks

Input：Can you give a molecule
SMILES and  <Description>?

Output: <SMILES>

Input：Can you give a molecule SMILES and the molecule is a member of the
class of benzimidazoles that is 1h-benzimidazole which is substituted by a
(2r, 4s)-4-{[(4-fluorophenyl)sulfanyl]-2-oxoethyl group at position 1?
Output: O=C(CSc1ncn[nH]1)Nc1c(F)cc(F)cc1Br

Text-Based Molecule Generation

<Description> <SMILES>

Input：How to describe this
molecule <SMILES>?

Output: <Description>.

Input：How to describe this molecule O=C(CSc1ncn[nH]1)Nc1c-(F)cc(F)cc1Br？
Output: the molecule is a member of the class of benzimidazoles that is 1h-
benzimidazole which is substituted by a (2r,4s)-4-{[(4-fluorophenyl)sulfanyl]-2-
oxoethyl group at position 1.

Molecule Captioning

<SMILES> <Description>

Figure 5: Examples of template filling with unstructured data according to four different downstream tasks for
obtaining a variety of instruction data for supervised fine-tuning large language models.

derstanding, molecular property prediction, and923

reaction generation tasks.924

Baselines on molecular property prediction:925

SPMM (Chang and Ye, 2024) is a multi-modal926

molecular pre-trained model that combines molec-927

ular structure information and biochemical proper-928

ties by aligning two distinct features into a shared929

embedding space.930

D-MPNN (Yang et al., 2019) D-MPNN is specifi-931

cally designed for processing molecular graph data.932

It efficiently captures atomic interactions and chem-933

ical bond information through a directed message-934

passing mechanism, providing strong support for935

molecular property prediction.936

N-GramRF (Liu et al., 2019) extracts N-Gram937

features from molecular sequences and integrates938

them with a Random Forest (Breiman, 2001)939

model to capture local structural information of940

molecules. It is suitable for molecular property pre-941

diction tasks, offering strong robustness and easy942

implementation.943

N-GramXGB (Liu et al., 2019) also utilizes N-944

Gram features but employs the XGBoost (Chen945

and Guestrin, 2016) model for prediction. It effi-946

ciently handles high-dimensional data and captures947

nonlinear relationships, often outperforming Ran-948

dom Forest in predictive performance.949

PretrainGNN (Hu et al., 2019) performs950

pre-training on molecular graph-structured data951

through self-supervised learning tasks, thereby952

learning universal representations of nodes and953

edges within the graph. This significantly enhances954

the model’s performance in molecular property pre-955

diction tasks.956

GROVERlarge (Rong et al., 2020) leverages multi-957

ple self-supervised learning tasks to learn universal 958

representations of atoms and bonds in molecular 959

structures, significantly enhancing performance in 960

downstream tasks such as molecular property pre- 961

diction and drug discovery. 962

ChemRL-GEM (Fang et al., 2022) employs 963

Graph Neural Networks (GNNs) to learn the em- 964

bedding representations of molecular graphs and 965

utilizes reinforcement learning to optimize these 966

representations, thereby better accomplishing tasks 967

such as molecular property prediction and molecu- 968

lar generation. 969

ChemBERTa (Ahmad et al., 2022) is pre-trained 970

on a large-scale chemical literature and biomedical 971

corpora, learning linguistic features specific to the 972

chemistry and biomedical domains. This enables it 973

to excel in tasks such as molecular property predic- 974

tion, drug discovery, and biomedical text mining. 975

MolFormer (Ross et al., 2022) captures global 976

atomic interactions within molecules using self- 977

attention and learns universal molecular represen- 978

tations through pretraining on large-scale datasets, 979

demonstrating strong performance in property pre- 980

diction and molecular generation tasks. 981

Baselines of LLMs: 982

LLaMa3 (Touvron et al., 2023) is an open-source 983

LLM, suitable for various NLP tasks such as sum- 984

marization, question answering, and translation. 985

LLaMa3.1 (Dubey et al., 2024) is a series of up- 986

dated open-source LLM based on LLaMa3, featur- 987

ing a stronger parameter scale and higher perfor- 988

mance. 989

Qwen2.5 (Yang et al., 2024) is an open-source 990

large model that has been pre-trained on a dataset 991

containing 18 trillion tokens. It has achieved sig- 992
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nificant improvements in overall capabilities and993

excels in a wide range of NLP tasks.994

Mol-Instructions (Fang et al., 2023) is a natural995

language instruction dataset for biomolecules, de-996

signed to enhance the capabilities of large-scale pre-997

trained models in the biomolecular domain. This998

dataset combines biomolecules (such as proteins,999

DNA, RNA, etc.) with natural language instruc-1000

tions, supporting tasks such as molecule generation,1001

molecule modification, and reaction prediction. We1002

use the LLaMa3.1-8B model after SFT on this in-1003

struction dataset.1004

BioMedGPT (Zhang et al., 2024b) is a multimodal1005

pre-trained model for the biomedical field, leverag-1006

ing self-supervised learning and cross-modal align-1007

ment to learn universal representations from large-1008

scale data, excelling in text understanding, medical1009

image analysis, and molecular property prediction.1010

InstructMol-GS (Cao et al., 2023) is an1011

instruction-tuned molecular generation model that1012

maps natural language to molecular structures, en-1013

abling targeted molecule design and demonstrating1014

strong generative capabilities in drug discovery and1015

materials science.1016

MolReGPT (Li et al., 2023) is a molecule-text1017

translation framework based on LLMs. It utilizes a1018

molecular similarity retrieval mechanism to select1019

examples, enabling efficient molecule generation1020

and understanding without fine-tuning.1021

D Evaluation Metrics1022

We evaluated the quality of generated text using1023

BLEU (Papineni et al., 2002), METEOR (Baner-1024

jee and Lavie, 2005), and ROUGE scores. These1025

metrics evaluate the similarity between generated1026

texts and reference descriptions, effectively quan-1027

tifying the accuracy and diversity of the generated1028

descriptions. For the text-based molecule gener-1029

ation task, we further use molecular fingerprints1030

(FTS) (Cereto-Massagué et al., 2015) and validity1031

measures to assess molecular similarity and valid-1032

ity, including Validity, Levenshtein (Levenshtein,1033

1966), MACCS FTS, Morgan FTS, and RDKit1034

FTS (Landrum et al., 2013). For the task of molec-1035

ular property prediction, we chose to use the com-1036

monly used RMSE to measure the difference be-1037

tween the predicted values and the molecular prop-1038

erty values calculated by RDKit for comparison,1039

for the experiments on MoleculeNet, we use AUC-1040

ROC to evaluate the classification accuracy for clas-1041

sification tasks. In the case of multi-constraint1042

Module Parameters
Encoder 440M
Encoder momentum cache 440M
Projection head 1.5M
ITM head 0.6M
Property prediction module 1M
Text prediction module 1M
Total 884.1M

Table 6: Parameter count of different modules in PEIT-
GEN.

Model Modality Data Size ↓ R2 ↑ RMSE ↓

SPMM (Chang and Ye, 2024) S, P 1.5M 0.921 0.194
PEIT-GEN (Ours) S, P , T 480K 0.910 0.169

Table 7: Comparing performance of our PEIT-GEN to
SPMM on molecular property prediction.

molecule generation, in addition to RMSE, we also 1043

employed R2 to assess the accuracy of the gener- 1044

ated molecules. 1045

E Parameters Analysis 1046

We conduct a detailed analysis of the parameter 1047

counts across different modules in PEIT-GEN. As 1048

shown in Table 6, the encoders for three modal- 1049

ities are responsible for learning representations 1050

of different data types and facilitating the effec- 1051

tive fusion of multi-modal information, accounting 1052

for approximately 99% of the total size. The re- 1053

maining modules, such as the projection head, ITM 1054

head, property prediction as well as text prediction 1055

modules, collectively account for 1% of the total 1056

parameter count. 1057

F Molecular Property Prediction 1058

Following SPMM (Chang and Ye, 2024), we fur- 1059

ther compare PEIT-GEN with SPMM on external 1060

dataset. The comparison result on molecular prop- 1061

erty prediction is shown in Table 7. Specifically, we 1062

randomly sample 1,000 molecules from the ZINC 1063

dataset which are not included in the training set. 1064

Compared to SPMM that is specifically designed 1065

for property prediction, PEIT-GEN achieves com- 1066

parable performance while using only one-third of 1067

the data size across three modalities. We found 1068

that PEIT-GEN outperformed SPMM in terms of 1069

RMSE, while SPMM was slightly ahead by 0.11% 1070

on R2 metric. These results demonstrate that PEIT- 1071

GEN can generate high-quality biochemical prop- 1072

erties of molecules, highlighting the critical role of 1073

high-quality multi-modal data in advancing molec- 1074

ular understanding tasks. 1075
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Figure 6: The impact of different amount of SFT steps
for PEIT-LLM on text-based molecule generation task.
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Figure 7: The impact of different amount of SFT steps
for PEIT-LLM on MolLogP property prediction task.

G More Analysis on SFT Steps1076

The impact of SFT steps for text-based molecule1077

generation and single MolLogP property prediction1078

are shown in Figure 6 and Figure 7, respectively.1079

Similar to two other tasks, we receive the best re-1080

sults through approximately 5∼6 epochs of SFT.1081

H Case Study1082

As for qualitative analysis, we show some case1083

study for different tasks, directly comparing the1084

response by LLaMa3.1 and our PEIT-LLM.1085

Table 8 shows the examples for molecule cap-1086

tioning. From the responses, we can see that1087

the captions generated by our model are closer1088

to the ground truth captions, whereas the original1089

model often provides vague answers. This demon-1090

strates that our model has a better understanding of1091

molecules and can generate high-quality responses1092

to complete molecular annotation tasks.1093

Table 9 shows the examples for text-based1094

molecule generation. We can see that, compared1095

with LLaMa3.1, the molecules generated by our1096

model are more structurally reasonable and similar1097

to the ground truth.1098

Table 10 shows the examples for molecular prop- 1099

erty prediction. LLaMa3.1 performs poorly in pre- 1100

dicting specific molecular property and lacks the 1101

ability to accurately predict molecular property val- 1102

ues. However, after instruction fine-tuning, our 1103

PEIT-LLM demonstrates excellent performance in 1104

predicting molecular property values, providing a 1105

strong foundation for its outstanding performance 1106

in multi-constraint molecule generation tasks. 1107

Table 11 shows the examples for challenging 1108

multi-constraint molecule generation task. It can be 1109

observed that our model generated molecule with 1110

close properties according to multiple constraints. 1111

This indicates that the multi-task instruction data 1112

generated by our pre-trained model can enhance 1113

the capabilities of LLMs for such challenging task. 1114
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Input for Molecule Captioning LLaMa3.1 Output Our PEIT-LLM Output Ground Truth
1. How to describe this molecule
CCCCCC1OC1C=CC(O)CC=C
CC=CCCCC(=O)[O-]?

This is a complex or-
ganic molecule contain-
ing a cyclic ether, an
alkene, an alcohol, a ke-
tone, and an enolate an-
ion.

The molecule is a prostaglandin
carboxylic acid anion that is the
conjugate base of prostaglandin
F2alpha, obtained by deprotona-
tion of the carboxy group; ma-
jor species at pH 7.3. It is a
conjugate base of a prostaglandin
F2alpha.

The molecule is an
epoxy(hydroxy)icosatrienoate that
is the conjugate base of 11 hydroxy-
(14R,15S)-epoxy-(5Z,8Z,12E)-
icosatrienoic acid, obtained by
deprotonation of the carboxy group;
major species at pH 7.3. It is a conju-
gate base of an 11 hydroxy-(14R,15S)
-epoxy-(5Z,8Z,12E)-icosatrienoic acid.

2. How to describe this molecule
[Te]?

The molecule [Te] repre-
sents a tellurium atom in
its elemental form.

The molecule is the stable iso-
tope of tellurium with relative
atomic mass 127.904, 7.00 atom
percent natural abundance and
nuclear spin 1/2.

The molecule is the stable isotope of
tellurium with relative atomic mass
124.904425, 71.4 atom percent natural
abundance and nuclear spin 1/2.

3. How to describe this molecule
CN(N=O)C(N)=O?

This molecule is a ni-
trosoguanidine, charac-
terized by a central car-
bon atom double-bonded
to nitrogen and oxygen,
with an additional nitro-
gen atom attached to the
carbon.

The molecule is a nitrosamine
that is urea in which one of the ni-
trogens is substituted by methyl
and nitroso groups. It has a role
as a carcinogenic agent, a muta-
gen, a teratogenic agent and an
alkylating agent.

The molecule is a member of the class
of N-nitrosoureas that is urea in which
one of the nitrogens is substituted by
methyl and nitroso groups. It has a
role as a carcinogenic agent, a mutagen,
a teratogenic agent and an alkylating
agent.

Table 8: Examples of responses by LLaMa3.1 and our PEIT-LLM on molecule captioning.

Input for Text-based Molecule Generation LLaMa3.1 Output Our PEIT-LLM Output Ground Truth
1. Can you give a molecule SMILES and the Cn1c(=O)c2c(nc(NCC3CCCO3)n2C NC(CCCC(=O)O)C(=O)O C(CC(=O)O)C(CC(=O)O)N
molecule is an amino dicarboxylic acid that is C(=O)c2ccccc2)n(C)c1=O
adipic acid in which one of the hydrogens at
position 3 is replaced by an amino group. It is
a beta-aminoacid an amino dicarboxylic acid
and a gamma-amino acid. It derives from an
adipic acid?

2. Can you give a molecule SMILES and the CN(C)C1=CC=C2[NH1]C=3C(C([NH3 CCCCCCCC(=O)CC CCCCCCCCC(=O)C
molecule is a methyl ketone that is decane in +1])=O)=CC(=O)C(=O)C=3OC2=C1
which the methylene hydrogens at position 2
are replaced by an oxo group. It has a role as
a plant metabolite. It derives from a hydride
of a decane?

3. Can you give a molecule SMILES and the C1=CC(=O)OC2=CC(=C(C=C21)O CCOP(=S)(OCC)OC1=NN(C=N1) CCOP(=S)(OCC)OCC1=CC(=O)
molecule is a member of the class of Nnitro- [C@H]3[C@@H]([C@H]([C@@H] C2=CC=CC=C2 N(C2=CC=CC=C2)N1
soureas that is urea in which one of the nitro- ([C@H](O3)CO)O)O)O)O
gens is substituted by methyl and nitroso
groups. It has a role as a carcinogenic agent, a
mutagen, a teratogenic agent and an alkylating
agent?

Table 9: Examples of responses by LLaMa3.1 and our PEIT-LLM for text-based molecule generation.

Input LLaMa3.1 Output Our PEIT-LLM Output Ground Truth

1. Can you predict the specific MolLogP values of the molecule?
CC1CC(C)CN(S(=O)(=O)c2ccc(C(=O)Nc3nnc(C4CC4)o3)cc2)C1

23.42 2.65 2.66

2. Can you predict the specific ExactMolWt values of the molecule?
COc1ccc(NC(=O)Cn2ccn(-c3ccc(F)c(F)c3)c(=O)c2=O)cc1Cl

13.77 404.94 404.25

3. Can you predict the specific MolLogP values of the molecule?
Cc1cc2c(cc1)C(=O)NC(C)C2

18.98 2.53 2.52

Table 10: Examples of responses by LLaMa3.1 and our PEIT-LLM for molecular property prediction.
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Input for Multi-Constraint Molecule
Generation

LLaMa3.1 Output (Verified Values by
RDKit)

Our PEIT-LLM Output (Verified Values by
RDKit)

1. Can you give a molecule SMILES
which with the value of BalabanJ is 1.68,
the value of ExactMolWt is 492.20, the
value of MolLogP is 3.14, the value of
TPSA is 138.76, the value of QED is
0.33?

NN=c1sc2ccccc2n1-c1ccccc1 (Bala-
banJ is 2.42, ExactMolWt is 241.06,
MolLogP is 2.46, TPSA is 43.30, QED is
0.51)

CCOc1cc(C=NNC(=O)c2ccncc2)ccc1OS(=O)
(=O)c1ccc(NC(C)=O)cc1 (BalabanJ is 1.74,
ExactMolWt is 482.12, MolLogP is 2.97, TPSA
is 136.04, QED is 0.27)

2. Can you give a molecule SMILES
which with the value of BalabanJ is 1.33,
the value of ExactMolWt is 467.20, the
value of MolLogP is 3.54, the value of
TPSA is 92.42, the value of QED is 0.52?

O=C(CN1CCN(c2ccc(Cl)cc2)CC1)Nc1ccc(F)
cc1F (BalabanJ is 1.49, ExactMolWt is
365.11, MolLogP is 3.37, TPSA is 35.58,
QED is 0.90)

O=C(COC(=O)c1ccc(S(=O)(=O)N2CCCc3ccc
cc32)cc1)Nc1ccc(F)cc1 (BalabanJ is 1.39,
ExactMolWt is 468.11, MolLogP is 3.76, TPSA
is 92.78, QED is 0.55)

3. Can you give a molecule SMILES
which with the value of BalabanJ is 1.98,
the value of ExactMolWt is 303.13, the
value of MolLogP is 3.06, the value of
TPSA is 64.11, the value of QED is 0.92?

O=C(NCc1cccc(F)c1)Nc1nnc(C2CC(O)C(CO)
O2)s1 (BalabanJ is 1.51, ExactMolWt is
368.09, MolLogP is 1.18, TPSA is 116.60,
QED is 0.62)

Cc1cccc(NS(=O)(=O)c2ccc3oc(C)c(C)c3c
2)n1 (BalabanJ is 2.11, ExactMolWt is 306.10,
MolLogP is 2.88, TPSA is 67.43, QED is 0.90)

Table 11: Examples of responses by LLaMa3.1 and our PEIT-LLM for multi-constraint molecule generation, and
the verified property values of the output molecule are shown in the brackets.
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