Under review as a conference paper at ICLR 2025

DISENTANGLING REASONING TOKENS AND BOILER-
PLATE TOKENS FOR LANGUAGE MODEL FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

When using agent-task datasets to enhance agent capabilities for Large Language
Models (LLMs), current methodologies often treat all tokens within a sample
equally. However, we argue that tokens serving different roles—specifically,
reasoning tokens versus boilerplate tokens (e.g., those governing output for-
mat)—differ significantly in importance and learning complexity, necessitating
their disentanglement and distinct treatment. To address this, we propose a novel
Shuffle-Aware Discriminator (SHAD) for adaptive token discrimination. SHAD
classifies tokens by exploiting predictability differences observed after shuffling
input-output combinations across samples: boilerplate tokens, due to their repeti-
tive nature among samples, maintain predictability, whereas reasoning tokens do
not. Using SHAD, we propose the Reasoning-highlighted Fine-Tuning (RFT)
method, which adaptively emphasizes reasoning tokens during fine-tuning, yield-
ing notable performance gains over common Supervised Fine-Tuning (SFT).

1 INTRODUCTION

Recently, there has been a surge of enthusiasm in researching Agents based on Large Language
Models (LLMs) (Weng] |2023; |Wang et al., [2024)), with the aim of achieving human-level artificial
intelligence or beyond. Despite LLMs showcasing remarkable capabilities in various areas, they
have not inherently demonstrated strong agent capabilities, such as multi-step reasoning (Wei et al.
20225 [Yao et al., 2023 |Q1ao0 et al., 2024) and tool use (Qin et al., 2024} |Schick et al.l 2023 |Liu
et al.| 2024; [Patil et al.| |2023). This shortfall has directed significant attention toward incorporating
datasets tailored for agent tasks to enhance the agent capabilities of LLMs (Chen et al., [2023} |Zeng
et al., 2023} [Chen et al.l 2024b). These datasets offer structured examples of standard reasoning
chains for solving agent tasks (Chen et al., 2024b; Qin et al.| [2024), enabling LLMs to learn from
them and thereby enhance their agent capabilities.

When leveraging these datasets to bolster LLMs’ agent capabilities, existing research often treats
all tokens within a sample equally (Chen et al.l 2023} Zeng et al.| 2023} |Chen et al., 2024c} |Qin
et al., |2024). However, we argue that these tokens could differ substantially in learning difficulty
and importance. Given the standardized structure of the data, tokens within a sample can be divided
into two categories as depicted in Figure[I} 1) boilerplate tokens, which include format tokens that
constrain the output structure, and template-connecting tokens that serve as standard transitional
phrases for reasoning, such as “Based on the user’s request... By doing so... This way...”; and
2) reasoning tokens, which provide sample-specific reasoning information crucial for task solving.
Boilerplate tokens are distinctly less critical for task solving compared to reasoning tokens and are
easier to learn due to their repetitive nature across many samples.

It is crucial to distinguish between the reasoning and boilerplate components and handle them sepa-
rately. Failure to do so may result in undesired effects, such as overfitting to the boilerplate compo-
nents, as depicted in Figure[I] ultimately leading to inadequate agent capabilities. While manually
crafting regular expressions to filter out boilerplate tokens appears to be a feasible solution, it can be
highly inefficient when dealing with data of diverse formats. Additionally, creating regular expres-
sions for template-connecting tokens of transitional phrases poses challenges due to their potential
variability in language. Therefore, an automated and adaptive approach for segregating these com-
ponents is highly desirable.

Under review as a conference paper at ICLR 2025

Loss on Wrong test data

2.00
Thought: Based on the user's request to find the most 175 ‘\///
popular genre in the Media-Group tool, I should call 150
the “list_genres_for media_group” function to]
retrieve a list of genres. By doing so, I can analyze the —e— Reason Loss
genres and determine which one is currently trending S ' o i‘v’::;:‘i;"“
based on popularity. This way, I will be able to 0.75
provide the user with the information they are looking 5,

for regarding the most popular genre in the Media- oos

Group tool.

1 11 1 0.00
ACthn. hSt—genreS—for—medla—group 0 500 1000 1500 2000 2500 3000
Action Input: {} Checkpoint Number

Figure 1: Left: Examples of reasoning tokens (green) and boilerplate tokens (yellow and blue).
Boilerplate tokens can be further categorized into format tokens (yellow) and template-connecting
tokens (blue). Right: Loss changes for different types of tokens in the sampled test data that the
model fails to answer for the regular SFT training.

This study introduces a novel SHuffle-Aware Discriminator (SHAD) to achieve automated and adap-
tive token distinction. Considering boilerplate tokens are usually consistent across samples, they
can be treated as sample-independent. Consequently, shuffling the correspondence between input
and output across data samples does not alter the predictability of boilerplate tokens. However,
such shuffling introduces noise that complicates the prediction of reasoning tokens, by causing mis-
matches between the tokens and the input querie§’| SHAD is developed based on this principle.
Specifically, it fine-tunes an LLM model using a small portion of shuffled data and then compares
the token-level loss between the tuned and original models to classify tokens for the target data. A
token is classified as boilerplateE] if the loss on the tuned model decreases; otherwise, it is classified
as a reasoning token.

Based on SHAD, we have developed a new Reasoning-highlighted Fine-Tuning (RFT) approach,
which adaptively assigns greater weights to challenging reasoning tokens to emphasize the learning
of reasoning. This approach demonstrates superior performance compared to existing supervised
fine-tuning methods across several common agent benchmarks. Further analysis reveals that our
method could effectively identify reasoning tokens and strengthen the learning of these tokens, ulti-
mately enhancing the learning of agent capabilities for LLMs.

The main contributions of this work are summarized as follows:

* We emphasize the differences in learning difficulty and importance between reasoning and boil-
erplate tokens for agent learning, highlighting the critical importance of effectively distinguishing
between them.

* We introduce SHAD, a novel method that automatically discriminates between reasoning and
boilerplate tokens based on their predictability differences observed after shuffling input-output
combinations.

* We have developed a new fine-tuning method RFT rooted in SHAD, distinctly improving the
effectiveness of learning agent capabilities for LLMs.

2 RELATED WORK

2.1 TOKEN DIFFERENTIATION

Typically, when tuning LLMs, sequence-level loss is optimized, treating all involved tokens equally.
However, recent studies across various domains have increasingly recognized that tokens play differ-
ent roles. For instance, |Lin et al.|(2024)) suggest that not all tokens are necessary during pretraining,

"We will later provide practical examples in Sectionto illustrate how shuffling can cause the reasoning
parts of a response to mismatch with the corresponding queries.

These tokens would be further categorized into formatting tokens and template connecting phrases based
on their losses, if need.

Under review as a conference paper at ICLR 2025

Stepl:Data Shuffle Step2:Model Tuning Step3:Classifyin
Data Token-
Datasets Shuffle . Level Loss
& % [2 [Train Ref > areiie]
l. — 1 “get_current_weat
B % Bl » B Model 0 . S0 sher” with “6:30”
- S Token- s and “Beijing” as
. Y3 . Y2 . Y2 Level Loss Batamien
Dsampte €D Ds Ds [2
0, s
6, L

Figure 2: Illustration of the proposed SHAD method, which classifies tokens through three steps.
In step 1, a small subset of the data is sampled, and the output of the sampled data is shuffled. In
step 2, the LLM is tuned using the shuffled data. In step 3, tokens are classified by comparing the
prediction losses between the tuned and original models.

especially in domain-specific contexts, and propose leveraging a reference model trained on high-
quality data to distinguish between token importance. Similarly, |Yang et al.; Rafailov et al.|(2024)
recognize token differences in preference learning for LLMs, and accordingly introduce token-level
rewards to better align models with human preferences. Among existing works, Agent-Flan (Chen
et al., 2024b) is the most relevant to ours, sharing a similar motivation to account for token differ-
ences in agent tuning. However, it only considers “format tokens” as boilerplate tokens, overlook-
ing template-connecting tokens, which are more challenging to disentangle from reasoning tokens.
Additionally, it does not emphasize the importance of distinguishing (or classifying) these tokens,
resulting in a fundamental difference in both the problems addressed and the solutions proposed. We
focus on automatically disentangling reasoning tokens from boilerplate tokens, whereas Agent-Flan
prioritizes converting agent data into a standard conversational format.

2.2 ENHANCING AGENT CAPABILITY FOR LLMS

To tackle complex real-world problems, it is essential to enhance LLMs’ agent capabilities, such as
the ability of external tool use and multi-step reasoning (Shen et al., 2023 Nakano et al., 2021; Yao
et al.l 2022). Prior works (Yao et al., 2023 |Shinn et al., [2023}; |[Pan et al., 2024} Zhao et al., 2023)
have focused on developing frameworks that prompt LLMs to integrate tools better and engage in
deeper reasoning before taking action. Subsequent works have further constructed diverse and well-
structured agent-task benchmark datasets, e.g., Toolllama (Qin et al.| [2024)), Toolalpaca (Tang et al.,
2023)), and APIGen (Liu et al., 2024), considering these specific datasets for further tuning of LLMs
to more directly and effectively enhance their agent abilities. Recently, Chen et al.| (2024b) proposed
Agent-Flan, a dataset rewrite method to enable LLMs better to learn reasoning and tool use at a step
level. Although these methods train LLMs on agent datasets and achieve promising results, they
often struggle with overfitting and generalization issues (Chen et al.,|2024b). Our RFT with SHAD
can better utilize these datasets to learn reasoning, achieving superior performance on agent tasks
while maintaining good generalization ability on out-of-distribution benchmarks.

3 METHODOLOGY

In this section, we first introduce the SHuffle-Aware Discriminator (SHAD), which is proposed to
adaptively distinguish between reasoning and boilerplate tokens. We then discuss how to develop
our Reasoning-highlighted Fine-Tuning (RFT) based on the discrimination results.

3.1 SHAD: ADAPTIVE TOKEN DISCRIMINATOR

To develop SHAD, our foundational idea is that boilerplate tokens, which template outputs, should
be interchangeable across many samples, whereas reasoning tokens are specific to individual sam-
ples and cannot be swapped. Consequently, shuffling the combination of inputs and outputs across
samples does not alter the predictability of boilerplate tokens, unlike reasoning tokens. Leveraging
this principle, we could achieve automated and adaptive token discrimination through the tree steps
(as show in Figure|2):

Under review as a conference paper at ICLR 2025

Data Shuftle
Before Shuffle After Shuffle

& As a trader, | want to evaluate the performance of the BTCUSDT & As a trader, | want to evaluate the performance of the BTCUSDT

User Pairon Binance. Fetch the Ultimate Oscillator (UO), the Typical User Pair on Binance. Fetch the Ultimate Oscillator (UO), the Typical

Price (TP), and the Trix (TRIX) for the past month. Additionally, Price (TP), and the Trix (TRIX) for the past month. Additionally,
provide the Stochastic (STOCH) and the Standard Deviation (STD) provide the Stochastic (STOCH) and the Standard Deviation (STD)
for the same period. Begin! for the same period. Begin!

Thought: | need to call the ‘maxindex_for_twelve_data" function
to retrieve the highest and lowest values of the selected

Thought: | should call the 'ultimateoscillator_for_gvantana'
Assistant function with the arguments provided. This API call will fetch

Le;
L8,

Assistant

the Ultimate Oscillator (UO), the Typical Price (TP), and the Trix instrument. The API call is made with the grguments ‘interval®
(TRIX) for the BTCUSDT pair on Binance for the past month. set to "1day", 'symbol’ set to "AAPL", ‘series_type" set to
Additionally, it will also provide the Stochastic (STOCH) and the "close", and “outputsize set to 100. By using these arguments, |
Standard Deviation (STD) for the same period. This will help me can receive the daily data for the AAPL stock and analyze it to
evaluate the performance of the BTCUSDT pair and gather the find the maximum and minimum values. This will help me
necessary data for analysis. provide the desired information to the user for displaying on the
Action: ultimateoscillator_for_gvantana trading platform.
Action Input: { Action: maxindex_for_twelve_data
"exchange": "binance", Action Input: {
"interval": "1d", "interval": "1day",
"market": "spot", "symbol": "AAPL",
"symbol": "btcusdt", "series_type": "close",

"backtracks": 30 "outputsize": 100
» i

Figure 3: Example of shuffled data. After shuffling, the assistant’s responses no longer correspond
to the original queries. However, some tokens (boilerplate tokens, red) remain semantically similar
to the original response and are therefore predictable. In contrast, reasoning tokens (green) no longer
align with the query, resulting in noise. Note that *Action’ and ’Action Input’ are directly copied
from *Thought’ and could be considered as non-reasoning.

1. Data Shuffle: Select a small ratio of the data and shuffle the combinations of inputs and
outputs among the sampled items.

2. Model Tuning: Fine-tune an LLM model using the shuffled data.

3. Classifying: Classify tokens based on the loss change between the tuned and original mod-
els for the target data. Compared to the original model, if a token’s loss decreases, it is
likely a boilerplate token; otherwise, a reasoning token.

Next, we elaborate on these three steps:

eData Shuffle. This is the core step of our method, creating distinct predictability for the reasoning

tokens and boilerplate tokens. The shuffle is performed by randomly reassigning the input-output
combinations between samples. When implementing, we just select a small ratio (1%) of the target
dataset and shuffle it for use in the subsequent model tuning step, to avoid large tuning costs and
overfitting on the whole dataset.

Let (z°, y*) denote the i-th sample for the sampled dataset, with 2% as the input and y* as the output.
Denote all the inputs of all samples as X = [z!,..., 2], and the corresponding outputs as Y =
[yl, o ,yN |, where N denotes the size of sampled dataset. We shuffle Y, and then re-combine the
inputs in X and outputs in the shuffled Y to construct the shuffled dataset D,. This means, for the
i-th original sample (%, "), its input 2* may be combined with the j-th sample’s output 3’ to form
anew sample (z°,y7), while its output y* may be combined with the k-th sample’s input 2* to form
anew sample (z*, y*). With this operation, the mapping relationship between the inputs and outputs
becomes noise for reasoning tokens, making them unpredictable. As for the boilerplate tokens, since
they are shared across samples, their predictability remains intact. Figure 3] provides an example to
illustrate this.

eModel Tuning. After obtaining the shuffle data, we leverage them to fine-tune an LLM model.
The model tuning is performed according to the classic causal language modeling. Formally,

05 = argmin Z I(z',y;0), (D

(z',y")EDs

Under review as a conference paper at ICLR 2025

where 6 denotes the learnable model parameters, and [(z';y’; 0) denotes the loss for a shuffled
sample (2/,y’) € Dy, and O, denotes the optimized 6. As the output is shuffled for the input, the
tuned model is only expected to learn to predict boilerplate tokens effectively.

oClassifying. After tuning the model with shuffled data, we evaluate the role of each token in a
target sample by comparing the prediction loss between the tuned and original models. Given that
the tuned model should primarily learn boilerplate tokens, we classify a token as ‘boilerplate’ if its
prediction loss decreases in the tuned model relative to the original; otherwise, we classify it as a
‘reasoning’ token.

Given a sample (z,y) in the target dataset, we focus on classifying the tokens in the output part.
Formally, for the k-th token y;, in the output, we first compute the prediction loss difference (denoted
as LD (yy,)) between the tuned and original models as follows:

LD(yk) = ls(yk) - lo(yk)7 2

where Is(yy) and I, (yy) represent the loss calculated on the tuned model and the original model,
respectively, given by:

Ls(yr) = —log(P(yk|@, y<i: 0s)), lo(yr) = —log(P(yr|r,y<k; o)) 3)

Here, P(yg|2, y<k; 0s) and P(yx|x, y<x; 6,) denote the predicted probabilities of the token yy, from
the tuned model (parameterized by 6,) and the original model (parameterized by 6,,), respectively.

Based on the calculated loss difference LD (yy), the token is classified as follows:

boilerplate if LD(yr) <0
reasoning else

Classifier(yx) = { “4)

Note that our token classification can be conducted offline with a single forward pass of LLM com-
putation for each sample, without affecting the efficiency of the subsequent agent tuning process.

3.2 REASONING-HIGHLIGHTED FINE-TUNING

Agent-tuning data often follows fixed formats and similar reasoning trajectories, making the corre-
sponding tokens (boilerplate tokens) easily learned by the model. If all tokens in a sample are treated
equally, the model risks overfitting to these boilerplate tokens, which can hinder its ability to learn
to reason effectively. To address this issue, we propose focusing more on reasoning tokens identi-
fied by our SHAD method, assigning them higher weights during fine-tuning to enhance reasoning
capabilities for agent task solving.

Instead of manually assigning fixed weights to the two types of tokens, we utilize an adaptive weight
assignment to align the dynamic learning process better. Specifically, we compare the total losses of
the reasoning and boilerplate parts, applying the softmax function to assign higher weights to the part
with the greater loss. Notably, since the reasoning part typically exhibits a higher loss (see Figure[3)),
our method naturally assigns greater weights to emphasize reasoning learning. Furthermore, when
the loss difference between the two parts diminishes, our method can adaptively adjust the weights
to promote a more balanced learning process for the two parts. Given the nature of highlighting
reasoning, we name our method Reasoning-highlighted Fine-Tuning (RFT).

Formally, let £, and L, represent the total loss for the boilerplate and reasoning tokens, respectively.
The re-weighted loss of our RFT, denoted as L7, can be formulated as follows:

Lrrr = wpLly + wp Ly, @)

where

oy = exp(Ly/T) . — exp(£L,/7) (6)
exp(Ly/7) +exp(L./T) " exp(Ly/T) +exp(L,/T)
Here, 7 is the temperature coefficient of the softmax function. A smaller 7 results in greater weight
being assigned to the component with the higher loss.

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison between baselines, SHAD+RFT, and its variants. Accuracy is
reported for BFCL, Nexus, and T-eval, while pass rate, assessed by GPT-4, is used for StableTool-
Bench. ‘AVG’ represents the average performance across all evaluation datasets. The best results
among baselines and SHAD+RFT are highlighted in bold, and the second-best are underlined.

Held-In Held-Out

Model Method StableToolbench BFCL T-eval Nexus AVG
SFT 43.1 85.9 67.0 14.0 52.5
Regex 36.2 81.0 54.3 6.45 44.5
Rho-1 24.5 82.9 68.4 19.0 48.7

LLaMA3.gg . RewardFT . 444 893 663 80 520
SHAD+RFT 50.1 87.6 71.8 27.8 59.3
SHAD+a-FT 47.0 87.2 68.8 28.7 57.9
Regex+RFT 41.2 83.81 61.1 12.4 49.6
SFT 48.5 89.3 64.2 19.5 554
Regex 423 82.1 58.6 14.3 493
Rho-1 30.6 84.6 67.0 26.0 52.0

LLaMA3.1.gp ..RewardFT 482 882 664 19.1 555
SHAD+RFT 50.4 89.4 68.3 32.0 60.0
SHAD+a-FT 49.2 88.2 63.8 28.9 57.5
Regex+RFT 46.7 80.31 57.6 16.2 50.2

4 EXPERIMENTS

We now present experiments to evaluate the effectiveness of our method in enhancing LLMs’ agent
capabilities, particularly in multi-step planning and tool usage, for solving complex real-world prob-
lems. We begin by detailing the experimental setup, followed by the analyses of the results.

4.1 EXPERIMENT SETUP

Training Data. We use LLaMA3.1-8B and LLaMA3-8B as the backbone models, fine-tuning them
to solve agent tasks. The training dataset is constructed from two commonly used multi-step plan-
ning and tool-use benchmarks, ToolBench (Qin et al.,|2024) and APIGen (Liu et al., 2024)), supple-
mented with general data from ShareGPT (noa, [2024b)). The general data is used to preserve general
capabilities like instruction-following, as demonstrated in previous work (Zeng et al.l [2023). Tool-
Bench and APIGen provide a variety of examples for solving complex real-world user queries across
different environments, all organized in a standard agent-specific format: “Thought-Action-Action
Input” in JSON.

Evaluation Setting. To comprehensively evaluate the proposed method, we consider two evalua-
tion settings—held-in task evaluation and held-out task evaluation, following prior work (Zeng et al.,
2023)). The held-in evaluation focuses on measuring performance on tasks similar to those used dur-
ing training, while the held-out evaluation assesses the model’s generalization to novel tasks. For the
held-in setting, we use the StableToolBench (Guo et al.| 2024)) and BFCL (noa) benchmarks. These
datasets align with our agent tuning datasets: StableToolBench shares the same source as Tool-
Bench, while BFCL serves as the leave-out evaluation data for APIGen. For the held-out setting, we
use two additional benchmarks: 1) T-eval (Chen et al., 2024a), a comprehensive step-level reason-
ing benchmark, and 2) Nexus (team), |2023)), a complex single-step nested tool-use benchmark. Both
benchmarks provide a diverse set of tools for LLMs to choose from, with tasks in StableToolBench
and T-eval often requiring multiple steps to complete. In accordance with the evaluation metrics
established in the original benchmarks, accuracy is employed for BFC[EL T-eval, and Nexus, while
StableToolBenclﬂ is evaluated using the pass rate assessed by GPT-4.

Compared Methods. To evaluate our RFT method developed on SHAD (denoted as SHAD+RFT),
we compare it against the following baselines: 1) SFT, standard supervised fine-tuning; 2) Regex,

3 Accuracy is reported by abstract syntax tree evaluation for BFCL.
*We only select three most difficult subsets of StableToolbench — I2-Category, I3-Instruction, and 11-Tool.

Under review as a conference paper at ICLR 2025

which uses regular expressions to distinguish formatting tokens from other tokens and re-weights
their losses with constant values; 2) Rho-1 (Lin et al.l 2024), which leverages a reference model
trained on high-quality data to identify noise tokens and then mask them during fine-tuning; and 3)
Reward-based Fine-Tuning (RewardFT) (Yang et al.; Rafailov et al.,2024)), which assigns token-
level reward scores for tuning using a DPO-based reward model. It is important to note that Rho-1
and RewardT were not originally designed for agent tuning tasks; however, we have extended them
for this purpose, with implementation details provided in Appendix [B]

In addition to the above baselines, we also compare our method with two of its variants to assess
its core design components: 1) SHAD+«a-FT, which retains the SHAD component but assigns a
fixed weight « to reasoning tokens to emphasize them; and 2) Regex+RFT, which preserves the
RFT weighting mechanism but uses regular expressions for token distinction. The implementation
details of a-FT are also provided in Appendix [B]

4.2 MAIN RESULTS

Table [T] summarizes the performance of all compared methods, where we could draw two main
conclusions:

SHAD+RFT Performs Strongly. Our method, SHAD+RFT, outperforms all baselines on all held-
in and held-out evaluation datasets, except for the held-in evaluation BFCL with LLaMA3-8B. This
highlights the advantage of emphasizing reasoning components in solving complex real-world prob-
lems and demonstrates the effectiveness of our method in identifying and highlighting these parts.
Notably, while Rho-1 and RewardFT also differentiate between tokens during learning, they are
not specifically designed for agent tuning to discover and emphasize reasoning tokens, resulting in
comparatively lower performance. Specifically, Rho-1 targets identifying noise tokens for masking
during tuning but fails to distinguish between normal boilerplate and reasoning tokens. RewardFT
leverages token rewards from a DPO-based reward model aligned with human preferences to dif-
ferentiate tokens, yet it is also not designed to identify reasoning tokens essential for agent-specific
capabilities.

Both SHAD and RFT Are Crucial. When comparing SHAD+RFT with its variants, Regex+RFT
and SHAD+«-FT, the original SHAD+RFT consistently demonstrates superior performance. We
explained the results as follows:

* Adaptive weighting in RFT is crucial. Comparing SHAD+RFT with its variant SHAD+«-FT,
SHAD+RFT consistently outperforms, demonstrating the superiority of RFT’s adaptive mecha-
nism over the fixed weighting approach of a-FT. This advantage stems from adaptive weighting’s
ability to better align with the dynamic learning process, adaptively adjusting weights for rea-
soning and boilerplate token components, thereby preventing over-learning or under-learning of
either part.

* The importance of SHAD for token differentiation. Replacing SHAD with Regex in
SHAD+RFT leads to a significant drop in model performance. This highlights that the effec-
tiveness of reasoning-highlighted fine-tuning depends on accurate token differentiation. The re-
sults also demonstrate SHAD’s superior ability to disentangle boilerplate tokens from reasoning
tokens. In contrast, Regex relies solely on regular expressions to identify formatting tokens, fail-
ing to fully distinguish between template-connecting tokens (one part of boilerplate tokens) and
reasoning tokens.

These indicates that replacing either SHAD or RFT diminishes the method’s effectiveness, affirming
the importance of both components.

5 ANALYSIS ON SHAD AND RFT

In this section, we first present a case study on the effectiveness of SHAD in distinguishing tokens,
followed by a comprehensive analysis of how RFT functions.

Case study of tokens classified by SHAD. To further validate SHAD’s ability to identify reasoning
tokens, we conducted a series of case studies, with one example of classification result shown in

Under review as a conference paper at ICLR 2025

Examples of Tokens Classified by SHAD

Thought: I should call the " _for_amazon_api_v2" arguments
to fetch the options Amazon. This API ers to

of -rated , 501t choice. By this APL, 1
can retrieve the information to suggest the of the best-rated

available on Amazon
Action: smart_phones_for amazon_api_v2
Action Input: {}

S
1
"tool_calls": [

n.n nn

{"name": , "arguments": {"level":

" LU |

: "json"

Figure 4: Case study of tokens classified by SHAD. The regions represent reasoning tokens,
identified by an increase in loss on the model tuned with shuffled data compared to the original
model. In contrast, the brown regions indicate boilerplate tokens, characterized by a decrease in loss
on the tuned model.

SFT Loss vs RFT Loss Reasoning vs Bolierplate
1.0 —— SFT 1.2 —=— RFT reasoning —e— SFT reasoning
—— RFT REFT boilerplate —e— SFT boilerplate
0.9 1.0
0.8 0.8
2 2
3 S06
0.7 :
06 0.4
0.2
05 ‘\H"*—H—O-H—o-._._..._,_._._,
0 1000 2000 3000 200 800 1400 2000 2600 3200 3775
Steps Steps

Figure 5: Training loss for SFT and our RFT (based on SHAD). Left: Overall training loss; Right:
Training loss for reasoning token part and boilerplate token part.

Figure [(additional examples are provided in Appendix [C). As shown in the figure, SHAD suc-
cessfully classifies most query-dependent information—information related to ‘smart-phones’—as
reasoning tokens, while formatting tokens (e.g., the JSON-style attribute names ‘Thought’ and ‘Ac-
tion’) and common template-connecting tokens like ‘I should call’ and ‘this API’ are classified as
boilerplate tokens. This outcome aligns with human understanding of reasoning tokens, verifying the
effectiveness of our method again. Interestingly, SHAD does not classify the entire function name
‘smart_phones_for_amazon_api_v2’ as reasoning but only the ‘smart_phones’ portion. We think this
is may because the ‘amazon_api_v2’ part is common across many function names. Additionally, in
the ‘Action: smart_phones_for_amazon_api_v2’ field, the function name is not classified as reason-
ing, possibly because it is derived from the thought process rather than reflecting core reasoning.

RFT Enhancing Reasoning Token Learning. Blindly treating reasoning and boilerplate tokens
equally, as done in SFT, can lead to overfitting on boilerplate tokens while insufficiently learning for
reasoning tokens. To address this issue, we propose RFT based on SHAD to prioritize the learning
of reasoning tokens during fine-tuning. To further verify the effectiveness of RFT, we compare the
training loss between SFT and RFT. The results are summarized in Figure 5] The findings indicate
that RFT significantly reduces the loss for reasoning tokens while maintaining a comparable loss for

Under review as a conference paper at ICLR 2025

Example on Held-Out Benchmark Nexus

User Question:
Can you please find a list of common vulnerabilities and exposures (CVE) that have a CVSSv2 severity of ‘high' and then filter this list for
those that contain a description in Spanish?

Response (SFT):

Function call:

filterCVEsBySeverity(cveList, severityLevel="HIGH')
filter CVEBYyLanguage(cveL.ist, language='es’)

Explanation:

The user wants to find a list of CVEs with a CVSSv2 severity of ‘high' and then filter this list for those that contain a description in Spanish. To
accomplish this, we need to call the 'filter CVEsBySeverity' function with the argument 'severityLevel' set to 'HIGH". This will filter the CVE
list for CVEs with a CVSSv2 severity of 'high'. Then, we need to call the 'filterCVEByLanguage' function with the argument 'language’ set to
‘es'. This will filter the CVE list for those CVEs that contain a description in Spanish. By combining these two function calls, we can achieve
the desired result.

Response (SHAD+RFT):
filterCVEBYL anguage(searchCVE(cvssV2Severity="high') , 'es’)

Figure 6: Comparison example on Held-Out Benchmark Nexus. In the response generated by
the naive SFT model, we observe overfitting, with formatted tokens and template-connect tokens
being erroneously generated. Additionally, the naive SFT model exhibits hallucination, leading to
reasoning errors. In contrast, our SHAD+RFT method successfully follows the Held-Out instruc-
tions and provides accurate reasoning, we explicitly mark the different reasoning part in red.

59

58

Result
W
~

56

55

00 01 02 03 05 07 09 1.1 13 15 20
1/Tau

Figure 7: The performance of our SHAD+RFT method as the temperature coefficient 7 varies. The
performance averaged over all evaluation datasets is reported, with LLaMA3-8B as the backbone.
Notably, 1/7 = 0 means assigning equal weights to the reasoning and boilerplate parts, i.e., deacti-
vating our re-weighting mechanism.

boilerplate tokens compared to SFT, confirming that RFT effectively enhances the learning for rea-
soning tokens. The empirical results on the held-out Benchmark Nexus, presented in Figure[6](with
additional examples provided in Appendix D), demonstrate that our method effectively mitigates
hallucination and overfitting in boilerplate tokens, improving the model’s reasoning capabilities.

The Effect of Hyper-parameter 7. The temperature coefficient 7 in Equation|[6] plays a crucial role
in controlling the strength of our re-weighting mechanism in RFT, so we next investigate its impact.
Specifically, we vary 1/7 within the range of [0, 2] and analyze the corresponding performance of
SHAD+RFT (averaged over all evaluation datasets). The results are illustrated in Figure [7] From
the figure, we observe that the performance of our method initially increases and then roughly de-
creases as 1/7 increases, i.e., as gradually enhancing our re-weighting mechanism. This indicates
the importance of carefully selecting the optimal 7. Fortunately, across a wide range, SHAD+RFT
could consistently outperform regular SFT and surpass most baselines (c.f., Table).

Under review as a conference paper at ICLR 2025

6 LIMITATION

We identify several limitations of our method in both token differentiation and re-weighting during
training. First, the effectiveness of our approach depends on boilerplate tokens remaining consistent
across different samples. When this consistency is lacking, such as in cases where the diversity
of boilerplate tokens is high, our method may fail. Second, our distinction between reasoning and
boilerplate tokens relies on rigid, manually defined thresholds for loss differences, which may need
refinement. Third, our weighting strategy is currently applied only at the group level, and future
optimization may be required at the token level.

7 CONCLUSION

In this paper, we highlight the importance of distinguishing between reasoning and boilerplate to-
kens and introduce a SHuffle-Aware Discriminator (SHAD) to automatically achieve this. Building
on SHAD, we further developed a new Reasoning-Highlighted Fine-Tuning (RFT) method to en-
hance reasoning learning during LLM fine-tuning, thereby improving agent capabilities. Extensive
results demonstrate that our method significantly enhances LLMs’ ability to solve complex real-
world problems. In the future, we plan to extend our approach to the entire SFT domain, and plan
to develop more refined mechanisms, such as token-level re-weighting, to better leverage our token
differentiation results.

REFERENCES

Berkeley Function Calling Leaderboard V3 (aka Berkeley Tool Calling Leaderboard V3). URL
https://gorilla.cs.berkeley.edu/leaderboard.html.

allenai/ultrafeedback binarized_cleaned - Datasets at Hugging Face, September 2024a. URL
https://huggingface.co/datasets/allenai/ultrafeedback_binarized_
cleaned.

anon8231489123/ShareGPT _vicuna_unfiltered - Datasets at Hugging Face, May 2024b. URL
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_
unfiltered.

Intel/orca_dpo_pairs - Datasets at Hugging Face, September 2024c. URL https://
huggingface.co/datasets/Intel/orca_dpo_pairs.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning, 2023. URL |https://arxiv.org/abs/2310.
05915.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and Feng Zhao. T-eval: Evaluating the tool utilization
capability of large language models step by step. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
mar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 9510-
9529. Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.ACL-LONG.
515. URLhttps://doi.org/10.18653/v1/2024.acl-long.515.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
and Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large
language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the
Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, pp. 9354-9366. Association for Computational Linguistics, 2024b.
doi: 10.18653/V1/2024.FINDINGS-ACL.557. URL https://doi.org/10.18653/v1/
2024.findings—-acl.557.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
and Feng Zhao. Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for
Large Language Models, March 2024c. URL http://arxiv.org/abs/2403.12881\
arXiv:2403.12881 [cs].

10

https://gorilla.cs.berkeley.edu/leaderboard.html
https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned
https://huggingface.co/datasets/allenai/ultrafeedback_binarized_cleaned
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered
https://huggingface.co/datasets/Intel/orca_dpo_pairs
https://huggingface.co/datasets/Intel/orca_dpo_pairs
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://doi.org/10.18653/v1/2024.acl-long.515
https://doi.org/10.18653/v1/2024.findings-acl.557
https://doi.org/10.18653/v1/2024.findings-acl.557
http://arxiv.org/abs/2403.12881

Under review as a conference paper at ICLR 2025

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning
of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meet-
ing, August 11-16, 2024, pp. 11143-11156. Association for Computational Linguistics, 2024.
doi: 10.18653/V1/2024. FINDINGS-ACL.664. URL https://doi.org/10.18653/v1/
2024.findings—-acl.664.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense
object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2):318-
327,2020. doi: 10.1109/TPAMI.2018.2858826.

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Yelong Shen, Ruochen Xu, Chen Lin, Yujiu
Yang, Jian Jiao, Nan Duan, and Weizhu Chen. Rho-1: Not All Tokens Are What You Need, April
2024. URL http://arxiv.org/abs/2404.07965, arXiv:2404.07965 [cs].

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. APIGen: Automated Pipeline
for Generating Verifiable and Diverse Function-Calling Datasets, June 2024. URL http:
//arxiv.orqg/abs/2406.18518. arXiv:2406.18518 [cs].

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback. CoRR, abs/2112.09332, 2021. URL
https://arxiv.org/abs/2112.09332.

Haojie Pan, Zepeng Zhai, Hao Yuan, Yaojia Lv, Ruiji Fu, Ming Liu, Zhongyuan Wang, and Bing
Qin. KwaiAgents: Generalized Information-seeking Agent System with Large Language Models,
January 2024. URL http://arxiv.org/abs/2312.04889. arXiv:2312.04889 [cs].

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Jiang,
Chengfei Lv, and Huajun Chen. AutoAct: Automatic agent learning from scratch for QA via
self-planning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 3003-3021, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.165. URL https://aclanthology.org/2024.
acl-long.165.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xi-
angru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark
Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language mod-
els to master 16000+ real-world apis. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=dHng200J7jzr.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to $Q**$: Your Language
Model is Secretly a Q-Function, August 2024. URL http://arxiv.org/abs/2404.
12358, arXiv:2404.12358 [cs].

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Ham-
bro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Lan-
guage models can teach themselves to use tools. In Alice Oh, Tristan Naumann, Amir
Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neu-
ral Information Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL hhttp://papers.nips.cc/paper_files/paper/2023/hash/
d842425e4bf790a039352dal0f658a906-Abstract-Conference.html.

11

https://doi.org/10.18653/v1/2024.findings-acl.664
https://doi.org/10.18653/v1/2024.findings-acl.664
http://arxiv.org/abs/2404.07965
http://arxiv.org/abs/2406.18518
http://arxiv.org/abs/2406.18518
https://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2312.04889
https://aclanthology.org/2024.acl-long.165
https://aclanthology.org/2024.acl-long.165
https://openreview.net/forum?id=dHng2O0Jjr
http://arxiv.org/abs/2404.12358
http://arxiv.org/abs/2404.12358
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html

Under review as a conference paper at ICLR 2025

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
ginggpt: Solving Al tasks with chatgpt and its friends in hugging face. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL hhttp://papers.nips.cc/paper_files/paper/2023/hash/
17c33e6a367922d003ff102ffb92b658-Abstract-Conference.html.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao, and Le Sun. ToolAl-
paca: Generalized Tool Learning for Language Models with 3000 Simulated Cases, September
2023. URL http://arxiv.org/abs/2306.05301. arXiv:2306.05301 [cs].

Nexusflow.ai team. Nexusraven-v2: Surpassing gpt-4 for zero-shot function calling, 2023. URL
https://nexusflow.ai/blogs/ravenv2.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A
survey on large language model based autonomous agents. Frontiers Comput. Sci., 18(6):
186345, 2024. doi: 10.1007/S11704-024-40231-1. URL https://doi.org/10.1007/
s11704-024-40231-1.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-
cember 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/9d5609613524ecf4fl5af0f7b3labcad-Abstract-Conference.htmll

Lilian Weng. Llm-powered autonomous agents. lilianweng.github.io, Jun 2023. URL https:
//lilianweng.github.io/posts/2023-06—-23-agent/.

Shentao Yang, Shujian Zhang, Congying Xia, Yihao Feng, Caiming Xiong, and Mingyuan Zhou.
Preference-grounded Token-level Guidance for Language Model Fine-tuning.

Shentao Yang, Shujian Zhang, Congying Xia, Yihao Feng, Caiming Xiong, and Mingyuan Zhou.
Preference-grounded Token-level Guidance for Language Model Fine-tuning, October 2023.
URLhttp://arxiv.org/abs/2306.00398. arXiv:2306.00398 [cs].

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744-20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023. URL https://openreview.net/forum?id=WE_v1uYUL-X.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. AgentTun-
ing: Enabling Generalized Agent Abilities for LLMs, October 2023. URL http://arxiv.
org/abs/2310.12823. arXiv:2310.12823 [cs].

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. ExpeL:
LLM Agents Are Experiential Learners, December 2023. URL http://arxiv.org/abs/
2308.10144, arXiv:2308.10144 [cs].

12

http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/77c33e6a367922d003ff102ffb92b658-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://arxiv.org/abs/2306.05301
https://nexusflow.ai/blogs/ravenv2
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://lilianweng.github.io/posts/2023-06-23-agent/
https://lilianweng.github.io/posts/2023-06-23-agent/
http://arxiv.org/abs/2306.00398
https://openreview.net/forum?id=WE_vluYUL-X
http://arxiv.org/abs/2310.12823
http://arxiv.org/abs/2310.12823
http://arxiv.org/abs/2308.10144
http://arxiv.org/abs/2308.10144

Under review as a conference paper at ICLR 2025

A DETAIL INFORMATION OF TRAINING DATASETS

We provide more details of our training datasets. To enable the multi-step reasoning ability of
LLM, we choose ToolBench |Qin et al.| (2024) and APIGen [Liu et al.|(2024) as our basic datasets.
Following the practice in AgentTuning |Zeng et al.| (2023) and AgentFlan [Chen et al.| (2024b), we
also mix ShareGPT noal (2024b) and basic datasets for training. We filter the obviously low-quality
data that does not follow the request format and sample 10% percent of data from APIGen for data
balance. All methods use the same dataset and do not apply token differentiation to general data.

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS OF RHO-1

For the Rho-1 baseline, we train the reference model in self-reference setting [Lin et al.| (2024).
Specifically, we sample 5% data from our training dataset to train the reference model. We follow the
original implementation that focuses training on H—L tokens (i.e., the tokens with loss decreased
from high to low during training the reference model) and masks the other tokens.

B.2 IMPLEMENTATION DETAILS OF REWARDFT

For the RewardFT baseline, because of the lack of Agent preference data, we use general DPO data
ORCA DPO (noa, 2024c) and Ultrafeedback (noal [2024a) to train the model as token-level reward
model under the same setting in (Rafailov et al., 2024)). We calculate the token-level reward given
by the preference model, then we follow the practice in weighted-MLE (Yang et al., [2023), taking
softmax on all token rewards as the weight to train the model.

B.3 IMPLEMENTATION DETAILS OF o-FT

A simple and common method for addressing imbalance training is to manually give a fixed weight
for each type of token (Lin et al., 2020). Here we introduce a weighting factor o € [0, 0.5] for
boilerplate tokens and 1 — « for reasoning tokens. Let £, and £, represent the total loss for the
boilerplate and reasoning tokens, respectively. The re-weighted loss (denoted as £, pgiqnce) can be
formulated as follows:

»Cafbalance = a»cb + (]- - a)»cr (7)
This loss is a simple extension to CE we call o-FT in this paper that we consider as an experimental
baseline for our proposed RFT method.

C MORE EXAMPLES LABELED BY SHAD

In Figure [8} we show several examples of tokens classified by SHAD method, with regions
represent reasoning tokens and brown regions indicate boilerplate tokens.

D QUALITATIVE ANALYSIS

In this section, we present several examples of how model trained by our method yeild more accurate
answer than model trained by naive SFT in Figure [0 In the response generated by the naive SFT
model, we observe overfitting, with formatted tokens (yellow) and template-connect tokens (blue)
being erroneously generated. Additionally, the naive SFT model exhibits hallucination, leading
to reasoning errors (red). In contrast, our SHAD+RFT method successfully follows the Held-Out
instructions and provides accurate reasoning.

E MORE EXAMPLE OF SHUFFLED DATA

In this section, we add more examples of shuffled data in Figure [I0]to support the state made that
shuffling the correspondence between input and output across data samples does not alter the pre-
dictability of boilerplate tokens while reasoning tokens are disruptive after the shuffling.

13

Under review as a conference paper at ICLR 2025

More Examples of Tokens Classified by SHAD

Thought: Based on the user‘s request content in the

of , Romance, and Supernatural, I called the * _latest_for _api”
function from the Verse API. With this function, I can retrieve the

latest that matches the user’s desired genres. By the genres

and requesting , L will be able to assist the

user in finding new manga to blog about. Now, I will call the “fetch chapters for mangav
erse_api” function to fetch the chapters for the

fetched . This will provide me with the necessary

information to present to the user and further enhance their blogging experience.

Action: fetch chapters for mangaverse api

Action Input: {}

Thought: The current API, “ _for_business_st _api”, is being called with
the argument “{\n “idea*:” a grooming business“\n| . By calling
this API with the user‘s idea, I can generate a comprehensive
business plan to of a mobile pet
grooming business. This will provide the user with -by guide on
to and , including s offered,

strategies, and financial projections. The purpose of
this API call is to assist the user in transforming their idea into a
business plan.
Action: businessplan_for business_starter _api
Action Input: {
"idea": "Start a mobile pet grooming business"

H
{
"tool_calls": [
"name": " ings", "arguments": {"n_player": " +, {"name": "
media", "arguments": {"is_id": 0}}
]
}
{
"tool calls": [
"name": " " "arguments": {"upc": " 789012" 1}, {
"name": " s ", "arguments": {"productid": " 345678
]
H
Figure 8: More case study of tokens classified by SHAD. The regions represent reasoning to-

kens, identified by an increase in loss on the model tuned with shuffled data compared to the original
model. In contrast, the brown regions indicate boilerplate tokens, characterized by a decrease in loss
on the tuned model.

14

Under review as a conference paper at ICLR 2025

Examples on Held-Out Benchmark Nexus

Instruction:

You are given multiple functions and a user query.

Please proceed with generating a function call for the function with the proper arguments that best answers the given prompt.

Respond with nothing but the function call ONLY, such that | can directly execute your function call without any post processing necessary
from my end. Do not use variables.

{tools}

Example 1
User Question:
Give me restaurants near me?

Response (SFT):

Function Call: find_places_near_location(['restaurant], 'my location’, 10)

Explanation: Based on the user's query, | can see that they are looking for restaurants near their location. To fulfill this request, | will use the
"find_places_near_location" function. The current arguments for the function call are “type_of_place" = ['restaurant], "location” ='my
location'. These arguments indicate that the user is specifically interested in finding restaurants near their current location. The "radius_miles"
argument is set to 10, which means that the search will be limited to a 10-mile radius. This will ensure that the recommendations are relevant
to the user's current location.

“python

find_places_near_location(['restaurant'], ‘my location', 10)

Response (SHAD+RFT):
find_places_near_location(type_of_place=['restaurant], location=get_current_location())

Example 2
User Question:

Give me vulnerabilities, sorted by their CVSS version 2.0 scores in descending order, released between January 1, 2021 and January 31, 2021,
that match the CPE name ‘cpe:/a:microsoft:windows_10:1909' and have a Technical Alert from US-CERT?

Response (SFT):

Function call: sortCVEsSByCVSSv2Score(cve_list, descending=True)

Explanation: The user wants to search for vulnerabilities associated with the CPE named 'cpe:/o:linux:linux_kernel' and sort them in
descending order by their CVSS Version 2.0 base scores. The function call 'sortCVEsByCVSSv2Score' is used to achieve this. The argument
‘cve_list' is a list of CVE objects, and the argument ‘descending’ is set to True to sort the CVEs in descending order.

Response (SHAD+RFT):

sortCVEsByCVSSv2Score(searchCVE(cpeName='"cpe:/a:microsoft:windows_10:1909', pubStartDate='2021-01-01', pubEndDate='2021-01-
31", hasCertAlerts=True), descending=True)

Example 3
User Question:

Could you help identify CPEs that closely resemble the pattern ‘cpe:2.3:a:google:android:"? And please, limit the results to just 5.

Response (SFT):

Function call: searchCPE(cpeMatchString='cpe:2.3:a:google:android:', limit=5)

Explanation: The user wants to identify CPEs that closely resemble the pattern ‘cpe:2.3:a:google:android:', and limit the results to just 5. To
accomplish this, 1 will call the 'searchCPE' function with the arguments ‘cpeMatchString' set to ‘cpe:2.3:a:google:android:"' and ‘limit’ set to 5.
This will search for CPEs that match the given pattern and limit the results to just 5.

Response (SHAD+RFT):
searchCPE(cpeMatchString="cpe:2.3:a:google:android:', limit=5)

Figure 9: Comparison example on Held-Out Benchmark Nexus. In the response generated by
the naive SFT model, we observe overfitting, with formatted tokens and template-connect tokens
being erroneously generated. Additionally, the naive SFT model exhibits hallucination, leading to
reasoning errors. In contrast, our SHAD+RFT method successfully follows the Held-Out instruc-
tions and provides accurate reasoning, we explicitly mark the different reasoning part in red.

15

Under review as a conference paper at ICLR 2025

(Before Shuffle

& My company is organizing a team-building event and

user We need some entertainment. Retrieve a random
programming meme and a Chuck Norris joke for us.
Also, generate a Pet Pet meme using an image of our
company logo. Begin!

.gl Thought: Based on the user's request, they are interested
Assistant | 1N the history of NBA games and want to fetch statistics for
all NBA games, including the date, home team, visitor team,
and final scores. Additionally, they requested a trivia fact
about a significant NBA game. In order to fulfill their
request, | should call the "get_all_stats_for_free_nba"
function with no arguments. This function will fetch the
necessary information about all NBA games. By calling this
function, | will be able to provide the user with the desired
statistics and trivia fact.
Action: get_all_stats_for_free_nba
Action Input: {}

Data Shuffle

After Shuffle

& My company is organizing a team-building event and

user ~ We need some entertainment. Retrieve a random
programming meme and a Chuck Norris joke for us.
Also, generate a Pet Pet meme using an image of our
company logo. Begin!

'g' Thought: The user is requesting a driving route from New
York to Los Angeles without tolls and ferries, and they
would like the route geometry in GeoJSON format. To fulfill
their request, | will call the "get_route_for_fast_routing"
function with the following arguments: coordinates = "-
74.0060, 40.7128;-118.2437, 34.0522", exclude =
"toll;ferry", geometries = "geojson", and steps = "true".

Assistant

{——=> | This will ensure that the API returns the desired route with

turn-by-turn directions and the route geometry in the
requested format.

Action: get_route_for_fast_routing

Action Input: {

"coordinates": "-74.0060,40.7128;-118.2437, 34.0522",
"exclude": "toll;ferry",

"geometries": "geojson",

"steps": "true”

}

g | aminterested in growing flowering house plants. Can

user You provide me with a list of flower category plants? |
would like to know their origin, temperature range, and
recommended watering frequency. Begin!

Ihgl. Thought: | received a user query asking for a list of flower
Assistant | category plants in the house plant database. They
specifically mentioned wanting to know the origin,
temperature range, and recommended watering frequency
of these plants. To fulfill their request, | will call the
"get_by_category_for_house_plants" function with no
arguments, which will retrieve the desired information for
the user.
Action: get_by_category_for_house_plants
Action Input: {}

(e

s ! aminterested in growing flowering house plants. Can

user You provide me with a list of flower category plants? |
would like to know their origin, temperature range, and
recommended watering frequency. Begin!

'E' Thought: The user wants details about the genre with the
Assisant |0 'rock’ on Deezer. To fulfill their request, | should call the
'genre_for_deezer' function with the argument 'is_id' set

to 'rock'. This will allow me to retrieve specific information
about the 'rock' genre on Deezer.

Action: genre_for_deezer

Action Input: {

"is_id": "rock”

}

s | want to surprise my family with a healthy breakfast.

user ~ Can you suggest a random breakfast recipe that
includes eggs? Additionally, fetch me the nutrition
information for 1Ib of brisket with fries and a random
diet recipe. Begin!

ol g
g Thought: | called the

Assistant | oreakfast_ingredient_for_recipe_finder' function with the
argument {"ingredient": "eggs"} because the user wants a
random breakfast recipe that includes eggs. By specifying
the ingredient as 'eggs', | can fetch recipes that have eggs
as one of the ingredients. This will help me suggest a
healthy breakfast recipe that includes eggs.

Action: breakfast_ingredient_for_recipe_finder
Action Input: {
"ingredient": "eggs”

}

sl | want to surprise my family with a healthy breakfast.

user Can you suggest a random breakfast recipe that
includes eggs? Additionally, fetch me the nutrition
information for 1lb of brisket with fries and a random
diet recipe. Begin!

'g' Thought: | called the

Aot 'vl_nutrition_for_nutrition_by_api_ninjas' function with
the argument {"query": "1lb of brisket with fries"}
because the user requested the nutrition information for
1lb of brisket with fries. By passing the query as '1lb of
brisket with fries', | can retrieve the nutrition data for this
specific food combination. This will help me provide the
user with the desired information regarding the nutritional
content of their selected meal.

Action: v1_nutrition_for_nutrition_by_api_ninjas

Action Input: {

"query": "1Ib of brisket with fries”

}

Figure 10: More Example of Shuffled Data. After shuffling, the assistant’s responses no longer
correspond to the original queries. However, some tokens (boilerplate tokens, red) remain seman-
tically similar to the original response and are therefore predictable. In contrast, reasoning tokens
(green) no longer align with the query, resulting in noise.

16

	Introduction
	Related Work
	Token Differentiation
	Enhancing Agent Capability for LLMs

	Methodology
	SHAD: Adaptive Token Discriminator
	Reasoning-highlighted Fine-Tuning

	Experiments
	Experiment Setup
	Main Results

	Analysis on SHAD and RFT
	Limitation
	Conclusion
	Detail Information of Training Datasets
	Implementation Details
	Implementation Details of Rho-1
	Implementation Details of RewardFT
	Implementation Details of -FT

	More examples Labeled by SHAD
	Qualitative Analysis
	More Example of Shuffled Data

