

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CHARTMASTER: ADVANCING CHART-TO-CODE GENERATION WITH REAL-WORLD CHARTS AND CHART SIMILARITY REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

The chart-to-code generation task requires MLLMs to convert chart images into executable code. This task faces two main challenges: limited data diversity and the difficulty of maintaining visual consistency between generated charts and the original ones. Existing datasets mainly rely on synthetic seed data to prompt GPT models for code generation, resulting in homogeneous samples that limit model generalization to real-world chart styles. To address this, we propose **ReChart-Prompt**, leveraging real-world, human-designed charts extracted from arXiv papers as prompts. By harnessing the rich content and diverse visual styles of arXiv charts, we construct ReChartPrompt-240K, a large-scale and highly diverse dataset that better reflects realistic chart variations. For the second challenge, although SFT improves code understanding by optimizing next-token prediction, it does not provide direct supervision on visual features. As a result, it often fails to guarantee that the generated charts visually match the original ones. To address this, we propose **ChartSimRL**, a GRPO-based reinforcement learning algorithm guided by a novel chart similarity reward. This reward consists of two components: *attribute similarity*, which measures the overlap of chart attributes like layout and color between the generated and original charts, and *visual similarity*, which evaluates overall visual features, including texture, using convolutional neural networks. Unlike traditional text-based rewards, our reward accounts for the multimodal nature of the chart-to-code generation task, significantly enhancing the model’s ability to accurately reproduce charts. Integrating ReChartPrompt and ChartSimRL, we develop the **ChartMaster** model, achieving SOTA results among 7B-parameter models and rivaling GPT-4o on various chart-to-code benchmarks. We will release all code, datasets, and models to facilitate further research.

1 INTRODUCTION

The chart-to-code generation task aims to automatically convert chart images into executable code (Yang et al., 2024a), enabling applications including automated data analysis, report generation, and intelligent question answering (Zhao et al., 2025; Rodriguez et al., 2024; Xia et al., 2023; Awal et al., 2025). This task is challenging as it requires accurate visual understanding, cross-modal reasoning, and advanced code synthesis. Although recent advances in Multimodal Large Language Models (MLLMs) show promising results in various vision-language tasks, their performance on chart-to-code generation remains limited due to the unique complexity of charts and the need for precise code output.

Prior work, such as ChartCoder (Zhao et al., 2025), advanced the field by building the large Chart2Code-160K dataset. This dataset is synthesized by guiding GPT-4o (Hurst et al., 2024) with predefined chart attributes like chart type, color, and text. While this approach reduces the need for costly manual annotations and achieves strong performance, relying on predefined attribute seeds can introduce homogeneity and limit variability in the resulting dataset (see Appendix Fig. 5), potentially restricting model generalization to diverse real-world charts.

To address this limitation, we introduce Real-world Chart Prompt Code Generation (ReChart-Prompt), a novel automated pipeline that extracts real chart images from arXiv papers and lever-

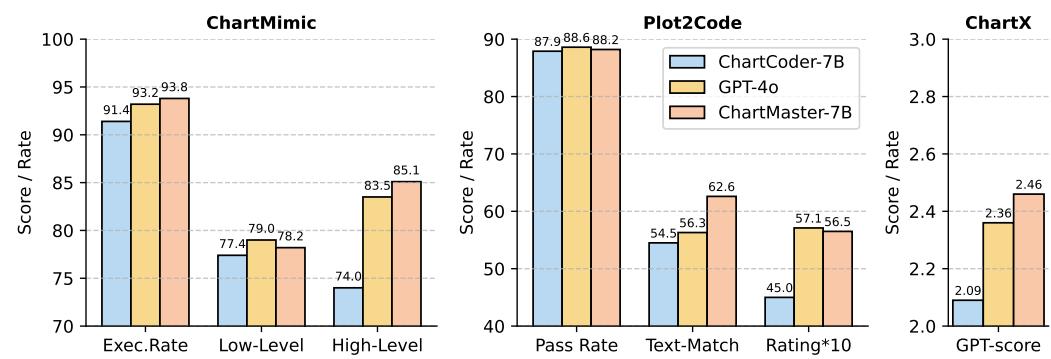


Figure 1: Performance comparison on three benchmarks. Our method outperforms ChartCoder-7B (Zhao et al., 2025), and matches or exceeds GPT-4o on certain metrics. For better representation, the “Rating” metric in the Plot2Code benchmark is multiplied by 10.

ages the Qwen2.5-VL-72B model (Bai et al., 2025) to generate corresponding code. By collecting 30,071 papers and utilizing their author-designed charts as prompts, we construct ReChartPrompt-240K, a large-scale dataset comprising 240K chart–code pairs. Since these charts originate from papers across diverse research fields and exhibit a wide variety of design styles, the dataset captures rich visual and semantic diversity, as illustrated in Fig. 5. This heterogeneity enables effective generalization to real-world scenarios.

While supervised fine-tuning with diverse data can help models generate better chart code, such next-token prediction alone does not ensure the output charts are visually faithful to the references. As shown in Fig. 4, the SFT model produces charts closer to the ground truth than the baseline, but noticeable discrepancies remain in color, element positioning, and other visual attributes. To address this, we propose ChartSimRL, a reinforcement learning algorithm based on Group Relative Policy Optimization (GRPO) (Shao et al., 2024), guided by a novel chart similarity reward. Specifically, the reward jointly considers (1) *attribute similarity* that evaluates the consistency of chart elements such as textual content, numerical values, layout and color, and (2) *visual similarity*, which assesses holistic visual resemblance using convolutional neural networks (e.g., ResNet (He et al., 2016)) to extract and compare visual features. To the best of our knowledge, this is the first reward system that explicitly enforces multimodal visual-semantic consistency for chart-to-code generation. By encouraging models to produce code that renders charts both semantically accurate and visually faithful, we address a critical gap in prior research and support more robust generalization to real-world chart reproduction.

In summary, we introduce ChartMaster, an efficient framework for chart-to-code generation that combines the ReChartPrompt data generation pipeline with the ChartSimRL reinforcement learning strategy. Our key contributions are: (1) ReChartPrompt, an automated method for generating diverse datasets from real-world charts; (2) ChartSimRL, a reinforcement learning algorithm that uses both visual and attribute similarity to improve output; and (3) ChartMaster-7B, a compact model that delivers near GPT-4o performance with only 7 billion parameters. Fig. 1 highlights its efficiency and effectiveness.

2 RELATED WORK

2.1 MULTIMODAL CODE GENERATION

Multimodal large language models (MLLMs) have recently demonstrated strong capabilities in code generation (Zhang et al., 2024a). Notably, MMCode (Li et al., 2024b) targets algorithmic problems embedded in visually rich contexts, where tasks are accompanied by one or more images.

Among multimodal code generation tasks, chart-to-code translation has emerged as a critical challenge (Yang et al., 2024b). Existing benchmarks include Design2Code (Si et al., 2024), which evaluates HTML generation using CLIP scores (Radford et al., 2021) and structural HTML metrics, and Plot2Code (Wu et al., 2024), which assesses both code correctness and visual fidelity. However, since the datasets for Design2Code and Plot2Code are sourced from the web, there is a risk of data

leakage, which may compromise the reliability of model evaluation. To address this issue, Chart-Mimic (Yang et al., 2024a) provides a manually curated dataset of 4,800 chart-code pairs, along with additional fine-grained evaluation metrics.

Despite these benchmarks, large-scale chart-to-code training datasets remain scarce. ChartCoder (Zhao et al., 2025) addresses this by creating Chart2Code-160K, the first large-scale training set generated by guiding GPT-4o with predefined chart attributes such as type, color, values, and titles. It further employs the “Snippet of Thought” strategy (Zheng et al., 2023; Luo et al., 2024) to decompose code generation into structured steps, significantly boosting chart reasoning. Yet, reliance on fixed attributes limits chart diversity. In contrast, our ReChartPrompt leverages real-world charts from arXiv papers as prompts, yielding more diverse and representative chart–code pairs.

2.2 REINFORCEMENT LEARNING FOR MLLMs

Reinforcement learning (RL) effectively enhances model capabilities (Wang et al., 2024b; Milani et al., 2024). For example, RL from human feedback (RLHF) (Bai et al., 2022) and direct preference optimization (DPO) (Rafailov et al., 2023) aligned model outputs with human preferences, improving complex reasoning and output quality. Building on these advances, Group Relative Policy Optimization (GRPO) (Shao et al., 2024) was proposed as a novel RL algorithm that updated policies using relative rewards computed from groups of samples. DeepSeek-R1 (Guo et al., 2025) employed simple yet effective rewards based on output accuracy and response format, which enabled stable training and emergent reasoning such as reflection and “a-ha” moments.

Inspired by DeepSeek-R1’s success, recent work extended GRPO-based RL to MLLMs (Tan et al., 2025; Zhang et al., 2025b; Peng et al., 2025; Shen et al., 2025) in two main directions. The first adapts R1’s method to MLLMs—for instance, Vision-R1 (Huang et al., 2025) uses SFT data with reflection for cold-start training and applies GRPO with accuracy- and format-based rewards. Similarly, MM-EUREKA (Meng et al., 2025) refines reward design and loss functions, successfully reproducing the visual “aha moment,” where the model revisits images “upon closer inspection.” These works primarily focus on mathematical reasoning tasks. The second direction applies GRPO to broader tasks such as chart understanding (Masry et al., 2025b), visual perception (Yu et al., 2025), segmentation (Liu et al., 2025), and grounding (Zhang et al., 2025a), demonstrating its robustness and generalizability across domains.

However, to our knowledge, GRPO has not been applied to chart-to-code generation, mainly due to the challenge of designing reward functions that encourage generated code to faithfully reproduce charts both semantically and visually. We address this by proposing a novel chart similarity reward, significantly improving chart reproduction quality.

3 METHOD

Fig. 2 illustrates the overall framework of ChartMaster, which consists of two main stages: data generation and model training.

3.1 USING REAL-WORLD CHARTS TO GENERATE DATASET

To improve dataset diversity, we use real-world chart images as input to guide code generation, as shown in Fig. 2 (a). This approach captures richer styles and content that predefined attribute seeds cannot represent.

(1) Collecting Images from arXiv. We leverage the arXiv API and Python’s `requests` library to download paper source files, including LaTeX sources and image files (`.pdf`, `.png`, `.jpg`). To ensure diversity, we query source files related to top conferences (e.g., ICLR) and journals (e.g., TPAMI), extracting all images for subsequent processing.

(2) Filtering Non-Chart Images. Since extracted images include various diagrams beyond charts, we use the Qwen2.5-VL-72B model to classify images into 12 predefined chart categories. Images outside these categories are discarded. Classification is performed by prompting the model with P_{type} (see Fig. 6 in Appendix) to assign chart types.

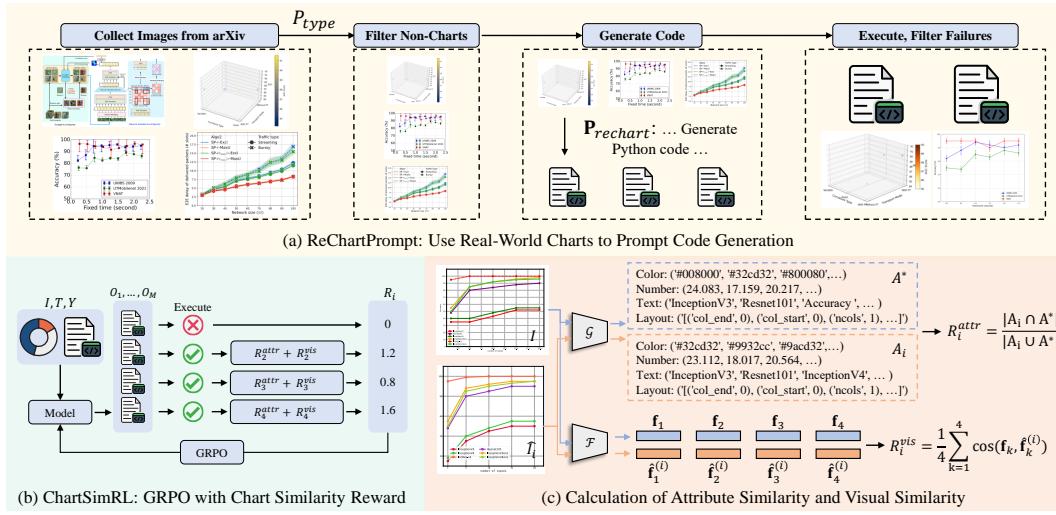


Figure 2: The overall framework of ChartMaster. (a) Real-world charts from arXiv are curated to create the ReChartPrompt-240K dataset for SFT (SFT is omitted in the figure). (b) The model is further optimized with ChartSimRL. (c) The definition of Chart Similarity: \mathcal{G} denotes the semantic attribute extraction tool; \mathcal{F} is the CNN-based feature extractor; and \mathbf{f} is the extracted feature vector.

(3) Generating code with ReChartPrompt. The Qwen2.5-VL-72B model has demonstrated strong chart-to-code generation capabilities. As an open-source model, it is easily deployed via the vLLM framework (Kwon et al., 2023), making it well-suited for large-scale data generation. We design a set of 20 chart-to-code prompts to enrich instruction diversity, collectively referred to as $\mathbf{P}_{\text{rechart}}$ (see Fig. 7 in Appendix). Below is an example: *<Real-World Chart>Please generate Python matplotlib code to recreate the picture shown.*

(4) Code Execution, Filtering, and Dataset Construction. Generated code snippets may suffer from two issues: (a) execution errors caused by non-existent packages or syntax mistakes, and (b) discrepancies between the generated charts and the original images. To mitigate these problems, we execute all generated code and discard those that fail at runtime. We then pair the successfully executed code outputs with their generated images and instructions to form the final training triplets.

Summary. We download 30,071 papers from arXiv and extract their figures, filtering out non-chart ones to obtain 288,992 chart images. Using these charts, the Qwen2.5-VL-72B model generates corresponding code. After executing the generated code and removing failed cases, we collect 242,479 high-quality triplets that constitute the **ReChartPrompt-240K** dataset. Formally, the dataset is defined as $\mathcal{D} = \{(I_i, T_i, Y_i)\}_{i=1}^N$, where I_i represents a chart image, $T_i \in \mathbf{P}_{\text{rechart}}$ is the instruction prompt, and Y_i denotes the executable code. Notably, all real-world chart data and generation models employed in this process are open-source, ensuring minimal cost and excellent scalability.

3.2 TRAINING CHARTMASTER: SFT AND CHARTSIMRL

ChartMaster is trained in two stages: (1) SFT on the ReChartPrompt-240K dataset to establish a solid foundation; and (2) further optimized with ChartSimRL to address the limitations of SFT’s next-token prediction in maintaining visual consistency.

Supervised Fine-Tuning. We conduct SFT by maximizing the likelihood of ground-truth code Y_i given chart image I_i and instruction T_i :

$$J_{\text{SFT}}(\theta) = -\frac{1}{N} \sum_{i=1}^N \log \pi_{\theta}(Y_i | I_i, T_i).$$

Reinforcement Learning with ChartSimRL. While SFT strengthens the model’s basic capability, discrepancies may still exist between the generated charts and the originals (see Fig. 4). To further improve reproduction fidelity, we continue training the model using ChartSimRL, as illustrated in Fig. 2 (b). Specifically, for each training sample (I, T, Y) , the model samples a group of M

216 candidate codes:

217
$$\{O_1, O_2, \dots, O_M\} \sim \pi_\theta(\cdot | I, T).$$

218 Each candidate code O_i is then executed to generate a chart image \hat{I}_i , which is subsequently com-
219 pared with the original chart I_i to compute a Chart Similarity Reward. If the execution of O_i fails,
220 the corresponding reward is set to zero.
221222 **Chart Similarity Reward.** Traditional reward functions, such as the accuracy reward used in (Guo
223 et al., 2025; Huang et al., 2025), primarily assess the consistency between generated text and ground-
224 truth text. However, the chart-to-code task is inherently multimodal, involving both code and gener-
225 ated charts, requiring evaluation of not only semantic correctness but also visual alignment. To this
226 end, we design a novel chart similarity reward as:
227

228
$$R_i = R_i^{\text{attr}} + R_i^{\text{vis}}.$$

229 Here, R_i^{attr} measures the semantic consistency, and R_i^{vis} captures visual similarity (see Fig. 2 (c)).
230231 *Attribute Similarity:* We develop a semantic attribute extraction tool based on the **ChartMimic code-
232 base** Yang et al. (2024a), denoted $\mathcal{G}(\cdot)$, to obtain attribute sets from chart images and their code.
233 Given $\mathcal{A}_i = \mathcal{G}(\hat{I}_i, O_i)$ and $\mathcal{A}^* = \mathcal{G}(I, Y)$, the semantic similarity R_i^{attr} is computed as their Jac-
234 card similarity:
235

236
$$R_i^{\text{attr}} = \frac{|\mathcal{A}_i \cap \mathcal{A}^*|}{|\mathcal{A}_i \cup \mathcal{A}^*|} \in [0, 1].$$

237 By design, $R_i^{\text{attr}} = 1$ indicates a perfect match of semantic attributes, while lower values reflect
238 semantic discrepancies. To accommodate minor numerical variations, we consider numerical values
239 $a \in \mathcal{A}_i$ and $b \in \mathcal{A}^*$ matching if $|a - b| \leq 0.01 \times |b|$.
240241 *Visual Similarity:* We use a pretrained ResNet-18 network (He et al., 2016) $\mathcal{F} = \{\mathcal{F}_1, \mathcal{F}_2, \mathcal{F}_3, \mathcal{F}_4\}$
242 to extract feature maps from both I and \hat{I}_i . Here, $\mathcal{F}_k(\cdot) \in \mathbb{R}^{C_k \times H_k \times W_k}$ denotes the output feature
243 map of the k -th residual block. We extract the feature map and flatten them into vectors like:
244

245
$$\begin{aligned} F_k &= \mathcal{F}_k(I), & \hat{F}_k^{(i)} &= \mathcal{F}_k(\hat{I}_i), \\ \mathbf{f}_k &= \text{vec}(F_k) \in \mathbb{R}^{d_k}, & \hat{\mathbf{f}}_k^{(i)} &= \text{vec}(\hat{F}_k^{(i)}) \in \mathbb{R}^{d_k}, \end{aligned}$$

246 where $d_k = C_k \times H_k \times W_k$. The visual similarity reward is defined as the average cosine similarity
247 between the corresponding feature vectors,
248

249
$$R_i^{\text{vis}} = \frac{1}{4} \sum_{k=1}^4 \frac{\mathbf{f}_k \cdot \hat{\mathbf{f}}_k^{(i)}}{\|\mathbf{f}_k\| \|\hat{\mathbf{f}}_k^{(i)}\|} \in [0, 1].$$

250 **Chart Similarity Reinforcement Learning.** We normalize rewards within a group of M candidates
251 to compute relative advantages:
252

253
$$\hat{A}_i = \frac{R_i - \text{mean}(\{R_j\}_{j=1}^M)}{\text{std}(\{R_j\}_{j=1}^M)},$$

256 where $\text{mean}(\cdot)$ and $\text{std}(\cdot)$ denote the sample mean and standard deviation, respectively.
257258 Following the GRPO framework (Shao et al., 2024), we update the model by maximizing the clipped
259 surrogate objective with a KL penalty to stabilize training:
260

261
$$J_{\text{ChartSimRL}}(\theta) = \mathbb{E}_{(I, T) \sim p_{\mathcal{D}}, \{o_i\}_{i=1}^M \sim \pi_{\text{old}}(\cdot | I, T)} \left[\frac{1}{M} \sum_{i=1}^M \min \left(\frac{\pi_\theta(o_i | I, T)}{\pi_{\text{old}}(o_i | I, T)} \hat{A}_i, \right. \right. \\ \left. \left. \text{clip} \left(\frac{\pi_\theta(o_i | I, T)}{\pi_{\text{old}}(o_i | I, T)}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_i \right) - \beta D_{\text{KL}}(\pi_\theta(\cdot | I, T) \| \pi_{\text{ref}}(\cdot | I, T)) \right],$$

262 where π_{old} is the previous policy, π_{ref} is the reference policy, ϵ is the clipping hyperparameter, and
263 β controls the KL regularization strength.
264265 ChartSimRL guides the model to generate chart code that better aligns with the original charts' se-
266 mantic and visual properties, significantly improving chart-to-code generation performance beyond
267 what is achievable by supervised fine-tuning alone.
268

270 Table 1: Evaluation results of various MLLMs. Reported results are taken from existing benchmarks
 271 when available; missing results are supplemented using official codebases and are marked with *.
 272 Among open-source 7B-scale models, our method achieves the best performance.

Model	ChartMimic			Plot2Code			ChartX
	Exec.Rate	Low-Level	High-Level	Pass Rate	Text-Match	Rating	GPT-score
Full score	100	100	100	100	100	10	5
<i>Closed-Source Model</i>							
GeminiProVision (Team et al., 2023)	68.2	53.8	53.3	68.2	53.6	3.69	-
Claude-3-opus (Anthropic, 2024)	83.3	60.5	60.1	84.1	57.5	3.80	-
GPT-4V (Hurst et al., 2024)	91.2	76.4	78.9	84.1	57.7	5.58	2.63
GPT-4o (Hurst et al., 2024)	93.2	79.0	83.5	88.6	56.3	5.71	2.36*
<i>Open-Source Model</i>							
ChartAssistant-13B (Meng et al., 2024)	-	-	-	-	-	-	0.82
ChartVLM-L-14B (Xia et al., 2024)	19.5	15.8	13.9	-	-	-	1.58
DeepSeek-VL-7B (Lu et al., 2024)	41.3	19.0	17.6	64.4	32.6	2.26	-
TinyChart-3B (Zhang et al., 2024b)	42.5	26.3	25.9	43.2	44.6	2.19	1.89
ChartLlama-13B (Han et al., 2023)	57.5	24.8	28.1	58.4	40.3	2.32	0.94
LLaVA-Next-Mistral-7B (Li et al., 2024a)	59.7	20.7	21.3	72.0	38.7	2.87	-
InternVL2-8B (Chen et al., 2024)	61.8	34.4	38.9	77.3	37.1	2.78	1.63
Qwen2-VL-7B (Wang et al., 2024a)	67.0	32.9	35.0	68.2	33.8	3.10	1.50
MiniCPM-Llama3-V2.5-8B (Yao et al., 2024)	80.3	36.6	42.1	76.3	37.3	2.61	1.66
Qwen2-VL-72B (Wang et al., 2024a)	73.3	54.4	50.9	72.0	53.4	4.26	1.69
InternVL2-Llama3-76B (Chen et al., 2024)	83.2	54.8	62.2	85.6	46.6	3.89	1.74
Qwen2.5-VL-72B* (Bai et al., 2025)	88.5	72.7	79.1	84.8	68.4	6.83	2.52
ChartCoder-7B (Zhao et al., 2025)	91.4	<u>77.4</u>	74.0	<u>87.9</u>	54.5	4.50	2.09
Qwen2.5-VL-7B* (Baseline) (Bai et al., 2025)	65.5	39.9	40.7	67.4	43.8	4.60	2.18
ChartMaster-7B	93.8	78.2	85.1	88.2	<u>62.6</u>	<u>5.65</u>	<u>2.46</u>

293 **Summary.** ReChartPrompt and ChartSimRL have been effectively integrated into the ChartMaster
 294 framework. This framework not only leverages real-world data for enhanced data diversity but also
 295 employs a novel algorithm to ensure visual and semantic alignment in chart reproduction. Con-
 296 sequently, ChartMaster stands as a comprehensive solution for the chart-to-code generation task,
 297 demonstrating marked improvements in performance and generalization capabilities.

300 4 EXPERIMENT

301 4.1 COMPARISON WITH SOTA

304 We instantiate ChartMaster on the Qwen2.5-VL-7B backbone, resulting in the ChartMaster-7B
 305 model, and conduct comprehensive comparisons with a range of MLLMs. The detailed implementa-
 306 tion and evaluation protocols are provided in the Appendix B. As shown in Table 1, ChartMaster-7B
 307 achieves state-of-the-art performance among open-source models at the 7B scale, showing com-
 308 petitive performance against GPT-4o. Notably, ChartMaster-7B consistently outperforms the base-
 309 line Qwen2.5-VL-7B across all metrics; for instance, in the ChartMimic benchmark, it improves
 310 both low-level and high-level metrics by about 40 percentage points. Furthermore, although our
 311 training dataset is derived from the larger Qwen2.5-VL-72B model—essentially a distillation-like
 312 setting—ChartMaster-7B still surpasses Qwen2.5-VL-72B on several benchmarks. These results
 313 convincingly demonstrate the effectiveness of the ChartMaster framework.

314 4.2 ABLATION STUDY

316 **Ablation study on ChartMaster.** To assess the contribution of each component, we conduct an ab-
 317 lation study as summarized in Table 2. The base Qwen2.5-VL-7B model, without ReChartPrompt
 318 or ChartSimRL, demonstrates limited performance across benchmarks, revealing its restricted abil-
 319 ity in both code generation and visual/semantic understanding. SFT with the ReChartPrompt-240K
 320 dataset leads to significant improvements in all metrics, demonstrating the high quality and effec-
 321 tiveness of ReChartPrompt-240K for chart-to-code generation. Additionally, applying ChartSimRL
 322 alone also significantly improves the baseline model’s performance. This enhancement is attributed
 323 to our well-designed reward function, which effectively captures the semantic and visual features
 of the charts, optimizing the model’s ability to generate code that closely aligns with the original

324 Table 2: Ablation study on the contribution of each key component.
325

326 ReChartPrompt	327 ChartSimRL	328 ChartMimic			329 Plot2Code			330 ChartX GPT-score
		331 Exec.Rate	332 Low-Level	333 High-Level	334 Pass Rate	335 Text-Match	336 Rating	
✓		65.5	39.9	40.7	67.4	43.8	4.60	2.18
	✓	91.1	73.7	80.9	80.3	59.3	5.34	2.36
✓	✓	83.6	58.6	57.6	72.7	50.8	5.19	2.23
	✓	93.8	78.2	85.1	88.2	62.6	5.65	2.46

331 Table 3: Ablation study of the Attribute
332 and Visual similarity components in Chart-
333 SimRL.

		334 ChartMimic		
R_i^{attr}	R_i^{vis}	335 Exec.Rate	336 Low-Level	337 High-Level
✓		91.1	73.7	80.9
	✓	92.1	76.2	83.9
✓	✓	92.1	77.7	84.3
	✓	93.8	78.2	85.1

338 Table 4: Ablation study of different attribute simi-
339 larity metrics on the ChartMimic benchmark.

R_i^{attr}	340 Formula	341 ChartMimic		
		342 Exec.Rate	343 Low-Level	344 High-Level
-	-	91.1	73.7	80.9
Precision	$\frac{ \mathcal{A}_i \cap \mathcal{A}^* }{ \mathcal{A}_i }$	90.0	72.6	79.0
Recall	$\frac{ \mathcal{A}_i \cap \mathcal{A}^* }{ \mathcal{A}^* }$	90.6	74.7	81.7
F1	$\frac{2 \mathcal{A}_i \cap \mathcal{A}^* }{(\mathcal{A}_i + \mathcal{A}^*)/2}$	91.6	75.4	84.5
Jaccard	$\frac{ \mathcal{A}_i \cap \mathcal{A}^* }{ \mathcal{A}_i \cup \mathcal{A}^* }$	92.1	76.2	83.9

345 charts. Therefore, further applying ChartSimRL on top of ReChartPrompt yields consistent performance gains, achieving optimal results.

346 **Ablation study on ChartSimRL.** ChartSimRL introduces a novel multimodal chart similarity reward 347 that combines both semantic similarity (R_i^{attr}) and visual similarity (R_i^{vis}) between the candidate 348 and original charts. To dissect the contribution of each component, we conduct ablation 349 experiments summarized in Table 3. The results show that employing either R_i^{attr} or R_i^{vis} alone 350 consistently improves performance across all evaluated metrics. Notably, the visual similarity reward 351 yields more substantial gains, underscoring the critical importance of preserving visual fidelity 352 in chart-to-code generation. Moreover, combining both rewards achieves the best overall results, 353 demonstrating the advantage of a multi-faceted reward design that simultaneously captures semantic 354 and visual aspects.

355 **Ablation study on Attribute Similarity.** We adopt Jaccard similarity as a stringent metric for attribute 356 similarity, whereby a candidate table achieves a perfect score only if its attribute set exactly 357 matches that of the ground truth; even minor discrepancies incur penalties. To thoroughly assess the 358 impact of different attribute similarity measures—Precision, Recall, F1 score, and Jaccard similarity— 359 we conduct experiments on the ChartMimic benchmark, with results summarized in Table 4.

360 Our findings indicate that optimizing exclusively for Precision may lead to a slight decline in overall 361 performance, as the model can achieve high Precision by predicting a limited subset of correct 362 attributes while neglecting overall coverage. In contrast, Recall emphasizes coverage, which helps 363 mitigate this issue and yields modest improvements. The F1 score, by harmoniously balancing 364 Precision and Recall, further alleviates extreme biases and delivers enhanced overall performance. 365 Notably, Jaccard similarity, measuring the intersection over union between predicted and reference 366 attribute sets, enforces stricter penalties on both missing and redundant attributes. This higher 367 overlap requirement enables Jaccard similarity to more faithfully capture the true semantic similarity 368 between attribute sets, thereby resulting in the best overall performance.

369 **Ablation Study on Visual Similarity.** We use ResNet-18 (He et al., 2016) to extract features from 370 charts to compute visual similarity. In fact, there are numerous methods to measure the similarity 371 between two charts. To investigate the impact of different visual similarity metrics on model 372 performance, we conduct an ablation study summarized in Table 5. Standard metrics such as MSE, SSIM 373 (Wang et al., 2004), and PSNR (Hore & Ziou, 2010) primarily evaluate pixel-level or structural 374 similarity (details in Appendix C). The table shows that these metrics generally perform worse than 375 more advanced methods. Notably, SSIM exhibits a significant decline in performance, indicating 376 that pixel-based measures struggle to capture the complex visual nuances necessary for effective 377 chart-to-code generation.

378 In contrast, CNN-based metrics like AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zis- 379 serman, 2014), and ResNet (He et al., 2016), which compare features in a learned representation 380 space, consistently outperform both the baseline and pixel-level metrics across all evaluation 381 criteria. Among them, ResNet-18 achieves the highest performance, highlighting the effectiveness 382 of deep visual features.

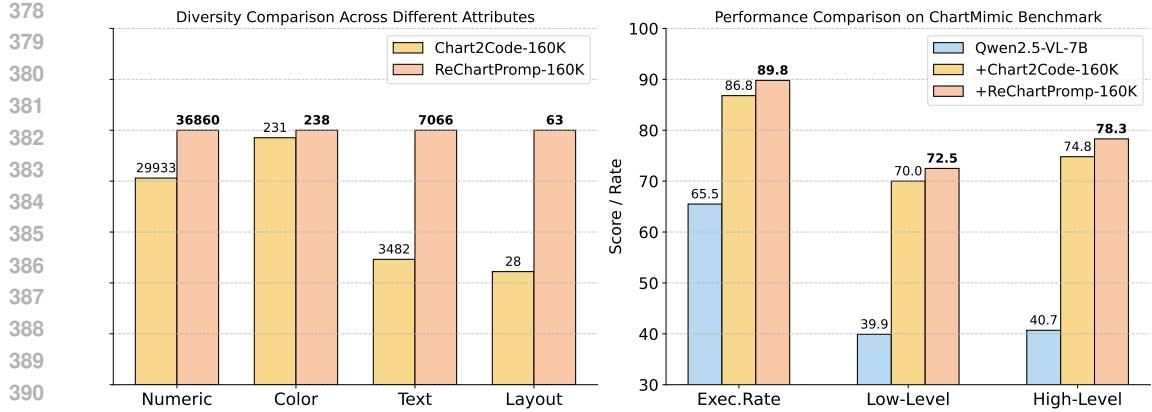


Figure 3: Comparison of diversity and fine-tuning results between Chart2Code-160K and ReChartPrompt-160K datasets.

For MLLM-based metrics, we leverage the high-level similarity prompt from ChartMimic combined with Qwen-2.5-VL-72B to evaluate the similarity between generated and reference charts. These metrics show improvements over the baseline. However, they still fall short of the best CNN-based metrics, suggesting that although MLLMs possess strong semantic understanding, further optimization is required for specialized visual tasks such as chart-to-code generation.

Comparison with Advanced Dataset. To comprehensively evaluate the diversity and quality of our dataset, we compare it with Chart2Code-160K (Zhao et al., 2025). For a fair comparison, we randomly sample 160K instances from our full dataset to construct the ReChartPrompt-160K subset. Using the attribute extraction tool $\mathcal{G}(\cdot)$, we count unique chart attributes—including numerical values, colors, textual elements, and layouts—in both datasets. A higher number of unique attributes indicates greater attribute diversity. As shown in the left panel of Fig. 3, ReChartPrompt-160K exhibits a substantially richer attribute distribution across all categories, notably in text and layout. This advantage stems primarily from Chart2Code-160K’s reliance on seed data sources, which results in repeated attribute patterns, whereas ReChartPrompt-160K samples from distinct arXiv papers, ensuring broader coverage and less redundancy (see Appendix Fig. 5). This higher diversity brings clear benefits: as illustrated in the right panel, models fine-tuned on ReChartPrompt-160K consistently outperform those trained on Chart2Code-160K, demonstrating the importance of attribute diversity for robust and effective chart understanding and code generation.

4.3 QUALITATIVE ANALYSIS

Based on extensive experiments, we observe that ReChartPrompt generates charts with diverse and rich attributes, enabling the construction of a high-quality dataset that substantially enhances model performance. Building upon the distinctive features of the chart-to-code generation task, we propose the ChartSimRL algorithm, which further enhances the model’s capabilities. To comprehensively analyze the improvements brought by these contributions, we conduct a qualitative comparison of generated charts at different training stages on the ChartMimic benchmark (Fig. 4). Our key findings are summarized as follows: **(1) The baseline model produces basic chart layouts but often fails to replicate fine-grained visual details**, leading to noticeable discrepancies between generated outputs and reference charts. **(2) Fine-tuning the base model on our ReChartPrompt-240K dataset (“Base.+ReCha.”) significantly improves chart-to-code generation accuracy.** This improvement arises from the diverse, high-quality training data generated by conditioning on real-world

Table 5: Ablation study of different visual similarity metrics on the ChartMimic benchmark.

R_i^{vis}	ChartMimic		
	Exec.Rate	Low-Level	High-Level
<i>Standard Metrics:</i>			
MSE	91.1	73.6	77.9
SSIM	82.5	65.2	74.6
PSNR	91.4	75.1	82.1
<i>CNN-Based Metrics:</i>			
AlexNet	90.3	74.7	82.6
VGG	91.3	75.5	83.3
ResNet-18	92.1	77.7	84.3
<i>MLLM-Based Metrics:</i>			
Qwen-2.5-VL-72B	91.7	77.5	83.9

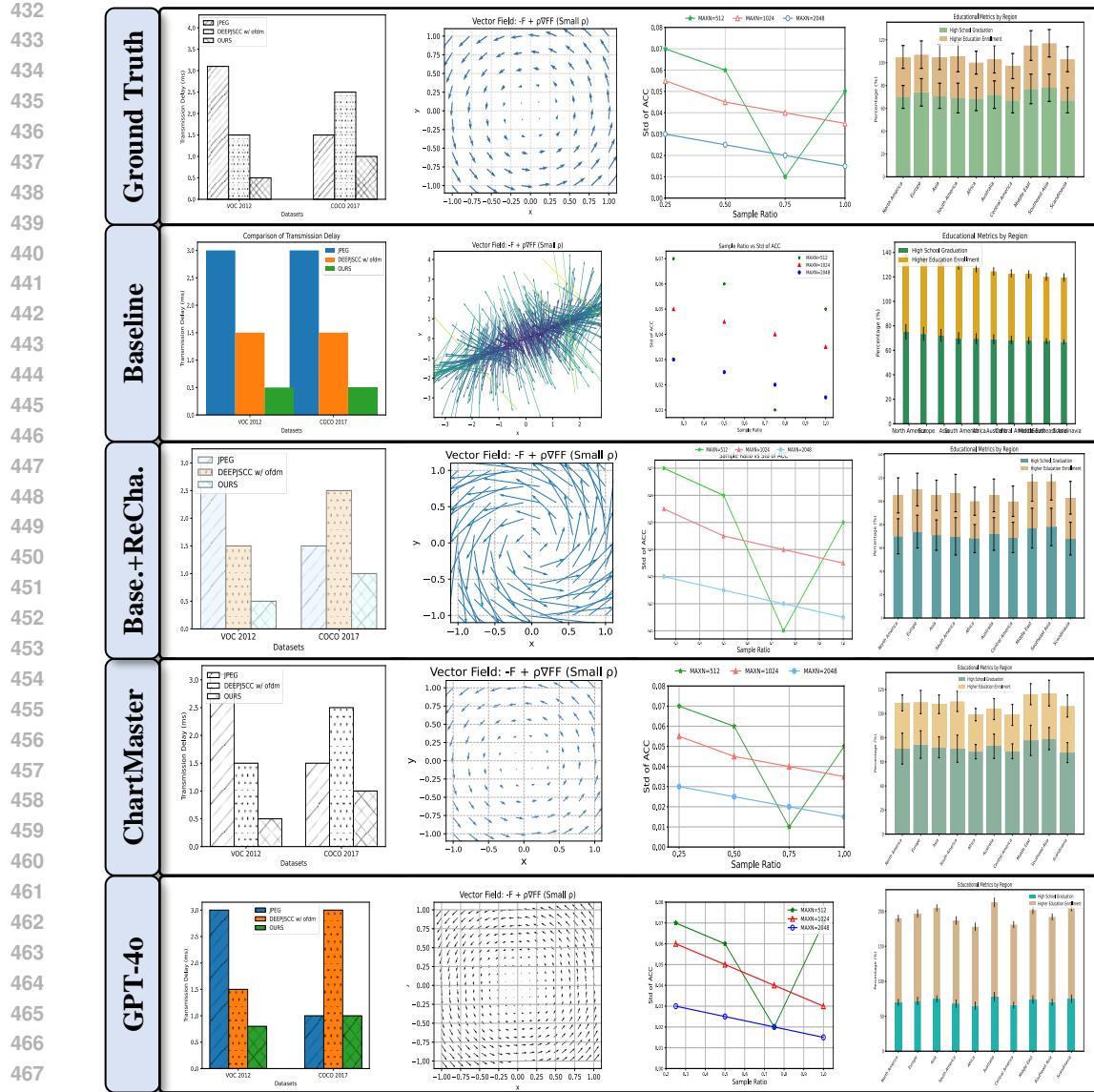


Figure 4: The test results of various models on the ChartMimic benchmark. “Base.+ReCha.” refers to the baseline model fine-tuned with the ReChartPrompt-240K dataset. Incorporating ReChart-Prompt significantly enhances the chart-to-code generation capability of the base model, while ChartSimRL further improves the handling of fine details.

chart prompts. Nonetheless, minor issues remain, such as slight mismatches in color or element positioning compared to the ground truth, indicating that supervised fine-tuning alone does not achieve perfect visual consistency. **(3) Incorporating the ChartSimRL algorithm further improves both visual and semantic alignment.** Notably, the model demonstrates enhanced color accuracy (as seen in the first column of Fig. 4) and more faithful reproduction of arrow styles in the second column, reflecting improved attention to key factual details. **(4) ChartMaster competes favorably with GPT-4o.** Notably, the ChartMaster-7B model can generate charts that more closely resemble the ground truth than those from GPT-4o, especially excelling in “mimicking” chart attributes. Additional generation results in Appendix Fig. 8 consistently support these conclusions.

486

5 CONCLUSION

488 In this paper, we propose **ChartMaster**, a novel chart-to-code generation framework paired with
 489 a tailored reinforcement learning algorithm. By introducing **ReChartPrompt**, we address data
 490 homogeneity issues in prior work and build a highly diverse ReChartPrompt-240K dataset. Our
 491 **ChartSimRL** algorithm combines semantic and visual similarity rewards, enabling the model to
 492 generate chart code that closely matches original visuals. Experiments show ChartMaster achieves
 493 performance on par with GPT-4o in chart-to-code tasks. We will open source all resources to foster
 494 community development and advance research in this area.

495 Beyond its technical innovations, ChartMaster supports automated scientific reporting and empow-
 496 ers data-driven decision-making across a wide range of domains. While our current framework
 497 targets common chart types and Python-based code, expanding its scope to include a wider range of
 498 chart formats and programming languages is an exciting direction for future work.

500

REFERENCES

502 Anthropic. Introducing the next generation of claudie, 2024. URL <https://www.anthropic.com/news/claudie-3-family>.

504 Rabiul Awal, Mahsa Massoud, Aarash Feizi, Zichao Li, Suyuchen Wang, Christopher Pal, Aish-
 505 warya Agrawal, David Vazquez, Siva Reddy, Juan A Rodriguez, et al. Webmmu: A benchmark for
 506 multimodal multilingual website understanding and code generation. In *Proceedings of the 2025*
 507 *Conference on Empirical Methods in Natural Language Processing*, pp. 25129–25156, 2025.

509 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 510 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 511 2025.

512 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
 513 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
 514 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
 515 2022.

517 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 518 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 519 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer*
 520 *Vision and Pattern Recognition*, pp. 24185–24198, 2024.

521 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 522 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 523 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

525 Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
 526 Zhang. Chartllama: A multimodal llm for chart understanding and generation. *arXiv preprint*
 527 *arXiv:2311.16483*, 2023.

528 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 529 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 530 770–778, 2016.

532 Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In *2010 20th international*
 533 *conference on pattern recognition*, pp. 2366–2369. IEEE, 2010.

534 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
 535 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
 536 *arXiv preprint arXiv:2503.06749*, 2025.

538 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 539 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
arXiv:2410.21276, 2024.

540 Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. Dvqa: Understanding data visual-
 541izations via question answering. In *Proceedings of the IEEE conference on computer vision and*
 542 *pattern recognition*, pp. 5648–5656, 2018.

543

544 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 545lutional neural networks. *Advances in neural information processing systems*, 25, 2012.

546

547 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 548 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 549 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 550 *Systems Principles*, 2023.

551

552 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
 553 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *arXiv*
 554 *preprint arXiv:2407.07895*, 2024a.

555

556 Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiyong Huang, and Jing Ma. Mmcode: Bench-
 557 marking multimodal large language models for code generation with visually rich programming
 558 problems. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 736–
 559 783, 2024b.

560

561 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
 562 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint*
 563 *arXiv:2503.06520*, 2025.

564

565 Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
 566 Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
 567 *arXiv preprint arXiv:2403.05525*, 2024.

568

569 Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Libo Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu,
 570 and Wanxiang Che. Python is not always the best choice: Embracing multilingual program of
 571 thoughts. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language*
 572 *Processing*, pp. 7185–7212, 2024.

573

574 Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
 575 mark for question answering about charts with visual and logical reasoning. In *Findings of the*
 576 *association for computational linguistics: ACL 2022*, pp. 2263–2279, 2022.

577

578 Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman
 579 Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmoham-
 580 madi, et al. Chartqapro: A more diverse and challenging benchmark for chart question answering.
 581 *arXiv preprint arXiv:2504.05506*, 2025a.

582

583 Ahmed Masry, Abhay Puri, Masoud Hashemi, Juan A Rodriguez, Megh Thakkar, Khyati Maha-
 584 jan, Vikas Yadav, Sathwik Tejaswi Madhusudhan, Alexandre Piché, Dzmitry Bahdanau, et al.
 585 Bigcharts-r1: Enhanced chart reasoning with visual reinforcement finetuning. *arXiv preprint*
 586 *arXiv:2508.09804*, 2025b.

587

588 Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo.
 589 Chartassistant: A universal chart multimodal language model via chart-to-table pre-training and
 590 multitask instruction tuning. *arXiv preprint arXiv:2401.02384*, 2024.

591

592 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
 593 Han, Botian Shi, Wenhui Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multi-
 594 modal reasoning with rule-based reinforcement learning. *arXiv preprint arXiv:2503.07365*, 2025.

595

596 Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over
 597 scientific plots. In *Proceedings of the ieee/cvf winter conference on applications of computer*
 598 *vision*, pp. 1527–1536, 2020.

599

600 Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable reinforcement learn-
 601 ing: A survey and comparative review. *ACM Computing Surveys*, 56(7):1–36, 2024.

594 Yingzhe Peng, Gongrui Zhang, Miaozen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
 595 Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
 596 abilities through two-stage rule-based rl. *arXiv preprint arXiv:2503.07536*, 2025.

597

598 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 599 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 600 models from natural language supervision. In *International conference on machine learning*, pp.
 601 8748–8763. PMLR, 2021.

602

603 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 604 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 605 in Neural Information Processing Systems*, 36:53728–53741, 2023.

606

607 Juan Rodriguez, Xiangru Jian, Siba Smarak Panigrahi, Tianyu Zhang, Aarash Feizi, Abhay Puri, Ak-
 608 shay Kalkunte, François Savard, Ahmed Masry, Shravan Nayak, et al. Bigdocs: An open dataset
 609 for training multimodal models on document and code tasks. *arXiv preprint arXiv:2412.04626*,
 2024.

610

611 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 612 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 613 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

614

615 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 616 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 617 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

618

619 Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Difyi Yang. Design2code: How far
 620 are we from automating front-end engineering? *arXiv e-prints*, pp. arXiv–2403, 2024.

621

622 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 623 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

624

625 Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
 626 Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. *arXiv preprint
 627 arXiv:2503.20752*, 2025.

628

629 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 630 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 631 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

632

633 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 634 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 635 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

636

637 Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
 638 Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of llm alignment tech-
 639 niques: Rlfh, rlaif, ppo, dpo and more. *arXiv preprint arXiv:2407.16216*, 2024b.

640

641 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 642 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 643 612, 2004.

644

645 Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
 646 Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
 647 models in code generation from scientific plots. *arXiv preprint arXiv:2405.07990*, 2024.

648

649 Renqiu Xia, Bo Zhang, Haoyang Peng, Hancheng Ye, Xiangchao Yan, Peng Ye, Botian Shi, Yu Qiao,
 650 and Junchi Yan. Structchart: Perception, structuring, reasoning for visual chart understanding.
 651 *arXiv preprint arXiv:2309.11268*, 2023.

652

653 Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng
 654 Ye, Min Dou, Botian Shi, et al. Chartx & chartvlm: A versatile benchmark and foundation model
 655 for complicated chart reasoning. *arXiv preprint arXiv:2402.12185*, 2024.

648 Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
 649 Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating lmm’s cross-modal reasoning capability
 650 via chart-to-code generation. *arXiv preprint arXiv:2406.09961*, 2024a.
 651

652 Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
 653 Tan, Pengyuan Liu, Dong Yu, et al. Matplotagent: Method and evaluation for llm-based agentic
 654 scientific data visualization. In *Findings of the Association for Computational Linguistics ACL*
 655 2024, pp. 11789–11804, 2024b.

656 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 657 Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint*
 658 *arXiv:2408.01800*, 2024.

659 En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yana Wei, Yuang Peng, Haoran Wei, Jianjian Sun,
 660 Chunrui Han, Zheng Ge, et al. Perception-r1: Pioneering perception policy with reinforcement
 661 learning. *arXiv preprint arXiv:2504.07954*, 2025.

662 Bob Zhang, Haoran Li, Tao Zhang, Cilin Yan, Jiayin Cai, Xiaolong Jiang, and Yanbin Hao. Improv-
 663 ing the reasoning of multi-image grounding in mllms via reinforcement learning. *arXiv preprint*
 664 *arXiv:2507.00748*, 2025a.

665 Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin, Xiao Li, Xiao Yu, Yue Wang, Bei Chen,
 666 and Jacky Keung. Humaneval-v: Evaluating visual understanding and reasoning abilities of large
 667 multimodal models through coding tasks. *arXiv preprint arXiv:2410.12381*, 2024a.

668 Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
 669 Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
 670 relative policy optimization. *arXiv preprint arXiv:2503.12937*, 2025b.

671 Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang.
 672 Tinychart: Efficient chart understanding with visual token merging and program-of-thoughts
 673 learning. *arXiv preprint arXiv:2404.16635*, 2024b.

674 Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, and Maosong Sun. Chart-
 675 coder: Advancing multimodal large language model for chart-to-code generation. *arXiv preprint*
 676 *arXiv:2501.06598*, 2025.

677 Wenqing Zheng, SP Sharan, Ajay Kumar Jaiswal, Kevin Wang, Yihan Xi, Dejia Xu, and Zhangyang
 678 Wang. Outline, then details: Syntactically guided coarse-to-fine code generation. In *International*
 679 *Conference on Machine Learning*, pp. 42403–42419. PMLR, 2023.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

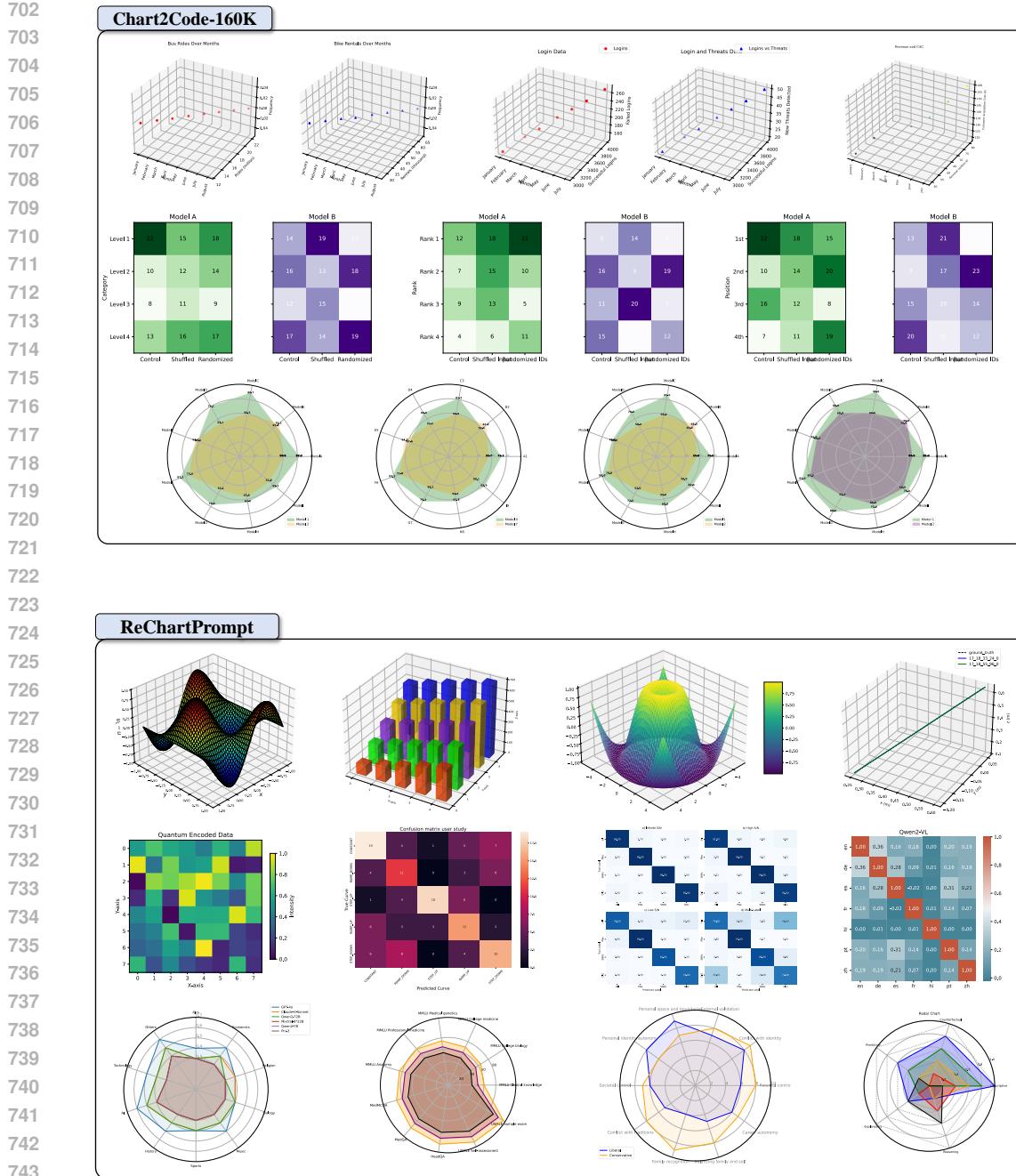


Figure 5: Dataset visualization. The charts in Chart2Code-160K exhibit homogenization, which affects diversity; the charts in ReChartPrompt demonstrate greater variety, especially in terms of textual content within the tables and layout attributes.

756

P_{type}

757

You are given an image that represents one type of chart or plot. The possible plot types are:

758

[Bar, Line, ErrorBar, Heatmap, Box, Scatter, Hist, Radar, 3D, Pie, ErrorPoint, Violin]

759

Please carefully examine the given image and identify which one of the above plot types it belongs to.

760

- If the image clearly matches one of the plot types, respond with the exact name of that plot type (choose only one).

761

- If the image does not belong to any of these categories or is not a plot, respond with: None

762

Your answer should be exactly one word from the list above or None, nothing else.

763

Figure 6: Prompt used for chart type classification (P_{type}). The Qwen2.5-VL-72B model is prompted with this template to assign each image to one of 12 predefined chart categories.

766

767

768

769

770

771

P_{rechart}

772

"You are an expert Python developer specializing in matplotlib. Based on the picture I provide, please write Python code using matplotlib to precisely reproduce the image.",

773

"As a skilled Python programmer with matplotlib expertise, please generate Python code that recreates the given image exactly.",

774

"You're an experienced matplotlib developer. Given the picture below, please write Python code that recreates it faithfully.",

775

"Please act as a Python matplotlib specialist and generate the Python code that reproduces the image shown below.",

776

"You are an expert in Python plotting using matplotlib. Create Python code to generate a plot identical to the provided picture.",

777

"Your task is to write matplotlib Python code that perfectly replicates the given image.",

778

"Imagine you are an expert Python coder who can write matplotlib code to duplicate images. Please generate code that reproduces the picture exactly.",

779

"You are requested to produce Python code using matplotlib that recreates the image below as closely as possible.",

780

"As a professional matplotlib developer, write Python code to visualize the given image precisely.",

781

"Please generate Python matplotlib code to recreate the picture shown.",

782

"You are a helpful assistant who can generate Python code using matplotlib. Please produce code to create a plot that closely resembles the given image, enclosed within ``python and ````",

783

"You are a knowledgeable assistant specializing in matplotlib. Generate Python code that recreates the provided plot as closely as possible. The code should be wrapped in ``python and ````",

784

"As a matplotlib expert assistant, please generate Python plotting code that replicates the given image. Output your code between ``python and ````",

785

"You are a helpful bot that writes matplotlib Python code. Please provide the code to produce a plot that matches the image, wrapped in ``python and ````",

786

"You are a Python coding assistant with matplotlib skills. Please write code surrounded by ``python and ```` that recreates the given plot as closely as possible.",

787

"As an assistant proficient in matplotlib, generate Python code that reproduces the pictured plot. Your code should be enclosed in ``python and ````",

788

"Generate Python matplotlib code that produces a plot similar to the provided image. Wrap the code inside ``python and ````",

789

"You are an expert assistant that creates matplotlib Python code. Please write code enclosed in ``python and ```` that recreates the given picture as faithfully as possible.",

790

"Please generate Python code using matplotlib to produce a plot matching the given image, wrapped by ``python and ````",

791

Figure 7: Prompt for chart-to-code generation ($P_{rechart}$). Twenty diverse prompts are designed to instruct the Qwen2.5-VL-72B model to generate Python matplotlib code from chart images, enhancing instruction diversity.

792

793

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

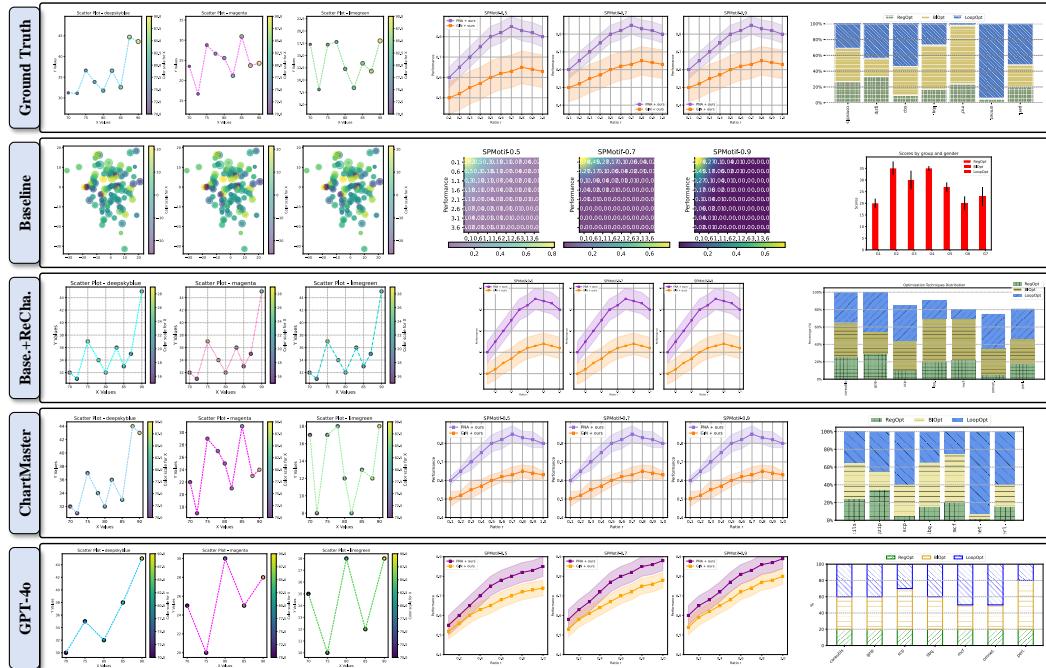


Figure 8: More test results of various models on the ChartMimic benchmark.

810 A DATA AUDITING
811812 We provide a comprehensive summary of dataset statistics across each stage of data curation:
813814 Table 6: Summary of Dataset Auditing Statistics by Data Curation Stage
815

816 Stage	817 Statistic
817 Stage 1: Collecting Images from arXiv	817 Total images crawled: 477,788
818 Stage 2: Filtering Non-Chart Images	818 Total chart images filtered: 288,992
819 Stage 2: Chart-type misclassification rate	819 $44 / 1000 = 4.4\%$ (manual check, 1000 samples from filtered charts)
820 Stage 3: Generating code with ReChartPrompt	820 Valid training samples (charts with executable code): 242,479
821 Stage 4: Code Execution and Filtering	821 Code execution pass rate: $242,479 / 288,992 = 83.9\%$
822 Stage 4: Inter-annotator checks	822 Not required; successful code execution ensures reliable chart-code pairing

823 **1. Chart-type misclassification (Stage 2).** To assess data quality, we randomly sample 1,000 chart
824 images after the initial filtering stage and manually check for chart-type misclassification. Among
825 these, 44 images (4.4%) contain both chart and non-chart elements but are classified as charts. In
826 the subsequent Stage 4, only one of these 44 misclassified images successfully generates executable
827 code; the remaining samples typically fail due to referencing non-existent files or incomplete code.
828 Thus, the vast majority of noise is filtered out. Some examples can be found in Figure A of the
829 supplementary materials.830 **2. Inter-annotator checks (Stage 4).** Our pipeline relies on automatic code execution for validation,
831 so manual inter-annotator agreement checks can be omitted.832 **3. Style-consistent reproductions.** We clarify that our pipeline does not require replotted charts
833 to be visually identical or style-consistent to the originals. Instead, the original charts are used to
834 inspire diverse outputs, while code executability ensures each chart-code pair is valid. This design
835 makes our dataset both diverse and reliable, while also simplifying the pipeline and reducing manual
836 effort.837 **4. Judging noise, coverage, and bias.** ReChartPrompt leverages real-world chart images from
838 arXiv, resulting in diverse distributions and rich attribute coverage. Our dataset includes a wide
839 variety of content and visual styles, which helps reduce bias and increase coverage compared to
840 previous datasets. Code execution filtering further minimizes noise. Figures 3 and 5 in the paper
841 illustrate the attribute diversity and coverage of our dataset.842 B IMPLEMENTATION AND EVALUATION DETAILS
843

	844 ChartMiMic	845 Plot2Code	846 ChartX
847 Prompt	848 You are an expert Python developer who specializes in writing 849 matplotlib code based on a given picture. I found a very nice 850 picture in a STEM paper, but there is no corresponding source code 851 available. I need your help to generate the Python code that can 852 reproduce the picture based on the picture I provide. 853 Note that it is necessary to use <code>figsize=(X, Y)</code> to set the image size 854 to match the original size. 855 Now, please give me the matplotlib code that reproduces the 856 picture below.	857 You are a helpful assistant that can generate 858 Python code using matplotlib. Generate the 859 matplotlib code to create a plot that looks like 860 the given image, as similar as possible. The 861 generated code should be surrounded by 862 <code>'''python'''</code>	863 Redraw the chart image 864 using Python code.
865 Decoding Parameters	866 <code>context_length: 4096</code> <code>max_tokens: 4096</code> <code>temperature: 0.1</code> <code>top_p: 1</code>	867 <code>context_length: 4096</code> <code>max_tokens: 4096</code> <code>temperature: 0.1</code> <code>top_p: 1</code>	868 <code>context_length: 4096</code> <code>max_tokens: 4096</code> <code>temperature: 0.1</code> <code>top_p: 0.9</code>

858 Figure 9: Test prompts and decoding settings of benchmarks.

859 During the collection of arXiv papers, we explicitly exclude papers that are used as benchmarks to
860 avoid potential data leakage. In the data generation stage, we apply a greedy sampling strategy to
861 filter chart data, retaining only images of 12 predefined chart types and discarding all others. Then,
862 we randomly select an instruction from P_{rechart} to prompt the Qwen2.5-VL-72B (Bai et al., 2025)
863 model to generate code via nucleus sampling, with a temperature of 0.1 and a top-p of 0.9.864 For training, we use the Qwen2.5-VL-7B model (Bai et al., 2025) in two stages. In Stage 1, we
865 perform SFT on the entire ReChartPrompt-240K dataset with a learning rate of 2×10^{-5} , batch
866 size 128, and a cosine annealing scheduler for one epoch; the resulting model is saved for Stage 2.

In Stage 2, ChartSimRL training is conducted on 10% of the ReChartPrompt-240K dataset, using a smaller learning rate of 5×10^{-6} and generating $M = 4$ candidate codes per sample. Candidate sampling uses temperature 1.0, top-p 1.0, and top-k 80 to encourage diversity. The batch size remains 128 (32 samples \times 4 candidates each).

For evalution, we assess the model’s chart-to-code generation performance on multiple benchmarks. **ChartMimic Direct Mimic Task** (Yang et al., 2024a): This benchmark includes 600 chart images. GPT-4o scores (0–100) serve as high-level similarity metrics. Additionally, low-level F1 scores for text, layout, chart type, and color are computed from code execution for fine-grained analysis. **Plot2Code Direct Asking** (Wu et al., 2024): Metrics include code pass rate, text match rate, and a 10-point GPT-4V visual similarity score, jointly assessing code correctness and visual fidelity. **ChartX Chart Redrawing Task** (Xia et al., 2024): This benchmark uses GPT-4 (0–5 scale) to evaluate code-generated chart redrawings. **The Test prompts and decoding settings are listed in Figure 9.**

C STANDARD METRICS

We consider two RGB images: the original chart image $I_i \in \mathbb{R}^{H \times W \times 3}$ and the generated chart image $\hat{I}_i \in \mathbb{R}^{H \times W \times 3}$, where H and W denote the height and width of the images respectively (both images are resized to the same height and width before comparison), and 3 corresponds to the RGB color channels. Below, we describe how to quantify the visual similarity between I_i and \hat{I}_i using metrics such as Mean Squared Error (MSE), Structural Similarity (SSIM) (Wang et al., 2004), and Peak Signal-to-Noise Ratio (PSNR) (Hore & Ziou, 2010).

C.1 MEAN SQUARED ERROR

The Mean Squared Error (MSE) is defined as:

$$\text{MSE}(I_i, \hat{I}_i) = \frac{1}{H \times W \times 3} \sum_{h=1}^H \sum_{w=1}^W \sum_{c=1}^3 (I_i(h, w, c) - \hat{I}_i(h, w, c))^2$$

This formula computes the average squared difference between the pixel values of the two images over all spatial locations and color channels. A smaller MSE indicates higher similarity between I_i and \hat{I}_i .

To convert the MSE into a similarity score, we define the MSE-based similarity as:

$$\text{MSE_Similarity} = \frac{1}{1 + \text{MSE}(I_i, \hat{I}_i)} \in (0, 1]$$

- When $\text{MSE} \rightarrow 0$, $\text{MSE_Similarity} \rightarrow 1$, indicating the images are almost identical.
- When $\text{MSE} \rightarrow \infty$, $\text{MSE_Similarity} \rightarrow 0$, indicating large differences between the images.

C.2 STRUCTURAL SIMILARITY

The Structural Similarity (SSIM) is a perceptual metric that quantifies the similarity between two images by comparing local patterns of pixel intensities. It is computed on local sliding windows centered at each pixel location. For each window, local statistics including mean, variance, and covariance are calculated to evaluate the similarity. The final SSIM value for each channel is obtained by averaging these local SSIM values over all spatial positions, and the overall SSIM between two RGB images is computed by averaging over the three color channels.

Formally, for each color channel $c \in \{R, G, B\}$, the SSIM is defined as:

$$\text{SSIM}_c(I_i^c, \hat{I}_i^c) = \frac{(2\mu_{I_i^c}\mu_{\hat{I}_i^c} + C_1)(2\sigma_{I_i^c\hat{I}_i^c} + C_2)}{(\mu_{I_i^c}^2 + \mu_{\hat{I}_i^c}^2 + C_1)(\sigma_{I_i^c}^2 + \sigma_{\hat{I}_i^c}^2 + C_2)}$$

where

918 • $\mu_{I_i^c}$ and $\mu_{\hat{I}_i^c}$ are the local means computed within the sliding window.
 919 • $\sigma_{I_i^c}^2$ and $\sigma_{\hat{I}_i^c}^2$ are the local variances.
 920 • $\sigma_{I_i^c \hat{I}_i^c}$ is the local covariance.
 921
 922 • $C_1 = (K_1 L)^2$ and $C_2 = (K_2 L)^2$ are constants to stabilize the division, with default values
 923 $K_1 = 0.01$, $K_2 = 0.03$. L is the dynamic range of the pixel values. For 8-bit grayscale
 924 images, $L = 255$. In our implementation, all images are converted to `np.float32`
 925 and normalized by dividing by 255, so the pixel values are in the range $[0, 1]$. Therefore,
 926 $L = 1.0$ is used for SSIM calculation.
 927

928 The overall mean SSIM between the two RGB images is then calculated by averaging over all spatial
 929 positions (x, y) in each channel and then over the three channels:

930
$$\text{SSIM}(I_i, \hat{I}_i) = \frac{1}{3} \sum_{c=1}^3 \frac{1}{H \times W} \sum_{x=1}^H \sum_{y=1}^W \text{SSIM}_c(I_i^c(x, y), \hat{I}_i^c(x, y)) \in [0, 1]$$

 931
 932

933 • When $\text{SSIM} \rightarrow 1$, the images are structurally almost identical.
 934 • When $\text{SSIM} \rightarrow 0$, there are significant structural differences between the images.
 935

937 C.3 PEAK SIGNAL-TO-NOISE RATIO

938
 939 Peak Signal-to-Noise Ratio (PSNR) is a widely used metric to measure the quality of reconstructed
 940 images compared to the original images. It is defined as:

941
$$\text{PSNR}(I_i, \hat{I}_i) = 10 \log_{10} \left(\frac{L^2}{\text{MSE}(I_i, \hat{I}_i)} \right)$$

 942
 943

944 where L is the dynamic range of the pixel values. For normalized images in $[0, 1]$, $L = 1.0$.
 945

946 In practical scenarios, PSNR values typically range in tens of decibels and can vary widely, which
 947 may cause instability during optimization. To mitigate this effect, we normalize the PSNR values
 948 within each rollout batch by dividing them by the maximum PSNR value in that batch:

949
$$\text{PSNR}_{\text{norm}}(I_i, \hat{I}_i) = \frac{\text{PSNR}(I_i, \hat{I}_i)}{\max_{\hat{I}_j \in \text{rollout batch}} \text{PSNR}(I_j, \hat{I}_j)} \in (0, 1]$$

 950
 951

952 • When $\text{PSNR}_{\text{norm}} \rightarrow 1$, the reconstructed image \hat{I}_i is very similar to the original image I_i .
 953 • When $\text{PSNR}_{\text{norm}} \rightarrow 0$, there exist significant differences between the images.
 954

955 D THE USE OF LARGE LANGUAGE MODELS

956
 957 In this study, the initial draft, core research ideas, motivation, data analysis, and scientific insights
 958 were all independently developed by the human authors. LLMs were used solely as auxiliary tools
 959 to polish the language of the initial draft, including removing redundant content and avoiding ambi-
 960 guity, thereby enhancing the overall readability of the manuscript.
 961

962 E MORE EXPERIMENTS

963 E.1 FINE-GRAINED RESULTS AND THEIR RELATIONSHIP WITH R_i^{attr} AND R_i^{vis}

964
 965 We provide a detailed quantitative breakdown to clarify how each reward component affects chart
 966 reconstruction quality. As shown in the Table 7, SFT on ReChartPrompt significantly boosts all
 967 metrics, laying a strong foundation. Adding either the attribute reward or visual similarity reward
 968 further improves low-level metrics, but their effects differ.
 969

970 Specifically, R_i^{attr} mainly enhances text accuracy and layout fidelity, but has limited impact on color
 971 consistency. This is because R_i^{attr} relies on discrete matching, where both subtle and large color

972 Table 7: Fine-grained quantitative analysis on ChartMimic benchmark.
973

974 ReChartPrompt	974 ChartSimRL		975 Exec. Rate	975 Low-Level					976 High-Level
	977 R_i^{attr}	978 R_i^{vis}		979 Text	980 Layout	981 Type	982 Color	983 Avg.	
			65.5	35.2	58.1	37.8	28.3	39.9	40.7
✓			91.1	75.6	87.8	67.0	64.3	73.7	80.9
✓	✓		92.1	80.1	90.2	69.5	65.1	76.2	83.9
✓		✓	92.1	79.8	90.6	71.8	68.7	77.7	84.3
✓	✓	✓	93.8	79.8	91.3	72.2	69.7	78.2	85.1

981
982 differences are treated as mismatches, even though larger discrepancies should be penalized more
983 heavily. In contrast, the visual similarity reward (R_i^{vis}), which evaluates global image features in a
984 continuous manner, better captures approximate color and gradient variations, resulting in stronger
985 gains in color consistency.

986 Therefore, the optimal approach is to combine both reward mechanisms, leveraging their comple-
987 mentary strengths to achieve robust and fine-grained chart-to-code reconstruction.

989 E.2 EXTENSION TO CHART UNDERSTANDING TASKS

991 Table 8: Ablation study on the impact of ReChartPrompt data and ChartSimRL for chart under-
992 standing tasks.

994 Tiny 995 Chart	996 ReChart 997 Prompt	998 SFT	999 RL	999 ChartQA	999 ChartQAPro				
					Factoid	Conversational	Hypothetical	Fact Checking	Multi Choice
✓	✓			87.8	26.7	39.7	41.7	38.5	35.5
✓	✓	✓		89.2	27.5	42.1	36.0	45.0	39.2
✓	✓	✓	✓	89.8	29.3	43.4	38.9	47.1	36.9

998 To verify the effectiveness of our method on chart understanding tasks, we conduct further experi-
999 ments on ChartQA (Masry et al., 2022) and ChartQAPro (Masry et al., 2025a) benchmarks.

1000 Following ChartCoder, we incorporate the TinyChart dataset (Zhang et al., 2024b) throughout the
1001 training process. Specifically, we first use 240K TinyChart instances for SFT on Qwen2.5-VL-7B as
1002 the baseline. Then, we jointly train the model with our own dataset during SFT. During GRPO, we
1003 use 24K QA samples from ChartQA (Masry et al., 2022), PlotQA (Methani et al., 2020), and DVQA
1004 (Kafle et al., 2018) subsets, applying an accuracy-based reward for QA and attribute/visual rewards
1005 for chart-to-code. Losses for QA and chart-to-code tasks are computed separately and averaged;
1006 other hyperparameters remain unchanged.

1007 As shown in Table 8, incorporating ReChartPrompt data during SFT notably improves QA accu-
1008 racy, especially for Fact Checking, with further gains from RL. This demonstrates that chart-to-code
1009 learning enhances the model’s fine-grained understanding of chart semantics and transfers effec-
1010 tively to reasoning tasks, resulting in better QA performance.

1012 E.3 IMPACT OF TEACHER MODEL

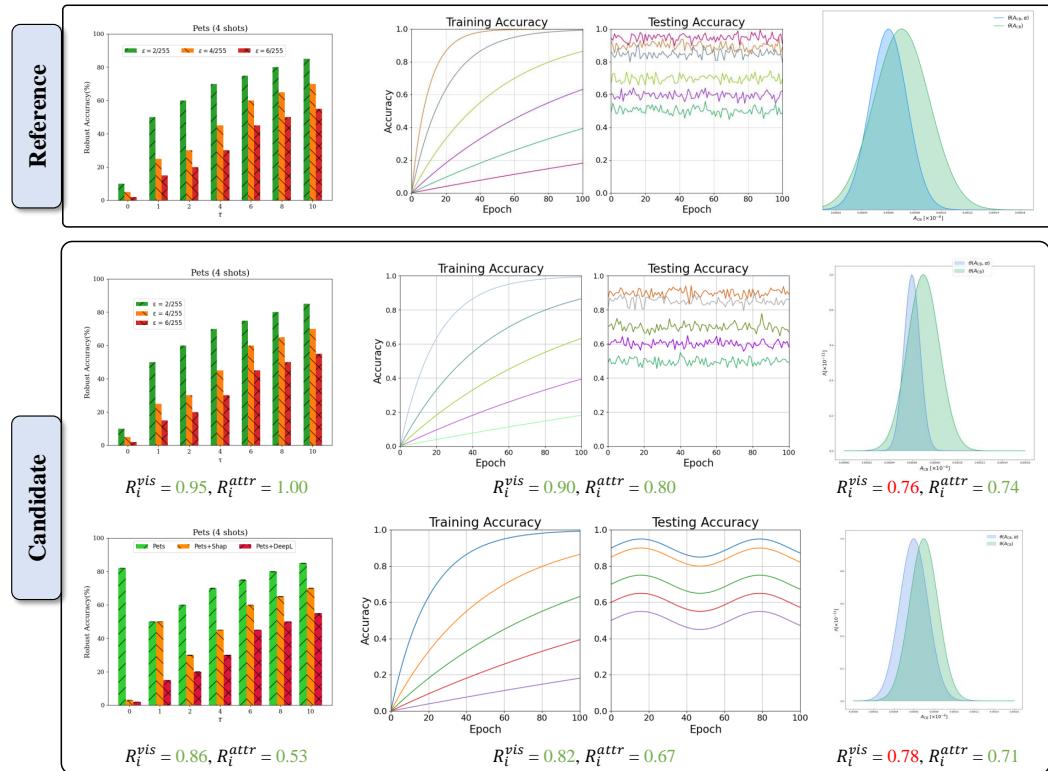
1014 Table 9: Impact of teacher model quality on ChartMaster performance.

1015 Method	1016 SFT	1017 GRPO	1017 ChartMimic			1018 Plot2Code			1019 ChartX
			1020 Exec. Rate	1021 Low-Level	1022 High-Level	1023 Pass Rate	1024 Text-Match	1025 Rating	
Qwen2.5-VL-7B			65.5	39.9	40.7	67.4	43.8	4.60	2.18
Qwen2.5-VL-72B			88.5	72.7	79.1	84.8	68.4	6.83	2.52
Qwen3-VL-235B-A22B-Instruct			94.0	79.1	82.3	90.1	56.3	6.49	2.94
Use Qwen2.5-VL-72B as Teacher Model	✓		91.1	73.7	80.9	80.3	59.3	5.34	2.36
	✓	✓	93.8	78.2	85.1	88.2	62.6	5.65	2.46
UseQwen3-VL-235B as Teacher Model	✓		91.1	75.3	81.5	82.5	64.3	5.57	2.48
	✓	✓	95.1	79.4	86.2	88.6	65.7	5.93	2.53

1022 To investigate the impact of the teacher model on ChartMaster performance. We select Qwen3-VL-
1023 235B-A22B-Instruct as the stronger teacher to generate a new 240K chart-to-code dataset. As shown
1024 in Table 9, ChartMaster’s performance improves significantly when a stronger teacher model is used
1025 for data distillation, demonstrating that teacher quality substantially impacts student performance.
Importantly, our method enables the student model to closely match and even outperform the teacher

1026 on certain metrics, evidencing the effectiveness of our approach in leveraging high-quality teacher
 1027 knowledge.
 1028

1029 **E.4 ROBUSTNESS OF VISUAL REWARD TO CHART SEMANTICS**
 1030



1056 Figure 10: Qualitative analysis of candidate charts generated during GRPO. Visual reward and
 1057 attribute (semantic) reward are generally positively correlated. Outlier cases with high visual reward
 1058 but low semantic alignment receive low final reward, indicating that our design avoids overfitting to
 1059 style surrogates.
 1060

1061 To further examine whether our visual reward overfits to style surrogates, we conduct a qualitative
 1062 analysis of candidate charts generated during the GRPO process. We observe in Figure 10 that nearly
 1063 all candidates with high visual scores also achieve high attribute (semantic) scores, indicating strong
 1064 semantic alignment. Occasionally, some candidates exhibit high visual scores but low attribute
 1065 scores; in these cases, the final reward remains low due to the penalization from the attribute score.
 1066 These results suggest that the visual reward does not cause overfitting to superficial styles, and the
 1067 attribute score effectively mitigates the impact of outliers.
 1068

1069 **E.5 ERROR ANALYSIS**

1070 We conduct error analysis on ChartMaster-7B using the ChartMimic test set and present typical
 1071 failure cases in Appendix Figure 11. The results reveal that the primary source of error is the
 1072 inaccurate extraction of precise numerical values from complex charts. Despite implementing a
 1073 relaxed matching strategy for numerical values, this issue remains unresolved. Further exploration
 1074 of reward design and model architecture will be pursued in future work.
 1075

1076 **E.6 THE IMPACT OF CHART-AWARE VISUAL ENCODER**
 1077

1078 In Table 5, we have compared the performance of different CNN-based visual encoders and con-
 1079 cluded that deep visual features are effective. To further investigate, we use the chart-aware visual
 encoder from ChartCoder-7B to extract features. As shown in Table 10, the chart-aware encoder

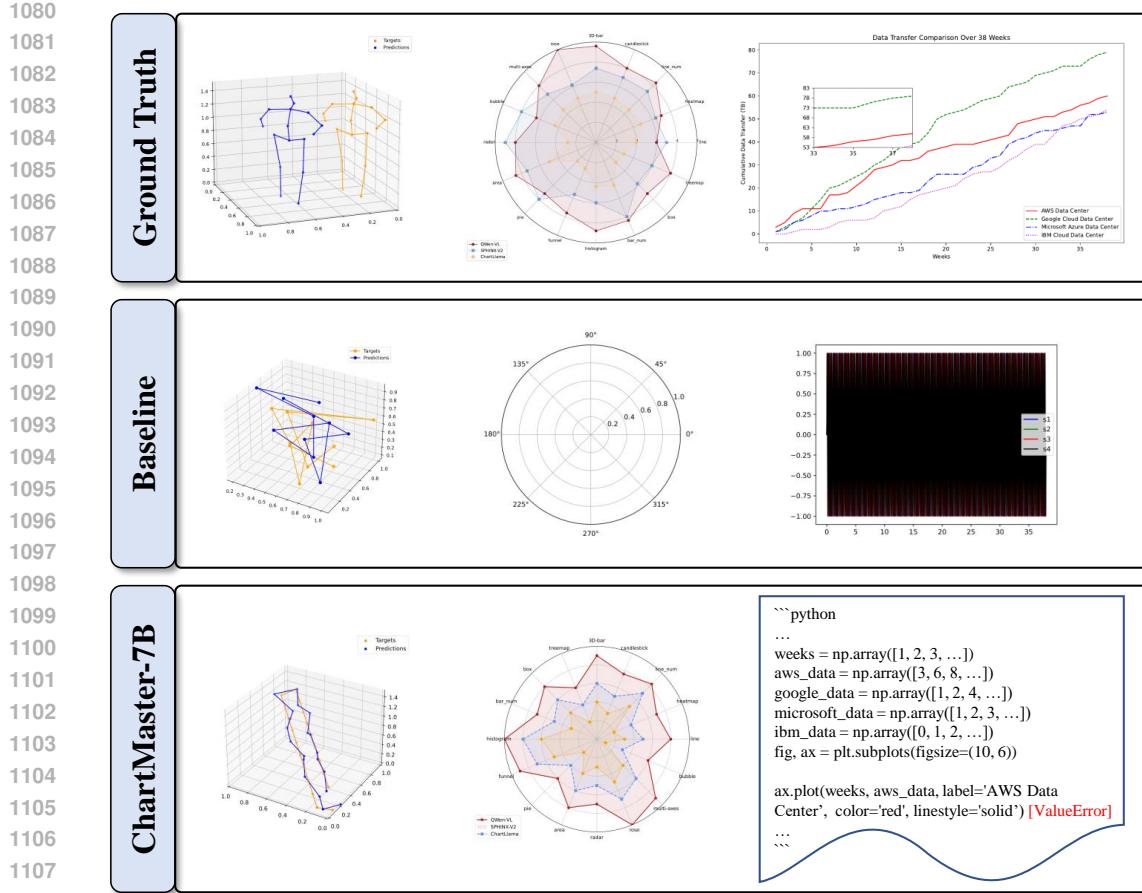


Figure 11: Some bad cases from ChartMaster-7B on the ChartMimic test set. The main challenge lies in accurately extracting precise numerical values.

Table 10: Comparison of ChartMaster-7B performance using different visual encoders on the ChartMimic benchmark.

ChartMaster-7B	Exec. Rate	Low-Level					High-Level GPT-4o
		Text	Layout	Type	Color	Avg.	
w/ ChartCoder-ViT	94.8	83.1	93.1	71.1	65.7	78.2	84.6
w/ ResNet-18	93.8	79.8	91.3	72.2	69.7	78.2	85.1

slightly improves execution rate and achieves better text and layout metrics, reflecting enhanced chart-specific feature extraction. However, it lags behind ResNet-18 in Type and Color metrics, suggesting that traditional CNNs may better capture texture and color information. Overall, both encoders show comparable average performance. We will continue exploring more specialized visual encoders in future work.

E.7 PROMPT ANALYSIS

Table 11: Comparison of model performance trained on single-prompt versus diverse-prompt datasets. Models trained with diverse prompts generally achieve higher scores, illustrating the benefit of prompt diversity.

Dataset	ChartMimic			Plot2Code			ChartX GPT-score
	Exec. Rate	Low-Level	High-Level	Pass Rate	Text-Match	Rating	
ReChartPrompt-240K-Single-Prompt	88.5	73.0	78.9	83.3	58.9	5.14	2.30
ReChartPrompt-240K-Diverse-Prompt	91.1	73.7	80.9	80.3	59.3	5.34	2.36

1134 We investigate the impact of prompt diversity on code generation quality. Specifically, we randomly
1135 select 1,000 original charts and generate replotted results using each of the 20 prompts in $\mathbf{P}_{\text{rechart}}$.
1136 The code execution rates are comparable across prompts: 82.7%, 84.2%, 81.9%, 81.5%, 83.8%,
1137 82.9%, 82.1%, 82.3%, 83.2%, 84.0%, 81.8%, 82.4%, 84.1%, 82.7%, 83.6%, 81.2%, 84.4%, 81.5%,
1138 84.7%, and 83.3%. This indicates that Qwen2.5-VL-72B demonstrates strong instruction-following
1139 ability, and different phrasings of similar prompts yield no significant differences in code pass rates.

1140 To further assess the effect of prompt diversity, we identify the prompt with the highest code pass
1141 rate and use it to regenerate 240K training samples (ReChartPrompt-240K-Single-Prompt). We
1142 then compare these results to those obtained from our diverse prompt dataset (ReChartPrompt-
1143 240K-Diverse-Prompt). As shown in Table 11, models trained with diverse prompts consistently
1144 outperform those trained with a single prompt across multiple benchmarks, demonstrating the clear
1145 advantage of prompt diversity in improving model performance.

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187