
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHARTMASTER: ADVANCING CHART-TO-CODE GEN-
ERATION WITH REAL-WORLD CHARTS AND CHART
SIMILARITY REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The chart-to-code generation task requires MLLMs to convert chart images into
executable code. This task faces two main challenges: limited data diversity and
the difficulty of maintaining visual consistency between generated charts and the
original ones. Existing datasets mainly rely on synthetic seed data to prompt GPT
models for code generation, resulting in homogeneous samples that limit model
generalization to real-world chart styles. To address this, we propose ReChart-
Prompt, leveraging real-world, human-designed charts extracted from arXiv pa-
pers as prompts. By harnessing the rich content and diverse visual styles of
arXiv charts, we construct ReChartPrompt-240K, a large-scale and highly diverse
dataset that better reflects realistic chart variations. For the second challenge, al-
though SFT improves code understanding by optimizing next-token prediction, it
does not provide direct supervision on visual features. As a result, it often fails to
guarantee that the generated charts visually match the original ones. To address
this, we propose ChartSimRL, a GRPO-based reinforcement learning algorithm
guided by a novel chart similarity reward. This reward consists of two compo-
nents: attribute similarity, which measures the overlap of chart attributes like
layout and color between the generated and original charts, and visual similar-
ity, which evaluates overall visual features, including texture, using convolutional
neural networks. Unlike traditional text-based rewards, our reward accounts for
the multimodal nature of the chart-to-code generation task, significantly enhanc-
ing the model’s ability to accurately reproduce charts. Integrating ReChartPrompt
and ChartSimRL, we develop the ChartMaster model, achieving SOTA results
among 7B-parameter models and rivaling GPT-4o on various chart-to-code bench-
marks. We will release all code, datasets, and models to facilitate further research.

1 INTRODUCTION

The chart-to-code generation task aims to automatically convert chart images into executable code
(Yang et al., 2024a), enabling applications including automated data analysis, report generation, and
intelligent question answering (Zhao et al., 2025; Rodriguez et al., 2024; Xia et al., 2023; Awal et al.,
2025). This task is challenging as it requires accurate visual understanding, cross-modal reasoning,
and advanced code synthesis. Although recent advances in Multimodal Large Language Models
(MLLMs) show promising results in various vision-language tasks, their performance on chart-to-
code generation remains limited due to the unique complexity of charts and the need for precise
code output.

Prior work, such as ChartCoder (Zhao et al., 2025), advanced the field by building the large
Chart2Code-160K dataset. This dataset is synthesized by guiding GPT-4o (Hurst et al., 2024) with
predefined chart attributes like chart type, color, and text. While this approach reduces the need for
costly manual annotations and achieves strong performance, relying on predefined attribute seeds
can introduce homogeneity and limit variability in the resulting dataset (see Appendix Fig. 5), po-
tentially restricting model generalization to diverse real-world charts.

To address this limitation, we introduce Real-world Chart Prompt Code Generation (ReChart-
Prompt), a novel automated pipeline that extracts real chart images from arXiv papers and lever-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Exec.Rate Low-Level High-Level
70

75

80

85

90

95

100

Sc
or

e
/ R

at
e

91.4

77.4

74.0

93.2

79.0

83.5

93.8

78.2

85.1

ChartMimic

Pass Rate Text-Match Rating*10
40

50

60

70

80

90

Sc
or

e
/ R

at
e

87.9

54.5

45.0

88.6

56.3 57.1

88.2

62.6

56.5

Plot2Code

ChartCoder-7B
GPT-4o
ChartMaster-7B

GPT-score
2.0

2.2

2.4

2.6

2.8

3.0

Sc
or

e
/ R

at
e

2.09

2.36

2.46

ChartX

Figure 1: Performance comparison on three benchmarks. Our method outperforms ChartCoder-7B
(Zhao et al., 2025), and matches or exceeds GPT-4o on certain metrics. For better representation,
the “Rating” metric in the Plot2Code benchmark is multiplied by 10.

ages the Qwen2.5-VL-72B model (Bai et al., 2025) to generate corresponding code. By collecting
30,071 papers and utilizing their author-designed charts as prompts, we construct ReChartPrompt-
240K, a large-scale dataset comprising 240K chart–code pairs. Since these charts originate from
papers across diverse research fields and exhibit a wide variety of design styles, the dataset cap-
tures rich visual and semantic diversity, as illustrated in Fig. 5. This heterogeneity enables effective
generalization to real-world scenarios.

While supervised fine-tuning with diverse data can help models generate better chart code, such
next-token prediction alone does not ensure the output charts are visually faithful to the references.
As shown in Fig. 4, the SFT model produces charts closer to the ground truth than the baseline, but
noticeable discrepancies remain in color, element positioning, and other visual attributes. To address
this, we propose ChartSimRL, a reinforcement learning algorithm based on Group Relative Policy
Optimization (GRPO) (Shao et al., 2024), guided by a novel chart similarity reward. Specifically,
the reward jointly considers (1) attribute similarity that evaluates the consistency of chart elements
such as textual content, numerical values, layout and color, and (2) visual similarity, which assesses
holistic visual resemblance using convolutional neural networks (e.g., ResNet (He et al., 2016)) to
extract and compare visual features. To the best of our knowledge, this is the first reward system
that explicitly enforces multimodal visual-semantic consistency for chart-to-code generation. By
encouraging models to produce code that renders charts both semantically accurate and visually
faithful, we address a critical gap in prior research and support more robust generalization to real-
world chart reproduction.

In summary, we introduce ChartMaster, an efficient framework for chart-to-code generation that
combines the ReChartPrompt data generation pipeline with the ChartSimRL reinforcement learning
strategy. Our key contributions are: (1) ReChartPrompt, an automated method for generating diverse
datasets from real-world charts; (2) ChartSimRL, a reinforcement learning algorithm that uses both
visual and attribute similarity to improve output; and (3) ChartMaster-7B, a compact model that
delivers near GPT-4o performance with only 7 billion parameters. Fig. 1 highlights its efficiency
and effectiveness.

2 RELATED WORK

2.1 MULTIMODAL CODE GENERATION

Multimodal large language models (MLLMs) have recently demonstrated strong capabilities in code
generation (Zhang et al., 2024a). Notably, MMCode (Li et al., 2024b) targets algorithmic problems
embedded in visually rich contexts, where tasks are accompanied by one or more images.

Among multimodal code generation tasks, chart-to-code translation has emerged as a critical chal-
lenge (Yang et al., 2024b). Existing benchmarks include Design2Code (Si et al., 2024), which
evaluates HTML generation using CLIP scores (Radford et al., 2021) and structural HTML metrics,
and Plot2Code (Wu et al., 2024), which assesses both code correctness and visual fidelity. However,
since the datasets for Design2Code and Plot2Code are sourced from the web, there is a risk of data

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

leakage, which may compromise the reliability of model evaluation. To address this issue, Chart-
Mimic (Yang et al., 2024a) provides a manually curated dataset of 4,800 chart-code pairs, along
with additional fine-grained evaluation metrics.

Despite these benchmarks, large-scale chart-to-code training datasets remain scarce. ChartCoder
(Zhao et al., 2025) addresses this by creating Chart2Code-160K, the first large-scale training set
generated by guiding GPT-4o with predefined chart attributes such as type, color, values, and titles.
It further employs the “Snippet of Thought” strategy (Zheng et al., 2023; Luo et al., 2024) to de-
compose code generation into structured steps, significantly boosting chart reasoning. Yet, reliance
on fixed attributes limits chart diversity. In contrast, our ReChartPrompt leverages real-world charts
from arXiv papers as prompts, yielding more diverse and representative chart–code pairs.

2.2 REINFORCEMENT LEARNING FOR MLLMS

Reinforcement learning (RL) effectively enhances model capabilities (Wang et al., 2024b; Milani
et al., 2024). For example, RL from human feedback (RLHF) (Bai et al., 2022) and direct pref-
erence optimization (DPO) (Rafailov et al., 2023) aligned model outputs with human preferences,
improving complex reasoning and output quality. Building on these advances, Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024) was proposed as a novel RL algorithm that updated
policies using relative rewards computed from groups of samples. DeepSeek-R1 (Guo et al., 2025)
employed simple yet effective rewards based on output accuracy and response format, which enabled
stable training and emergent reasoning such as reflection and “a-ha” moments.

Inspired by DeepSeek-R1’s success, recent work extended GRPO-based RL to MLLMs (Tan et al.,
2025; Zhang et al., 2025b; Peng et al., 2025; Shen et al., 2025) in two main directions. The first
adapts R1’s method to MLLMs—for instance, Vision-R1 (Huang et al., 2025) uses SFT data with
reflection for cold-start training and applies GRPO with accuracy- and format-based rewards. Sim-
ilarly, MM-EUREKA (Meng et al., 2025) refines reward design and loss functions, successfully
reproducing the visual “aha moment,” where the model revisits images “upon closer inspection.”
These works primarily focus on mathematical reasoning tasks. The second direction applies GRPO
to broader tasks such as chart understanding (Masry et al., 2025b), visual perception (Yu et al., 2025),
segmentation (Liu et al., 2025), and grounding (Zhang et al., 2025a), demonstrating its robustness
and generalizability across domains.

However, to our knowledge, GRPO has not been applied to chart-to-code generation, mainly due to
the challenge of designing reward functions that encourage generated code to faithfully reproduce
charts both semantically and visually. We address this by proposing a novel chart similarity reward,
significantly improving chart reproduction quality.

3 METHOD

Fig. 2 illustrates the overall framework of ChartMaster, which consists of two main stages: data
generation and model training.

3.1 USING REAL-WORLD CHARTS TO GENERATE DATASET

To improve dataset diversity, we use real-world chart images as input to guide code generation, as
shown in Fig. 2 (a). This approach captures richer styles and content that predefined attribute seeds
cannot represent.

(1) Collecting Images from arXiv. We leverage the arXiv API and Python’s requests library to
download paper source files, including LaTeX sources and image files (.pdf, .png, .jpg). To
ensure diversity, we query source files related to top conferences (e.g., ICLR) and journals (e.g.,
TPAMI), extracting all images for subsequent processing.

(2) Filtering Non-Chart Images. Since extracted images include various diagrams beyond charts,
we use the Qwen2.5-VL-72B model to classify images into 12 predefined chart categories. Images
outside these categories are discarded. Classification is performed by prompting the model with
Ptype (see Fig. 6 in Appendix) to assign chart types.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) ReChartPrompt: Use Real-World Charts to Prompt Code Generation

𝑂1, … , 𝑂𝑀
𝐼, 𝑇, 𝑌 Execute

0

1.2

0.8

1.6

𝑅3
𝑎𝑡𝑡𝑟 + 𝑅3

𝑣𝑖𝑠

𝑅4
𝑎𝑡𝑡𝑟 + 𝑅4

𝑣𝑖𝑠Model

GRPO

𝑅2
𝑎𝑡𝑡𝑟 + 𝑅2

𝑣𝑖𝑠

𝑅𝑖

(b) ChartSimRL: GRPO with Chart Similarity Reward

𝐼

෡𝐼𝑖 𝑅𝑖
𝑣𝑖𝑠 =

1

4
෍

k=1

4

cos(𝐟𝑘, መ𝐟𝑘
𝑖
)

𝒢

ℱ

𝑅𝑖
𝑎𝑡𝑡𝑟 =

|Ai ∩ A∗|

|Ai ∪ A∗|

𝐟1 𝐟2 𝐟3 𝐟4

መ𝐟1
(𝑖) መ𝐟2

(𝑖) መ𝐟3
(𝑖) መ𝐟4

(𝑖)

Color: ('#008000', '#32cd32', '#800080',…)

Number: (24.083, 17.159, 20.217, …)

Text: ('InceptionV3', 'Resnet101', 'Accuracy ', …)

Layout: ('[('col_end', 0), ('col_start', 0), ('ncols', 1), …]')

Color: ('#32cd32', '#9932cc', '#9acd32',…)

Number: (23.112, 18.017, 20.564, …)

Text: ('InceptionV3', 'Resnet101', 'InceptionV4', …)

Layout: ('[('col_end', 0), ('col_start', 0), ('ncols', 1), …]')

𝐴∗

𝐴𝑖

(c) Calculation of Attribute Similarity and Visual Similarity

Collect Images from arXiv Filter Non-Charts

𝑃𝑡𝑦𝑝𝑒
Execute, Filter FailuresGenerate Code

𝐏𝑟𝑒𝑐ℎ𝑎𝑟𝑡: … Generate

Python code …

Figure 2: The overall framework of ChartMaster. (a) Real-world charts from arXiv are curated to
create the ReChartPrompt-240K dataset for SFT (SFT is omitted in the figure). (b) The model is
further optimized with ChartSimRL. (c) The definition of Chart Similarity: G denotes the semantic
attribute extraction tool; F is the CNN-based feature extractor; and f is the extracted feature vector.

(3) Generating code with ReChartPrompt. The Qwen2.5-VL-72B model has demonstrated strong
chart-to-code generation capabilities. As an open-source model, it is easily deployed via the vLLM
framework (Kwon et al., 2023), making it well-suited for large-scale data generation. We design a
set of 20 chart-to-code prompts to enrich instruction diversity, collectively referred to as Prechart (see
Fig. 7 in Appendix). Below is an example: <Real-World Chart>Please generate Python matplotlib
code to recreate the picture shown.

(4) Code Execution, Filtering, and Dataset Construction. Generated code snippets may suffer
from two issues: (a) execution errors caused by non-existent packages or syntax mistakes, and (b)
discrepancies between the generated charts and the original images. To mitigate these problems,
we execute all generated code and discard those that fail at runtime. We then pair the successfully
executed code outputs with their generated images and instructions to form the final training triplets.

Summary. We download 30,071 papers from arXiv and extract their figures, filtering out non-chart
ones to obtain 288,992 chart images. Using these charts, the Qwen2.5-VL-72B model generates cor-
responding code. After executing the generated code and removing failed cases, we collect 242,479
high-quality triplets that constitute the ReChartPrompt-240K dataset. Formally, the dataset is de-
fined as D = {(Ii, Ti, Yi)}Ni=1, where Ii represents a chart image, Ti ∈ Prechart is the instruction
prompt, and Yi denotes the executable code. Notably, all real-world chart data and generation mod-
els employed in this process are open-source, ensuring minimal cost and excellent scalability.

3.2 TRAINING CHARTMASTER: SFT AND CHARTSIMRL

ChartMaster is trained in two stages: (1) SFT on the ReChartPrompt-240K dataset to establish a
solid foundation; and (2) further optimized with ChartSimRL to address the limitations of SFT’s
next-token prediction in maintaining visual consistency.

Supervised Fine-Tuning. We conduct SFT by maximizing the likelihood of ground-truth code Yi

given chart image Ii and instruction Ti:

JSFT(θ) = − 1

N

N∑
i=1

log πθ(Yi | Ii, Ti).

Reinforcement Learning with ChartSimRL. While SFT strengthens the model’s basic capability,
discrepancies may still exist between the generated charts and the originals (see Fig. 4). To fur-
ther improve reproduction fidelity, we continue training the model using ChartSimRL, as illustrated
in Fig. 2 (b). Specifically, for each training sample (I, T, Y), the model samples a group of M

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

candidate codes:
{O1, O2, . . . , OM} ∼ πθ(· | I, T).

Each candidate code Oi is then executed to generate a chart image Îi, which is subsequently com-
pared with the original chart Ii to compute a Chart Similarity Reward. If the execution of Oi fails,
the corresponding reward is set to zero.

Chart Similarity Reward. Traditional reward functions, such as the accuracy reward used in (Guo
et al., 2025; Huang et al., 2025), primarily assess the consistency between generated text and ground-
truth text. However, the chart-to-code task is inherently multimodal, involving both code and gener-
ated charts, requiring evaluation of not only semantic correctness but also visual alignment. To this
end, we design a novel chart similarity reward as:

Ri = Rattr
i +Rvis

i .

Here, Rattr
i measures the semantic consistency, and Rvis

i captures visual similarity (see Fig. 2 (c)).

Attribute Similarity: We develop a semantic attribute extraction tool based on the ChartMimic code-
base Yang et al. (2024a), denoted G(·), to obtain attribute sets from chart images and their code.
Given Ai = G(Îi, Oi) and A∗ = G(I, Y), the semantic similarity Rattr

i is computed as their Jac-
card similarity:

Rattr
i =

|Ai ∩ A∗|
|Ai ∪ A∗|

∈ [0, 1].

By design, Rattr
i = 1 indicates a perfect match of semantic attributes, while lower values reflect

semantic discrepancies. To accommodate minor numerical variations, we consider numerical values
a ∈ Ai and b ∈ A∗ matching if |a− b| ≤ 0.01× |b|.
Visual Similarity: We use a pretrained ResNet-18 network (He et al., 2016) F = {F1,F2,F3,F4}
to extract feature maps from both I and Îi. Here, Fk(·) ∈ RCk×Hk×Wk denotes the output feature
map of the k-th residual block. We extract the feature map and flatten them into vectors like:

Fk = Fk(I), F̂
(i)
k = Fk(Îi),

fk = vec(Fk) ∈ Rdk , f̂
(i)
k = vec(F̂

(i)
k) ∈ Rdk ,

where dk = Ck ×Hk ×Wk. The visual similarity reward is defined as the average cosine similarity
between the corresponding feature vectors,

Rvis
i =

1

4

4∑
k=1

fk · f̂ (i)k

∥fk∥ ∥f̂ (i)k ∥
∈ [0, 1].

Chart Similarity Reinforcement Learning. We normalize rewards within a group of M candidates
to compute relative advantages:

Âi =
Ri −mean({Rj}Mj=1)

std({Rj}Mj=1)
,

where mean(·) and std(·) denote the sample mean and standard deviation, respectively.

Following the GRPO framework (Shao et al., 2024), we update the model by maximizing the clipped
surrogate objective with a KL penalty to stabilize training:

JChartSimRL(θ) = E(I,T)∼pD, {oi}M
i=1∼πold(·|I,T)

[
1

M

M∑
i=1

min
(πθ(oi|I, T)
πold(oi|I, T)

Âi,

clip
(πθ(oi|I, T)
πold(oi|I, T)

, 1− ϵ, 1 + ϵ
)
Âi

)
− βDKL

(
πθ(·|I, T)∥πref(·|I, T)

)]
,

where πold is the previous policy, πref is the reference policy, ϵ is the clipping hyperparameter, and
β controls the KL regularization strength.

ChartSimRL guides the model to generate chart code that better aligns with the original charts’ se-
mantic and visual properties, significantly improving chart-to-code generation performance beyond
what is achievable by supervised fine-tuning alone.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results of various MLLMs. Reported results are taken from existing benchmarks
when available; missing results are supplemented using official codebases and are marked with ∗.
Among open-source 7B-scale models, our method achieves the best performance.

Model ChartMimic Plot2Code ChartX
Exec.Rate Low-Level High-Level Pass Rate Text-Match Rating GPT-score

Full score 100 100 100 100 100 10 5

Closed-Source Model

GeminiProVision (Team et al., 2023) 68.2 53.8 53.3 68.2 53.6 3.69 -
Claude-3-opus (Anthropic, 2024) 83.3 60.5 60.1 84.1 57.5 3.80 -
GPT-4V (Hurst et al., 2024) 91.2 76.4 78.9 84.1 57.7 5.58 2.63
GPT-4o (Hurst et al., 2024) 93.2 79.0 83.5 88.6 56.3 5.71 2.36∗

Open-Source Model

ChartAssisstant-13B (Meng et al., 2024) - - - - - - 0.82
ChartVLM-L-14B (Xia et al., 2024) 19.5 15.8 13.9 - - - 1.58
DeepSeek-VL-7B (Lu et al., 2024) 41.3 19.0 17.6 64.4 32.6 2.26 -
TinyChart-3B (Zhang et al., 2024b) 42.5 26.3 25.9 43.2 44.6 2.19 1.89
ChartLlama-13B (Han et al., 2023) 57.5 24.8 28.1 58.4 40.3 2.32 0.94
LLaVA-Next-Mistral-7B (Li et al., 2024a) 59.7 20.7 21.3 72.0 38.7 2.87 -
InternVL2-8B (Chen et al., 2024) 61.8 34.4 38.9 77.3 37.1 2.78 1.63
Qwen2-VL-7B (Wang et al., 2024a) 67.0 32.9 35.0 68.2 33.8 3.10 1.50
MiniCPM-Llama3-V2.5-8B (Yao et al., 2024) 80.3 36.6 42.1 76.3 37.3 2.61 1.66
Qwen2-VL-72B (Wang et al., 2024a) 73.3 54.4 50.9 72.0 53.4 4.26 1.69
InternVL2-Llama3-76B (Chen et al., 2024) 83.2 54.8 62.2 85.6 46.6 3.89 1.74
Qwen2.5-VL-72B∗ (Bai et al., 2025) 88.5 72.7 79.1 84.8 68.4 6.83 2.52
ChartCoder-7B (Zhao et al., 2025) 91.4 77.4 74.0 87.9 54.5 4.50 2.09
Qwen2.5-VL-7B∗ (Baseline) (Bai et al., 2025) 65.5 39.9 40.7 67.4 43.8 4.60 2.18
ChartMaster-7B 93.8 78.2 85.1 88.2 62.6 5.65 2.46

Summary. ReChartPrompt and ChartSimRL have been effectively integrated into the ChartMaster
framework. This framework not only leverages real-world data for enhanced data diversity but also
employs a novel algorithm to ensure visual and semantic alignment in chart reproduction. Con-
sequently, ChartMaster stands as a comprehensive solution for the chart-to-code generation task,
demonstrating marked improvements in performance and generalization capabilities.

4 EXPERIMENT

4.1 COMPARISON WITH SOTA

We instantiate ChartMaster on the Qwen2.5-VL-7B backbone, resulting in the ChartMaster-7B
model, and conduct comprehensive comparisons with a range of MLLMs. The detailed implementa-
tion and evaluation protocols are provided in the Appendix B. As shown in Table 1, ChartMaster-7B
achieves state-of-the-art performance among open-source models at the 7B scale, showing com-
petitive performance against GPT-4o. Notably, ChartMaster-7B consistently outperforms the base-
line Qwen2.5-VL-7B across all metrics; for instance, in the ChartMimic benchmark, it improves
both low-level and high-level metrics by about 40 percentage points. Furthermore, although our
training dataset is derived from the larger Qwen2.5-VL-72B model—essentially a distillation-like
setting—ChartMaster-7B still surpasses Qwen2.5-VL-72B on several benchmarks. These results
convincingly demonstrate the effectiveness of the ChartMaster framework.

4.2 ABLATION STUDY

Ablation study on ChartMaster. To assess the contribution of each component, we conduct an ab-
lation study as summarized in Table 2. The base Qwen2.5-VL-7B model, without ReChartPrompt
or ChartSimRL, demonstrates limited performance across benchmarks, revealing its restricted abil-
ity in both code generation and visual/semantic understanding. SFT with the ReChartPrompt-240K
dataset leads to significant improvements in all metrics, demonstrating the high quality and effec-
tiveness of ReChartPrompt-240K for chart-to-code generation. Additionally, applying ChartSimRL
alone also significantly improves the baseline model’s performance. This enhancement is attributed
to our well-designed reward function, which effectively captures the semantic and visual features
of the charts, optimizing the model’s ability to generate code that closely aligns with the original

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on the contribution of each key component.

ReChartPrompt ChartSimRL ChartMimic Plot2Code ChartX
Exec.Rate Low-Level High-Level Pass Rate Text-Match Rating GPT-score

65.5 39.9 40.7 67.4 43.8 4.60 2.18
✓ 91.1 73.7 80.9 80.3 59.3 5.34 2.36

✓ 83.6 58.6 57.6 72.7 50.8 5.19 2.23
✓ ✓ 93.8 78.2 85.1 88.2 62.6 5.65 2.46

Table 3: Ablation study of the Attribute
and Visual similarity components in Chart-
SimRL.

Rattr
i Rvis

i
ChartMimic

Exec.Rate Low-Level High-Level
91.1 73.7 80.9

✓ 92.1 76.2 83.9
✓ 92.1 77.7 84.3

✓ ✓ 93.8 78.2 85.1

Table 4: Ablation study of different attribute simi-
larity metrics on the ChartMimic benchmark.

Rattr
i Formula ChartMimic

Exec.Rate Low-Level High-Level
- - 91.1 73.7 80.9

Precision |Ai∩A∗|
|Ai| 90.0 72.6 79.0

Recall |Ai∩A∗|
|A∗| 90.6 74.7 81.7

F1 |Ai∩A∗|
(|Ai|+|A∗|)/2 91.6 75.4 84.5

Jaccard |Ai∩A∗|
|Ai∪A∗| 92.1 76.2 83.9

charts. Therefore, further applying ChartSimRL on top of ReChartPrompt yields consistent perfor-
mance gains, achieving optimal results.

Ablation study on ChartSimRL. ChartSimRL introduces a novel multimodal chart similarity re-
ward that combines both semantic similarity (Rattr

i) and visual similarity (Rvis
i) between the can-

didate and original charts. To dissect the contribution of each component, we conduct ablation
experiments summarized in Table 3. The results show that employing either Rattr

i or Rvis
i alone

consistently improves performance across all evaluated metrics. Notably, the visual similarity re-
ward yields more substantial gains, underscoring the critical importance of preserving visual fidelity
in chart-to-code generation. Moreover, combining both rewards achieves the best overall results,
demonstrating the advantage of a multi-faceted reward design that simultaneously captures seman-
tic and visual aspects.

Ablation study on Attribute Similarity. We adopt Jaccard similarity as a stringent metric for at-
tribute similarity, whereby a candidate table achieves a perfect score only if its attribute set exactly
matches that of the ground truth; even minor discrepancies incur penalties. To thoroughly assess the
impact of different attribute similarity measures—Precision, Recall, F1 score, and Jaccard similar-
ity—we conduct experiments on the ChartMimic benchmark, with results summarized in Table 4.

Our findings indicate that optimizing exclusively for Precision may lead to a slight decline in over-
all performance, as the model can achieve high Precision by predicting a limited subset of correct
attributes while neglecting overall coverage. In contrast, Recall emphasizes coverage, which helps
mitigate this issue and yields modest improvements. The F1 score, by harmoniously balancing
Precision and Recall, further alleviates extreme biases and delivers enhanced overall performance.
Notably, Jaccard similarity, measuring the intersection over union between predicted and reference
attribute sets, enforces stricter penalties on both missing and redundant attributes. This higher over-
lap requirement enables Jaccard similarity to more faithfully capture the true semantic similarity
between attribute sets, thereby resulting in the best overall performance.

Ablation Study on Visual Similarity. We use ResNet-18 (He et al., 2016) to extract features from
charts to compute visual similarity. In fact, there are numerous methods to measure the similarity
between two charts. To investigate the impact of different visual similarity metrics on model perfor-
mance, we conduct an ablation study summarized in Table 5. Standard metrics such as MSE, SSIM
(Wang et al., 2004), and PSNR (Hore & Ziou, 2010) primarily evaluate pixel-level or structural
similarity (details in Appendix C). The table shows that these metrics generally perform worse than
more advanced methods. Notably, SSIM exhibits a significant decline in performance, indicating
that pixel-based measures struggle to capture the complex visual nuances necessary for effective
chart-to-code generation.

In contrast, CNN-based metrics like AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zis-
serman, 2014), and ResNet (He et al., 2016), which compare features in a learned representation
space, consistently outperform both the baseline and pixel-level metrics across all evaluation crite-
ria. Among them, ResNet-18 achieves the highest performance, highlighting the effectiveness of
deep visual features.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Numeric Color Text Layout

29933

231

3482
28

36860 238 7066 63

Diversity Comparison Across Different Attributes
Chart2Code-160K
ReChartPromp-160K

Exec.Rate Low-Level High-Level30

40

50

60

70

80

90

100

Sc
or

e
/ R

at
e

65.5

39.9 40.7

86.8

70.0
74.8

89.8

72.5

78.3

Performance Comparison on ChartMimic Benchmark
Qwen2.5-VL-7B
+Chart2Code-160K
+ReChartPromp-160K

Figure 3: Comparison of diversity and fine-tuning results between Chart2Code-160K and
ReChartPrompt-160K datasets.

For MLLM-based metrics, we leverage the high-level similarity prompt from ChartMimic combined
with Qwen-2.5-VL-72B to evaluate the similarity between generated and reference charts. These
metrics show improvements over the baseline. However, they still fall short of the best CNN-based
metrics, suggesting that although MLLMs possess strong semantic understanding, further optimiza-
tion is required for specialized visual tasks such as chart-to-code generation.

Table 5: Ablation study of different visual simi-
larity metrics on the ChartMimic benchmark.

Rvis
i

ChartMimic
Exec.Rate Low-Level High-Level

- 91.1 73.7 80.9

Standard Metrics:

MSE 91.1 73.6 77.9
SSIM 82.5 65.2 74.6
PSNR 91.4 75.1 82.1

CNN-Based Metrics:

AlexNet 90.3 74.7 82.6
VGG 91.3 75.5 83.3

ResNet-18 92.1 77.7 84.3
MLLM-Based Metrics:

Qwen-2.5-VL-72B 91.7 77.5 83.9

Comparison with Advanced Dataset. To
comprehensively evaluate the diversity and
quality of our dataset, we compare it with
Chart2Code-160K (Zhao et al., 2025). For a
fair comparison, we randomly sample 160K in-
stances from our full dataset to construct the
ReChartPromp-160K subset. Using the at-
tribute extraction tool G(·), we count unique
chart attributes—including numerical values,
colors, textual elements, and layouts—in both
datasets. A higher number of unique attributes
indicates greater attribute diversity. As shown
in the left panel of Fig. 3, ReChartPromp-160K
exhibits a substantially richer attribute distribu-
tion across all categories, notably in text and
layout. This advantage stems primarily from
Chart2Code-160K’s reliance on seed data sources, which results in repeated attribute patterns,
whereas ReChartPromp-160K samples from distinct arXiv papers, ensuring broader coverage and
less redundancy (see Appendix Fig. 5). This higher diversity brings clear benefits: as illustrated in
the right panel, models fine-tuned on ReChartPromp-160K consistently outperform those trained on
Chart2Code-160K, demonstrating the importance of attribute diversity for robust and effective chart
understanding and code generation.

4.3 QUALITATIVE ANALYSIS

Based on extensive experiments, we observe that ReChartPrompt generates charts with diverse and
rich attributes, enabling the construction of a high-quality dataset that substantially enhances model
performance. Building upon the distinctive features of the chart-to-code generation task, we propose
the ChartSimRL algorithm, which further enhances the model’s capabilities. To comprehensively
analyze the improvements brought by these contributions, we conduct a qualitative comparison of
generated charts at different training stages on the ChartMimic benchmark (Fig. 4). Our key findings
are summarized as follows: (1) The baseline model produces basic chart layouts but often fails
to replicate fine-grained visual details, leading to noticeable discrepancies between generated out-
puts and reference charts. (2) Fine-tuning the base model on our ReChartPrompt-240K dataset
(“Base.+ReCha.”) significantly improves chart-to-code generation accuracy. This improve-
ment arises from the diverse, high-quality training data generated by conditioning on real-world

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

G
ro

u
n

d
 T

ru
th

B
a

se
li

n
e

C
h

a
rt

M
a

st
er

G
P

T
-4

o
B

a
se

.+
R

eC
h

a
.

Figure 4: The test results of various models on the ChartMimic benchmark. “Base.+ReCha.” refers
to the baseline model fine-tuned with the ReChartPrompt-240K dataset. Incorporating ReChart-
Prompt significantly enhances the chart-to-code generation capability of the base model, while
ChartSimRL further improves the handling of fine details.

chart prompts. Nonetheless, minor issues remain, such as slight mismatches in color or element po-
sitioning compared to the ground truth, indicating that supervised fine-tuning alone does not achieve
perfect visual consistency. (3) Incorporating the ChartSimRL algorithm further improves both
visual and semantic alignment. Notably, the model demonstrates enhanced color accuracy (as
seen in the first column of Fig. 4) and more faithful reproduction of arrow styles in the second col-
umn, reflecting improved attention to key factual details. (4) ChartMaster competes favorably
with GPT-4o. Notably, the ChartMaster-7B model can generate charts that more closely resem-
ble the ground truth than those from GPT-4o, especially excelling in “mimicking” chart attributes.
Additional generation results in Appendix Fig. 8 consistently support these conclusions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 CONCLUSION

In this paper, we propose ChartMaster, a novel chart-to-code generation framework paired with
a tailored reinforcement learning algorithm. By introducing ReChartPrompt, we address data
homogeneity issues in prior work and build a highly diverse ReChartPrompt-240K dataset. Our
ChartSimRL algorithm combines semantic and visual similarity rewards, enabling the model to
generate chart code that closely matches original visuals. Experiments show ChartMaster achieves
performance on par with GPT-4o in chart-to-code tasks. We will open source all resources to foster
community development and advance research in this area.

Beyond its technical innovations, ChartMaster supports automated scientific reporting and empow-
ers data-driven decision-making across a wide range of domains. While our current framework
targets common chart types and Python-based code, expanding its scope to include a wider range of
chart formats and programming languages is an exciting direction for future work.

REFERENCES

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.
com/news/claude-3-family.

Rabiul Awal, Mahsa Massoud, Aarash Feizi, Zichao Li, Suyuchen Wang, Christopher Pal, Aish-
warya Agrawal, David Vazquez, Siva Reddy, Juan A Rodriguez, et al. Webmmu: A benchmark for
multimodal multilingual website understanding and code generation. In Proceedings of the 2025
Conference on Empirical Methods in Natural Language Processing, pp. 25129–25156, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. Chartllama: A multimodal llm for chart understanding and generation. arXiv preprint
arXiv:2311.16483, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pp. 2366–2369. IEEE, 2010.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
arXiv preprint arXiv:2503.06749, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

10

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. Dvqa: Understanding data visual-
izations via question answering. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5648–5656, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024a.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiyong Huang, and Jing Ma. Mmcode: Bench-
marking multimodal large language models for code generation with visually rich programming
problems. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 736–
783, 2024b.

Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
zero: Reasoning-chain guided segmentation via cognitive reinforcement. arXiv preprint
arXiv:2503.06520, 2025.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525, 2024.

Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Libo Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. Python is not always the best choice: Embracing multilingual program of
thoughts. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 7185–7212, 2024.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. In Findings of the
association for computational linguistics: ACL 2022, pp. 2263–2279, 2022.

Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman
Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmoham-
madi, et al. Chartqapro: A more diverse and challenging benchmark for chart question answering.
arXiv preprint arXiv:2504.05506, 2025a.

Ahmed Masry, Abhay Puri, Masoud Hashemi, Juan A Rodriguez, Megh Thakkar, Khyati Maha-
jan, Vikas Yadav, Sathwik Tejaswi Madhusudhan, Alexandre Piché, Dzmitry Bahdanau, et al.
Bigcharts-r1: Enhanced chart reasoning with visual reinforcement finetuning. arXiv preprint
arXiv:2508.09804, 2025b.

Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo.
Chartassisstant: A universal chart multimodal language model via chart-to-table pre-training and
multitask instruction tuning. arXiv preprint arXiv:2401.02384, 2024.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
Han, Botian Shi, Wenhai Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multi-
modal reasoning with rule-based reinforcement learning. arXiv preprint arXiv:2503.07365, 2025.

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over
scientific plots. In Proceedings of the ieee/cvf winter conference on applications of computer
vision, pp. 1527–1536, 2020.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable reinforcement learn-
ing: A survey and comparative review. ACM Computing Surveys, 56(7):1–36, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
abilities through two-stage rule-based rl. arXiv preprint arXiv:2503.07536, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Juan Rodriguez, Xiangru Jian, Siba Smarak Panigrahi, Tianyu Zhang, Aarash Feizi, Abhay Puri, Ak-
shay Kalkunte, François Savard, Ahmed Masry, Shravan Nayak, et al. Bigdocs: An open dataset
for training multimodal models on document and code tasks. arXiv preprint arXiv:2412.04626,
2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far
are we from automating front-end engineering? arXiv e-prints, pp. arXiv–2403, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. arXiv preprint
arXiv:2503.20752, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of llm alignment tech-
niques: Rlhf, rlaif, ppo, dpo and more. arXiv preprint arXiv:2407.16216, 2024b.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. arXiv preprint arXiv:2405.07990, 2024.

Renqiu Xia, Bo Zhang, Haoyang Peng, Hancheng Ye, Xiangchao Yan, Peng Ye, Botian Shi, Yu Qiao,
and Junchi Yan. Structchart: Perception, structuring, reasoning for visual chart understanding.
arXiv preprint arXiv:2309.11268, 2023.

Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng
Ye, Min Dou, Botian Shi, et al. Chartx & chartvlm: A versatile benchmark and foundation model
for complicated chart reasoning. arXiv preprint arXiv:2402.12185, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating lmm’s cross-modal reasoning capability
via chart-to-code generation. arXiv preprint arXiv:2406.09961, 2024a.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, et al. Matplotagent: Method and evaluation for llm-based agentic
scientific data visualization. In Findings of the Association for Computational Linguistics ACL
2024, pp. 11789–11804, 2024b.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yana Wei, Yuang Peng, Haoran Wei, Jianjian Sun,
Chunrui Han, Zheng Ge, et al. Perception-r1: Pioneering perception policy with reinforcement
learning. arXiv preprint arXiv:2504.07954, 2025.

Bob Zhang, Haoran Li, Tao Zhang, Cilin Yan, Jiayin Cai, Xiaolong Jiang, and Yanbin Hao. Improv-
ing the reasoning of multi-image grounding in mllms via reinforcement learning. arXiv preprint
arXiv:2507.00748, 2025a.

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin, Xiao Li, Xiao Yu, Yue Wang, Bei Chen,
and Jacky Keung. Humaneval-v: Evaluating visual understanding and reasoning abilities of large
multimodal models through coding tasks. arXiv preprint arXiv:2410.12381, 2024a.

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
relative policy optimization. arXiv preprint arXiv:2503.12937, 2025b.

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang.
Tinychart: Efficient chart understanding with visual token merging and program-of-thoughts
learning. arXiv preprint arXiv:2404.16635, 2024b.

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, and Maosong Sun. Chart-
coder: Advancing multimodal large language model for chart-to-code generation. arXiv preprint
arXiv:2501.06598, 2025.

Wenqing Zheng, SP Sharan, Ajay Kumar Jaiswal, Kevin Wang, Yihan Xi, Dejia Xu, and Zhangyang
Wang. Outline, then details: Syntactically guided coarse-to-fine code generation. In International
Conference on Machine Learning, pp. 42403–42419. PMLR, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chart2Code-160K

ReChartPrompt

Figure 5: Dataset visualization. The charts in Chart2Code-160K exhibit homogenization, which
affects diversity; the charts in ReChartPrompt demonstrate greater variety, especially in terms of
textual content within the tables and layout attributes.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You are given an image that represents one type of chart or plot. The possible plot types are:

[Bar, Line, ErrorBar, Heatmap, Box, Scatter, Hist, Radar, 3D, Pie, ErrorPoint, Violin]

Please carefully examine the given image and identify which one of the above plot types it belongs to.

- If the image clearly matches one of the plot types, respond with the exact name of that plot type (choose only one).

- If the image does not belong to any of these categories or is not a plot, respond with: None

Your answer should be exactly one word from the list above or None, nothing else.

𝑷𝒕𝒚𝒑𝒆

Figure 6: Prompt used for chart type classification (Ptype). The Qwen2.5-VL-72B model is prompted
with this template to assign each image to one of 12 predefined chart categories.

"You are an expert Python developer specializing in matplotlib. Based on the picture I provide, please write Python code using matplotlib to precisely reproduce the image.",

"As a skilled Python programmer with matplotlib expertise, please generate Python code that recreates the given image exactly.",

"You're an experienced matplotlib developer. Given the picture below, please write Python code that recreates it faithfully.",

"Please act as a Python matplotlib specialist and generate the Python code that reproduces the image shown below.",

"You are an expert in Python plotting using matplotlib. Create Python code to generate a plot identical to the provided picture.",

"Your task is to write matplotlib Python code that perfectly replicates the given image.",

“Imagine you are an expert Python coder who can write matplotlib code to duplicate images. Please generate code that reproduces the picture exactly.",

"You are requested to produce Python code using matplotlib that recreates the image below as closely as possible.",

"As a professional matplotlib developer, write Python code to visualize the given image precisely.",

"Please generate Python matplotlib code to recreate the picture shown.",

"You are a helpful assistant who can generate Python code using matplotlib. Please produce code to create a plot that closely resembles the given image, enclosed within ```python and ```.",

"You are a knowledgeable assistant specializing in matplotlib. Generate Python code that recreates the provided plot as closely as possible. The code should be wrapped in ```python and ```.",

"As a matplotlib expert assistant, please generate Python plotting code that replicates the given image. Output your code between ```python and ```.",

"You are a helpful bot that writes matplotlib Python code. Please provide the code to produce a plot that matches the image, wrapped in ```python and ```.",

"Your task is to produce matplotlib Python code that draws a plot visually similar to the given image. Enclose your code in ```python and ```.",

"You are a Python coding assistant with matplotlib skills. Please write code surrounded by ```python and ``` that recreates the given plot as closely as possible.",

"As an assistant proficient in matplotlib, generate Python code that reproduces the pictured plot. Your code should be enclosed in ```python and ```.",

"Generate Python matplotlib code that produces a plot similar to the provided image. Wrap the code inside ```python and ```.",

"You are an expert assistant that creates matplotlib Python code. Please write code enclosed in ```python and ``` that recreates the given picture as faithfully as possible.",

"Please generate Python code using matplotlib to produce a plot matching the given image, wrapped by ```python and ```. "

𝑷𝒓𝒆𝒄𝒉𝒂𝒓𝒕

Figure 7: Prompt for chart-to-code generation (Prechart). Twenty diverse prompts are designed to
instruct the Qwen2.5-VL-72B model to generate Python matplotlib code from chart images, en-
hancing instruction diversity.

G
ro

u
n

d
 T

ru
th

B
a
se

li
n

e
B

a
se

.+
R

eC
h

a
.

C
h

a
rt

M
a
st

er
G

P
T

-4
o

Figure 8: More test results of various models on the ChartMimic benchmark.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DATA AUDITING

We provide a comprehensive summary of dataset statistics across each stage of data curation:

Table 6: Summary of Dataset Auditing Statistics by Data Curation Stage
Stage Statistic
Stage 1: Collecting Images from arXiv Total images crawled: 477,788
Stage 2: Filtering Non-Chart Images Total chart images filtered: 288,992
Stage 2: Chart-type misclassification rate 44 / 1000 = 4.4% (manual check, 1000 samples from filtered charts)
Stage 3: Generating code with ReChartPrompt Valid training samples (charts with executable code): 242,479
Stage 4: Code Execution and Filtering Code execution pass rate: 242,479 / 288,992 = 83.9%
Stage 4: Inter-annotator checks Not required; successful code execution ensures reliable chart-code pairing

1. Chart-type misclassification (Stage 2). To assess data quality, we randomly sample 1,000 chart
images after the initial filtering stage and manually check for chart-type misclassification. Among
these, 44 images (4.4%) contain both chart and non-chart elements but are classified as charts. In
the subsequent Stage 4, only one of these 44 misclassified images successfully generates executable
code; the remaining samples typically fail due to referencing non-existent files or incomplete code.
Thus, the vast majority of noise is filtered out. Some examples can be found in Figure A of the
supplementary materials.

2. Inter-annotator checks (Stage 4). Our pipeline relies on automatic code execution for validation,
so manual inter-annotator agreement checks can be omitted.

3. Style-consistent reproductions. We clarify that our pipeline does not require replotted charts
to be visually identical or style-consistent to the originals. Instead, the original charts are used to
inspire diverse outputs, while code executability ensures each chart-code pair is valid. This design
makes our dataset both diverse and reliable, while also simplifying the pipeline and reducing manual
effort.

4. Judging noise, coverage, and bias. ReChartPrompt leverages real-world chart images from
arXiv, resulting in diverse distributions and rich attribute coverage. Our dataset includes a wide
variety of content and visual styles, which helps reduce bias and increase coverage compared to
previous datasets. Code execution filtering further minimize noise. Figures 3 and 5 in the paper
illustrate the attribute diversity and coverage of our dataset.

B IMPLEMENTATION AND EVALUATION DETAILS

ChartMiMic Plot2Code ChartX

Prompt You are an expert Python developer who specializes in writing

matplotlib code based on a given picture. I found a very nice

picture in a STEM paper, but there is no corresponding source code

available. I need your help to generate the Python code that can

reproduce the picture based on the picture I provide.

Note that it is necessary to use figsize=(X, Y) to set the image size

to match the original size.

Now, please give me the matplotlib code that reproduces the

picture below.

You are a helpful assistant that can generate

Python code using matplotlib.Generate the

matplotlib code to create a plot that looks like

the given image, as similar as possible.The

generated code should be surrounded by

```python and ```

Redraw the chart image

using Python code.

Decoding 

Parameters

context_length: 4096

max_tokens: 4096

temperature: 0.1

top_p: 1

context_length: 4096

max_tokens: 4096

temperature: 0.1

top_p: 1

context_length: 4096

max_tokens: 4096

temperature: 0.1

top_p: 0.9

Figure 9: Test prompts and decoding settings of benchmarks.

During the collection of arXiv papers, we explicitly exclude papers that are used as benchmarks to
avoid potential data leakage. In the data generation stage, we apply a greedy sampling strategy to
filter chart data, retaining only images of 12 predefined chart types and discarding all others. Then,
we randomly select an instruction from Prechart to prompt the Qwen2.5-VL-72B (Bai et al., 2025)
model to generate code via nucleus sampling, with a temperature of 0.1 and a top-p of 0.9.

For training, we use the Qwen2.5-VL-7B model (Bai et al., 2025) in two stages. In Stage 1, we
perform SFT on the entire ReChartPrompt-240K dataset with a learning rate of 2 × 10−5, batch
size 128, and a cosine annealing scheduler for one epoch; the resulting model is saved for Stage 2.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In Stage 2, ChartSimRL training is conducted on 10% of the ReChartPrompt-240K dataset, using
a smaller learning rate of 5 × 10−6 and generating M = 4 candidate codes per sample. Candi-
date sampling uses temperature 1.0, top-p 1.0, and top-k 80 to encourage diversity. The batch size
remains 128 (32 samples × 4 candidates each).

For evalution, we assess the model’s chart-to-code generation performance on multiple benchmarks.
ChartMimic Direct Mimic Task (Yang et al., 2024a): This benchmark includes 600 chart images.
GPT-4o scores (0–100) serve as high-level similarity metrics. Additionally, low-level F1 scores
for text, layout, chart type, and color are computed from code execution for fine-grained analysis.
Plot2Code Direct Asking (Wu et al., 2024): Metrics include code pass rate, text match rate, and
a 10-point GPT-4V visual similarity score, jointly assessing code correctness and visual fidelity.
ChartX Chart Redrawing Task (Xia et al., 2024): This benchmark uses GPT-4 (0–5 scale) to
evaluate code-generated chart redrawings. The Test prompts and decoding settings are listed in
Figure 9.

C STANDARD METRICS

We consider two RGB images: the original chart image Ii ∈ RH×W×3 and the generated chart
image Îi ∈ RH×W×3, where H and W denote the height and width of the images respectively
(both images are resized to the same height and width before comparison), and 3 corresponds to the
RGB color channels. Below, we describe how to quantify the visual similarity between Ii and Îi
using metrics such as Mean Squared Error (MSE), Structural Similarity (SSIM) (Wang et al., 2004),
and Peak Signal-to-Noise Ratio (PSNR) (Hore & Ziou, 2010).

C.1 MEAN SQUARED ERROR

The Mean Squared Error (MSE) is defined as:

MSE(Ii, Îi) =
1

H ×W × 3

H∑
h=1

W∑
w=1

3∑
c=1

(
Ii(h,w, c)− Îi(h,w, c)

)2
This formula computes the average squared difference between the pixel values of the two images
over all spatial locations and color channels. A smaller MSE indicates higher similarity between Ii
and Îi.

To convert the MSE into a similarity score, we define the MSE-based similarity as:

MSE Similarity =
1

1 +MSE(Ii, Îi)
∈ (0, 1]

• When MSE → 0, MSE Similarity → 1, indicating the images are almost identical.

• When MSE → ∞, MSE Similarity → 0, indicating large differences between the images.

C.2 STRUCTURAL SIMILARITY

The Structural Similarity (SSIM) is a perceptual metric that quantifies the similarity between two
images by comparing local patterns of pixel intensities. It is computed on local sliding windows
centered at each pixel location. For each window, local statistics including mean, variance, and co-
variance are calculated to evaluate the similarity. The final SSIM value for each channel is obtained
by averaging these local SSIM values over all spatial positions, and the overall SSIM between two
RGB images is computed by averaging over the three color channels.

Formally, for each color channel c ∈ {R,G,B}, the SSIM is defined as:

SSIMc(I
c
i , Î

c
i ) =

(2µIc
i
µÎc

i
+ C1)(2σIc

i Î
c
i
+ C2)

(µ2
Ic
i
+ µ2

Îc
i

+ C1)(σ2
Ic
i
+ σ2

Îc
i

+ C2)

where

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• µIc
i

and µÎc
i

are the local means computed within the sliding window.

• σ2
Ic
i

and σ2
Îc
i

are the local variances.

• σIc
i Î

c
i

is the local covariance.

• C1 = (K1L)
2 and C2 = (K2L)

2 are constants to stabilize the division, with default values
K1 = 0.01, K2 = 0.03. L is the dynamic range of the pixel values. For 8-bit grayscale
images, L = 255. In our implementation, all images are converted to np.float32
and normalized by dividing by 255, so the pixel values are in the range [0, 1]. Therefore,
L = 1.0 is used for SSIM calculation.

The overall mean SSIM between the two RGB images is then calculated by averaging over all spatial
positions (x, y) in each channel and then over the three channels:

SSIM(Ii, Îi) =
1

3

3∑
c=1

1

H ×W

H∑
x=1

W∑
y=1

SSIMc(I
c
i (x, y), Î

c
i (x, y)) ∈ [0, 1]

• When SSIM → 1, the images are structurally almost identical.
• When SSIM → 0, there are significant structural differences between the images.

C.3 PEAK SIGNAL-TO-NOISE RATIO

Peak Signal-to-Noise Ratio (PSNR) is a widely used metric to measure the quality of reconstructed
images compared to the original images. It is defined as:

PSNR(Ii, Îi) = 10 log10

(
L2

MSE(Ii, Îi)

)
where L is the dynamic range of the pixel values. For normalized images in [0, 1], L = 1.0.

In practical scenarios, PSNR values typically range in tens of decibels and can vary widely, which
may cause instability during optimization. To mitigate this effect, we normalize the PSNR values
within each rollout batch by dividing them by the maximum PSNR value in that batch:

PSNRnorm(Ii, Îi) =
PSNR(Ii, Îi)

maxÎj∈rollout batch PSNR(Ij , Îj)
∈ (0, 1]

• When PSNRnorm → 1, the reconstructed image Îi is very similar to the original image Ii.
• When PSNRnorm → 0, there exist significant differences between the images.

D THE USE OF LARGE LANGUAGE MODELS

In this study, the initial draft, core research ideas, motivation, data analysis, and scientific insights
were all independently developed by the human authors. LLMs were used solely as auxiliary tools
to polish the language of the initial draft, including removing redundant content and avoiding ambi-
guity, thereby enhancing the overall readability of the manuscript.

E MORE EXPERIMENTS

E.1 FINE-GRAINED RESULTS AND THEIR RELATIONSHIP WITH Rattr
i AND Rvis

i

We provide a detailed quantitative breakdown to clarify how each reward component affects chart
reconstruction quality. As shown in the Table 7, SFT on ReChartPrompt significantly boosts all
metrics, laying a strong foundation. Adding either the attribute reward or visual similarity reward
further improves low-level metrics, but their effects differ.

Specifically, Rattr
i mainly enhances text accuracy and layout fidelity, but has limited impact on color

consistency. This is because Rattr
i relies on discrete matching, where both subtle and large color

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: Fine-grained quantitative analysis on ChartMimic benchmark.

ReChartPrompt ChartSimRL Exec. Rate Low-Level High-Level
Rattr

i Rvis
i Text Layout Type Color Avg. GPT-4o

65.5 35.2 58.1 37.8 28.3 39.9 40.7
✓ 91.1 75.6 87.8 67.0 64.3 73.7 80.9
✓ ✓ 92.1 80.1 90.2 69.5 65.1 76.2 83.9
✓ ✓ 92.1 79.8 90.6 71.8 68.7 77.7 84.3
✓ ✓ ✓ 93.8 79.8 91.3 72.2 69.7 78.2 85.1

differences are treated as mismatches, even though larger discrepancies should be penalized more
heavily. In contrast, the visual similarity reward (Rvis

i ), which evaluates global image features in a
continuous manner, better captures approximate color and gradient variations, resulting in stronger
gains in color consistency.

Therefore, the optimal approach is to combine both reward mechanisms, leveraging their comple-
mentary strengths to achieve robust and fine-grained chart-to-code reconstruction.

E.2 EXTENSION TO CHART UNDERSTANDING TASKS

Table 8: Ablation study on the impact of ReChartPrompt data and ChartSimRL for chart under-
standing tasks.

Tiny
Chart

ReChart
Prompt SFT RL ChartQA ChartQAPro

Factoid Conversational Hypothetical Fact Checking Multi Choice Overall
✓ ✓ 87.8 26.7 39.7 41.7 38.5 35.5 34.2
✓ ✓ ✓ 89.2 27.5 42.1 36.0 45.0 39.2 37.9
✓ ✓ ✓ ✓ 89.8 29.3 43.4 38.9 47.1 36.9 39.1

To verify the effectiveness of our method on chart understanding tasks, we conduct further experi-
ments on ChartQA (Masry et al., 2022) and ChartQAPro (Masry et al., 2025a) benchmarks.

Following ChartCoder, we incorporate the TinyChart dataset (Zhang et al., 2024b) throughout the
training process. Specifically, we first use 240K TinyChart instances for SFT on Qwen2.5-VL-7B as
the baseline. Then, we jointly train the model with our own dataset during SFT. During GRPO, we
use 24K QA samples from ChartQA (Masry et al., 2022), PlotQA (Methani et al., 2020), and DVQA
(Kafle et al., 2018) subsets, applying an accuracy-based reward for QA and attribute/visual rewards
for chart-to-code. Losses for QA and chart-to-code tasks are computed separately and averaged;
other hyperparameters remain unchanged.

As shown in Table 8, incorporating ReChartPrompt data during SFT notably improves QA accu-
racy, especially for Fact Checking, with further gains from RL. This demonstrates that chart-to-code
learning enhances the model’s fine-grained understanding of chart semantics and transfers effec-
tively to reasoning tasks, resulting in better QA performance.

E.3 IMPACT OF TEACHER MODEL

Table 9: Impact of teacher model quality on ChartMaster performance.

Method SFT GRPO ChartMimic Plot2Code ChartX
Exec.Rate Low-Level High-Level Pass Rate Text-Match Rating GPT-score

Qwen2.5-VL-7B 65.5 39.9 40.7 67.4 43.8 4.60 2.18
Qwen2.5-VL-72B 88.5 72.7 79.1 84.8 68.4 6.83 2.52

Qwen3-VL-235B-A22B-Instruct 94.0 79.1 82.3 90.1 56.3 6.49 2.94
Use Qwen2.5-VL-72B

as Teacher Model
✓ 91.1 73.7 80.9 80.3 59.3 5.34 2.36
✓ ✓ 93.8 78.2 85.1 88.2 62.6 5.65 2.46

UseQwen3-VL-235B
as Teacher Model

✓ 91.1 75.3 81.5 82.5 64.3 5.57 2.48
✓ ✓ 95.1 79.4 86.2 88.6 65.7 5.93 2.53

To investigate the impact of the teacher model on ChartMaster performance. We select Qwen3-VL-
235B-A22B-Instruct as the stronger teacher to generate a new 240K chart-to-code dataset. As shown
in Table 9, ChartMaster’s performance improves significantly when a stronger teacher model is used
for data distillation, demonstrating that teacher quality substantially impacts student performance.
Importantly, our method enables the student model to closely match and even outperform the teacher

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

on certain metrics, evidencing the effectiveness of our approach in leveraging high-quality teacher
knowledge.

E.4 ROBUSTNESS OF VISUAL REWARD TO CHART SEMANTICS

𝑅𝑖
𝑣𝑖𝑠 = 0.95, 𝑅𝑖

𝑎𝑡𝑡𝑟 = 1.00

𝑅𝑖
𝑣𝑖𝑠 = 0.86, 𝑅𝑖

𝑎𝑡𝑡𝑟 = 0.53 𝑅𝑖
𝑣𝑖𝑠 = 0.82, 𝑅𝑖

𝑎𝑡𝑡𝑟 = 0.67

𝑅𝑖
𝑣𝑖𝑠 = 0.90, 𝑅𝑖

𝑎𝑡𝑡𝑟 = 0.80 𝑅𝑖
𝑣𝑖𝑠 = 0.76, 𝑅𝑖

𝑎𝑡𝑡𝑟 = 0.74

𝑅𝑖
𝑣𝑖𝑠 = 0.78, 𝑅𝑖

𝑎𝑡𝑡𝑟 = 0.71

R
ef

er
en

ce
C

a
n

d
id

a
te

Figure 10: Qualitative analysis of candidate charts generated during GRPO. Visual reward and at-
tribute (semantic) reward are generally positively correlated. Outlier cases with high visual reward
but low semantic alignment receive low final reward, indicating that our design avoids overfitting to
style surrogates.

To further examine whether our visual reward overfits to style surrogates, we conduct a qualitative
analysis of candidate charts generated during the GRPO process. We observe in Figure 10 that nearly
all candidates with high visual scores also achieve high attribute (semantic) scores, indicating strong
semantic alignment. Occasionally, some candidates exhibit high visual scores but low attribute
scores; in these cases, the final reward remains low due to the penalization from the attribute score.
These results suggest that the visual reward does not cause overfitting to superficial styles, and the
attribute score effectively mitigates the impact of outliers.

E.5 ERROR ANALYSIS

We conduct error analysis on ChartMaster-7B using the ChartMimic test set and present typical
failure cases in Appendix Figure 11. The results reveal that the primary source of error is the
inaccurate extraction of precise numerical values from complex charts. Despite implementing a
relaxed matching strategy for numerical values, this issue remains unresolved. Further exploration
of reward design and model architecture will be pursued in future work.

E.6 THE IMPACT OF CHART-AWARE VISUAL ENCODER

In Table 5, we have compared the performance of different CNN-based visual encoders and con-
cluded that deep visual features are effective. To further investigate, we use the chart-aware visual
encoder from ChartCoder-7B to extract features. As shown in Table 10, the chart-aware encoder

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G
ro

u
n

d
 T

ru
th

B
a

se
li

n
e

```python

…

weeks = np.array([1, 2, 3, …])

aws_data = np.array([3, 6, 8, …])

google_data = np.array([1, 2, 4, …])

microsoft_data = np.array([1, 2, 3, …])

ibm_data = np.array([0, 1, 2, …])

fig, ax = plt.subplots(figsize=(10, 6))

ax.plot(weeks, aws_data, label='AWS Data

Center’, color='red', linestyle='solid’) [ValueError]

…

```C
h

a
rt

M
a

st
er

-7
B

Figure 11: Some bad cases from ChartMaster-7B on the ChartMimic test set. The main challenge
lies in accurately extracting precise numerical values.

Table 10: Comparison of ChartMaster-7B performance using different visual encoders on the Chart-
Mimic benchmark.

ChartMaster-7B Exec. Rate Low-Level High-Level
Text Layout Type Color Avg. GPT-4o

w/ ChartCoder-ViT 94.8 83.1 93.1 71.1 65.7 78.2 84.6
w/ ResNet-18 93.8 79.8 91.3 72.2 69.7 78.2 85.1

slightly improves execution rate and achieves better text and layout metrics, reflecting enhanced
chart-specific feature extraction. However, it lags behind ResNet-18 in Type and Color metrics,
suggesting that traditional CNNs may better capture texture and color information. Overall, both
encoders show comparable average performance. We will continue exploring more specialized vi-
sual encoders in future work.

E.7 PROMPT ANALYSIS

Table 11: Comparison of model performance trained on single-prompt versus diverse-prompt
datasets. Models trained with diverse prompts generally achieve higher scores, illustrating the ben-
efit of prompt diversity.

Dataset ChartMimic Plot2Code ChartX
Exec.Rate Low-Level High-Level Pass Rate Text-Match Rating GPT-score

ReChartPrompt-240K-Single-Prompt 88.5 73.0 78.9 83.3 58.9 5.14 2.30
ReChartPrompt-240K-Diverse-Prompt 91.1 73.7 80.9 80.3 59.3 5.34 2.36

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We investigate the impact of prompt diversity on code generation quality. Specifically, we randomly
select 1,000 original charts and generate replotted results using each of the 20 prompts in Prechart.
The code execution rates are comparable across prompts: 82.7%, 84.2%, 81.9%, 81.5%, 83.8%,
82.9%, 82.1%, 82.3%, 83.2%, 84.0%, 81.8%, 82.4%, 84.1%, 82.7%, 83.6%, 81.2%, 84.4%, 81.5%,
84.7%, and 83.3%. This indicates that Qwen2.5-VL-72B demonstrates strong instruction-following
ability, and different phrasings of similar prompts yield no significant differences in code pass rates.

To further assess the effect of prompt diversity, we identify the prompt with the highest code pass
rate and use it to regenerate 240K training samples (ReChartPrompt-240K-Single-Prompt). We
then compare these results to those obtained from our diverse prompt dataset (ReChartPrompt-
240K-Diverse-Prompt). As shown in Table 11, models trained with diverse prompts consistently
outperform those trained with a single prompt across multiple benchmarks, demonstrating the clear
advantage of prompt diversity in improving model performance.

22


	Introduction
	Related Work
	Multimodal Code Generation
	Reinforcement Learning for MLLMs

	Method
	Using Real-World Charts to Generate Dataset
	Training ChartMaster: SFT and ChartSimRL

	Experiment
	Comparison with SOTA
	Ablation Study
	Qualitative analysis

	Conclusion
	Data auditing
	Implementation and Evaluation Details
	Standard Metrics
	Mean Squared Error
	Structural Similarity
	Peak Signal-to-Noise Ratio

	The Use of Large Language Models
	More experiments
	Fine-grained results and their relationship with Riattr and Rivis
	Extension to chart understanding tasks
	Impact of teacher model
	Robustness of visual reward to chart semantics
	Error Analysis
	The impact of Chart-Aware Visual Encoder
	Prompt analysis


