Under review as a conference paper at ICLR 2026

CHARTMASTER: ADVANCING CHART-TO-CODE GEN-
ERATION WITH REAL-WORLD CHARTS AND CHART
SIMILARITY REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The chart-to-code generation task requires MLLMs to convert chart images into
executable code. This task faces two main challenges: limited data diversity and
the difficulty of maintaining visual consistency between generated charts and the
original ones. Existing datasets mainly rely on synthetic seed data to prompt GPT
models for code generation, resulting in homogeneous samples that limit model
generalization to real-world chart styles. To address this, we propose ReChart-
Prompt, leveraging real-world, human-designed charts extracted from arXiv pa-
pers as prompts. By harnessing the rich content and diverse visual styles of
arXiv charts, we construct ReChartPrompt-240K, a large-scale and highly diverse
dataset that better reflects realistic chart variations. For the second challenge, al-
though SFT improves code understanding by optimizing next-token prediction, it
does not provide direct supervision on visual features. As a result, it often fails to
guarantee that the generated charts visually match the original ones. To address
this, we propose ChartSimRL, a GRPO-based reinforcement learning algorithm
guided by a novel chart similarity reward. This reward consists of two compo-
nents: attribute similarity, which measures the overlap of chart attributes like
layout and color between the generated and original charts, and visual similar-
ity, which evaluates overall visual features, including texture, using convolutional
neural networks. Unlike traditional text-based rewards, our reward accounts for
the multimodal nature of the chart-to-code generation task, significantly enhanc-
ing the model’s ability to accurately reproduce charts. Integrating ReChartPrompt
and ChartSimRL, we develop the ChartMaster model, achieving SOTA results
among 7B-parameter models and rivaling GPT-40 on various chart-to-code bench-
marks. We will release all code, datasets, and models to facilitate further research.

1 INTRODUCTION

The chart-to-code generation task aims to automatically convert chart images into executable code
(Yang et al.| [2024a)), enabling applications including automated data analysis, report generation, and
intelligent question answering (Zhao et al., 2025} Rodriguez et al.}[2024; [Xia et al., 2023} |Awal et al.,
2025). This task is challenging as it requires accurate visual understanding, cross-modal reasoning,
and advanced code synthesis. Although recent advances in Multimodal Large Language Models
(MLLMs) show promising results in various vision-language tasks, their performance on chart-to-
code generation remains limited due to the unique complexity of charts and the need for precise
code output.

Prior work, such as ChartCoder (Zhao et all 2025), advanced the field by building the large
Chart2Code-160K dataset. This dataset is synthesized by guiding GPT-40 (Hurst et al., 2024) with
predefined chart attributes like chart type, color, and text. While this approach reduces the need for
costly manual annotations and achieves strong performance, relying on predefined attribute seeds
can introduce homogeneity and limit variability in the resulting dataset (see Appendix Fig. [3)), po-
tentially restricting model generalization to diverse real-world charts.

To address this limitation, we introduce Real-world Chart Prompt Code Generation (ReChart-
Prompt), a novel automated pipeline that extracts real chart images from arXiv papers and lever-

Under review as a conference paper at ICLR 2026

ChartMimic Plot2Code ChartX
100 90 - 87.988.688.2 3.0 1
[ChartCoder-7B
95 A EE 80 - GPT-40 28
914 [ChartMaster-7B
g 901 3 3
< o £7°] g 261
E 85 A 83.5 E 62.6 E 2.46
S S 60 - S 244 2.36)
3 80 - 790, 3 54,5553 57.156.5 8
77.4
50 2.2
70 T T T 40 T T T 2.0-
Exec.Rate Low-Level High-Level Pass Rate Text-Match Rating*10 GPT-score

Figure 1: Performance comparison on three benchmarks. Our method outperforms ChartCoder-7B
(Zhao et al., 2025)), and matches or exceeds GPT-40 on certain metrics. For better representation,
the “Rating” metric in the Plot2Code benchmark is multiplied by 10.

ages the Qwen2.5-VL-72B model (Bai et al., |2025) to generate corresponding code. By collecting
30,071 papers and utilizing their author-designed charts as prompts, we construct ReChartPrompt-
240K, a large-scale dataset comprising 240K chart—code pairs. Since these charts originate from
papers across diverse research fields and exhibit a wide variety of design styles, the dataset cap-
tures rich visual and semantic diversity, as illustrated in Fig.[5] This heterogeneity enables effective
generalization to real-world scenarios.

While supervised fine-tuning with diverse data can help models generate better chart code, such
next-token prediction alone does not ensure the output charts are visually faithful to the references.
As shown in Fig. [d] the SFT model produces charts closer to the ground truth than the baseline, but
noticeable discrepancies remain in color, element positioning, and other visual attributes. To address
this, we propose ChartSimRL, a reinforcement learning algorithm based on Group Relative Policy
Optimization (GRPO) (Shao et al.| [2024), guided by a novel chart similarity reward. Specifically,
the reward jointly considers (1) attribute similarity that evaluates the consistency of chart elements
such as textual content, numerical values, layout and color, and (2) visual similarity, which assesses
holistic visual resemblance using convolutional neural networks (e.g., ResNet (He et al.l 2016)) to
extract and compare visual features. To the best of our knowledge, this is the first reward system
that explicitly enforces multimodal visual-semantic consistency for chart-to-code generation. By
encouraging models to produce code that renders charts both semantically accurate and visually
faithful, we address a critical gap in prior research and support more robust generalization to real-
world chart reproduction.

In summary, we introduce ChartMaster, an efficient framework for chart-to-code generation that
combines the ReChartPrompt data generation pipeline with the ChartSimRL reinforcement learning
strategy. Our key contributions are: (1) ReChartPrompt, an automated method for generating diverse
datasets from real-world charts; (2) ChartSimRL, a reinforcement learning algorithm that uses both
visual and attribute similarity to improve output; and (3) ChartMaster-7B, a compact model that
delivers near GPT-4o performance with only 7 billion parameters. Fig. [T highlights its efficiency
and effectiveness.

2 RELATED WORK

2.1 MULTIMODAL CODE GENERATION

Multimodal large language models (MLLMs) have recently demonstrated strong capabilities in code
generation (Zhang et al.| 2024a). Notably, MMCode (Li et al., 2024b)) targets algorithmic problems
embedded in visually rich contexts, where tasks are accompanied by one or more images.

Among multimodal code generation tasks, chart-to-code translation has emerged as a critical chal-
lenge (Yang et al.l 2024b). Existing benchmarks include Design2Code (Si et al., 2024), which
evaluates HTML generation using CLIP scores (Radford et al.|[2021)) and structural HTML metrics,
and Plot2Code (Wu et al.|[2024), which assesses both code correctness and visual fidelity. However,
since the datasets for Design2Code and Plot2Code are sourced from the web, there is a risk of data

Under review as a conference paper at ICLR 2026

leakage, which may compromise the reliability of model evaluation. To address this issue, Chart-
Mimic (Yang et al., [2024a)) provides a manually curated dataset of 4,800 chart-code pairs, along
with additional fine-grained evaluation metrics.

Despite these benchmarks, large-scale chart-to-code training datasets remain scarce. ChartCoder
(Zhao et al., 2025) addresses this by creating Chart2Code-160K, the first large-scale training set
generated by guiding GPT-40 with predefined chart attributes such as type, color, values, and titles.
It further employs the “Snippet of Thought” strategy (Zheng et al., 2023} [Luo et al., 2024) to de-
compose code generation into structured steps, significantly boosting chart reasoning. Yet, reliance
on fixed attributes limits chart diversity. In contrast, our ReChartPrompt leverages real-world charts
from arXiv papers as prompts, yielding more diverse and representative chart—code pairs.

2.2 REINFORCEMENT LEARNING FOR MLLMS

Reinforcement learning (RL) effectively enhances model capabilities (Wang et al., [2024b; Milani
et al., [2024)). For example, RL from human feedback (RLHF) (Bai et al., [2022)) and direct pref-
erence optimization (DPO) (Rafailov et al [2023) aligned model outputs with human preferences,
improving complex reasoning and output quality. Building on these advances, Group Relative Pol-
icy Optimization (GRPO) (Shao et al., 2024) was proposed as a novel RL algorithm that updated
policies using relative rewards computed from groups of samples. DeepSeek-R1 (Guo et al., 2025)
employed simple yet effective rewards based on output accuracy and response format, which enabled
stable training and emergent reasoning such as reflection and “a-ha” moments.

Inspired by DeepSeek-R1’s success, recent work extended GRPO-based RL to MLLMs (Tan et al.,
2025; Zhang et al.l [2025bj |Peng et al.l 2025} |Shen et al., |2025) in two main directions. The first
adapts R1’s method to MLLMs—for instance, Vision-R1 (Huang et al.l |2025) uses SFT data with
reflection for cold-start training and applies GRPO with accuracy- and format-based rewards. Sim-
ilarly, MM-EUREKA (Meng et al., |2025) refines reward design and loss functions, successfully
reproducing the visual “aha moment,” where the model revisits images “upon closer inspection.”
These works primarily focus on mathematical reasoning tasks. The second direction applies GRPO
to broader tasks such as chart understanding (Masry et al.| 2025b)), visual perception (Yu et al.,|2025)),
segmentation (Liu et al.| 2025), and grounding (Zhang et al., 2025a)), demonstrating its robustness
and generalizability across domains.

However, to our knowledge, GRPO has not been applied to chart-to-code generation, mainly due to
the challenge of designing reward functions that encourage generated code to faithfully reproduce
charts both semantically and visually. We address this by proposing a novel chart similarity reward,
significantly improving chart reproduction quality.

3 METHOD

Fig. [2|illustrates the overall framework of ChartMaster, which consists of two main stages: data
generation and model training.

3.1 USING REAL-WORLD CHARTS TO GENERATE DATASET

To improve dataset diversity, we use real-world chart images as input to guide code generation, as
shown in Fig. [2|(a). This approach captures richer styles and content that predefined attribute seeds
cannot represent.

(1) Collecting Images from arXiv. We leverage the arXiv API and Python’s requests library to
download paper source files, including LaTeX sources and image files (. pdf, .png, . jpg). To
ensure diversity, we query source files related to top conferences (e.g., ICLR) and journals (e.g.,
TPAMI), extracting all images for subsequent processing.

(2) Filtering Non-Chart Images. Since extracted images include various diagrams beyond charts,
we use the Qwen2.5-VL-72B model to classify images into 12 predefined chart categories. Images
outside these categories are discarded. Classification is performed by prompting the model with
Pype (see Fig. @in Appendix) to assign chart types.

Under review as a conference paper at ICLR 2026

Prype
[Collect Images from arXiv]#-[Filter Non-Charts]
e : b i
1 I 1 ' — = 1
H - 1 —_= — [
' =] =]
e Em Em |
' rechart- --- Generate | ! - '
! Python code ... H ' I !
' 0 ' y !
1 — — — 1 g 1
= = = [i '
' Em Em GEB 1 :
_________________________ '
(a) ReChartPrompt: Use Real-World Charts to Prompt Code Generation
- - Color: (4008000, #32cd32', *#800080"...) A*
01, .., 0n R Number: (24.083, 17.159, 20.217, ...)
LT,Y o ' = Text: (InceptionV3', 'Resnet101", "Accuracy ', ...)
@ =l EEE - ® 0 E ; B Layout: ('[('col_end", 0), (‘col_start, 0), ('ncols', 1), ...]) _ Rettr _ |A; N AT
= B t £
= = p——— = Color: (#32cd32, '#9932cc’, #9acd32,...) A 1A; U A%
@ E; - Q@ _’_’ &2 Number: (23.112, 18.017, 20.564, ...) '
=) p—— [Text: ('InceptionV3', '‘Resnet101', 'InceptionV4, ...)
E; - @ _’_’ RS f—‘ Layout: ('[(‘col_end, 0), (‘col_start', 0), ('ncols', 1), ...])
=] attr | pois 16 A
(o) &~ @ ~(Carme)~ Voo £ 6 6 i, i
GRPO | =] 1 = ——= 3 = R =3), cosChiofi)
+ - £O £ £O £O =1
1 2 3 4
(b) ChartSimRL: GRPO with Chart Similarity Reward (c) Calculation of Attribute Similarity and Visual Similarity

Figure 2: The overall framework of ChartMaster. (a) Real-world charts from arXiv are curated to
create the ReChartPrompt-240K dataset for SFT (SFT is omitted in the figure). (b) The model is
further optimized with ChartSimRL. (c) The definition of Chart Similarity: G denotes the semantic
attribute extraction tool; F is the CNN-based feature extractor; and f is the extracted feature vector.

(3) Generating code with ReChartPrompt. The Qwen2.5-VL-72B model has demonstrated strong
chart-to-code generation capabilities. As an open-source model, it is easily deployed via the vLLM
framework (Kwon et al.| |2023), making it well-suited for large-scale data generation. We design a
set of 20 chart-to-code prompts to enrich instruction diversity, collectively referred to as P echar (see
Fig. [7in Appendix). Below is an example: <Real-World Chart>Please generate Python matplotlib
code to recreate the picture shown.

(4) Code Execution, Filtering, and Dataset Construction. Generated code snippets may suffer
from two issues: (a) execution errors caused by non-existent packages or syntax mistakes, and (b)
discrepancies between the generated charts and the original images. To mitigate these problems,
we execute all generated code and discard those that fail at runtime. We then pair the successfully
executed code outputs with their generated images and instructions to form the final training triplets.

Summary. We download 30,071 papers from arXiv and extract their figures, filtering out non-chart
ones to obtain 288,992 chart images. Using these charts, the Qwen2.5-VL-72B model generates cor-
responding code. After executing the generated code and removing failed cases, we collect 242,479
high-quality triplets that constitute the ReChartPrompt-240K dataset. Formally, the dataset is de-
fined as D = {(I;,T;,Y5) lNzl, where I; represents a chart image, 7; € Prechar 1S the instruction
prompt, and Y; denotes the executable code. Notably, all real-world chart data and generation mod-
els employed in this process are open-source, ensuring minimal cost and excellent scalability.

3.2 TRAINING CHARTMASTER: SFT AND CHARTSIMRL

ChartMaster is trained in two stages: (1) SFT on the ReChartPrompt-240K dataset to establish a
solid foundation; and (2) further optimized with ChartSimRL to address the limitations of SFT’s
next-token prediction in maintaining visual consistency.

Supervised Fine-Tuning. We conduct SFT by maximizing the likelihood of ground-truth code Y;
given chart image I; and instruction 7;:

N
1
Jser(0) = = D _logme(Y; | i, Th).

i=1

Reinforcement Learning with ChartSimRL. While SFT strengthens the model’s basic capability,
discrepancies may still exist between the generated charts and the originals (see Fig. [). To fur-
ther improve reproduction fidelity, we continue training the model using ChartSimRL, as illustrated
in Fig. [2| (b). Specifically, for each training sample (I,7,Y"), the model samples a group of M

Under review as a conference paper at ICLR 2026

candidate codes:
{01702, .. .,01\4} ~ 7T9(~ ‘ I,T).

Each candidate code O; is then executed to generate a chart image I;, which is subsequently com-
pared with the original chart I; to compute a Chart Similarity Reward. If the execution of O; fails,
the corresponding reward is set to zero.

Chart Similarity Reward. Traditional reward functions, such as the accuracy reward used in (Guo
et al.,2025;[Huang et al.,[2025)), primarily assess the consistency between generated text and ground-
truth text. However, the chart-to-code task is inherently multimodal, involving both code and gener-
ated charts, requiring evaluation of not only semantic correctness but also visual alignment. To this
end, we design a novel chart similarity reward as:

R' . Rattr + Rvis
i = i
Here, R2*'" measures the semantic consistency, and R}™ captures visual similarity (see Fig. (c)).

Attribute Similarity: We develop a semantic attribute extraction tool based on the ChartMimic code-
base |Yang et al.| (2024a), denoted G(-), to obtain attribute sets from chart images and their code.
Given A; = G(1;,0;) and A* = G(I,Y), the semantic similarity R?**" is computed as their Jac-
card similarity:

|A; N A*
By design, R = 1 indicates a perfect match of semantic attributes, while lower values reflect

semantic discrepancies. To accommodate minor numerical variations, we consider numerical values
a € A; and b € A* matching if |a — b] < 0.01 x |b|.

Visual Similarity: We use a pretrained ResNet-18 network (He et al., [2016) F = {Fy, Fa, F3, Fa}

to extract feature maps from both I and I;. Here, Fi(+) € RO HixWi denotes the output feature
map of the k-th residual block. We extract the feature map and flatten them into vectors like:

F. = Fi(D), B = Fo(ly),
f, = vec(F),) € R%, £ = vec(FV) € R%,
where dy, = Cj x Hy, x Wy. The visual similarity reward is defined as the average cosine similarity
between the corresponding feature vectors,
1< - £9

R® =23 ——k—€[0,1].

4= e 18]

R = € [0,1].

Chart Similarity Reinforcement Learning. We normalize rewards within a group of M candidates
to compute relative advantages:
. Ri— mean({R;}L))

T std({RM)

where mean(-) and std(-) denote the sample mean and standard deviation, respectively.

Following the GRPO framework (Shao et al.,[2024), we update the model by maximizing the clipped
surrogate objective with a KL penalty to stabilize training:

Yyl OZ|I T)
artSim 0 E ~ 1™ (
JenartsimRL(0) = E(1 1) wpp, {0, Toa (- IT)[Zm Toa (0|1, T) "

li (7'('9(07;‘[, T)

m71 €1+ 6)) BDKL(WQ(|I T)||7Tref(|I T))

where 7,14 is the previous policy, ¢ is the reference policy, e is the clipping hyperparameter, and
B controls the KL regularization strength.

ChartSimRL guides the model to generate chart code that better aligns with the original charts’ se-
mantic and visual properties, significantly improving chart-to-code generation performance beyond
what is achievable by supervised fine-tuning alone.

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results of various MLLMs. Reported results are taken from existing benchmarks
when available; missing results are supplemented using official codebases and are marked with *.
Among open-source 7B-scale models, our method achieves the best performance.

Model ChartMimic) Plot2Code) ChartX
Exec.Rate Low-Level High-Level | Pass Rate Text-Match Rating | GPT-score
Full score 100 100 100 100 100 10 5
Closed-Source Model
GeminiProVision (Team et al.|[2023) 68.2 53.8 53.3 68.2 53.6 3.69 -
Claude-3-opus (Anthropic![2024) 83.3 60.5 60.1 84.1 57.5 3.80 -
GPT-4V (Hurst et al.[|2024) 91.2 76.4 78.9 84.1 57.7 5.58 2.63
GPT-40 (Hurst et al.||2024) 93.2 79.0 83.5 88.6 56.3 5.71 2.36*
Open-Source Model

ChartAssisstant-13B (Meng et al.|[2024) - - - - - - 0.82
ChartVLM-L-14B (Xia et al.|[2024) 19.5 15.8 13.9 - - - 1.58
DeepSeek-VL-7B (Lu et al.[[2024) 41.3 19.0 17.6 64.4 32.6 2.26 -
TinyChart-3B (Zhang et al.{[2024b) 42.5 26.3 25.9 43.2 44.6 2.19 1.89
ChartLlama-13B (Han et al.|[2023) 57.5 24.8 28.1 58.4 40.3 2.32 0.94
LLaVA-Next-Mistral-7B (Li et al.||2024a) 59.7 20.7 21.3 72.0 38.7 2.87 -
InternVL2-8B (Chen et al.[|2024) 61.8 34.4 38.9 71.3 37.1 2.78 1.63
Qwen2-VL-7B (Wang et al.|[2024a) 67.0 329 35.0 68.2 33.8 3.10 1.50
MiniCPM-Llama3-V2.5-8B (Yao et al.|[2024) 80.3 36.6 42.1 76.3 37.3 2.61 1.66
Qwen2-VL-72B (Wang et al.||2024a) 73.3 54.4 50.9 72.0 53.4 4.26 1.69
InternVL2-Llama3-76B (Chen et al.|[2024) 83.2 54.8 62.2 85.6 46.6 3.89 1.74
Qwen2.5-VL-72B* (Bai et al.|/|2025) 88.5 72.7 79.1 84.8 68.4 6.83 2.52
ChartCoder-7B (Zhao et al.[|2025) 91.4 77.4 74.0 87.9 54.5 4.50 2.09
Qwen2.5-VL-7B¥ (Baseline) (Bai et al.[[2025) 65.5 39.9 40.7 67.4 43.8 4.60 2.18
ChartMaster-7B 93.8 78.2 85.1 88.2 62.6 5.65 2.46

Summary. ReChartPrompt and ChartSimRL have been effectively integrated into the ChartMaster
framework. This framework not only leverages real-world data for enhanced data diversity but also
employs a novel algorithm to ensure visual and semantic alignment in chart reproduction. Con-
sequently, ChartMaster stands as a comprehensive solution for the chart-to-code generation task,
demonstrating marked improvements in performance and generalization capabilities.

4 EXPERIMENT

4.1 COMPARISON WITH SOTA

We instantiate ChartMaster on the Qwen2.5-VL-7B backbone, resulting in the ChartMaster-7B
model, and conduct comprehensive comparisons with a range of MLLMs. The detailed implementa-
tion and evaluation protocols are provided in the Appendix [B] As shown in Table[T} ChartMaster-7B
achieves state-of-the-art performance among open-source models at the 7B scale, showing com-
petitive performance against GPT-40. Notably, ChartMaster-7B consistently outperforms the base-
line Qwen2.5-VL-7B across all metrics; for instance, in the ChartMimic benchmark, it improves
both low-level and high-level metrics by about 40 percentage points. Furthermore, although our
training dataset is derived from the larger Qwen2.5-VL-72B model—essentially a distillation-like
setting—ChartMaster-7B still surpasses Qwen2.5-VL-72B on several benchmarks. These results
convincingly demonstrate the effectiveness of the ChartMaster framework.

4.2 ABLATION STUDY

Ablation study on ChartMaster. To assess the contribution of each component, we conduct an ab-
lation study as summarized in Table[2] The base Qwen2.5-VL-7B model, without ReChartPrompt
or ChartSimRL, demonstrates limited performance across benchmarks, revealing its restricted abil-
ity in both code generation and visual/semantic understanding. SFT with the ReChartPrompt-240K
dataset leads to significant improvements in all metrics, demonstrating the high quality and effec-
tiveness of ReChartPrompt-240K for chart-to-code generation. Additionally, applying ChartSimRL
alone also significantly improves the baseline model’s performance. This enhancement is attributed
to our well-designed reward function, which effectively captures the semantic and visual features
of the charts, optimizing the model’s ability to generate code that closely aligns with the original

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on the contribution of each key component.

. ChartMimic Plot2Code ChartX
ReChartPrompt. ChartSimRL Exec.Rate Low-Level High-Level | Pass Rate Text-Match Rating | GPT-score
65.5 39.9 40.7 674 43.8 4.60 2.18
v 91.1 73.7 80.9 80.3 59.3 5.34 2.36
v 83.6 58.6 57.6 72.7 50.8 5.19 2.23
v v 93.8 78.2 85.1 88.2 62.6 5.65 2.46

Table 3: Ablation study of the Attribute
and Visual similarity components in Chart-

Table 4: Ablation study of different attribute simi-
larity metrics on the ChartMimic benchmark.

. ChartMimic
att
SimRL. R Formula Exec.Rate Low-Level High-Level

Rattr pyis ChartMimic - - 911 73.7 80.9
¢ || Exec.Rate Low-Level High-Level Precision \A‘LET"I 90.0 72.6 79.0
st L5 50.9 Recall | A0A| 90.6 747 81.7
v 92.1 76.2 83.9 AT : : :
o921 77.7 843 Fl | oiifets || 916 75.4 84.5
v v || 9338 782 85.1 Jaceard | 0] 92.1 76.2 83.9
o . . .

charts. Therefore, further applying ChartSimRL on top of ReChartPrompt yields consistent perfor-
mance gains, achieving optimal results.

Ablation study on ChartSimRL. ChartSimRL introduces a novel multimodal chart similarity re-
ward that combines both semantic similarity (R2**) and visual similarity (R}") between the can-
didate and original charts. To dissect the contribution of each component, we conduct ablation
experiments summarized in Table 3| The results show that employing either R2**" or RY™ alone
consistently improves performance across all evaluated metrics. Notably, the visual similarity re-
ward yields more substantial gains, underscoring the critical importance of preserving visual fidelity
in chart-to-code generation. Moreover, combining both rewards achieves the best overall results,
demonstrating the advantage of a multi-faceted reward design that simultaneously captures seman-
tic and visual aspects.

Ablation study on Attribute Similarity. We adopt Jaccard similarity as a stringent metric for at-
tribute similarity, whereby a candidate table achieves a perfect score only if its attribute set exactly
matches that of the ground truth; even minor discrepancies incur penalties. To thoroughly assess the
impact of different attribute similarity measures—Precision, Recall, F1 score, and Jaccard similar-
ity—we conduct experiments on the ChartMimic benchmark, with results summarized in Table

Our findings indicate that optimizing exclusively for Precision may lead to a slight decline in over-
all performance, as the model can achieve high Precision by predicting a limited subset of correct
attributes while neglecting overall coverage. In contrast, Recall emphasizes coverage, which helps
mitigate this issue and yields modest improvements. The F1 score, by harmoniously balancing
Precision and Recall, further alleviates extreme biases and delivers enhanced overall performance.
Notably, Jaccard similarity, measuring the intersection over union between predicted and reference
attribute sets, enforces stricter penalties on both missing and redundant attributes. This higher over-
lap requirement enables Jaccard similarity to more faithfully capture the true semantic similarity
between attribute sets, thereby resulting in the best overall performance.

Ablation Study on Visual Similarity. We use ResNet-18 (He et al.,|2016) to extract features from
charts to compute visual similarity. In fact, there are numerous methods to measure the similarity
between two charts. To investigate the impact of different visual similarity metrics on model perfor-
mance, we conduct an ablation study summarized in Table@ Standard metrics such as MSE, SSIM
(Wang et al., 2004), and PSNR (Hore & Ziou, 2010) primarily evaluate pixel-level or structural
similarity (details in Appendix[C)). The table shows that these metrics generally perform worse than
more advanced methods. Notably, SSIM exhibits a significant decline in performance, indicating
that pixel-based measures struggle to capture the complex visual nuances necessary for effective
chart-to-code generation.

In contrast, CNN-based metrics like AlexNet (Krizhevsky et al.l 2012), VGG (Simonyan & Zis-
serman, [2014)), and ResNet (He et al., [2016), which compare features in a learned representation
space, consistently outperform both the baseline and pixel-level metrics across all evaluation crite-
ria. Among them, ResNet-18 achieves the highest performance, highlighting the effectiveness of
deep visual features.

Under review as a conference paper at ICLR 2026

Diversity Comparison Across Different Attributes 100+ Performance Comparison on ChartMimic Benchmark
[Chart2Code-160K [Qwen2.5-VL-7B
[ReChartPromp-160K 901 89.8 [+Chart2Code-160K
86.8f [+ReChartPromp-160K
36860 531 238 7066 63 301 78.3
) 74.8
29933] 0.0 72.5 —
| 8 704 B
65.5
-
<
9 601
3482 A
28
50
39.9 40.7
401 r F
- 30 -
Numeric Color Text Layout Exec.Rate Low-Level High-Level

Figure 3: Comparison of diversity and fine-tuning results between Chart2Code-160K and
ReChartPrompt-160K datasets.

For MLLM-based metrics, we leverage the high-level similarity prompt from ChartMimic combined
with Qwen-2.5-VL-72B to evaluate the similarity between generated and reference charts. These
metrics show improvements over the baseline. However, they still fall short of the best CNN-based
metrics, suggesting that although MLLMs possess strong semantic understanding, further optimiza-
tion is required for specialized visual tasks such as chart-to-code generation.

Comparison with Advanced Dataset. To Table 5: Ablation study of different visual simi-
comprehensively evaluate the diversity and larity metrics on the ChartMimic benchmark.

quality of our dataset, we compare it with RS ChartMimic
Chart2Code-160K (Zhao et all] [2025). For a ‘ Exec.Rate Low-Level High-Level
fair comparison, we randomly sample 160K in- . oLl 737 809
stances from our full dataset to construct the Standard Metrics:

ReChartPromp-160K subset. Using the at- MSE 91.1 73.6 77.9
tribute extraction tool G(-), we count unique SSIM 82.5 65.2 74.6
chart attributes—including numerical values, PSNR 914 75.1 82.1
colors, textual elements, and layouts—in both CNN-Based Metrics:

datasets. A higher number of unique attributes AlexNet 90.3 74.7 82.6
indicates greater attribute diversity. As shown VGG 91.3 75.5 83.3
in the left panel of Fig. 3] ReChartPromp-160K ResNet-18 2.1 77 84.3
exhibits a substantially richer attribute distribu- ~ MLLM-Based Metrics:

tion across all categories, notably in text and Qwen-2.5-VL-72B| 917 715 83.9

layout. This advantage stems primarily from

Chart2Code-160K’s reliance on seed data sources, which results in repeated attribute patterns,
whereas ReChartPromp-160K samples from distinct arXiv papers, ensuring broader coverage and
less redundancy (see Appendix Fig.[5). This higher diversity brings clear benefits: as illustrated in
the right panel, models fine-tuned on ReChartPromp-160K consistently outperform those trained on
Chart2Code-160K, demonstrating the importance of attribute diversity for robust and effective chart
understanding and code generation.

4.3 QUALITATIVE ANALYSIS

Based on extensive experiments, we observe that ReChartPrompt generates charts with diverse and
rich attributes, enabling the construction of a high-quality dataset that substantially enhances model
performance. Building upon the distinctive features of the chart-to-code generation task, we propose
the ChartSimRL algorithm, which further enhances the model’s capabilities. To comprehensively
analyze the improvements brought by these contributions, we conduct a qualitative comparison of
generated charts at different training stages on the ChartMimic benchmark (Fig.[). Our key findings
are summarized as follows: (1) The baseline model produces basic chart layouts but often fails
to replicate fine-grained visual details, leading to noticeable discrepancies between generated out-
puts and reference charts. (2) Fine-tuning the base model on our ReChartPrompt-240K dataset
(“Base.+ReCha.”’) significantly improves chart-to-code generation accuracy. This improve-
ment arises from the diverse, high-quality training data generated by conditioning on real-world

Under review as a conference paper at ICLR 2026

(=
e Vector Field: -F + pUFF (Small p) RIS W8 O 1208 ot Wby Fegr
401 = oeEpsce wiofdm ~ High ool Gradatin:
o wl e N | o I
o) 3 o //,,..\\\ I[l
= . NP NENE |
= £ / BN SR iy
|_ 325 osy) S i
H o R §
o | > ~omf ot
£ e 1 :
cC £1s N « 1! o
£ AN /
> " 4;0\\\“.;// .
(@] o5 A2y]
o o NN v
15 0 “ NN
: SRS d L ¢ ;
S m e S
Datasets x Sample Ratio ¢ ¢ g
\
(Comparison of Transmission Delay Educational Metrics by Region
= Vector Fed: + pOFF (smal) Sonpe o Sl CC
w0
= peEsccwioim 1 o o ot Edcton Evciners
§ ane x
ows N ! + anns - R
<5} o\ |
c \ ol 4 .
— y s
FeT) - fuu R
@ “ 1
0 — \ : .
= / \ . 2
e/ U w .
\acmnz o B N TN m G w W
osets . s o e A
\
(. - NANS12 MAN=1024 MRNTE Educational Metrcs by Region
o[=2 pes Vector Field: -F + pVFF (Sma:lp) s
< £ DEEPJSCC w ofdm 10y X wf) i oo
,s| £ OURs ; I>\ N\ | | [‘ ‘
< 05 D N\ -
Ol . //\\\ ; o
) ANl g
> 0ot/ Y1~ kS H
1 / 71T < :
+ VA Y~ 3
s 1 \ N\ I 4
< =
m i —LOTNANNNY
voc 2012 €0C0 2017 -0 -05 00 05 10 8 s <
L Datasets x Sampe Raio h ’ &
(N
M =F Vector Field: -F + pVFF (Small p) - MANSSL2 e WAXN=1024 HAXN=2048
3 DEERISCCwofém PP i s s — = .
- S o v TN
(<3 25 g 0I5 e N 007 |
= H f P NN
7] < 050/ /s T 06
320 .
2 ’
T | i S e Yoos
2 215 > 0004+ 7t 50004
] Voo
jras} ¢ oasf! et 3
510 A - {003
- £ “oso{ ! R Rt
@ NN XY 002
e 05 -0.75 \\\“,;//
0.01
. W . -1.00 DS d—— it N
O % L - R
oC 2012 oco 2017 10 -0s 00 05 10 025 050 5 100 A &
L Datasets X Sample Ratio ¢ ¢
b pr———
0 P e J o T
= DeeRscc oo - & vt I | i
== ours i -6 MANe2008. | |
o ¢
< H
20 0
! H
= fis T i
o : .
H)
w
o 01
o0
voc 2012 coco11 ~100-0.75-050-025 0.00 025 050 075 100 O G
L oatasts 0 Sample i

Figure 4: The test results of various models on the ChartMimic benchmark. “Base.+ReCha.” refers
to the baseline model fine-tuned with the ReChartPrompt-240K dataset. Incorporating ReChart-
Prompt significantly enhances the chart-to-code generation capability of the base model, while
ChartSimRL further improves the handling of fine details.

chart prompts. Nonetheless, minor issues remain, such as slight mismatches in color or element po-
sitioning compared to the ground truth, indicating that supervised fine-tuning alone does not achieve
perfect visual consistency. (3) Incorporating the ChartSimRL algorithm further improves both
visual and semantic alignment. Notably, the model demonstrates enhanced color accuracy (as
seen in the first column of Fig.[d) and more faithful reproduction of arrow styles in the second col-
umn, reflecting improved attention to key factual details. (4) ChartMaster competes favorably
with GPT-40. Notably, the ChartMaster-7B model can generate charts that more closely resem-
ble the ground truth than those from GPT-40, especially excelling in “mimicking” chart attributes.
Additional generation results in Appendix Fig. [§]consistently support these conclusions.

Under review as a conference paper at ICLR 2026

5 CONCLUSION

In this paper, we propose ChartMaster, a novel chart-to-code generation framework paired with
a tailored reinforcement learning algorithm. By introducing ReChartPrompt, we address data
homogeneity issues in prior work and build a highly diverse ReChartPrompt-240K dataset. Our
ChartSimRL algorithm combines semantic and visual similarity rewards, enabling the model to
generate chart code that closely matches original visuals. Experiments show ChartMaster achieves
performance on par with GPT-40 in chart-to-code tasks. We will open source all resources to foster
community development and advance research in this area.

Beyond its technical innovations, ChartMaster supports automated scientific reporting and empow-
ers data-driven decision-making across a wide range of domains. While our current framework
targets common chart types and Python-based code, expanding its scope to include a wider range of
chart formats and programming languages is an exciting direction for future work.

REFERENCES

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.
com/news/claude—-3-family.

Rabiul Awal, Mahsa Massoud, Aarash Feizi, Zichao Li, Suyuchen Wang, Christopher Pal, Aish-
warya Agrawal, David Vazquez, Siva Reddy, Juan A Rodriguez, et al. Webmmu: A benchmark for
multimodal multilingual website understanding and code generation. In Proceedings of the 2025
Conference on Empirical Methods in Natural Language Processing, pp. 25129-25156, 2025.

Shuai Bai, Keqgin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185-24198, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. Chartllama: A multimodal llm for chart understanding and generation. arXiv preprint
arXiv:2311.16483, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international
conference on pattern recognition, pp. 2366-2369. IEEE, 2010.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-rl: Incentivizing reasoning capability in multimodal large language models.
arXiv preprint arXiv:2503.06749, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

10

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

Under review as a conference paper at ICLR 2026

Kushal Kafle, Brian Price, Scott Cohen, and Christopher Kanan. Dvqga: Understanding data visual-
izations via question answering. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5648-5656, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. arXiv
preprint arXiv:2407.07895, 2024a.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, Zhiyong Huang, and Jing Ma. Mmcode: Bench-
marking multimodal large language models for code generation with visually rich programming
problems. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 736—
783, 2024b.

Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
zero: Reasoning-chain guided segmentation via cognitive reinforcement. arXiv preprint
arXiv:2503.06520, 2025.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Hao Yang, et al. Deepseek-vl: towards real-world vision-language understanding.
arXiv preprint arXiv:2403.05525, 2024.

Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Libo Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu,
and Wanxiang Che. Python is not always the best choice: Embracing multilingual program of
thoughts. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 7185-7212, 2024.

Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. In Findings of the
association for computational linguistics: ACL 2022, pp. 2263-2279, 2022.

Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman
Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmoham-
madi, et al. Chartqapro: A more diverse and challenging benchmark for chart question answering.
arXiv preprint arXiv:2504.05506, 2025a.

Ahmed Masry, Abhay Puri, Masoud Hashemi, Juan A Rodriguez, Megh Thakkar, Khyati Maha-
jan, Vikas Yadav, Sathwik Tejaswi Madhusudhan, Alexandre Piché, Dzmitry Bahdanau, et al.
Bigcharts-r1: Enhanced chart reasoning with visual reinforcement finetuning. arXiv preprint
arXiv:2508.09804, 2025b.

Fanqing Meng, Wengqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo.
Chartassisstant: A universal chart multimodal language model via chart-to-table pre-training and
multitask instruction tuning. arXiv preprint arXiv:2401.02384, 2024.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
Han, Botian Shi, Wenhai Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multi-
modal reasoning with rule-based reinforcement learning. arXiv preprint arXiv:2503.07365, 2025.

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over
scientific plots. In Proceedings of the ieee/cvf winter conference on applications of computer
vision, pp. 1527-1536, 2020.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable reinforcement learn-
ing: A survey and comparative review. ACM Computing Surveys, 56(7):1-36, 2024.

11

Under review as a conference paper at ICLR 2026

Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-rl: Empowering 3b Imms with strong reasoning
abilities through two-stage rule-based rl. arXiv preprint arXiv:2503.07536, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748-8763. PmLR, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728-53741, 2023.

Juan Rodriguez, Xiangru Jian, Siba Smarak Panigrahi, Tianyu Zhang, Aarash Feizi, Abhay Puri, Ak-
shay Kalkunte, Frangois Savard, Ahmed Masry, Shravan Nayak, et al. Bigdocs: An open dataset
for training multimodal models on document and code tasks. arXiv preprint arXiv:2412.04626,
2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qiangian Zhang, et al. VIm-rl: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far
are we from automating front-end engineering? arXiv e-prints, pp. arXiv—2403, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. arXiv preprint
arXiv:2503.20752, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham
Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of 1lm alignment tech-
niques: RIhf, rlaif, ppo, dpo and more. arXiv preprint arXiv:2407.16216, 2024b.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600—
612, 2004.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. arXiv preprint arXiv:2405.07990, 2024.

Rengqiu Xia, Bo Zhang, Haoyang Peng, Hancheng Ye, Xiangchao Yan, Peng Ye, Botian Shi, Yu Qiao,
and Junchi Yan. Structchart: Perception, structuring, reasoning for visual chart understanding.
arXiv preprint arXiv:2309.11268, 2023.

Rengiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng

Ye, Min Dou, Botian Shi, et al. Chartx & chartvlm: A versatile benchmark and foundation model
for complicated chart reasoning. arXiv preprint arXiv:2402.12185, 2024.

12

Under review as a conference paper at ICLR 2026

Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating Imm’s cross-modal reasoning capability
via chart-to-code generation. arXiv preprint arXiv:2406.09961, 2024a.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, et al. Matplotagent: Method and evaluation for llm-based agentic
scientific data visualization. In Findings of the Association for Computational Linguistics ACL
2024, pp. 11789-11804, 2024b.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yana Wei, Yuang Peng, Haoran Wei, Jianjian Sun,
Chunrui Han, Zheng Ge, et al. Perception-rl: Pioneering perception policy with reinforcement
learning. arXiv preprint arXiv:2504.07954, 2025.

Bob Zhang, Haoran Li, Tao Zhang, Cilin Yan, Jiayin Cai, Xiaolong Jiang, and Yanbin Hao. Improv-
ing the reasoning of multi-image grounding in mllms via reinforcement learning. arXiv preprint
arXiv:2507.00748, 2025a.

Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin, Xiao Li, Xiao Yu, Yue Wang, Bei Chen,
and Jacky Keung. Humaneval-v: Evaluating visual understanding and reasoning abilities of large
multimodal models through coding tasks. arXiv preprint arXiv:2410.12381, 2024a.

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
Tao. RI1-vl: Learning to reason with multimodal large language models via step-wise group
relative policy optimization. arXiv preprint arXiv:2503.12937, 2025b.

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang.
Tinychart: Efficient chart understanding with visual token merging and program-of-thoughts
learning. arXiv preprint arXiv:2404.16635, 2024b.

Xuanle Zhao, Xianzhen Luo, Qi Shi, Chi Chen, Shuo Wang, Zhiyuan Liu, and Maosong Sun. Chart-
coder: Advancing multimodal large language model for chart-to-code generation. arXiv preprint
arXiv:2501.06598, 2025.

Wengqing Zheng, SP Sharan, Ajay Kumar Jaiswal, Kevin Wang, Yihan Xi, Dejia Xu, and Zhangyang
Wang. Outline, then details: Syntactically guided coarse-to-fine code generation. In International
Conference on Machine Learning, pp. 42403—42419. PMLR, 2023.

13

Under review as a conference paper at ICLR 2026

(Chart2Code-160K

Login Data o o Login and Threats D2

i3S i<

Model A Model B Model A Model A
Level Rank1
wez] 0 2 Rank2
g 2 H
H H H
3 ¢ i
L] 8 n B Rank3
Leveia] 13 Rank 4
Contol Shuted Randomizea Control Shued Randomizea Contol Shufed Inpadomized 105 Control Shufed Inpadomized 105 Control Snuffca npandornzed 03

Figure 5: Dataset visualization. The charts in Chart2Code-160K exhibit homogenization, which
affects diversity; the charts in ReChartPrompt demonstrate greater variety, especially in terms of
textual content within the tables and layout attributes.

14

Under review as a conference paper at ICLR 2026

P type \

You are given an image that represents one type of chart or plot. The possible plot types are:
[Bar, Line, ErrorBar, Heatmap, Box, Scatter, Hist, Radar, 3D, Pie, ErrorPoint, Violin]
Please carefully examine the given image and identify which one of the above plot types it belongs to.

- If the image clearly matches one of the plot types, respond with the exact name of that plot type (choose only one).
- If the image does not belong to any of these categories or is not a plot, respond with: None

Your answer should be exactly one word from the list above or None, nothing else.

Figure 6: Prompt used for chart type classification (Pype). The Qwen2.5-VL-72B model is prompted
with this template to assign each image to one of 12 predefined chart categories.

Prechart [
“"You are an expert Python P ializing in ib. Based on the picture | provide, please write Python code using matplotlib to precisely reproduce the image.”,
"As a skilled Python programmer with matplotlib expertise, please generate Python code that recreates the given image exactly."”,
"You're an experienced matplotlib developer. Given the picture below, please write Python code that recreates it faithfully.”,
"Please act as a Python matplotlib specialist and generate the Python code that reproduces the image shown below.",
"You are an expert in Python plotting using matplotlib. Create Python code to generate a plot identical to the provided picture.”,
"Your task is to write matplotlib Python code that perfectly replicates the given image.",
“Imagine you are an expert Python coder who can write matplotlib code to duplicate images. Please generate code that reproduces the picture exactly.”,
"You are requested to produce Python code using matplotlib that recreates the image below as closely as possible.”,
"As a professional matplotlib developer, write Python code to visualize the given image precisely.”,
"Please generate Python matplotlib code to recreate the picture shown.",
"You are a helpful assistant who can generate Python code using matplotlib. Please produce code to create a plot that closely resembles the given image, enclosed within pylhon and
"You are a assistant ializing in ib. Generate Python code that recreates the provided plot as closely as possnble The code should be wrapped in ““python and ~.",
"As a matplotlib expert assistant, please generate Python plotting code that replicates the given image. Output your code between ™ pyth nand """
"You are a helpful bot that writes matplotlib Python code. Please provide the code to produce a plot that matches the i |mage wrapped il ython and
"Your task is to produce matplotlib Python code that draws a plot visually similar to the glven image. Enclose your code in ““python and
"You are a Python coding assistant with matplotlib skills. Please write code surrounded by ““python and " that recreates the glven plot as closely as posslble -
"As an assistant proficient in matplotlib, generate Python code that reproduces the pictured plot. Your code should be enclosed in ~“python and ™

Python ib code that pi a plot similar to the provided image. Wrap the code inside *"python and "".",

"You are an expert assistant that creates matplotlib Python code. Please write code enclosed in ““python and " that recreates the given picture as faithfully as possible.”,
"Please generate Python code using matplotlib to produce a plot matching the given image, wrapped by ““python and " "

Figure 7: Prompt for chart-to-code generation (Prechart). Twenty diverse prompts are designed to
instruct the Qwen2.5-VL-72B model to generate Python matplotlib code from chart images, en-
hancing instruction diversity.

] [Ground Truth]

P > & spwaitos — semoitos
‘m 'w .00, 4 270
i e
2 P Pty 24|
= @, ;‘» e, h}.
274 S 3 '4S
] . .
o . .

. 0106111621262136

0z o4 o5 08

Scatter o - magents Scattr it megreen_
3] 7]

] [ChartMaster] [Base.+ReCha.] [

GPT-40

Figure 8: More test results of various models on the ChartMimic benchmark.

15

Under review as a conference paper at ICLR 2026

A DATA AUDITING
We provide a comprehensive summary of dataset statistics across each stage of data curation:

Table 6: Summary of Dataset Auditing Statistics by Data Curation Stage
Statistic

Total images crawled: 477,788

Total chart images filtered: 288,992

44 /1000 = 4.4% (manual check, 1000 samples from filtered charts)

Valid training samples (charts with executable code): 242,479

Code execution pass rate: 242,479 /288,992 = 83.9%

Not required; successful code execution ensures reliable chart-code pairing

Stage

Stage 1: Collecting Images from arXiv

Stage 2: Filtering Non-Chart Images

Stage 2: Chart-type misclassification rate
Stage 3: Generating code with ReChartPrompt
Stage 4: Code Execution and Filtering

Stage 4: Inter-annotator checks

1. Chart-type misclassification (Stage 2). To assess data quality, we randomly sample 1,000 chart
images after the initial filtering stage and manually check for chart-type misclassification. Among
these, 44 images (4.4%) contain both chart and non-chart elements but are classified as charts. In
the subsequent Stage 4, only one of these 44 misclassified images successfully generates executable
code; the remaining samples typically fail due to referencing non-existent files or incomplete code.
Thus, the vast majority of noise is filtered out. Some examples can be found in Figure A of the
supplementary materials.

2. Inter-annotator checks (Stage 4). Our pipeline relies on automatic code execution for validation,
so manual inter-annotator agreement checks can be omitted.

3. Style-consistent reproductions. We clarify that our pipeline does not require replotted charts
to be visually identical or style-consistent to the originals. Instead, the original charts are used to
inspire diverse outputs, while code executability ensures each chart-code pair is valid. This design
makes our dataset both diverse and reliable, while also simplifying the pipeline and reducing manual
effort.

4. Judging noise, coverage, and bias. ReChartPrompt leverages real-world chart images from
arXiv, resulting in diverse distributions and rich attribute coverage. Our dataset includes a wide
variety of content and visual styles, which helps reduce bias and increase coverage compared to
previous datasets. Code execution filtering further minimize noise. Figures 3 and 5 in the paper
illustrate the attribute diversity and coverage of our dataset.

B IMPLEMENTATION AND EVALUATION DETAILS

ChartMiMic Plot2Code ChartX
Prompt You are an expert Python developer who specializes in writing | You are a helpful assistant that can generate | Redraw the chart image
matplotlib code based on a given picture. | found a very nice | Python code using matplotlib.Generate the | using Python code.
picture in a STEM paper, but there is no corresponding source code | matplotlib code to create a plot that looks like
available. | need your help to generate the Python code that can | the given image, as similar as possible.The
reproduce the picture based on the picture | provide. generated code should be surrounded by
Note that it is necessary to use figsize=(X, Y) to set the image size | “““pythonand "
to match the original size.
Now, please give me the matplotlib code that reproduces the
picture below.
Decoding context_length: 4096 context_length: 4096 context_length: 4096
Parameters | max_tokens: 4096 max_tokens: 4096 max_tokens: 4096
temperature: 0.1 temperature: 0.1 temperature: 0.1
top_p: 1 top_p: 1 top_p: 0.9

Figure 9: Test prompts and decoding settings of benchmarks.

During the collection of arXiv papers, we explicitly exclude papers that are used as benchmarks to
avoid potential data leakage. In the data generation stage, we apply a greedy sampling strategy to
filter chart data, retaining only images of 12 predefined chart types and discarding all others. Then,

we randomly select an instruction from Pechar to prompt the Qwen2.5-VL-72B (Bai et al., 2025)
model to generate code via nucleus sampling, with a temperature of 0.1 and a top-p of 0.9.

For training, we use the Qwen2.5-VL-7B model 2025)) in two stages. In Stage 1, we
perform SFT on the entire ReChartPrompt-240K dataset with a learning rate of 2 x 10, batch

size 128, and a cosine annealing scheduler for one epoch; the resulting model is saved for Stage 2.

16

Under review as a conference paper at ICLR 2026

In Stage 2, ChartSimRL training is conducted on 10% of the ReChartPrompt-240K dataset, using
a smaller learning rate of 5 x 1076 and generating M = 4 candidate codes per sample. Candi-
date sampling uses temperature 1.0, top-p 1.0, and top-k 80 to encourage diversity. The batch size
remains 128 (32 samples x 4 candidates each).

For evalution, we assess the model’s chart-to-code generation performance on multiple benchmarks.
ChartMimic Direct Mimic Task (Yang et al[2024a)): This benchmark includes 600 chart images.
GPT-40 scores (0-100) serve as high-level similarity metrics. Additionally, low-level F1 scores
for text, layout, chart type, and color are computed from code execution for fine-grained analysis.
Plot2Code Direct Asking (Wu et al., 2024): Metrics include code pass rate, text match rate, and
a 10-point GPT-4V visual similarity score, jointly assessing code correctness and visual fidelity.
ChartX Chart Redrawing Task (Xia et al [2024): This benchmark uses GPT-4 (0-5 scale) to
evaluate code-generated chart redrawings. The Test prompts and decoding settings are listed in

Figure [0}

C STANDARD METRICS

We consider two RGB images: the original chart image I; € R¥>*W >3 and the generated chart

image I; € REXWx3 \where H and W denote the height and width of the images respectively
(both images are resized to the same height and width before comparison), and 3 corresponds to the

RGB color channels. Below, we describe how to quantify the visual similarity between I; and fi
using metrics such as Mean Squared Error (MSE), Structural Similarity (SSIM) (Wang et al.,|2004),
and Peak Signal-to-Noise Ratio (PSNR) (Hore & Zioul 2010).

C.1 MEAN SQUARED ERROR

The Mean Squared Error (MSE) is defined as:

H W R 2
s o 2 3 (Bl w.) = fihw. o)

h=1w=1 c=1

MSE(I;, I;) =

This formula computes the average squared difference between the pixel values of the two images
over all spatial locations and color channels. A smaller MSE indicates higher similarity between I;
and I;.
To convert the MSE into a similarity score, we define the MSE-based similarity as:
1
MSE_Similarity = ——— — € (0, 1]
1+ MSE(I;, I;)
* When MSE — 0, MSE_Similarity — 1, indicating the images are almost identical.
* When MSE — oo, MSE _Similarity — 0, indicating large differences between the images.

C.2 STRUCTURAL SIMILARITY

The Structural Similarity (SSIM) is a perceptual metric that quantifies the similarity between two
images by comparing local patterns of pixel intensities. It is computed on local sliding windows
centered at each pixel location. For each window, local statistics including mean, variance, and co-
variance are calculated to evaluate the similarity. The final SSIM value for each channel is obtained
by averaging these local SSIM values over all spatial positions, and the overall SSIM between two
RGB images is computed by averaging over the three color channels.

Formally, for each color channel ¢ € {R, G, B}, the SSIM is defined as:
(2M15Mi; + Ol)(Qajgi; + C2)
(u7e + 1, + C1)(0Fe + 0% + Ca)

SSIM,.(I¢, [¢) =

1771

where

17

Under review as a conference paper at ICLR 2026

* pre and p1 je are the local means computed within the sliding window.

. oIc and o2, are the local variances.

I
* 0;cjc is the local covariance.

« Cy = (K1L)? and Cy = (K3 L)? are constants to stabilize the division, with default values
K, = 0.01, K = 0.03. L is the dynamic range of the pixel values. For 8-bit grayscale
images, L = 255. In our implementation, all images are converted to np.float32
and normalized by dividing by 255, so the pixel values are in the range [0, 1]. Therefore,
L = 1.0 is used for SSIM calculation.

The overall mean SSIM between the two RGB images is then calculated by averaging over all spatial
positions (z,y) in each channel and then over the three channels:

SSIM(I;, I;) ZH v ZZSSIM (z,v), I¢(x,y)) € [0,1]

rz=1y=1

e When SSIM — 1, the images are structurally almost identical.

* When SSIM — 0, there are significant structural differences between the images.

C.3 PEAK SIGNAL-TO-NOISE RATIO

Peak Signal-to-Noise Ratio (PSNR) is a widely used metric to measure the quality of reconstructed
images compared to the original images. It is defined as:

. L2
PSNR(I;, I;) = 10logyy | —————
MSE(1;, I;)
where L is the dynamic range of the pixel values. For normalized images in [0, 1], L = 1.0.

In practical scenarios, PSNR values typically range in tens of decibels and can vary widely, which
may cause instability during optimization. To mitigate this effect, we normalize the PSNR values
within each rollout batch by dividing them by the maximum PSNR value in that batch:

PSNR(I;, I;)

maxfj €rollout batch PSNR(IJ) IJ)

PSNRnorm(L’y jz) = € (0, 1}
* When PSNR,o;;m — 1, the reconstructed image I ; s very similar to the original image I;.

* When PSNR,,o;m — 0, there exist significant differences between the images.

D THE USE OF LARGE LANGUAGE MODELS

In this study, the initial draft, core research ideas, motivation, data analysis, and scientific insights
were all independently developed by the human authors. LLMs were used solely as auxiliary tools
to polish the language of the initial draft, including removing redundant content and avoiding ambi-
guity, thereby enhancing the overall readability of the manuscript.

E MORE EXPERIMENTS

E.1 FINE-GRAINED RESULTS AND THEIR RELATIONSHIP WITH R" AND R}’

We provide a detailed quantitative breakdown to clarify how each reward component affects chart
reconstruction quality. As shown in the Table []} SFT on ReChartPrompt significantly boosts all
metrics, laying a strong foundation. Adding either the attribute reward or visual similarity reward
further improves low-level metrics, but their effects differ.

Specifically, R2*" mainly enhances text accuracy and layout fidelity, but has limited impact on color
consistency. This is because R'*" relies on discrete matching, where both subtle and large color

18

Under review as a conference paper at ICLR 2026

Table 7: Fine-grained quantitative analysis on ChartMimic benchmark.

ChartSimRL Low-Level High-Level
ReChartPrompt Rater - Ryis Exec. Rate | 1yt Layout Type Color Avg.| GPT-4o
65.5 352 581 378 283 399 40.7
v 91.1 75.6 878 67.0 643 73.7 80.9
v v 92.1 80.1 90.2 69.5 65.1 76.2 83.9
v v 92.1 79.8 906 71.8 68.7 71.7 84.3
v v v 93.8 79.8 913 722 69.7 78.2 85.1

differences are treated as mismatches, even though larger discrepancies should be penalized more
heavily. In contrast, the visual similarity reward (RY*), which evaluates global image features in a
continuous manner, better captures approximate color and gradient variations, resulting in stronger
gains in color consistency.

Therefore, the optimal approach is to combine both reward mechanisms, leveraging their comple-
mentary strengths to achieve robust and fine-grained chart-to-code reconstruction.

E.2 EXTENSION TO CHART UNDERSTANDING TASKS

Table 8: Ablation study on the impact of ReChartPrompt data and ChartSimRL for chart under-
standing tasks.

Tiny ReChart ChartQAPro

Chart Prompt SFT RL || ChartQA Factoid Conversational Hypothetical Fact Checking Multi Choice Overall
v v 87.8 26.7 39.7 41.7 38.5 355 342
v v v 89.2 27.5 42.1 36.0 45.0 39.2 379
v v v v 89.8 29.3 43.4 38.9 47.1 36.9 39.1

To verify the effectiveness of our method on chart understanding tasks, we conduct further experi-

ments on ChartQA (Masry et al} [2022)) and ChartQAPro (Masry et al.| 2025a) benchmarks.

Following ChartCoder, we incorporate the TinyChart dataset (Zhang et al 2024b)) throughout the
training process. Specifically, we first use 240K TinyChart instances for SFT on Qwen2.5-VL-7B as
the baseline. Then, we jointly train the model with our own dataset during SFT. During GRPO, we
use 24K QA samples from ChartQA (Masry et al.| 2022), PlotQA (Methani et al.} 2020), and DVQA

2018) subsets, applying an accuracy-based reward for QA and attribute/visual rewards
for chart-to-code. Losses for QA and chart-to-code tasks are computed separately and averaged;

other hyperparameters remain unchanged.

As shown in Table [8] incorporating ReChartPrompt data during SFT notably improves QA accu-
racy, especially for Fact Checking, with further gains from RL. This demonstrates that chart-to-code
learning enhances the model’s fine-grained understanding of chart semantics and transfers effec-
tively to reasoning tasks, resulting in better QA performance.

E.3 IMPACT OF TEACHER MODEL

Table 9: Impact of teacher model quality on ChartMaster performance.

ChartMimic Plot2Code ChartX
Method SFT GRPO Exec.Rate Low-Level High-Level | Pass Rate Text-Match Rating | GPT-score
Qwen2.5-VL-7B 65.5 39.9 40.7 67.4 43.8 4.60 2.18
Qwen2.5-VL-72B 88.5 727 79.1 84.8 68.4 6.83 2.52
Qwen3-VL-235B-A22B-Instruct 94.0 79.1 82.3 90.1 56.3 6.49 2.94
Use Qwen2.5-VL-72B v 91.1 73.7 80.9 80.3 59.3 5.34 2.36
as Teacher Model v v 93.8 78.2 85.1 88.2 62.6 5.65 2.46
UseQwen3-VL-235B v 91.1 75.3 81.5 82.5 64.3 5.57 2.48
as Teacher Model v v 95.1 794 86.2 88.6 65.7 5.93 2.53

To investigate the impact of the teacher model on ChartMaster performance. We select Qwen3-VL-
235B-A22B-Instruct as the stronger teacher to generate a new 240K chart-to-code dataset. As shown
in Table[9] ChartMaster’s performance improves significantly when a stronger teacher model is used
for data distillation, demonstrating that teacher quality substantially impacts student performance.
Importantly, our method enables the student model to closely match and even outperform the teacher

19

Under review as a conference paper at ICLR 2026

on certain metrics, evidencing the effectiveness of our approach in leveraging high-quality teacher
knowledge.

E.4 ROBUSTNESS OF VISUAL REWARD TO CHART SEMANTICS

o Pets (4 shots) 1 TFM,ACEUffSY — Testing Accuracy N o
= ca2p5s me c-a25s w e=6255 s "‘\'A"\"\\‘
@ w
o -
g
ARE
51!
R
|
»
0 [2 0 60 80 100
L B B Epoch _
100 Pets (4 shots) N Training Accuracy N Testing Accuracy L
AN M W
08 - 08
H) “Mwwmw/\mﬂ/\,\,
£ gor v 06 M/\pww\/\w%w/\/v«
g 5 / PP WM ARNWWAA
] Los 7 | oa
o2f | / — 02 B
/ /I
// ~ ’/‘ |
= 20 40 60 laon 20 40 60 100 = 2 =
8 N Epoch Epoch oo s
-8 RV =0.95, RM™ =1.00 RY'S =090, R = 0.80 RYV'S =0.76, R = 0.74
S - .
= P 1 Training Accuracy N Testing Accuracy
< 00 ets (4 shots)
O s otsishap et Deepl
[
[
/
— = //' —
T 0 20 40 60 80 100 20 40 60 80 100
Epoch Epoch
RY™ =0.86, ngttr =053 RY*=0.82, ngttr =067 RY* =0.78, ngttr =071

Figure 10: Qualitative analysis of candidate charts generated during GRPO. Visual reward and at-
tribute (semantic) reward are generally positively correlated. Outlier cases with high visual reward
but low semantic alignment receive low final reward, indicating that our design avoids overfitting to
style surrogates.

To further examine whether our visual reward overfits to style surrogates, we conduct a qualitative
analysis of candidate charts generated during the GRPO process. We observe in Figure[I0]that nearly
all candidates with high visual scores also achieve high attribute (semantic) scores, indicating strong
semantic alignment. Occasionally, some candidates exhibit high visual scores but low attribute
scores; in these cases, the final reward remains low due to the penalization from the attribute score.
These results suggest that the visual reward does not cause overfitting to superficial styles, and the
attribute score effectively mitigates the impact of outliers.

E.5 ERROR ANALYSIS

We conduct error analysis on ChartMaster-7B using the ChartMimic test set and present typical
failure cases in Appendix Figure [[T] The results reveal that the primary source of error is the
inaccurate extraction of precise numerical values from complex charts. Despite implementing a
relaxed matching strategy for numerical values, this issue remains unresolved. Further exploration
of reward design and model architecture will be pursued in future work.

E.6 THE IMPACT OF CHART-AWARE VISUAL ENCODER
In Table 5] we have compared the performance of different CNN-based visual encoders and con-

cluded that deep visual features are effective. To further investigate, we use the chart-aware visual
encoder from ChartCoder-7B to extract features. As shown in Table [T0} the chart-aware encoder

20

Under review as a conference paper at ICLR 2026

s g
= s~ 1
— ” ~
2|
l!: 2
=1 [, |
c |
:).
o
(.
A A
s Y
et s - S a5 '
® | \ s
c < s 08}’ o
> o] “ b
2} \ ‘ 55
© \ /
o XS :
AN A
s 'S
““python
N~ weeks = np.array([1, 2, 3, ...])
o aws_data = np.array([3, 6, 8, ...])
(b} google_data = np.array([1,2, 4, ...])
"a microsoft_data = np.array([1, 2, 3, ...])
@ ibm_data = np.array([0, 1, 2, ...])
2 fig, ax = plt.subplots(figsize=(10, 6))
e oot
] ax.plot(weeks, aws_data, label='"AWS Data
g Center’, color="red', linestyle='solid") [\ValueError]
| | N

Figure 11: Some bad cases from ChartMaster-7B on the ChartMimic test set. The main challenge
lies in accurately extracting precise numerical values.

Table 10: Comparison of ChartMaster-7B performance using different visual encoders on the Chart-
Mimic benchmark.

Low-Level High-Level
ChartMaster-7B || Exec. Rate Text Layout Type Color Avg.| GPT-4o0
w/ ChartCoder-ViT 94.8 83.1 93.1 71.1 65.7 78.2 84.6
w/ ResNet-18 93.8 79.8 913 722 69.7 78.2 85.1

slightly improves execution rate and achieves better text and layout metrics, reflecting enhanced
chart-specific feature extraction. However, it lags behind ResNet-18 in Type and Color metrics,
suggesting that traditional CNNs may better capture texture and color information. Overall, both
encoders show comparable average performance. We will continue exploring more specialized vi-
sual encoders in future work.

E.7 PROMPT ANALYSIS

Table 11: Comparison of model performance trained on single-prompt versus diverse-prompt
datasets. Models trained with diverse prompts generally achieve higher scores, illustrating the ben-
efit of prompt diversity.

Dataset ChartMimic _ Plot2Code) ChartX
Exec.Rate Low-Level High-Level | Pass Rate Text-Match Rating | GPT-score

ReChartPrompt-240K-Single-Prompt 88.5 73.0 78.9 83.3 58.9 5.14 2.30

ReChartPrompt-240K-Diverse-Prompt 91.1 73.7 80.9 80.3 59.3 5.34 2.36

21

Under review as a conference paper at ICLR 2026

We investigate the impact of prompt diversity on code generation quality. Specifically, we randomly
select 1,000 original charts and generate replotted results using each of the 20 prompts in P echar.
The code execution rates are comparable across prompts: 82.7%, 84.2%, 81.9%, 81.5%, 83.8%,
82.9%, 82.1%, 82.3%, 83.2%, 84.0%, 81.8%, 82.4%, 84.1%, 82.7%, 83.6%, 81.2%, 84.4%, 81.5%,
84.7%, and 83.3%. This indicates that Qwen2.5-VL-72B demonstrates strong instruction-following
ability, and different phrasings of similar prompts yield no significant differences in code pass rates.

To further assess the effect of prompt diversity, we identify the prompt with the highest code pass
rate and use it to regenerate 240K training samples (ReChartPrompt-240K-Single-Prompt). We
then compare these results to those obtained from our diverse prompt dataset (ReChartPrompt-
240K-Diverse-Prompt). As shown in Table [T} models trained with diverse prompts consistently
outperform those trained with a single prompt across multiple benchmarks, demonstrating the clear
advantage of prompt diversity in improving model performance.

22

	Introduction
	Related Work
	Multimodal Code Generation
	Reinforcement Learning for MLLMs

	Method
	Using Real-World Charts to Generate Dataset
	Training ChartMaster: SFT and ChartSimRL

	Experiment
	Comparison with SOTA
	Ablation Study
	Qualitative analysis

	Conclusion
	Data auditing
	Implementation and Evaluation Details
	Standard Metrics
	Mean Squared Error
	Structural Similarity
	Peak Signal-to-Noise Ratio

	The Use of Large Language Models
	More experiments
	Fine-grained results and their relationship with Riattr and Rivis
	Extension to chart understanding tasks
	Impact of teacher model
	Robustness of visual reward to chart semantics
	Error Analysis
	The impact of Chart-Aware Visual Encoder
	Prompt analysis

