
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARD SELF-EVOLVING SYSTEMS OF LLM AGENTS
THROUGH EXPLORATION AND ITERATIVE FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large language model (LLM) agents to acquire necessary skills and per-
form diverse tasks within an environment is gaining interest as a means to enable
open-endedness. However, creating the training dataset for their skill acquisition
faces several challenges. Manual trajectory collection requires significant human
effort. Another approach, where LLMs directly propose tasks to learn, is often
invalid, as the LLMs lack knowledge of which tasks are actually feasible. Moreover,
the generated data may not provide a meaningful learning signal, as agents often
already perform well on the proposed tasks. To address this, we propose a novel
framework, EXploration and Iterative Feedback (EXIF), for LLM-powered agents.
This automatic improvement framework is designed to enhance the feasibility
of generated target behaviors while accounting for the agents’ capabilities. Our
method adopts an exploration-first strategy by employing an exploration agent
(Alice) to train the target agent (Bob) to learn essential skills in the environment.
Specifically, Alice first interacts with the environment to generate a feasible,
environment-grounded skill dataset, which is then used to train Bob. Crucially,
we incorporate an iterative feedback loop, where Alice evaluates Bob ’s perfor-
mance to identify areas for improvement. This feedback then guides Alice ’s next
round of exploration, forming a closed-loop data generation process. Experiments
on Webshop and Crafter demonstrate EXIF ’s ability to iteratively expand the
capabilities of the trained agent without human intervention, leading to substantial
performance improvements. Interestingly, we observe that setting Alice to the
same model as Bob also notably improves performance, demonstrating EXIF ’s
potential for building a self-evolving system.

1 INTRODUCTION

Large language model (LLM)-powered agents have demonstrated remarkable capabilities in interact-
ing with complex environments and performing user-instructed tasks, including game playing (Wang
et al., 2023; Hu et al., 2024) and graphical user interface (GUI) manipulation (Zhou et al., 2024a;
Xie et al., 2024; Lee et al., 2024; Rawles et al., 2025). A significant aspiration for these agents is to
achieve open-endedness: the ability to autonomously explore, learn, and continuously expand their
capabilities within an environment, effectively becoming capable of tackling an ever-growing range
of tasks without human intervention. This kind of open-endedness cannot be easily achieved with
prompting techniques such as reasoning (Yao et al., 2023), reflection (Shinn et al., 2023), and tree
search (Koh et al., 2024). These in-context learning mechanisms are often insufficient for fostering
continuous, autonomous learning—especially in unfamiliar settings where the agent lacks awareness
of possible actions and their consequences (Chen et al., 2023; Zeng et al., 2023; Zhou et al., 2024c),
necessitating continuous learning mechanisms within the environment.

To cultivate open-ended learning and enable agents to continuously acquire specialized skills in new
environments, collecting suitable training data is a critical step. A straightforward approach is to
manually collect instructions and corresponding trajectories for a multitude of potential tasks in each
environment, but this is often infeasible due to high costs. Consequently, recent work harnesses the
generative capabilities of LLMs to automatically synthesize instruction-trajectory datasets (Murty
et al., 2024b; Pahuja et al., 2025), reducing human annotation effort and enabling scalable data
collection across diverse environments. These methods often prompt LLMs to directly propose tasks

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

 Exploration & Instruction Generation Agents (Alice)

 Task Performing Agents (Bob)

❶ Explore Environment ❷ Collect Trajectories

❺ Evaluate❻ Feedback ❹ Train Target Agent

Skill 
Dataset

❸ Generate Instructions

Validation 
Rollout

Achievements - Kill zombie 10

 Δ Inventory - Stone +10

SFT

 “I am looking for  
scientific equipment  

with a price lower than $100.”Click 
[..]

Search 
[..]

Buy 
[..]

Move 
up

Move 
right

Do 
(Collect)

 “Collect stone 
using wood pickaxe”

Game

Web

Game

Exploration 
Guidance × N

“Prepare resources  
for iron tools ...”

“Make sure to click the
color-related attribute

before ...”

Validation Task 1 - Score 1 : 0.5

Validation Task 2 - Score 2 : 0.6

Web

Figure 1: Overview of our framework for self-evolving systems through exploration and iterative
feedback (EXIF), consisting of two main components: (1) an explore-first strategy that enables
the agent, Alice, to navigate the environment and generate feasible, valid tasks, which are then
used to train another agent, Bob; and (2) an iterative feedback mechanism that produces tasks and
trajectories beyond Bob ’s current capabilities to expand its skills. Through multiple iterations, EXIF
enables Bob to expand its skill set in the target environment without any human guidance.

and then collect trajectories conditioned on those tasks—a process we refer to as proposal-first task
generation (Zhou et al., 2024b; Zheng et al., 2025; Su et al., 2025; Zhao et al., 2025).

However, applying this proposal-first approach to foster open-ended learning presents two critical
downsides. First, without actively interacting with the environment, LLMs cannot determine which
tasks are feasible when making their proposals, potentially generating a large volume of invalid tasks.
Second, lacking awareness of the current agent’s evolving capabilities during its training lifecycle,
LLMs may produce synthetic data that is misaligned with what the agent actually needs to learn
to expand its skill set effectively. Because these requirements are unmet, much of the resulting
synthetic data may be irrelevant or suboptimal, failing to effectively guide the agent toward learning
the essential skills in the target environment (Murty et al., 2024b; He et al., 2024a; Yuan et al., 2023).

In this paper, we propose a novel self-evolving system for language agents, based on EXploration and
Iterative Feedback (EXIF). Our method integrates two crucial components: (a) exploration-based
skill dataset generation and (b) multi-iteration feedback. EXIF utilizes two LLM agents: Alice,
which generates exploratory trajectories and corresponding instructions—pairing them into a skill
dataset, referring to data used to learn necessary skills in the environment—and Bob, which is trained
on this dataset to effectively perform tasks in the given environment. Specifically, Alice explores
the environment and converts these explorations into feasible trajectories and instructions. This
ensures that the generated tasks are grounded in the environment, unlike proposal-first approaches,
which risk producing infeasible tasks. Bob is then trained on the generated dataset. Subsequently,
EXIF incorporates an iterative feedback loop: Alice identifies areas where Bob struggles and
provides targeted feedback. Based on this feedback, Alice generates a new, tailored skill dataset
to address these specific needs. As a result, EXIF iteratively enhances Bob ’s skill repository by
grounding skills in both the environment and Bob ’s own capabilities, enabling continual evolution
and generalization to unseen tasks without human intervention.

Through extensive experiments on two challenging benchmarks, Webshop (Yao et al., 2022) and
Crafter (Hafner, 2022), we show that EXIF results in a consistent improvement of LLM agent over
the iterative training process. Specifically, in Webshop, when Alice is GPT-4o (Hurst et al., 2024),
the LLM agent trained with EXIF improves its reward substantially, from 2.0 to 52.6 over training
iterations; in Crafter, it achieves performance comparable to GPT-4o. Moreover, we demonstrate
that even when using the same small model for both Alice and Bob, the approach yields notable
performance improvements, including a 15% higher success rate in Webshop compared to when

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Alice is the larger GPT-4o model, highlighting the potential for building self-evolving systems.
We believe that our method paves a way for more autonomous, self-improving AI agents that learn
and adapt in complex environments with minimal human guidance, enabling a new generation of
intelligent systems.

2 METHOD

In this section, we introduce EXIF, a novel algorithm for self-evolving systems through exploration
and iterative feedback. As illustrated in Figure 1, EXIF employs an LLM agent, hereafter referred to
as Alice (with policy πϕ), for exploration-based skill dataset generation and feedback processing.
These skill datasets from Alice are then used to iteratively train a target LLM agent, hereafter
referred to as Bob (with policy πθ). Therefore, Alice iteratively creates a skill dataset conditioned
on natural language feedback about Bob ’s performance, and Bob is iteratively refined to perform
tasks well in the given environment. The pseudocode is in Appendix C, the prompts for Alice and
Bob in Appendix D, and additional implementation details in Appendix E.

Throughout, we consider an agent interacting with an environment over discrete time steps t =
1, 2, . . . , T , receiving observation ot ∈ O and taking action at ∈ A based on the history ht =
(ot−H , at−H , . . . , ot−1) and optionally a goal g. We use an LLM as a policy πϕ (or πθ), producing
actions as at ∼ πϕ(· | ht, ot, g). The full trajectory is denoted τ = (o1, a1, . . . , oT , aT).

Specifically, our method consists of the following steps:

• Step 1 (Exploration & Skill Dataset Generation): Alice explores the target environment
to collect diverse trajectories, then generates instructions from them to create synthetic instruc-
tion–trajectory pairs (skill dataset) (Section 2.1).

• Step 2 (Training Target Agent & Evaluation): The generated skill dataset is used to fine-tune
Bob, which is then evaluated in the target environment (Section 2.2).

• Step 3 (Feedback & Repeat (Steps 1–3)): Alice provides feedback on Bob ’s evaluation and
repeats Steps 1–3, with exploration (Step 1) now conditioned on this feedback to enable targeted
data generation for Bob in subsequent rounds of fine-tuning (Section 2.3).

2.1 EXPLORATION

The initial phase focuses on gathering diverse behavioral data from the environment using Alice’s
policy πϕ. Unlike typical goal-oriented agents, Alice operates without an explicit external goal
g during this phase. This is because Alice often lacks prior knowledge of the environment, and
exploring with an arbitrary goal, proposed by Alice, might lead to invalid trajectories if the goal is
not achievable within the environment.

Specifically, Alice interacts with the environment over time steps t = 1, . . . , T , generating actions
at ∼ πϕ(·|ht, ot) based solely on the interaction history ht = (ot−H , at−H , . . . , ot−1) and the
current observation ot. The objective is to produce a wide range of interaction sequences or trajec-
tories, τexp = (o1, a1, . . . , oT , aT), capturing various feasible behaviors within the environment’s
constraints. To avoid excessive random behavior, we use weak constraints such as assigning a persona
during exploration or setting a vague objective like survival in the game environment. Exploration
continues until a termination condition is met (e.g., reaching a maximum step count Tmax). This
process yields an initial dataset of exploratory trajectories Dexp = {τ (j)exp}Mj=1.

Exploration with Feedback After the first iteration, exploration is conditioned on feedback from
the previous iteration k (detailed in Section 2.3). The feedback F (k) guides Alice in generating a
new skill dataset for the next round, k+ 1, specifically tailored to address the shortcomings identified
in Bob during iteration k. Alice ’s action is now conditioned on the feedback: at ∼ πϕ(· |
ht, ot, F

(k)), steering exploration toward behaviors and states relevant to the skills Bob lacks.

Instruction Generation To train Bob, we convert exploratory trajectories from Alice into a
skill dataset. Alice analyzes each trajectory τ

(j)
exp and generates a natural language instruction

I(j) that describes the demonstrated task or behavior. This yields the final skill dataset Dskill =

{(I(j), τ (j))}Mj=1, where each instruction I(j) is grounded in a corresponding trajectory τ
(j)
exp.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 FINE-TUNING BOB

The generated dataset Dskill is used to train the target agent, Bob, whose policy πθ is parameterized
by θ. We employ supervised fine-tuning (SFT) to teach Bob (πθ) to execute the generated instructions
I(j) by mimicking the actions a(j)t in the corresponding trajectories τ (j) = (o

(j)
1 , a

(j)
1 , . . . , o

(j)
Tj

, a
(j)
Tj

).
Specifically, Bob (πθ) is trained to maximize the likelihood of the actions in the trajectory given the
instruction and the history. This is achieved by minimizing the SFT loss over the dataset Dskill:

LSFT (θ;Dskill) = −
M∑
j=1

Tj∑
t=1

log πθ(a
(j)
t |h

(j)
t , o

(j)
t , I(j)), (1)

where h
(j)
t = (o

(j)
t−H , a

(j)
t−H , . . . , o

(j)
t−1) is the history at t with context length H within trajectory j.

This initial training yields the first version of Bob’s fine-tuned policy πθ(0) .

2.3 FEEDBACK GENERATION & ITERATIVE PROCESS

EXIF incorporates an iterative refinement loop (indexed by k = 0, 1, 2, . . .) to progressively enhance
Bob ’s (πθ) capabilities by targeting areas for improvement. Each iteration involves evaluating Bob
at iteration k, generating targeted data using Alice (πϕ) guided by feedback for the next iteration
(k + 1), and retraining Bob (πθ(k)).

Feedback Generation To generate feedback for iteration k+1, the performance or behaviors of the
current Bob policy πθ(k) in the target environment are evaluated. This evaluation involves executing
Bob on a set of evaluation tasks or allowing it to interact within the environment, potentially
attempting tasks similar to those in the training set or novel ones. Analyzing its successes and
failures—such as the inability to follow certain instructions or failure to complete specific sub-tasks
as reflected in the ot, at sequences—then yields a natural language feedback signal F (k). This signal
encodes the deficiencies or areas where Bob (πθ(k)) requires improvement.

Repeat the Process After feedback generation, the next iteration begins: exploration and instruction
generation with Alice, fine-tuning Bob, evaluation, and feedback generation. Note that Alice’s
parameter is not updated during this process. The only key difference starting from iteration 1 is that
the first step—exploration—is now conditioned on the feedback signal F (k) to generate a skill dataset
tailored to Bob ’s current status. This iterative framework ensures that Bob expands the necessary
skills at each iteration without any human intervention, supporting the goal of open-endedness.

3 EXPERIMENTS

In this section, we present experimental results addressing four research questions:

RQ1: How effective is EXIF in enabling Bob to solve more tasks in the environment by expanding
its skill set without human guidance?

RQ2: How important is the exploration-first approach in generating valid tasks for Bob?
RQ3: How do feedback and iterative refinement influence the skill discovery process?
RQ4: Can EXIF effectively be a self-evolving agent system?

3.1 EXPERIMENT SETTINGS

We describe our experimental settings, including environments, models, and baselines. Details are
provided in Appendix B (environments), Appendix D (prompts), and Appendix E (implementation).

Environment To answer our research questions, we experiment on two challenging benchmarks
with distinct task properties: Webshop (Yao et al., 2022) and Crafter (Hafner, 2022).

• Webshop: Webshop is a text-based simulated e-commerce web environment where agents must
navigate web pages to purchase a product specified by a natural language instruction. The observa-
tion space consists of the textual content of the web pages, and the action space involves searching

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

queries and clicking UI elements. Key skills include grounding instructions, selecting appropriate
search keywords, identifying the correct products, and clicking on the right attributes. This
benchmark allows us to evaluate whether using EXIF improves Bob’s generalization capability
when faced with novel products and constraints.

• Crafter: Crafter is a Minecraft-like game environment simulating 2D open world. The main
objective of the agent in this environment is to survive, explore, gather resources, craft items,
and defend against threatening mobs. To interface with LLM agents, we convert image-based
observations into a text format by describing the agents’ status, inventory, surroundings, and
directly facing entities (Paglieri et al., 2025). Key skills in Crafter include exploration, health
management, mineral collection, and tool crafting. Within this complex, open-ended benchmark,
our aim is to demonstrate that EXIF’s goal-less exploration can uncover fundamental skills, like
drinking water and collecting resources. Furthermore, we want to show how its iterative feedback
loop is crucial for discovering more complex, compositional skills, such as crafting advanced
weapons, ultimately enabling the achievement of long-horizon goals.

Models In both experiments, we use GPT-4o-2024-08-06 (Hurst et al., 2024) as the base LLM
for Alice. For Bob, we employ two different base LLMs: Qwen2.5-7B (Yang et al., 2024) and
Llama3.1-8B (Grattafiori et al., 2024). We also conduct an experiment using the same LLM for
both Alice and Bob (e.g., Qwen2.5-7B) to test EXIF as a self-evolving system (Section 3.4).

Baselines We compare EXIF with several baselines: the proprietary model gpt-4o and the base
Bob models before training. We also evaluate task proposal-first methods (PF), where Alice
proposes tasks without exploration, and rollouts are generated conditioned on these tasks to form the
skill dataset. Lastly, we include an explore-first method without a feedback method, denoted as EF.

Exploration Details In Webshop, we assign a unique persona for each episode using PersonaHub1to
encourage diversity. In each round, Alice explores for 250 episodes, ending when a purchase is made
or the maximum horizon is reached. In Crafter, Alice is only instructed to survive as long as possible.
Each of the 50 episodes ends when the maximum horizon is reached or health points are depleted,
following the benchmark’s predefined termination criteria.

Training Details As described in Section 2, Alice generates skill dataset to train Bob. In Webshop,
we additionally apply post-hoc reasoning (Murty et al., 2024a) to label rationales based on instructions
and trajectories. In Crafter, to construct a high-quality skill dataset, we preprocess long-horizon
explorative trajectories into segments to generate instructions. While segmenting, we apply a rule-
based classifier to monitor changes in the agent’s status, inventory, and surrounding entities, but
ensure that no additional information is provided beyond the agent’s observability. We, then, filter
out random and uninformative behavior by retaining only the last four steps of each segment.

Feedback In Webshop, we use Alice to provide feedback on Bob ’s validation performance.
Specifically, we use task IDs 501-550 from the validation set. We randomly sample two successful
and four failed trajectories, including instructions, based on a reward threshold of 0.5. Alice is
then prompted to identify model shortcomings and suggest two exploration guidelines as feedback.
In Crafter, we request Bob to survive in the environment as long as possible without specific goals,
mirroring the standard test setup (Paglieri et al., 2025), due to the absence of validation tasks. Then,
we prompt Alice to generate feedback on Bob’s 20 rollout trials in the environment.

Evaluation In Webshop, we utilize the first 500 test tasks to measure the performance of Bob.
Specifically, we use the environment’s predefined reward and the task success rate (SR) to measure
the performance. In Crafter, we adopt two metrics to thoroughly examine (1) the improvement of
skill set and (2) the capability of agents in using the learned skills in a long-horizon interaction with
the environment. First, we count the number of learned skills (NS) out of 22 pre-defined tasks in
the benchmark. When measuring this, we provide an explicit instruction specifying each task and
the necessary prerequisites (e.g., the stone pickaxe when mining iron) to the agent, and count the
completed skills with at least a 0.5 success rate over 10 trials. Second, we measure the average
progress (AP) of achievements accomplishments (out of the pre-defined 22 tasks) in a single rollout
starting without any prerequisite item, following evaluation of prior work (Paglieri et al., 2025),
across 20 trials.

1https://huggingface.co/datasets/proj-persona/PersonaHub

5

https://huggingface.co/datasets/proj-persona/PersonaHub

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of agents using different base LLMs (GPT-4o, Llama3.1-8B,
Qwen2.5-7B) and methods across the Webshop and Crafter environments. Reward is the predefined
reward in Webshop; SR denotes Success Rate in Webshop; NS is the number of learned skills in
Crafter; and AP indicates the average progress rate in Crafter. For Reward, SR, NS, and AP, We report
values in the format mean±standard error (improvement over the base model) across multiple evaluations.
Iter. refers to the number of iterations conducted in the training process; # Traj. indicates the
number of trajectories used to train the model throughout the entire training process.

Base LLM Method Webshop Crafter

Iter. # Traj. Reward SR (%) # Iter. # Traj. NS AP (%)

GPT-4o Base - - 16.5±1.4 11.4±1.2 - - 15 35.5±2.4

Qwen2.5-7B

Base - - 23.2±1.2 5.0±0.1 - - 9 8.6±1.5

PF 1 1000 38.6±2.4 (+15.4) 6.6±1.0 (+1.6) 3 150 10 (+1) 16.6±3.0 (+8.0)
EF 1 1000 42.1±0.2 (+18.9) 6.6±0.1 (+1.6) 1 150 11 (+2) 24.2±3.3 (+14.6)
EXIF (Ours) 4 1000 50.1±0.4 (+26.9) 9.0±0.1 (+4.0) 3 150 15 (+6) 30.2±2.3 (+18.8)

Llama3.1-8B

Base - - 2.0±0.1 0.0±0.0 - - 7 7.8±1.2

PF 1 250 27.2±2.2 (+25.2) 2.0±0.0 (+2.0) 3 150 11 (+4) 20.1±3.1 (+12.4)
EF 1 500 38.1±0.9 (+36.1) 3.0±0.0 (+3.0) 1 150 12 (+5) 25.6±2.1 (+17.8)
EXIF (Ours) 4 1000 52.6±1.2 (+50.6) 6.0±0.0 (+6.0) 3 150 14 (+7) 31.9±3.0 (+24.1)

3.2 MAIN RESULTS

Quantitative Analysis Table 1 presents a comparison of agents trained on different datasets for the
Webshop and Crafter tasks. Notably, in both tasks, EXIF significantly outperforms the base model
before fine-tuning, indicating that Alice generates meaningful skill dataset for Bob. Furthermore,
compared to PF and EF, EXIF achieves superior performance, highlighting the importance of both
the exploration-first strategy and the feedback mechanism.

Specifically, in Webshop, Llama3.1-8B model with our method achieves a reward value exceeding
50.0, outperforming the base model (2.0) and even surpassing the proprietary model GPT-4o (16.5).
The poor performance of GPT-4o reflects its unfamiliarity with the Webshop environment and
limited ability to solve tasks within a finite horizon. Consequently, PF methods perform poorly:
Alice not only struggles to complete the proposed tasks but also to generate valid ones, highlighting
the need for an exploration-first approach.

Moreover, incorporating a feedback mechanism into EF—which is EXIF—boosts performance by
nearly 50%, underscoring the importance of feedback in guiding the synthesis of training trajectories
tailored to the agent. Specifically, as shown in Figure 2, the performance of EF plateaus after iteration
1 or 2, whereas EXIF exhibits consistent gains due to the feedback mechanism, indicating that naive
scaling of data alone does not improve performance. A similar trend is observed for Qwen2.5-7B,
though in this case, feedback-guided exploration also leads to an increase in success rate.

In Crafter, agents using both Llama3.1-8B and Qwen2.5-7B achieve performance close to that
of GPT-4o. Specifically, in the evaluation measuring the number of learned skills, the trained Qwen
agent matches the base GPT-4o, achieving 15 skills out of 22 test tasks. Similarly, the Llama
agent achieves 14 skills—twice as many as its untrained counterpart. When we evaluate agents by
making them survive in the environment for as long as possible without any prerequisite inventory,
the Llama and Qwen agents achieve AP values of 31.9% and 30.4%, respectively. This indicates that
the skills discovered by EXIF are highly beneficial in long-horizon, open-ended evaluation settings.
Compared to the base agents, which average below 9% AP, agents trained with EXIF learn to manage
health by using resources like food and water, and gradually upgrade their inventory by collecting
materials and crafting tools. In contrast, both PF and EF show limited performance, with AP below
30%, highlighting the advantage of feedback-guided exploration in expanding agent capabilities.
Additionally, as shown in Figure 2, the feedback mechanism in EXIF enables the agent to learn a
greater number of skills (NS) and achieve larger gains in AP over training iterations compared to EF,
similar to the trend observed in Webshop, highlighting the effectiveness of feedback.
Qualitative Analysis Figure 3 shows qualitative examples demonstrating how, given the same
instruction, the trained model differs in its action sequences compared to the base model. In Webshop,
we observe that the base model fails to click on attributes such as “size, 21 in x 35 in,” whereas after
applying EXIF, the model successfully follows the instruction by learning how to correctly click

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 419

39

59
R

ew
ar

d
Webshop - Reward

0 1 2 3 4-2

4

12

S
R

Webshop - SR

0 1 2 3 48

12

16

N
S

Crafter - NS

0 1 2 3 45

21

37

A
P

Crafter - AP

Iterations

Ours EF

Figure 2: Performance comparison of EXIF with feedback at each iteration versus EF, which scales
data by generating more samples per iteration without feedback, on Webshop and Crafter using
Qwen2.5-7B. Increasing the amount of data alone does not improve performance without feedback.

Webshop

search[home office furniture sets  
for dining room living room  

color: blue | gray , shape: runner  
size: 21 in x 35 in price: < 60.00]

click[b07fkgqkz1]

click[buy now]

search[home office furniture sets for  
dining room, living room  
with color: blue | gray,  
and item shape: runner,  

and size: 21 in x 35 in,  
and price lower than 70.00 dollars]  

click[b07fkgqkz1]  

click[buy now]

click[21 in x 35 in]
 

Before Finetuning (Base)

Before Finetuning (Base)

After Finetuning (EXIF)After Finetuning (EXIF)

After Finetuning (EXIF)After Finetuning (EXIF)

move_down → move_down →  
move_down → move_left → 

do (collect stone) → move_left →  
do (collect stone) → move_left →  

do (collect iron)

“Find me home office furniture sets for dining room, living room with color: blue | gray, and item
shape: runner, and size: 21 in x 35 in, and price lower than 80.00 dollars"

move_down → move_down →  
move_left → move_left →

... (repeated)

“Collect iron.”

iron

Crafter

Figure 3: Qualitative examples of action sequences generated by the Llama3.1-8B model before
and after fine-tuning with EXIF. EXIF encourages more precise instruction following in the web
environment and reduces random behavior or enables new skills in the game environment.

attributes or conditions mentioned in the prompt. In Crafter, the base model exhibits excessive random
behavior for the given instruction of “Collect iron”. Due to such repetitive behavior, the agents fail to
reach the target iron tile as obstructed by the stone tile. On the other hand, the model trained with
EXIF learns that the skill of collecting stones is necessary to move forward and ultimately reaches
the target iron, successfully completing the task. More sample analysis is provided in Appendix H.

3.3 TRAJECTORY AND FEEDBACK ANALYSIS

Proposal-first vs Exploration-first A lot of tasks from the proposal-first approach are invalid, as
the model proposes goals without precise knowledge of the environment, often leading to infeasible
tasks or mismatched trajectories. In contrast, the exploration-first approach yields mostly valid tasks
by generating trajectories first and then deriving instructions from the trajectory and final observation,
ensuring better alignment. For example, tasks like “Smelt raw beef into cooked beef using coal in
the furnace” or “Place a torch in a dark cave area,” though seemingly plausible, are indeed invalid in
Crafter due to the absence of entities. Figure 4a shows the ratio of valid skill datasets generated by
the two approaches: PF and EF. Specifically, we consider skill data valid if the instruction is feasible
in the environment and its trajectory aligns with the corresponding instruction (see Appendix E).
We observe that exploration-first methods yield 85% and 70% in Webshop and Crafter, respectively,
while proposal-first methods result in less than 30% valid skill dataset, demonstrating the importance
of the exploration-first approach for collecting trajectories.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

WebShop Crafter
0%

50%

100%
Va

lid
 Ta

sk
 R

at
io

 (%
)

22.0%
45.0%

88.0% 93.0%

PF EF

(a) Valid skill dataset ratio

0 1 2 3 4
Iteration

0.0

0.5

Re
p.

 A
ct

io
ns

 (
)

R # C # SW

0.1

0.2

0.3

Av
g

Co
un

ts
 (

)

(b) Behavioral changes in Webshop

ha
rve

st
sta

tuswoo
d
sto

ne iro
n

hu
nt

Task types

10 1

100

101

Ta
sk

 p
ro

po
rti

on
 (%

) It3
It2
It1

(c) Task shift in Crafter

Figure 4: (a) The ratio of valid skill dataset among those generated using PF and EF approaches in
Webshop and Crafter. (b) The average number of repeated actions (# R), average number of clicking
attributes (# C), and average number of search keywords (# SW) by Bob, normalized by 20 for
display, per iteration. (c) The skill distribution discovered by Alice in each iteration in Crafter.

Table 2: Examples of feedback at each iteration. Critical parts that lead to changes in exploration are
highlighted in bold.

Task Iter. Feedback

Webshop

1
1. The current low reward is due to broad search queries. Use more . . . detailed
search keywords . . . during your exploration. 2. The current low reward
. . . Avoid clicking the same item multiple times . . . during your exploration.

3
1. The model’s initial search query . . . generate a detailed query that specifies
. . . like small/medium. 2. The model underutilizes attribute selection. Actively
click on diverse attributes, . . . select specific size options.

Crafter

1 Focus on practicing stone tool crafting and resource collection to improve
progress on currently underexplored early survival tasks

3
Focus on resource preparation for iron tool crafting, prioritizing materials
that support smelting and tool upgrades; avoid crafting additional wooden tools
as they are redundant at this stage

Feedback Analysis Table 2 presents feedback examples during EXIF. In Webshop, early iterations
show Bob repeating actions and using short queries, while later iterations include feedback prompting
attribute interactions (e.g., size, color). As a result, Alice adjusts its exploration, and Bob exhibits
reduced action repetition, increased attribute selection, and more detailed search queries, as shown in
Figure 4b. In Crafter, feedback guides Alice toward increasingly advanced skills in each round.
As shown in Figure 4c, the skill distribution shifts toward tasks targeting different objectives over
iterations. Early feedback focuses on basic skills like collecting wood, while later rounds emphasize
crafting stone tools, enabling Bob to complete more complex tasks (please refer to Appendix G for
the definition of each task type).

3.4 POTENTIAL OF SELF-EVOLVING SYSTEM

A key strength of EXIF is its ability to function as a self-evolving system, without requiring larger
models for Alice. To demonstrate a self-evolving scenario, we set up experiments in which the
Alice model was replaced from GPT-4o to Qwen2.5-7B, using the same model for Bob.

Surprisingly, as shown in Figure 5, this also leads to a significant performance improvement on both
benchmarks compared to the base models, nearly matching the performance of a larger Alice model
in Webshop and achieving a higher success rate. It also shows comparable performance in Crafter.
This suggests that EXIF can effectively expand the skill set within the environment without relying on
a proprietary model, highlighting the potential of EXIF for building a self-evolving system—where
two identical agents, without any human intervention, collaboratively generate data and learn to
perform well, resembling a form of self-play (OpenAI et al., 2021).

That said, the current open-source 7B model has notable limitations. In Webshop, while performance
improves significantly in the first iteration, the feedback mechanism quickly loses impact and
performance saturates, as the model struggles to generate useful feedback. In Crafter, which demands

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 419.5

39.5

59.5
R

ew
ar

d
Webshop - Reward

0 1 2 3 4-3.4

14.4

32.3

S
R

Webshop - SR

0 1 2 3 48.7

12.5

16.3

N
S

Crafter - NS

0 1 2 3 45.8

22.5

39.2

A
P

Crafter - AP

Iterations

GPT-4o Qwen2.5-7B

Figure 5: Performance of Bob using the Qwen2.5-7B model when Alice is Gpt-4o (red) or the
Qwen2.5-7B (blue) model, investigating the potential of a self-evolving system (blue).

more advanced skills, using Qwen2.5-7B as Alice further reveals these shortcomings. This
implies that models with sufficient capability to diagnose Bob ’s weaknesses would allow EXIF to
function as a truly self-evolving system. More analysis and Llama3.1-8B results are in Appendix F.

4 RELATED WORK

Curriculum Generation for Autonomous Agent A line of research has explored methods for
automatically generating goal states (Florensa et al., 2018; Pong et al., 2019) or designing training
environments (Justesen et al., 2018; Wang et al., 2019; Dennis et al., 2020), enabling agents to
continuously learn novel behaviors in open-ended environments. Several works have also investigated
self-play approaches (Liu et al., 2019; Team et al., 2021), where agents improve their capabilities
by learning to achieve challenging goals generated by their opponents. More recently, LLMs have
been used to define curricula (Yang et al., 2023; Du et al., 2023; Nam et al., 2023), and some studies
leverage this to create training curricula based on the notion of interestingness (Zhang et al., 2023;
Faldor et al., 2024). Additionally, there are works that use LLMs to generate tasks based on the
agent behavior or introduces context-aware task proposals (Khan et al., 2024; Zhou et al., 2024b). In
this work, we study ensuring the feasibility of the generated plans by letting the LLM explore the
environment and, then, relabeling the collected exploration trajectory retroactively.

Dataset Synthesis for LLM agent To learn diverse skills, synthesizing datasets with a variety of
instructions is crucial. Early approaches to collecting datasets for training LLM agents relied on
human annotation (Deng et al., 2023; Lù et al., 2024). Due to the prohibitive cost of manual labeling,
AutoWebGLM (Lai et al., 2024) leveraged LLMs to synthesize instructions, while OpenWebVoy-
ager (He et al., 2024b) used LLMs to collect additional trajectories that follow the instructions. Kuba
et al. (2025) created a benchmark to test whether expert demonstrations benefit long-horizon tasks.
Recently, several works have explored self-improvement through data proposal and iterative interac-
tion, often framed as a two-agent setup, for diverse tasks (Liang et al., 2024; Zhao et al., 2025; Kuba
et al., 2025; Chen et al., 2025). In agentic domains, to improve the quality of generated instructions,
BAGEL (Murty et al., 2024b) refines synthesized instructions by evaluating agent performance with
those instructions. Furthermore, NNetnav (Murty et al., 2024a) and Explorer (Pahuja et al., 2025)
propose exploration-based dataset generation, ensuring the feasibility of collected trajectories. Build-
ing on these works, our approach extends exploration-based dataset synthesis by introducing iterative
interactions between teacher and student agents, enabling more scalable trajectory generation.

5 CONCLUSION

We propose EXIF, a novel self-improving systems for LLM agents that combines an exploration-first
mechanism with iterative training using feedback. Our approach collects trajectories via exploration-
guided task generation, uses the explorative agent Alice to generate a skill dataset, trains the target
agent Bob on this dataset, and iteratively refines the exploration strategy based on feedback about
Bob ’s behavior to expand its skill set. Through extensive experiments, we show that the LLM
agent’s performance improves over multiple iterations, acquiring diverse skills without any human
demonstrations—even in a self-play setting. We believe our method represents a meaningful step
toward achieving self-evolving systems for open-endedness, enabling agents to autonomously acquire
diverse, environment-grounded skills through iterative exploration and feedback.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For reproducibility, we add details of our settings and implementations in Section 3.1. We add
prompts in Appendix D, implementation details are detailed in Appendix E, and we also provide
details on environments in Appendix B. We attached the code in our supplementary materials.

REFERENCES

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning. arXiv preprint arXiv:2310.05915, 2023.

Lili Chen, Mihir Prabhudesai, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Self-questioning
language models. arXiv preprint arXiv:2508.03682, 2025.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36, 2023.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 2020.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, 2023.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via
models of human notions of interestingness with environments programmed in code. arXiv preprint
arXiv:2405.15568, 2024.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International Conference on Machine Learning, 2018.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. In International Conference on
Learning Representations, 2022.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024a.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Hongming Zhang, Tianqing Fang, Zhenzhong
Lan, and Dong Yu. Openwebvoyager: Building multimodal web agents via iterative real-world
exploration, feedback and optimization. arXiv preprint arXiv:2410.19609, 2024b.

Sihao Hu, Tiansheng Huang, and Ling Liu. Pokéllmon: A human-parity agent for pokémon battles
with large language models. arXiv preprint arXiv:2402.01118, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius, and
Sebastian Risi. Illuminating generalization in deep reinforcement learning through procedural
level generation. arXiv preprint arXiv:1806.10729, 2018.

Zaid Khan, Elias Stengel-Eskin, Jaemin Cho, and Mohit Bansal. Dataenvgym: Data generation
agents in teacher environments with student feedback. arXiv preprint arXiv:2410.06215, 2024.

Jing Yu Koh, Stephen McAleer, Daniel Fried, and Ruslan Salakhutdinov. Tree search for language
model agents. arXiv preprint arXiv:2407.01476, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jakub Grudzien Kuba, Mengting Gu, Qi Ma, Yuandong Tian, and Vijai Mohan. Language self-play
for data-free training. arXiv preprint arXiv:2509.07414, 2025.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, et al. Autowebglm: A large language model-based web
navigating agent. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2024.

Juyong Lee, Taywon Min, Minyong An, Dongyoon Hahm, Haeone Lee, Changyeon Kim, and Kimin
Lee. Benchmarking mobile device control agents across diverse configurations. arXiv preprint
arXiv:2404.16660, 2024.

Xuechen Liang, Yangfan He, Yinghui Xia, Xinyuan Song, Jianhui Wang, Meiling Tao, Li Sun,
Xinhang Yuan, Jiayi Su, Keqin Li, et al. Self-evolving agents with reflective and memory-
augmented abilities. arXiv preprint arXiv:2409.00872, 2024.

Hao Liu, Alexander Trott, Richard Socher, and Caiming Xiong. Competitive experience replay. arXiv
preprint arXiv:1902.00528, 2019.

Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

Shikhar Murty, Dzmitry Bahdanau, and Christopher D Manning. Nnetscape navigator: Complex
demonstrations for web agents without a demonstrator. arXiv preprint arXiv:2410.02907, 2024a.

Shikhar Murty, Christopher D Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. Bagel: Boot-
strapping agents by guiding exploration with language. In International Conference on Machine
Learning. PMLR, 2024b.

Taewook Nam, Juyong Lee, Jesse Zhang, Sung Ju Hwang, Joseph J Lim, and Karl Pertsch.
Lift: Unsupervised reinforcement learning with foundation models as teachers. arXiv preprint
arXiv:2312.08958, 2023.

OpenAI OpenAI, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vineet Kosaraju, Peter
Welinder, Ruben D’Sa, Arthur Petron, Henrique P d O Pinto, et al. Asymmetric self-play for
automatic goal discovery in robotic manipulation. arXiv preprint arXiv:2101.04882, 2021.

Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan,
Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, et al. Balrog: Benchmarking
agentic llm and vlm reasoning on games. In International Conference on Learning Representations,
2025.

Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead, Yu Su,
and Ahmed Awadallah. Explorer: Scaling exploration-driven web trajectory synthesis for multi-
modal web agents. arXiv preprint arXiv:2502.11357, 2025.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. In International Conference on Learning
Representations, 2025.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 2023.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arık. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments. arXiv
preprint arXiv:2501.10893, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended
learning leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

An Yang, Baosong Yang, Beichen Zhang, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
large language model to use tools via self-instruction. Advances in Neural Information Processing
Systems, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations, 2023.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie, Penglin Cai, Hao Dong, and Zongqing
Lu. Skill reinforcement learning and planning for open-world long-horizon tasks. arXiv preprint
arXiv:2303.16563, 2023.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of
human notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data.
arXiv preprint arXiv:2505.03335, 2025.

Boyuan Zheng, Michael Y Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, et al. Skillweaver: Web agents can
self-improve by discovering and honing skills. arXiv preprint arXiv:2504.07079, 2025.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. In International Conference on Learning
Representations, 2024a.

Yifei Zhou, Qianlan Yang, Kaixiang Lin, Min Bai, Xiong Zhou, Yu-Xiong Wang, Sergey Levine,
and Erran Li. Proposer-agent-evaluator (pae): Autonomous skill discovery for foundation model
internet agents. arXiv preprint arXiv:2412.13194, 2024b.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024c.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Toward Self-Evolving Systems of LLM Agents through Exploration
and Iterative Feedback

Supplementary Material

A LIMITATION & BROADER IMPACT

Limitations While the proposed EXIF framework represents a significant step toward self-evolving
system, it has some limitations. First, the feedback mechanism, a core component of EXIF, relies on
natural language, which requires accurate identification of weaknesses. Although it performs well
on the benchmarks we evaluated, it may struggle in more complex environments, and the results
might vary depending on the capabilities of the base models. Second, we have not explored a version
incorporating more predefined skill sets, as in Khan et al. (2024). We plan to extend our work to
these more diverse feedback settings and additional environments.

Broader Impact The development of EXIF and similar autonomous skill discovery methods
holds considerable broader impact for the advancement of artificial intelligence. By enabling agents
to autonomously explore, learn, and continuously expand their capabilities without direct human
intervention, this research paves the way for a new generation of more independent and adaptive
AI systems. Such systems could revolutionize various domains beyond game playing and GUI
manipulation, potentially leading to breakthroughs in scientific discovery, personalized education,
and complex problem-solving in dynamic real-world scenarios. The ability of agents like Bob
to generalize to unseen tasks based on self-generated, environment-grounded experiences could
significantly reduce the reliance on costly human-annotated datasets, accelerating the deployment of
capable AI in a wider array of applications and fostering the creation of truly intelligent systems that
can adapt and grow with minimal human guidance.

B ENVIRONMENT DETAILS

B.1 WEBSHOP

We explain the details of the Webshop environment, covering the observation space, action space, the
instructions used, and how the benchmark score is calculated.

Observations The observation is a text-based web page, which can be a search page, a product list
page, or an item description page. An example of a product list page is detailed below:

Example of Webshop Observation

[button] Back to Search [button]

Page 1 (Total results: 20)

[button] Next > [button]
[button] B09J5HJ8DL [button]
TASYL USB Adapter for iPhone iPad Lightning Camera Adapter USB 3.0 OTG Cable
Supports Camera, USB Flash Drive, Keyboard, Mouse, Camera, Wireless dongles, Bluetooth
Dongles $13.8
[button] B07YCGBPRD [button]
OTAO Privacy Screen Protector for iPhone 11 Pro Max/iPhone Xs Max 6.5 Inch True
28°Anti Spy Tempered Glass Full-Coverage (2-pack) $9.98

. . .

[button] B07DGXZJ1K [button]

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Afeax Compatible Volume Button Silent Power Switch Flex Cable Replacement for iPhone 8
Plus (5.5 inch) $8.9

Action Space Actions consist of two distinct types: search and click. The search action allows the
agent to search for items in the web environment and is only available on the initial page with the
search button. Search queries can include any keywords related to various products, such as phones,
tablets, shoes, clothes, and more.

All actions beyond the initial page are click actions. There are three types of click actions:

• Clicking HTML elements, mostly item IDs, to navigate to specific product pages.

• Clicking navigation options, where the agent can choose to go back to the previous page, proceed
to the next page, return to the search page, purchase a product, etc.

• Selecting product attributes, such as color or size, to finalize the product details before purchase.

Benchmark Evaluation For Webshop, there are predefined tasks identified by task IDs. Following
the original setting (Yao et al., 2022), we use task IDs 0–499 as evaluation tasks. The instruction
in each evaluation task typically takes the form of a search request with specific constraints, such
as: “Find me double sided, machine washable decorative pillows with printing technology with size:
28” x 28”, and price lower than 30.00 dollars.” Each task has a predefined reward based on how
similar the selected product is to the ground-truth answer. A success is counted when the reward is
1.0, indicating a perfect match.

B.2 CRAFTER

We explain the details of the Crafter environment, including the observation space, action space,
instruction set, and evaluation setting.

Observations Within our experimental setup, we convert raw image observations into structured
textual representations to interface with the LLM agent. Each textual observation encodes the agent’s
current status, inventory, immediate surroundings, and the entity directly in its line of sight. A specific
example is provided below.

Example of Crafter Observation

Current Observation
Your status:
- health: 5/9
- food: 8/9
- drink: 9/9
- energy: 8/9

Your inventory:
- wood pickaxe: 1
- stone: 9
- stone pickaxe: 1
- coal: 3
- iron: 1
- wood sword: 1
- stone sword: 1

You see:
- water 2 steps to your west
- grass 1 steps to your south
- stone 3 steps to your east
- path 1 steps to your east

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

- sand 1 steps to your west
- coal 5 steps to your north-east

You are facing path at your front (east direction)

Action Space The environment exposes an 17-action discrete control space that can be grouped
into five functional categories. Navigation actions allow single-tile movement in the four cardinal
directions, supporting spatial exploration. Interaction enables direct engagement with the forward
tile, including resource collection, and combat. Placement actions let the agent deploy terrain-
modifying objects—stone blocks, crafting tables, furnaces, and plants—that serve as prerequisites for
later tasks. Crafting actions synthesize tools and weapons when contextual requirements (nearby
table or furnace) and inventory resources are satisfied. Finally, rest/idle actions restore internal
energy or deliberately suspend activity, preserving the agent’s state.

• Navigation: move left, move right, move up, move down

• Interaction: do

• Placement: place stone, place table, place furnace, place plant

• Crafting: make wood pickaxe, make wood sword, make stone pickaxe,
make stone sword, make iron pickaxe, make iron sword

• Rest / Idle: sleep, noop

Evaluation We evaluate our method in the Crafter environment using two complementary metrics
that capture (1) the diversity and number of skills acquired, and (2) the agent’s ability to use these
skills in long-horizon interactions without task instruction.

• Number of learned skills (NS) : To assess the breadth of the acquired skill set, we compute the
number of learned skills, denoted as NS, out of the 22 pre-defined tasks in the Crafter benchmark.
For each task, we provide the agent with an explicit natural language instruction that clearly
specifies the goal and any necessary prerequisites. The agent is evaluated over 10 independent
trials per task. A task is considered successfully learned if the agent achieves a success rate of at
least 0.5 across these trials. This metric reflects the agent’s ability to master individual skills when
prompted with clear instructions. All trials are conducted using environment seeds 42+i, where
i = 0, 1, . . . , 9.

• Average progress (AP) : To evaluate the agent’s ability to autonomously achieve goals in an
open-ended setting, we compute the average progress, denoted as AP. This metric measures
the average proportion (ranging from 0 to 1) of distinct achievements accomplished in a single
episode, out of the same set of 22 tasks. Following prior work, the agent is initialized without
any prerequisite items (i.e., no tools and resources) and runs for one full rollout. The AP score
is averaged over 20 such episodes. Unlike NS, which evaluates isolated skill execution under
guided instructions, AP captures how well the agent can compose and utilize previously learned
skills to make progress toward multiple goals in a long-horizon, unguided setting. All episodes are
conducted using environment seeds 42+i, where i = 0, 1, . . . , 19.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C ALGORITHM

Algorithm 1 presents the detailed procedure of EXIF, with further explanation provided in Section 2.

Algorithm 1: EXIF: Self-Evolving Systems via Exploration and Iterative Feedback
1: Initialize:
2: LLM agent Alice (policy πϕ parameterized by ϕ)
3: Target LLM agent Bob (policy πθ parameterized by θ)
4: Total number of iterations Kiter

5: Feedback F (−1) ← null ▷ No feedback for the first iteration (k = 0)
6: D(k)

skill ← ∅ ▷ Initialize Skill Dataset
7:
8: for k = 0 to Kiter − 1 do
9: // — Iteration k —

10: // Step 1: Exploration & Skill Dataset Generation
11: if k = 0 then
12: Alice explores environment: at ∼ πϕ(· | ht, ot) ▷ Initial exploration phase
13: Collect M initial exploratory trajectories D(k)

exp = {τ (j)exp}Mj=1
14: else
15: Alice explores environment using feedback F (k−1): at ∼ πϕ(· | ht, ot, F

(k−1)) ▷
Exploration with feedback

16: Collect M targeted exploratory trajectories D(k)
exp = {τ (j)exp}Mj=1

17: end if
18:
19: // Instruction generation from collected trajectories
20: for each trajectory τ

(j)
exp ∈ D(k)

exp do
21: Alice analyzes τ (j)exp and generates a natural language instruction I(j)

22: D(k)
skill ← D

(k)
skill ∪ {(I(j), τ

(j)
exp)}

23: end for
24:
25: // Step 2: Training Target Agent Bob
26: Fine-tune Bob’s policy parameters θ to θ(k) using D(k)

skill, yielding policy πθ(k)

27: Minimize SFT loss: LSFT (θ
(k);D(k)

skill) = −
∑M

j=1

∑Tj

t=1 log πθ(k)(a
(j)
t | h

(j)
t , o

(j)
t , I(j))

28:
29: // Step 3: Evaluation & Feedback Generation
30: Evaluate Bob’s current policy πθ(k) in the target environment. Let Ek be the evaluation data ▷

Collect (ot, at), etc.
31: Alice analyzes Bob’s performance Ek to generate natural language feedback F (k) ▷ F (k)

for next iter. (if k < Kiter − 1)
32:
33: end for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D EXPLORATION PROMPTS

We provide the detailed prompts that are used for the experiment. We used several different types of
prompts for each benchmark we used: Webshop and Crafter. The prompts comprise an exploration
prompt, an instruction generation prompt, an evaluation prompt, and a feedback generation prompt.
In Webshop, we additionally use a post-hoc reasoning prompt.

D.1 WEBSHOP

D.1.1 EXPLORATION PROMPT

Exploration Prompt

You are a web-shop-agent that can interact with the webpage by taking actions. You need to
buy something that you want at the end. Also, you should adopt the identity of following
persona :
{task state.persona}
You should take actions that are consistent with the persona you have adopted.

In the web environment, your actions are strictly limited to two types:

1. search[keywords]: Use this action only when a “[button] Search [button]” is
present in the current web page content. You must replace “keywords” with any valid search
query you want to search.

2. click[HTML Element]: Use this action to click on an HTML Element in the
page content. “HTML Element” can be any clickable element in the page represented inside
“[button]” and “[button]”, such as an item id, action button, or attributes and options like
color or size. Note that the ‘HTML Element’ must be present in the current page content.
Also, do not click the attributes inside the “[clicked button]” and “[clicked button]”, “item
name”, and “button” iteself (e.g. click[button] is not allowed).

Only use search action when a “[button] Search [button]” is present in the current
web page content and otherwise, use click action (click item id, attributes like color and size,
or action button).
Feedback from Previous Round :

{feedback from alice}
Now here is the new page content. Read carefully the page content. Based on your persona
and the current web page content, give a brief thought and provide any valid action that
seems very interesting. When outputting the action, please write your action after the prompt
’Action:’.

D.1.2 INSTRUCTION GENERATION PROMPT

Instruction generation Prompt

You are a helpful assistant trained to understand web environment and generate shopping
instructions. You are given an action sequence and a final product description. Your task is to
generate only an user query that will lead to the final product description.

Now here are the given action sequence and final product description.
Action Sequence:
action sequence

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Final Product Description:
{final state}

Considering both search keywords and product detail, please generate an user query.
Please put more weight on the search keywords than the product detail. Do not directly
include the product name in the query and rather give a high-level description of the product.
Note that clicked attributes in action sequence, like size, color, and options should be
included in the query. (Buy now is not an attribute)
Attributes without [clicked button] should not be included in the query, as they are not part of
the product.
You should also include the price condition in the query (e.g. price lower than XX dollars).
You should not include any other text than the query. Randomly start the query with words
“Find me”, “Show me”, “I am looking for”, “I need”, “I want”, or similar words.

User Query:

D.1.3 EVALUATION PROMPT

Evaluation Prompt

You are an agent with a strict task of completing a web shopping assignment based on the
page content and the user’s instructions.

In each step, your actions are strictly limited to two types:

1. search[keywords]: Use this action only when a “[button] Search [button]” is present in the
current web page content. You must replace “keywords” with any valid search query you
want to search.

2. click[HTML Element]: Use this action to click on an HTML Element in the page content.
“HTML Element” can be any clickable element in the page represented inside “[button]” and
“[button]”, such as an item id, action button, or attributes and options like color or size. Note
that the “HTML Element” must be present in the current page content. Also, do not click the
“clicked button” or “item name”.

Only use search action when a “[button] Search [button]” is present in the current web page
content and otherwise, use click action (click item id, attributes like color and size, or action
button). Now, here is the task
Task : {task name}

To complete the given task, you have taken the following actions:
{action summary}

Now here is the new page content. Read carefully the page content. Based on the previous
actions, the given task, and the current web page content, give a brief thought and provide
a valid action. When outputting the action, please write your action after the prompt “Action:”.

D.1.4 FEEDBACK GENERATION PROMPT

Feedback Generation Prompt

You are an AI assistant tasked with analyzing web shopping trajectories. To get a high
reward, the model needs to complete the task with the given instruction, fulfilling the task
requirements of product type, price, attributes like size and color, etc.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Given trajectories of varying rewards, identify strengths in successful trajectories and
weaknesses in failed trajectories. Provide concise feedback (2 points maximum) on what
skills need improvement to achieve a high reward.

Using your feedback, you will explore the web shopping task on the next round, where
your trajectories will be used to train the model. For example, if the model lacks detailed
search queries, you need to make an initial query very detailed when the search page is
shown because your search will be used as data for fine-tuning the model. Now here are the
trajectories of the current model:

{trajectory}

————————————————–

Based on these trajectories, provide concise feedback (2 points maximum) on what kinds of
behaviors are desirable and undesirable during exploration. Keep the points very brief.

Most importantly, for each point, write a brief guide on what you need to do during your
exploration of the web shopping task on the next round.

Also, you can take up to 10 actions in the environment, so please give feedback on how to
have a good and concise action sequence.

*****Note that during your exploration, there are “no instructions, given criteria, or
requirements to follow”, so you need to provide feedback on which types of actions are
beneficial (as there are only two types: search and click, specify which search keywords or
clicking on which elements are beneficial).

If you do certain actions with your interest, the models are encouraged to do more of that
action.

Thus, do not say something like “do something to meet criteria”, “follow the criteria,
instructions, or given states”, or “match specific attributes”. Just say what you think is good
or bad.

The example format could be like this:

1. The current low reward is due to B (e.g., limited search). Refrain from B during your
exploration.

2. The current low reward is due to not clicking C. Ensure to click diverse C during your
exploration.

D.1.5 POST-HOC REASONING PROMPT

Post-hoc Reasoning Prompt

You are an AI assistant tasked with explaining actions taken in a web environment.

Given the instruction you need to follow and the current observation, provide a ra-
tionale for why the “last action” was taken to follow the instruction.
You can also refer to the previous actions to provide a rationale.
The rationale should naturally fit with “[your rationale]. Thus, my action is [chosen action].”
You only need to provide “your rationale” part. Be very concise and clear.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Now, here are the given instruction, previous actions, current observation, and the
last action.

Instruction: {instruction}

Previous actions before the last action: {previous actions}

Current observation: {current observation}

Last action taken based on the current observation: {action}

Why was this last action taken? Provide a rationale:

D.2 CRAFTER

D.2.1 EXPLORATION PROMPT

Exploration Prompt

You are an intelligent agent navigating and surviving in the Crafter game world while
performing the given task, learning and adapting through feedback. Below are the only valid
actions you can take in the game, along with their descriptions.

Valid Actions
- move left: move one tile west
- move right: move one tile east
- move up: move one tile north
- move down: move one tile south
- do: interact with the tile in front (collect material, drink from lake to restore ’drink’ level,
attack creature, hunt cow to restore ’food’ level)
- sleep: sleep to restore ’energy’ level
- place stone: place a stone in front
- place table: place a wooden crafting table in front, used for making tools and weapons.
- place furnace: place a stone furnace in front, used for crafting advanced tools and materials.
- place plant: place a plant in front
- make wood pickaxe: craft a wood pickaxe, which requires a nearby table and wood in your
inventory.
- make wood sword: craft a wood sword, which requires a nearby table and wood in your
inventory.
- make stone pickaxe: craft a stone pickaxe, which requires a nearby table and both wood
and stone in your inventory.
- make stone sword: craft a stone sword, which requires a nearby table and both wood and
stone in your inventory.
- make iron pickaxe: craft an iron pickaxe, which requires both a nearby table and furnace, as
well as wood, coal, and iron in your inventory.
- make iron sword: craft an iron sword, which requires both a nearby table and furnace, as
well as wood, coal, and iron in your inventory.

Instructions
- Plan progressively based on your inventory: Before choosing your next action, carefully
examine your current inventory. Reflect on the resources and tools you’ve gathered so far to
determine the next meaningful step—whether it’s crafting a new tool, upgrading existing
gear, or preparing for a more advanced objective.
- Identify and avoid meaningless actions: Each turn you are shown the observation and status
from the previous step. Always compare them with the current values; if they are identical,
your last move was meaningless—adapt your plan so you do not repeat it.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- Stay alive: When any health falls below its average level, prioritize eating, drinking,
sleeping, or defending as appropriate.
- Use the right tools: Some blocks (e.g., stone, iron, diamond) cannot be harvested with a
bare hand—craft and equip the correct pickaxe before using do.
- Placement rules: You may place a work table, furnace, plant, or stone only when you are
facing a tile of grass, path, or sand.

Feedback from Previous Round
{feedback from alice}

We include the Feedback from Previous Round part without the first exploration, by replacing
{feedback from alice} into appropriate text, such as “- Advance in the Crafter world by strategically
collecting resources, crafting tools, and overcoming environmental challenges.”.

D.2.2 INSTRUCTION GENERATION PROMPT

Relabel Prompt

You are a language model trained to analyze agent behavior in the game Crafter. Your task is
to infer the most likely instruction the agent was pursuing, given a sequence of environmental
observations and actions.

Guidelines:
- Pay special attention to the most recent observation and action, as they reveal the agent’s
immediate intention.
- The agent can only interact with the tile it is directly facing, so consider only the facing tile
when interpreting interaction actions.
- The do action means the agent is trying to interact with the tile it is facing. For example:
- If facing material: collect material
- If facing grass: collect sapling
- If facing water: drink to restore thirst
- If facing hostile creature: defeat the creature
- If facing cow: hunt to restore hunger
- If there’s a table or furnace nearby and your action starts with ’make’, you’re making a tool.
Focus on that action.
- Avoid vague or generic explanations. Be precise and grounded in the recent context.

Your output should clearly state the inferred goal the agent was pursuing, based strictly on its
behavior and what it was facing. Keep your response very brief - around 10 words maximum.

Here is a sequence of actions and current observation-action pair the agent took in the Crafter
game. The turns are listed in chronological order, from oldest to most recent.

D.2.3 EVALUATION PROMPT

Evaluation Prompt

You are an intelligent agent navigating and surviving in the Crafter game world while
performing the given task, learning and adapting through feedback.
Below are the only valid actions you can take in the game, along with their descriptions.

Valid Actions
- move left: move one tile west
- move right: move one tile east
- move up: move one tile north
- move down: move one tile south

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

- do: interact with the tile in front (collect material, drink from lake to restore ’drink’ level,
attack creature, hunt cow to restore ’food’ level)
- sleep: sleep to restore ’energy’ level
- place stone: place a stone in front
- place table: place a wooden crafting table in front, used for making tools and weapons.
- place furnace: place a stone furnace in front, used for crafting advanced tools and materials.
- place plant: place a plant in front
- make wood pickaxe: craft a wood pickaxe, which requires a nearby table and wood in your
inventory.
- make wood sword: craft a wood sword, which requires a nearby table and wood in your
inventory.
- make stone pickaxe: craft a stone pickaxe, which requires a nearby table and both wood
and stone in your inventory.
- make stone sword: craft a stone sword, which requires a nearby table and both wood and
stone in your inventory.
- make iron pickaxe: craft an iron pickaxe, which requires both a nearby table and furnace, as
well as wood, coal, and iron in your inventory.
- make iron sword: craft an iron sword, which requires both a nearby table and furnace, as
well as wood, coal, and iron in your inventory.
- noop: do nothing

Instructions
- Plan progressively based on your inventory: Before choosing your next action, carefully
examine your current inventory. Reflect on the resources and tools you’ve gathered so far to
determine the next meaningful step—whether it’s crafting a new tool, upgrading existing
gear, or preparing for a more advanced objective.
- Identify and avoid meaningless actions: Each turn you are shown the observation and status
from the previous step. Always compare them with the current values; if they are identical,
your last move was meaningless—adapt your plan so you do not repeat it.
- Stay alive: When any health falls below its average level, prioritize eating, drinking,
sleeping, or defending as appropriate.
- Use the right tools: Some blocks (e.g., stone, iron, diamond) cannot be harvested with a
bare hand—craft and equip the correct pickaxe before using do.
- Placement rules: You may place a work table, furnace, plant, or stone only when you are
facing a tile of grass, path, or sand.

Now, here is the task
Task : {task name}

For NS evaluation, the agent is prompted with a specific task name (e.g., “Make stone pickaxe”),
whereas for AP evaluation, the task instruction is replaced with a general open-ended prompt:
“Advance in the Crafter world by strategically collecting resources, crafting tools, and overcoming
environmental challenges.”

D.2.4 FEEDBACK GENERATION PROMPT

Feedback Generation Prompt

You are an expert evaluator analyzing agent behavior in a survival crafting game called
Crafter. You will be given a **reduced version** of the agent’s trajectory, focusing only on
segments where the agent’s status and inventory have been changed.

Your output **must** be a JSON object with the following two fields:
{
"behavior_analysis": "Describe what the agent has accomplished
so far. Mention specific achievements (e.g., placing a table)
and what those imply about the agent’s current progression

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

or intent.",
"next_iteration_advice": "Suggest a specific, actionable next
step for the agent that would likely improve
its capabilities or unlock new achievements. The advice
should always start with ‘Focus on...’ and be
written as a single sentence.
It should reflect the agent’s current progress
and identify a meaningful, skill-expanding next goal."

}

Guidelines:
- Do not include any explanation or text outside of the JSON block.
- Do not list step-by-step logs or inventory diffs — summarize behavior abstractly.
- Consider the agent’s current resources and abilities to suggest realistic next goals.
- Make sure the ‘next iteration advice’ sentence is specific and skill-oriented, not vague.

Note: This is a **partial trajectory**, so analyze only what is visible.

E IMPLEMENTATION DETAILS

E.1 WEBSHOP

Exploration During exploration, we run 250 episodes per round. Each episode has a maximum
horizon of 10 steps. We only retain trajectories that end with a “buy now” action within this limit.
During exploration, we provide previous actions but omit previous observations, as they may distract
Alice ’s decision-making. Additionally, we exclude search keywords from the previous actions to
prevent the trajectory from resembling a proposal-based approach, where Alice would try every
option to match the search keywords.

Training We train Bob for a maximum of 200 steps with a total batch size of 64. We use the
AdamW optimizer with a learning rate of 2e−5 and a weight decay of 0.01. We utilize LoRA
adapters with a rank of 64. Training is performed on NVIDIA A6000 GPUs using DeepSpeed Stage
3 configuration. In Webshop, the model is trained from scratch at each iteration, as continuing
from the previous checkpoint may hinder performance—especially when increasing the number of
rounds—since excessive training might lead to loss of generalizability.

E.2 CRAFTER

Exploration During exploration, we run 50 episodes per round, each with a maximum horizon
of 100 steps. To collect a diverse set of task-relevant trajectories, each episode is initialized with
randomized agent status and inventory configurations, constrained to ensure logical consistency (e.g.,
we exclude states where the agent possesses a stone pickaxe without having crafted or acquired a
wood pickaxe). This setup encourages the agent to explore a broad range of achievable skills without
relying on unrealistic initial conditions.

Processing the trajectories To construct a high-quality skill dataset, we process the trajectory
collected by Alice. We first segment the long-horizon trajectory into several segments by using
a rule-based classifier. The rule-based classifier monitors the changes in the agent’s observation
information. Second, when a change is detected at time t, we define a skill trajectory as the four
most recent observation-action pairs: (ot−3, at−3, . . . , ot, at). Alice then labels these segments with
corresponding skill instructions. Each iteration yields roughly 1500 observation-action pairs for
Bob’s training.

Training We train our model using LoRA-based supervised fine-tuning with a rank of 16. The
training is conducted for a total batch size of 32 using the AdamW optimizer with a learning rate of
1e−4. We leverage NVIDIA A6000 GPUs and adopt the DeepSpeed Stage 3 configuration to enable

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 1 2 3 4-3

31

66
R

ew
ar

d
Webshop - Reward

0 1 2 3 4-2

3

10

S
R

Webshop - SR

0 1 2 3 46

11

15

N
S

Crafter - NS

0 1 2 3 44

22

40

A
P

Crafter - AP

Iterations

Ours EF

Figure 6: Performance comparison of EXIF with feedback at each iteration versus EF, which scales
data by generating more samples per iteration without feedback, on Webshop and Crafter using
Llama3.1-8B.

0 1 2 3 4-0.0

0.3

0.7

R
ew

ar
d

Webshop

0 1 2 3 40.0

0.2

0.4

A
P

Crafter

Iterations

GPT-4o Llama3.1-8B

(a) Self-evolving results (Alice = Bob)

0 1 2 3 40.2

0.4

0.6

R
ew

ar
d

Webshop

0 1 2 3 40.1

0.2

0.4

A
P

Crafter

Iterations

Cumulative Non-Cumulative

(b) Ablation on using data from the previous iteration

Figure 7: Performance of Bob using the Llama3.1-8B model when Alice is Gpt-4o (red) or
the Llama3.1-8B (blue) model, investigating the potential of a self-evolving system (blue). (b)
Ablation on whether using data from the previous iteration, where “Cumulative” means using data
from previous iterations, and “Non-Cumulative” means not using data from the previous iteration.

efficient large-scale training. We also follow the training scheme in WebShop, where we train the
model from scratch at iteration k using the cumulative data up to iteration k.

F MORE RESULTS

Results with Llama3.1-8B Figure 6 compares exploration-first alone and the feedback-based
approach, EXIF, using the Llama3.1-8B model. The feedback mechanism in EXIF enables Bob
to continually improve performance, which cannot be achieved by merely increasing the amount of
data in Webshop. A similar trend is observed in Crafter, where feedback allows the agent to acquire
more skills and achieve larger gains in AP over training iterations compared to EF, underscoring the
effectiveness of feedback.

Self-Evolving Performance of Llama3.1-8B Figure 7a shows the self-evolving performance of
EXIF with Llama3.1-8B, where both Alice and Bob use the same model. Exploration-based
methods still work, but the feedback mechanism is less effective with this smaller model, especially
in Webshop. However, steady improvement is observed in Crafter, highlighting the potential of EXIF
as a self-evolving system.

Ablation on Training We also conduct an ablation study on data usage to examine whether using
the generated dataset from the previous round is beneficial. “Cumulative” indicates using the previous
dataset, while “Non-cumulative” means not using it. As shown in Figure 7b, in Webshop, using
cumulative data provides limited benefit, since the next iteration produces a higher-quality skill
dataset that compensates for what the previous one lacks. In contrast, in Crafter, using cumulative
data is more beneficial as a way to prevent forgetting, since the task involves acquiring new skills that
are orthogonal to those from earlier rounds, and each generation differs in its skill distribution.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 3: Examples of feedback for Webshop and Crafter in the self-evolving scenario with
Qwen2.5-7B.

Task Feedback

Webshop The current low reward is due to not clicking the right products. Click the correct
products and attributes during your exploration.

Crafter Focus on collecting stone and crafting a stone pickaxe to progress beyond basic wooden
tools.

Analysis of Self-Evolving Queries Table 3 shows the feedback from Alice in the self-evolving
scenario with Qwen2.5-7B models. Unlike feedback from GPT-4o, these are much more high-
level. Specifically, in Webshop, instructions such as clicking the right products are not suitable for
non-goal-conditioned exploration in a web environment. Moreover, compared to the first feedback in
Table 2, Crafter feedback contains far fewer skills, resulting in only marginal gains. This suggests
that while EXIF can function as a self-evolving system, it requires sufficient capability to provide
appropriate feedback in order to iteratively improve in an open-ended manner.

G DETAILS ON SKILLS

Webshop In WebShop, there are no explicit skills pre-defined in the environment. However,
as explained in Section 3.3, certain high-level skills are required to perform well across diverse
tasks. These include searching with detailed keywords, navigating the web, backtracking, clicking
the correct product, refining search queries, reading descriptions and features, and selecting the
appropriate attributes.

As shown in Figure 4b, EXIF effectively improves detailed search queries and selects the correct
attributes while avoiding unnecessary, duplicate actions. We also expected Alice to exhibit advanced
navigation behaviors, such as using the next or previous buttons, but found that these behaviors
actually harmed performance. In WebShop, navigating further does not necessarily lead to better
product discovery. The same holds true for backtracking. We believe that more advanced and
meaningful skills will emerge in future, more challenging benchmarks using EXIF.

Crafter Unlike WebShop, Crafter allows us to observe explicit skills required for long-term survival
through a set of predefined tasks. As shown in Figure 4c, Alice discovers more skills with each
iteration, which in turn improves Bob ’s performance over time. We additionally define task types
to group the pre-defined skills. The full list of tasks, along with task types and their descriptions, is
provided in Table 4.

H MORE EXAMPLES

H.1 WEBSHOP

We provide additional examples of Bob ’s performance across iterations in WebShop. For better
visualization, incorrect actions at each step are highlighted in red, while correct actions are shown in
green. The example is presented below:

Comparison of Iteration 1 and Iteration 2 of EXIF in WebShop

Instruction: Find me machine wash men’s pants with relaxed fit with color: grey, and size:
40w x 34l, and price lower than 60.00 dollars

Unsuccessful Trajectory (Iteration 1) “search[men’s pants] → click[b099231v35] →
click[buy now]”

Successful Trajectory (Iteration 2) “search[machine wash men’s pants with relaxed fit, 40w
34l]→ click[b08lkksl8f]→ click[grey]→ click[40w x 34l]→ click[buy now]”

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 4: Task skill categories, the full list of corresponding skills under each category, and descriptions
of each skill used in Crafter.

Task Type Task Name Description

Harvest
collect sapling Gather saplings from the grass
place plant Place a plant on the ground
eat plant Eat a plant to recover health

Status
wake up Wake up after sleeping
eat cow Hunt a cow
collect drink Drink water in front of the river

Wood

collect wood Chop trees to collect wood
place table Place a crafting table
make wood pickaxe Craft a wooden pickaxe
make wood sword Craft a wooden sword

Stone

collect stone Mine stone blocks
make stone pickaxe Craft a stone pickaxe
make stone sword Craft a stone sword
place stone Place a stone block in the ground

Iron

collect coal Mine coal blocks
place furnace Place a furnace for crafting advanced tools
collect iron Mine iron blocks
make iron pickaxe Craft an iron pickaxe
make iron sword Craft an iron sword
collect diamond Mine diamond blocks

Hunt defeat skeleton Defeat a skeleton enemy
defeat zombie Defeat a zombie enemy

In this example, at Iteration 1, where Bob is trained once using Alice ’s initial skill dataset,
the model generates a less detailed prompt—simply “men’s pants”—which results in a poor item
choice. In Iteration 2, after training on a skill dataset generated based on feedback, Bob improves
by conducting a more detailed search and clicking better attributes, successfully following the
instruction. However, Iteration 2 Bob is still imperfect at attribute selection. By Iteration 3, with
feedback emphasizing the need to click more attributes (as shown in Table 2), it finally improves its
skill in selecting the correct attributes, as demonstrated in the example below.

Comparison of Iteration 2 and Iteration 3 of EXIF in WebShop

Instruction: Find me slim fit men’s henleys with short sleeve with color: 157- green, and
size: 3x-large, and price lower than 40.00 dollars

Unsuccessful Trajectory (Iteration 2) “search[slim fit men’s henleys short sleeve 157 green
3x-large]→ click[b09r9ycm6r]→ click[buy now]”

Successful Trajectory (Iteration 3) “search[slim fit men’s henleys with short sleeve in
color 157-green, size 3x-large, and price lower than 40.00 dollars]→ click[b09r9ycm6r]→
click[157- green]→ click[3x-large]’→ click[buy now]”

H.2 CRAFTER

We also provide additional examples of Bob ’s performance across iterations in Crafter. For better
visualization, incorrect actions at each step are highlighted in red, while correct actions are shown in
green. Navigating actions are shown in black. Below is an example of Bob ’s improved skill set in
Iteration 2, compared to Iteration 0 and Iteration 1.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Comparison of Iteration 0, Iteration 1 and Iteration 2 of EXIF in Crafter

Instruction: make stone sword

Unsuccessful Trajectory (Iteration 0) “move right→ move down→ make stone sword
. . . (repeated)”

Unsuccessful Trajectory (Iteration 1) “move up→ move up→ place table→ do→ do
. . . (repeated)”

Successful Trajectory (Iteration 2) “move left → move down → place table →
make stone sword“‘

In this example, at Iteration 0, Bob fails because it attempts to craft the stone sword without first
placing a crafting table. It does not recognize that a table is a necessary prerequisite for crafting. In
Iteration 1, Bob places the table, but it uses the “do” action repeatedly, which is not sufficient to
trigger the specific crafting behavior. This indicates a lack of understanding that crafting requires an
explicit “make stone sword” action, not a generic interaction. Finally, in Iteration 2, Bob correctly
identifies both the prerequisite “placing the table” and the appropriate action, which is explicitly
calling the “make stone sword” action.

Another example is shown below:

Comparison of Iteration 2 and Iteration 3 of EXIF in Crafter

Instruction: make stone sword

Unsuccessful Trajectory (Iteration 2) “move right → move right → do → do . . . (re-
peated)”

Successful Trajectory (Iteration 3) “move right→ move right→ do→ move left→ do
→ move up→ do“‘

In Iteration 2, Bob finds the zombie but repeatedly uses the “do” action without accounting for the
zombie’s movement. As a result, it fails to make effective contact and cannot defeat the zombie,
reflecting a lack of adaptation to dynamic enemy behavior. In contrast, in Iteration 3, Bob ’s
action sequence demonstrates adaptive behavior: Bob actively adjusts its position in response to the
zombie’s movement, tracking the enemy until it successfully defeats it. This indicates an emerging
understanding of how to engage moving entities in the environment, highlighting the effectiveness of
EXIF.

LLM USAGE

Every part of the research, including the research questions and ideas, originates entirely from the
authors. The paper was written manually by the authors, with LLMs used only to check typos and
polish minor grammar in some parts.

27

	Introduction
	Method
	Exploration
	Fine-Tuning Bob
	Feedback generation & iterative process

	Experiments
	Experiment settings
	Main results
	Trajectory and feedback analysis
	Potential of self-evolving system

	Related work
	Conclusion
	Limitation & Broader Impact
	Environment Details
	Webshop
	Crafter

	Algorithm
	Exploration prompts
	Webshop
	Exploration prompt
	Instruction generation prompt
	Evaluation Prompt
	Feedback generation Prompt
	Post-hoc reasoning prompt

	Crafter
	Exploration prompt
	Instruction generation prompt
	Evaluation prompt
	Feedback generation prompt

	Implementation details
	Webshop
	Crafter

	More Results
	Details on skills
	More examples
	Webshop
	Crafter

