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ABSTRACT

Mesh-based simulations provide high-fidelity solutions to partial differential equa-
tions (PDEs), but achieving such accuracy typically requires fine meshes, leading
to substantial computational overhead. Super-resolution techniques aim to miti-
gate this cost by reconstructing high-resolution (HR), high-fidelity solutions from
low-cost, low-resolution (LR) counterparts. However, training neural networks
for super-resolution often demands large amounts of expensive HR supervision
data, posing a major practical limitation. To address this challenge, we propose
SuperMeshNet, an HR data-efficient super-resolution framework for mesh-based
simulations aided by message passing neural networks (MPNNs). As its core, Su-
perMeshNet introduces complementary learning that effectively leverages both a
small amount of paired LR-HR data and abundant unpaired LR data via two jointly
trained, complementary MPNN-based models. Theses models are enriched by
task-specific inductive biases that emphasize local variations critical for accurate
super-resolution. Extensive experiments demonstrate that SuperMeshNet—an
MPNN-based model with inductive biases trained on a dataset with 10% paired LR—
HR data and 90% unpaired LR data—achieves an even lower root mean square error
(RMSE) than the same MPNN without inductive biases trained on 100% of LR-HR
pairs, while in turn requiring 90% less HR data. The source code and datasets are
available at https://anonymous.4open.science/r/SuperMeshNet/README.md.

1 INTRODUCTION

Mesh-based simulations—such as the finite element method (FEM), finite volume method (FVM),
or computational fluid dynamics (CFD)—are widely used to obtain high-fidelity solutions to partial
differential equations (PDEs) across a range of scientific and engineering domains. In mesh-based
simulations, the mesh size is carefully chosen to balance computational costs against solution fidelity:
finer meshes offer higher fidelity but incur significantly greater computational expenses (Obiols-Sales
et al., 2024). Super-resolution techniques are developed to alleviate this trade-off by predicting
high-resolution (HR) simulation results from low-resolution (LR) counterparts, thereby aiming to
deliver high-fidelity solutions at a reduced cost (Barwey et al., 2024; Obiols-Sales et al., 2024).
However, training super-resolution models via conventional fully supervised learning demands
substantial quantities of computationally expensive HR training data, making data collection a
significant bottleneck (Obiols-Sales et al., 2024). In this context, improving the HR data efficiency of
super-resolution model training is of paramount importance in reality.

As summarized in Table 1, several unsupervised learning approaches tackled this challenge but pose
their own limitations. For example, PhysRNet (Arora, 2022) performs super-resolution without any
HR training data by incorporating PDEs and constraints into its loss function; however, PhysRNet
uses a finite-difference scheme for derivative calculations, which limits its applicability to irregular
meshes. MAgNet (Boussif et al., 2022) offers an alternative with zero-shot super-resolution through
an interpolator trained on LR data; yet, the prediction error of MAgNet is much larger than that of
supervised methods (see Appendix I). To the best of our knowledge, semi-supervised learning has not
been applied to the super-resolution task for mesh-based simulations. This may be partly due to the
limited exploration of semi-supervised regression methods, especially those compatible with message
passing neural networks (MPNNs), compared to semi-supervised classification. Refer to Appendix C
for detailed explanations and limitations of existing semi-supervised regression approaches.
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number of HR data samples
number of LR data samples *

Table 1: Comparison between prior studies and our work. Here, r =

Reference Learning method Model
Li and McComb (2022),
Yonekura et al. (2023), fully supervised (r = 1) CNN

Obiols-Sales et al. (2024)
de Avila Belbute-Peres et al. (2020),

Barwey et al. (2024) fully supervised (r = 1) MPNN
Arora (2022) unsupervised (r = 0) CNN
Boussif et al. (2022) unsupervised (r = 0) MPNN
semi-supervised (0 < r < 1) MPNN
SuperMeshNet (ours) (complementary) (inductive biases)

Many related studies (Yonekura et al., 2023; Arora, 2022; Li and McComb, 2022; Obiols-Sales et al.,
2024) on super-resolution for mesh-based simulations rely heavily on convolutional neural networks
(CNNs), which cannot directly handle irregular mesh structures. CNNs require interpolating irregular
mesh-based data onto a regular grid, which often necessitates a significantly larger number of nodes
to achieve the same fidelity as an irregular mesh, leading to relatively lower computational efficiency.
Some studies have adopted MPNNSs, such as graph convolutional networks (GCNs) (de Avila Belbute-
Peres et al., 2020) or SRGNN (Barwey et al., 2024), which can directly handle irregular mesh data.
However, the task-specific design of inductive biases for improving mesh-based super-resolution
performance remains largely underexplored.

To address these limitations, we propose SuperMeshNet, an HR data-efficient super-resolution
framework tailored for mesh-based simulations under very scarce HR supervision, which basically
differs from the supervised and unsupervised settings. To the best of our knowledge, this is the first
general framework that can be applied across diverse MPNN architectures for the super-resolution
task. To be specific, SuperMeshNet introduces two key components: complementary learning
and inductive biases for MPNNs. First, the complementary learning is a novel semi-supervised
learning method that exploits a small amount of paired LR—HR training data for supervised learning,
while judiciously leveraging a large pool of unpaired LR data in an unsupervised manner. Our
complementary learning is built upon two models; an MPNN-based primary model predicts HR
solutions from LR counterparts, while an MPNN-based auxiliary model predicts the difference be-
tween two HR solutions corresponding to two LR counterparts. The predictions from each model are
utilized to calculate pseudo-ground truths, which serve as ground truth for the other, enabling mutual
supervision. Since conventional semi-supervised methods typically employ two identical models, they
often produce highly similar pseudo-ground truths, making them less informative. On the other hand,
owing to distinct but interrelated input—output configurations of our complementary learning, the
auxiliary model captures intra-resolution relation while the primary model focuses on inter-resolution
relation. This division of roles fosters synergies in mutual supervision, enhancing super-resolution
performance while reducing training time compared to prior semi-supervised strategies.

Second, to improve the performance of mesh-based super-resolution, we introduce inductive biases
for MPNNs, guided by the empirical observation that local deviations carry richer super-resolution in-
formation than the global mean. Specifically, we propose two MPNN-architecture-agnostic inductive
biases: node-level centering and message-level centering. The node-level centering centers each
node embedding by subtracting the global mean of all node embeddings from each node embedding,
while the message-level centering performs a similar centering operation over aggregated messages.
Subtracting the global mean removes redundant background information and highlights fine-grained
variations that are critical for super-resolution.

We carry out extensive experiments to validate the effectiveness of our two components in SuperMe-
shNet. Our results demonstrate that, even with only a small portion (e.g., 10%) of paired LR-HR
data, SuperMeshNet surpasses a fully supervised (e.g., 100% paired) benchmark method lacking
inductive biases in terms of the root mean square error (RMSE). We also prove that the injected
inductive biases consistently reduce the RMSE across six different MPNN architectures, underscoring
their general applicability. Finally, our main contributions are summarized as follows:

o MPNN-agnostic applicability. SuperMeshNet provides a general super-resolution framework for
mesh-based simulations, applicable to various MPNNs, under very scarce HR supervision scenarios.
e Complementary learning. To the best of our knowledge, this is the first attempt to incorporate semi-
supervised learning compatible with MPNNSs into super-resolution for the mesh-based simulations.

o Inductive biases. We introduce node-level centering and message-level centering, which can
substantially enhance super-resolution performance across different MPNN types.
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2 METHODOLOGY!

2.1 PROBLEM DEFINITION

Briefly, we aim to predict an HR solution % from an
LR solution u; of the same PDE, while relying on as few
HR solutions uy, as possible for training. Formally, let
Q) C RP be the computational domain on which the PDE
is solved. Here, D denotes the spatial dimension. A pa-
rameter u represents all variations of PDE instances, such
as material coefficients, domain geometry, or boundary
conditions. For example, 1 could be an angle of an applied
force or an aspect ratio of an elliptical hole (see Figures 9—
11 in Appendix H). Each choice of i defines a different
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Figure 1: Problem setting. We aim to
make prediction %, on HR mesh M,
containing nodes at positions P, and
edges Ej, from LR data sample u; de-
fined on LR mesh M;, comprising nodes
at positions P; and edges E.

PDE instance. We discretize €2 with an LR mesh M; = (P}, E}) and an HR mesh M), = (P}, E}),
where P, € R™*P and P, € R™**P are the positions of the nodes on M; and M}, respectively, and
E; and E}, are edges on M; and My, respectively. Running a PDE solver on these meshes yields: LR
and HR solutions, which we regard as an LR data sample u; and an HR data sample u,, defined on
the nodes on M; and M;,, respectively. Our objective is to predict @, € R™**% from u; as closely as
possible to uy,, while minimizing the amount of HR data u;, required for training, where d denotes
the dimension of the solution field.

Training dataset
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Figure 2: Dataset setting. Complemen-
tary learning utilizes a paired LR-HR
training dataset, including N;, paired
data samples (green hexagons), and an
unpaired LR training dataset, contain-
ing N — Ny, unpaired LR data samples
(white hexagons). In total, complemen-
tary learning can reduce N — N;, HR
data samples compared to the case of
fully supervised learning.

2.2.1 DATASET SETTING

As depicted in Figure 2, the complementary learning
leverages both a paired LR-HR training dataset D, =
{(uf,u}) | ¢ =1,2,---, Ny} having N}, LR-HR data
samples and an unpaired LR training dataset D, = {u] |
¢ = Npyt1,Npi2, -+, N} having N — Nj, LR data sam-
ples. The total number of LR data samples is N, among
which only N}, have HR counterparts, with N, < N in
practice. In other words, N — N}, fewer HR data samples
are required compared to fully supervised learning. Here,
the superscript ¢ is simply an index to distinguish different
samples corresponding to different parameters . For in-
stance, if y is the angle of an apphed force, then (uj, uj)
corresponds to one angle x', and (u?, u}) corresponds to
another u2.

2.2.2 THE TWO MODELS: Fy AND G

To fully exploit unpaired LR training data, the complementary learning utilizes mutual supervision
between two models, namely, Fy and G, trained jointly under different roles. The primary model
Fy, which is used for inference only, predicts an HR solution 4} from its LR counterpart u':

ey

On the other hand, the auxiliary model G4, which is used only during training, predicts the difference
between two HR solutions ;° corresponding to two LR input samples v, uj to further utilize
intra-resolution relations. Here, r and s indicate two LR samples corresponding to different u’s.
Since computational geometry may vary across samples with different y, u; and u; may be defined
on different positions P} and P;. Thus, direct subtraction is not possible. To resolve this, we apply

k-nearest neighbor (kKNN) interpolation (Qi et al., 2017) to project solutions defined on P} onto P} :
ENN (u}; P — P)). @)

Detailed calculation of NN interpolation and architectures of Fy and G4 are available in Appen-
dices E and F, respectively.

Fp(ul) = aj (ground truth : ).

Gy(uy,uj) =u;" (ground truth : uj —

"Notations are summarized in Appendix B.
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2.2.3 LEARNING PROCEDURE VIA OUR LOSS

As depicted in Figure 3, each training step combines supervised and unsupervised learning of both
Fpy and G4. In other words, the loss functions for training Fy and G4, denoted by L and L,
respectively, are expressed as:

Lr =Lpsup + LFunsup 3)

L:G = CG,sup + »CG,unsupv (4)
where the subscripts sup and unsup represent supervised and unsupervised learning, respectively.
To this end, three samples are randomly sampled: 1) two paired LR samples u{* and uf from the
paired LR-HR dataset D, for supervised learning and 2) one additional unpaired LR sample v, from

the unpaired LR dataset Dj, for unsupervised learning. Here, «, 3, and -y are the indices referring to
distinct parameters .

In supervised learning, an HR data sample uj, is available. As depicted in Figure 3, Fy is trained to
reduce the MSE between its prediction 4, and its target, which is the ground truth uj’. An analogous
procedure is applied to 3, thus resulting in:

Lpsup = 0005, uf}) + £(a), u))), )

where £(-, -) denotes the MSE. Similarly, as expressed in Eq. (2), G is trained to reduce the MSE

between its predictions ﬁzﬁ and its target, which is the ground truth difference between v} and ug

alongside the following loss:
L sup = L7 ufk — kNN (up; Py — PE)). (6)

In unsupervised learning, the ground truth HR data sample u; is unavailable. Under this circum-
stance, we leverage mutual supervision between Fy and G'g. For example as depicted in Figure 3, if
G¢(ul ,uf*) predicts @) that approximates the difference u; — u, then adding this to the known
uy yields an estlmate of ;. This pseudo ground truth can serve as a target for Fy(u;]). Similarly,
if Fy(u]) produces @ close to u}, then subtracting known u§ from @, provides an approximation
of u) — ug, which can serve as a target for Gy (u;, uf*), accordingly. An analogous procedure is
applied to the pair (3, 7). It should be noted that a thorough treatment of XN N interpolation is also
required to effectively handle mesh mismatches. For example, in Eq. (7), uﬁ /3 7 can be used to
approximate uz However, the values are defined on Pf , whereas ﬁz is defined on P,;’ . To reconcile

this discrepancy, kNN interpolation is employed to project the values from P, onto P{f . The resultant
loss functions are:

Lrunsup = L@, 1% + kNN (ug'; P — P))) + €], kNN (uf) —a@'; Pf — P})) (7

L6 unsup = L@, @) — kNN (ug'; PE — P)) + (@), up) — kNN (43 P) — PP)).  (8)
A pseudo-code for the complementary learning mechanism can be found in Appendix D.

Supervised learning Unsupervised learning
Input  Model Output Target Input Model Output Target

<:> Paired LR-HR training data
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Figure 3: A schematic overview of complementary learning in SuperMeShNet. It leverages both
supervised and unsupervised learning to jointly train two neural network models, Fy and G4. Fjy
predicts an HR solution from its LR counterpart, while G predicts the difference between two HR
solutions from two LR counterparts to enable synergistic mutual supervision. More specifically,
for supervised learning, Fy and Gy are trained with pairs of LR-HR data (green hexagons). In
unsupervised learning, the prediction of one model (yellow and purple hexagons predicted by Fy
and G4, respectively) is used to calculate a pseudo-ground truth that serves as the target for training
another model (as depicted by sol;id and dotted red arrows).

4
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2.3 INDUCTIVE BIASES FOR MPNNSs

Beyond our learning mechanism, we now turn to addressing our task-specific model. The two models,
Fy and G, utilize MPNN layers (See Appendix F) to handle irregular mesh-based data. To further
improve super-resolution performance, we incorporate two inductive biases into the message passing
mechanism of each MPNN layer. This subsection first reviews conventional MPNNs, and then
presents the two proposed inductive biases: node-level centering and message-level centering.

2.3.1 PRELIMINARIES: MPNNS

MPNNSs are a class of graph neural networks (GNN5s) that propagate information across nodes using
message passing mechanisms (Gilmer et al., 2020). In each MPNN layer, a target node ¢ receives
information, referred to as a message msg;;, from its neighboring node j € N (i). Here, msg;; is
typically a function of the source node’s embedding x;. Furthermore, msg;; can be dependent on
other factors such as the target node’s embedding z; or the edge embedding e;;:

msgij = fm({x;}US;;) for Si; C {xi, e}, 9

where f,,, is a message function determined by the specific design of the MPNNs. Each node ¢
aggregates messages msg;; from its neighboring nodes j:

aggi = Y, msgi;. (10)
JEN (@)

Finally, the node embedding x; is updated based on its current embedding x; and the aggregated

message agg;:
xi%fz(miaaggi)v (11)
where f, is an update function determined by the types of MPNNs. The message aggregation in
Eq. (10) and the node embedding update in Eq. (11) are repeated in the next MPNN layer. In some
MPNNS, the message aggregation and the node embedding update steps are fused into a single step.

2.3.2 NODE-LEVEL CENTERING

The first inductive bias, node-level centering, subtracts the mean of node embeddings x;’s from each
individual x;:

1 n
i i—*g i 12
T T ni:lx (12)

where n denotes the number of nodes in LR mesh M; or the number of nodes in HR mesh Mj,.
This step can be applied after the node embedding update step in Eq. (11). Refer to Appendix G
for implementation details for each MPNN type. This inductive bias is motivated by the intuition
that, in the super-resolution task, global mean information is less relevant, while deviations from the
mean carry more meaningful signals. Experimental results (see Appendix J) show that subtracting
the mean from LR data samples has minimal impact on super-resolution performance. This implies
that the global mean is mostly uninformative in this context. By enforcing the node-level centering,
MPNN:S are encouraged to focus on deviations from the mean, leading to improved super-resolution
performance.

2.3.3 MESSAGE-LEVEL CENTERING

For MPNNs employing an explicit two-step message passing mechanism, we experimentally found
that removing mean component from the aggregated message agg; also leads to super-resolution
performance improvement. Specifically, the message-level centering subtracts the mean of the
aggregated messages agg;’s from the individual aggregated message agg;.:

1 n
i < agg; — — i 13
aggi = aggi — — ; agg 13)
This message-level centering step can be applied between the message aggregation in Eq. (10) and
the node embedding update in Eq. (11). Refer to Appendix G for implementation details for each
MPNN type. Similarly as in the node-level centering, this helps MPNNs focus on deviations from the
mean, which carry more informative signals in the context of super-resolution.
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3 EXPERIMENTAL RESULTS AND ANALYSES

Due to space limitations, we provide only a brief description of the experimental setup and a subset
of experimental results in the main text. A detailed description of the datasets and the complete set of
experiments is provided in Appendices H-S.

3.1 DATASETS

FEM Datasets. FEM datasets used in our experiments are generated by solving PDEs utilizing
FEniCSx, an open-source computing platform for FEM. Table 3 summarizes three datasets, detailing
their governing PDEs, the quantities derived from solving these equations, the parameters that vary
across the samples, and the number of nodes in LR and HR meshes. Dirichlet boundary conditions

are utilized for all datasets.
Table 2: Summary of FEM datasets.

Dataset Equation Solution Parameter LR nodes  HR nodes

1 Linear elasticity ~ von Mises stress ~ Force angle 333 4,053
2 Linear elasticity =~ von Mises stress  Hole shape  329-387  3,959-4,157
3 Poisson equation Electric field Hole shape = 324-388  3,959-4,154

CFD Datasets. To validate the applicability of SuperMeshNet to time-dependent PDEs and complex
real-world geometry, we adopt two additional datasets generated by OpenFOAM (OpenCFD, 2024).
The time-dependent PDE dataset is obtained by solving the incompressible Navier—Stokes equations
for flow around a cylinder, whereas the real-world geometry dataset is constructed by solving the
Laplace equation for potential flow around a motorbike with a rider. For the time-dependent PDE
dataset, LR data samples are generated by downsampling HR data onto LR meshes. For all other
datasets, LR data samples are obtained by independently solving the governing PDEs on LR meshes.
Detailed descriptions of each dataset are provided in Appendix H. We refer to Section 3.7 to see
results on CFD datasets and their relevant discussions.

Table 3: Summary of CFD datasets.

Dataset Equation Solution Parameter LR nodes HR nodes

. Incompressible .
Time-dependent PDE Navier-Stokes Speed Time 576 7,440

Real-world geometry Laplace Pressure  Angle of attack 10,897 46,004

3.2 EXPERIMENTAL SETUP

We evaluate our methodology using six representative MPNNSs, including GCN (Kipf and Welling,
2017), GraphSAGE (SAGE) (Hamilton et al., 2017), GAT (Veli¢kovi¢ et al., 2018), Graph Trans-
former (GTR) (Shi et al., 2021), GIN (Xu et al., 2019), and MeshGraphNet (MGN) (Pfaff et al.,
2021). Each MPNN consists of three layers for processing in LR and additional three layers for
processing in HR, and hidden dimension of each layer is 30. Throughout the experiments, we adopt
Adam optimizer with learning rate of 1 x 10~3 and PyTorch’s automatic mixed precision training
to improve computational efficiency. All experiments are carried out on a machine with Intel (R)
Core (TM) i9-10920X CPUs@3.50 GHz and an NVIDIA RTX A6000 GPU. The RMSE is used as a
metric where lower values indicate better performance.

3.3 COMPARISON WITH FULL SUPERVISION

Table 4 compares the RMSE of each MPNN integrated with our framework SuperMeshNet, and
its variant without inductive biases, SuperMeshNet-O, against two fully supervised baselines—the
same type of MPNNSs but trained with full supervision without inductive biases. SuperMeshNet-O
trained with 20 HR data samples (i.e., N, = 20) and 200 LR data samples (i.e., N = 200) achieves a
significantly lower RMSE compared to the MPNNs trained exclusively on 20 paired LR-HR samples
(i.e., N}, = N = 20). The improvement is attributed to complementary learning, which is inherently
designed to effectively leverage the 180 unpaired LR samples that fully supervised learning cannot
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utilize. Remarkably, despite being trained only with 20 HR data samples, SuperMeshNet-O achieves
RMSE values that are on par with the second fully supervised baseline trained with the entire 200
HR data samples (i.e., N, = N = 200). SuperMeshNet, enriched by inductive biases, surpasses
the second baseline in most cases, highlighting the efficacy of the proposed inductive biases tailored
for super-resolution in improving performance. This implies the potential to reduce up to 90% of
the effort required to generate HR training data. Furthermore, our findings consistently demonstrate
the improvement of SuperMeshNet in terms of HR data efficiency across all six MPNNs. This
underscores its versatility and effectiveness in enhancing super-resolution performance, regardless of
types of underlying MPNN architectures.

Table 4: The RMSE of SuperMeshNet (with inductive biases) and SuperMeshNet-O (without
inductive biases) trained with N, = 20 HR data samples and N = 200 LR data samples across
six MPNNs and three datasets, in comparison with two fully supervised MPNNs including 1)
Np, = N =20and 2) N, = N = 200. The best performer is highlighted as bold.

MPNN
GCN SAGE GAT GTR GIN MGN

Fully supervised 20,20 0.0874 0.0876 0.0826 0.0758 0.0819 0.0655
Fully supervised 200,200 0.0575 0.0544 0.0512 0.0450 0.0381 0.0228
SuperMeshNet-O 20,200 0.0613 0.0589 0.0544 0.0451 0.0404 0.0269
SuperMeshNet 20,200  0.0431 0.0450 0.0457 0.0385 0.0277 0.0226

Fully supervised 20,20  0.0972 0.1025 0.0983 0.0983 0.0775 0.0730
Fully supervised 200,200 0.0624 0.0633 0.0637 0.0572 0.0534 0.0461
SuperMeshNet-O 20,200 0.0636 0.0664 0.0680 0.0631 0.0569 0.0514
SuperMeshNet 20,200 0.0574 0.0624 0.0634 0.0600 0.0537 0.0507

Fully supervised 20,20  0.0587 0.0611 0.0616 0.0513 0.0569 0.0523
Fully supervised 200,200 0.0370 0.0340 0.0374 0.0329 0.0317 0.0243
SuperMeshNet-O 20,200 0.0380 0.0366 0.0375 0.0363 0.0316 0.0281
SuperMeshNet 20,200  0.0297 0.0297 0.0310 0.0294 0.0258 0.0245

Method Ny, N

Dataset 3 | Dataset 2 | Dataset 1

3.4 COMPARISON WITH SUPER-RESOLUTION COMPETITORS

Although the primary objective of SuperMeshNet is to  Taple 5: The RMSE of MGN-based Su-
improve super-resolution performance across a wide range perMeshNet trained with varying num-
of MPNNGs rather than to outperform a specific state-of-the- - perg of HR data samples N}, and a fixed
art method, we compare a special case of SuperMeshNet  n—700 LR data samples for Dataset 1
using MGN with the most recent and relevant benchmarks, comparison with SRGNN with full
SRGNN (Barwey et al., 2024) and MAgNet (Boussif etal., gpervision (N=N,=200), and MAgNet
2022), to further validate its effectiveness. The results in  yith no supervision (N=200, N,=0).

Table 5 signify that SuperMeshNet, even when trained

with only 20 HR data samples, outperforms SRGNN (Bar- Methods N RMSE
wey et al., 2024) trained with 200 HR data samples, under- 5 0.0447
scoring its superior training data efficiency. Furthermore, 10 0.0280
the results demonstrate that SuperMeshNet significantly SuperMeshNet 20 0.0226

outperforms the unsupervised baseline, MAgNet (Boussif 40 0.0191
et al., 2022), even under minimal HR supervision (N, =5). SRGNN 200 00247

3.5 COMPARISON WITH BENCHMARK MAgNet 0 00979
SEMI-SUPERVISED REGRESSION METHODS

Table 6 compares complementary learning in SuperMeshNet against benchmark semi-supervised
regression methods on Dataset 1, using MGN as an MPNN architecture for each method. As presented
in Table 6, SuperMeshNet achieves the lowest RMSE while also exhibiting the shortest training time
among all benchmark semi-supervised regression methods. The performance improvements achieved
by SuperMeshNet likely stem from its inherent characteristics of using two complementary models.
Mean-Teacher (Tarvainen and Valpola, 2017) and UCVME (Dai et al., 2023) employ two models to
predict the same target, i.e., an HR data sample. Similarly, TNNR (Wetzel et al., 2022) uses one twin
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Table 6: Comparison with benchmark semi-supervised regression methods in terms of the RMSE
and training time (in second). Here, MGN is employed as an MPNN for each method. Training is
conducted when N}, = 20 and N = 200 for Dataset 1. The best performer is highlighted as bold.

Methods RMSE Training time (s)
mean-teacher (Tarvainen and Valpola, 2017)  0.0325 693.84
TNNR (Wetzel et al., 2022) 0.0624 477.48
UCVME (Dai et al., 2023) 0.0293 1122.62
SuperMeshNet-O 0.0269 503.2
SuperMeshNet 0.0226 421

neural network to predict the difference between two HR data. On the other hand, SuperMeshNet
employs the complementary learning mechanism that leverages two distinct yet cooperative models:
primary model Fjy, which learns to predict an HR data sample, and auxiliary G4, which learns to
predict the difference between two HR data samples, as formulated in Eq. (2). While F} operates
on single LR input, G4 utilizes two LR data samples along with one HR data sample, enabling the
two models to make predictions from distinct informational viewpoints. This architectural design

promotes diversity into the learning process (See Table 17 in Appendix N) .

3.6 ABLATION STUDIES ON INDUCTIVE BIASES

Table 7 presents ablation results on the two
inductive biases in SuperMeshNet, demon-
strating their effect on super-resolution perfor-
mance in terms of the RMSE across six different
MPNNs2. For all MPNNSs, the incorporation of
node-level centering (N) and message-level cen-
tering (M) into the MPNN architecture leads
to substantial improvements in super-resolution
performance (i.e., a lower RMSE) compared to
MPNNs without inductive biases (O). We claim
that this improvement may be attributed to the
reduced reliance on global mean information
and an increased emphasis on local deviations
from the mean.

We investigate whether the proposed inductive
biases encourage the models to focus on local
deviations rather than global mean information
by analyzing the sensitivity of super-resolution
performance to perturbations in the node em-
bedding x; (see Eq. (11)) and the aggregated
message agg; (see Eq. (10)). Specifically, we
quantify the change in the RMSE when addi-
tive Gaussian noise with standard deviation of
0.01 is applied either to the global mean com-
ponent or to the deviation component of x;’s
and agg;’s, where the results are summarized
in Table 8 when MGN is used as an MPNN. In
SuperMeshNet-O (without inductive biases),
denoted as O in Table 8, the RMSE is highly
sensitive to noise added to the mean component
while remaining relatively unaffected by pertur-
bations in the deviation component, indicating a

Table 7: Ablation studies on inductive biases. The
RMSE of SuperMeshNet across six MPNNs un-
der four inductive bias conditions (O: without
inductive biases, N: node-level centering, M :
message-level centering, and N+M: both node-
level and message-level centerings) trained with
Np, =20 and N = 200 for Dataset 1 is compared.
For each MPNN, the lowest RMSE value among
the four inductive bias conditions is highlighted as
bold.

MPNN RMSE
O N M N+M
GCN  0.0613 0.0431 - -
SAGE 0.0589 0.0493 0.0528 0.0450
GAT  0.0544 0.0457 - -
GTR  0.0451 0.0405 0.0438 0.0385
GIN  0.0404 0.0290 0.0281 0.0277
MGN 0.0269 0.0237 0.0247 0.0226

Table 8: Effect of noise on the RMSE of SuperMe-
shNet (with inductive biases), denoted as N+M,
and SuperMeshNet-O (without inductive biases),
denoted as O. Noise is added to node embeddings
x; and aggregated messages agg; in MGN, trained
with N, = 20 and N = 200 for Dataset 1.

(0] N+M
0.0269 0.0236

0.0312  0.0236
0.0290 0.0359

without noise
noise in mean
noise in deviation

strong reliance on global mean information, which is undesirable for super-resolution tasks. In con-
trast, SuperMeshNet (with inductive biases), denoted as N+M in Table 8, demonstrates robustness

“Note that, in MPNNs such as GCN and GAT, the message-level centering cannot be employed independently
since the message aggregation in Eq. (10) and the node embedding updates in Eq. (11) are integrated into a
single step.
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to mean perturbations but exhibits increased sensitivity to deviations. This suggests that the model
with inductive biases prioritizes local deviation-related information. These findings justifies our claim
that the proposed inductive biases effectively guide the model’s attention to local deviations from the
global mean, which are more pertinent to high-resolution reconstruction.

3.7 APPLICATION TO TIME-DEPENDENT PDES AND REAL-WORLD GEOMETRY

Figures 4 and 5 present the applicability of SuperMe-
shNet to real-world geometry and time-dependent
PDE datasets, respectively, when MGN is employed
as an MPNN. Figure 4 shows the error distribution on
the real-world geometry dataset, where darker blue
indicates higher error. Figure 4 apparently demon-
strates that SuperMeshNet, trained with only 20
HR data samples, exhibits even smaller errors than
the case of the fully supervised model trained with
200 HR data samples, especially around the front
region of the motorbike. Additionally, Figure 5 dis-
plays the qualitative comparisons of prediction on the
time-depndent PDE dataset. The prediction by Su-
perMeshNet, trained with only 20 HR data samples,
is even closer to the ground truth than the case of
the fully supervised model trained with 200 HR data
samples, particularly around the blue wake region be-
hind the cylinder. We refer to Table 21 in Appendix P
for the quantitative analysis.

4 CONCLUSIONS AND LIMITATIONS

In this paper, we explored the open problem of super-
resolution for mesh-based simulations by presenting
SuperMeshNet, which judiciously harnesses com-
plementary learning and inductive biases to achieve
remarkable HR data efficiency. The complementary
learning enabled effective utilization of unpaired LR
data, while the inductive biases further enhanced per-
formance across a variety of MPNN architectures.
We expect that this improvement can facilitate the
broader adoption of simulations across various en-
gineering disciplines, potentially accelerating inno-
vation by lowering the barriers to conducting com-
plex simulations. However, while our complementary

SuperMeshNet
(N, = 20,N = 200)

7

Fully supervised
(N, = 200,N = 200)

7

Fully supervised
(N, = 20,N = 20)

5 .‘I,
o SO
4'%‘&);&

7

0.00202 0.00714 0.0123 0.0174 0.0225
B ]
Squared error

Figure 4: Comparison of squared error
fields between SuperMeshNet and fully su-
pervised baselines on real-world geometry
dataset. Here, Nj, and NN represent the num-
ber of HR and LR training data samples, re-
spectively. For all cases, MGN is utilized as
the underlying MPNN.

learning mechanism achieves shorter training time compared to benchmark semi-supervised learning
methods, it still remains slower than the case of full supervision. Further reducing the computational
cost of complementary learning is a potential avenue of our future research.

Ground truth

SuperMeshNet Fully supervised Fully supervised

(Ny = 20,N = 200) (N, = 200,N = 200) (Nj, = 20,N = 20)

1188
1.056
0.924

0.792

-
! » _'!. y 0.660

0.528
0.396
0.264

" 0.132
- AN i 0.000

Figure 5: Comparison of ground-truth and predicted fluid flow speeds on the time-dependent PDE
dataset. Here, N}, and N represent the number of HR and LR training data samples, respectively. For

all cases, MGN is utilized as the underlying MPNN.
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B NOTATIONS

Table 9: Summary of notations

Notation Description
I PDE parameters
Fy, Gy neural network models

q B
ug, g, g, g, uy, u)
q B
Up, Ui, up, uy, ul, uy, )
S B
Up, Uy, Uy, Uy,

sl ABy sy
Uy, Uy ' Up

M,
My,
B
P,
E;
Eh
ny
Np
n
D,
Dy
N

Np,

Lp
La

/
kENN
g1
OX(]

l
0,49 H;.,.9 0,.9 Hp,49
.’,Cl, .’L'l, I,Ch, .’Eh

LR data samples

HR data samples

prediction by Fjy

prediction by G4

LR mesh

HR mesh

nodal positions of LR mesh

nodal positions of HR mesh

edges of LR mesh

edges of HR mesh

number of nodes in LR mesh

number of nodes in HR mesh

number of nodes in graph

paired LR-HR training dataset

unpaired LR training dataset

total number of training data samples
= number of LR training data samples

number of paired LR-HR training data sampels
= number of HR training data

loss function for training Fp

loss function for training G

mean squared error

k-nearest neighbor interpolation

input graph

node feature

node embeddings

node embedding of node ¢

node embedding of node j

edge embedding between nodes ¢ and j

message between nodes ¢ and j

aggregated message of node ¢

message function

node embedding update function

set of neighboring nodes of ¢

Table 9 summarizes the notations used throughout the paper.
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C RELATED WORK

MPNNSs for mesh-based simulations. Conventional methods for solving PDEs, such as the FEM,
typically rely on mesh-based approaches. Nevertheless, CNNs, which are not well-suited for ir-
regular mesh-based data, have gained popularity as surrogate models, due to their simplicity and
efficiency (Pfaff et al., 2021). Among notable advancements, MeshGraphNet (MGN) (Pfaff et al.,
2021) represents a significant breakthrough, demonstrating that MPNNSs can outperform CNN-based
models for mesh-based simulation tasks. However, MGN, like other MPNN:Ss, is constrained by a
limited interaction range. Since MPNNs exchange information with immediate neighbors, extending
interactions to nodes farther away requires stacking additional message passing layers. Most MPNNs
suffer from over-smoothing, a phenomenon where output node embeddings become overly uniform
as the number of stacked message passing layers increases, leading to performance degradation.
While MGN has been reported to exhibit robustness against over-smoothing, an increased number
of message passing layers still results in significantly higher computational costs. To address this
limitation, researchers (Cao et al., 2023; Fortunato et al., 2022; Gladstone et al., 2024) proposed
incorporating additional coarse meshes alongside the original fine mesh. This approach enables
messages to propagate more efficiently across the coarse meshes while allowing the fine mesh to
finely adjust node embeddings. Moreover, an attention mechanism was integrated into MGN to
further refine the aggregation function, enhancing the neural network’s ability to adaptively prioritize
relevant information during message passing (Deng et al., 2024).

Super-resolution for simulations. Similarly as in surrogate models for simulations, early super-
resolution models for simulations predominantly employed CNN-based image super-resolution
architectures, such as SRGAN (Li and McComb, 2022) and UNet (Yonekura et al., 2023). As
pioneering work, CFD-GCN (de Avila Belbute-Peres et al., 2020) introduced GCNss for the super-
resolution of computational fluid dynamics (CFD) simulations. This method demonstrated both
improved generalization to unseen data and enhanced cost efficiency. More recently, advanced MPNN
architectures like SRGNN was applied to the super-resolution of fluid flows (Barwey et al., 2024).
Despite these advancements, inductive biases tailored for MPNNs in the context of super-resolution
for mesh-based simulations are largely underexplored.

Semi-supervised regression. Semi-supervised regression involves predicting real-valued output us-
ing both labeled and unlabeled datasets. Compared to semi-supervised classification, semi-supervised
regression remains largely underexplored (Kostopoulos et al., 2018). A co-training approach typically
splits input features into groups, with each group used to train a separate model (Brefeld et al., 2006).
However, in scenarios with limited features, such as FEM-relevant data including only nodal positions
and nodal values, splitting features can lead to insufficient information for accurate predictions. As
an alternative, COREG (Zhou and Li, 2005) was presented to eliminate the need for feature splitting
by using two k-nearest neighbor (kKNN) regressors with different distance metrics. Unfortunately, this
approach is restricted to kNN regressors and is unsuitable for predicting values at the node-level. A
recent method, Rankup (Huang et al., 2024), reformulated regression tasks into classification tasks to
leverage a rich set of methodologies developed for semi-supervised classification. However, this tech-
nique lacks generalizability for regression tasks involving mesh-based graph data. The Mean-Teacher
framework (Tarvainen and Valpola, 2017), though not originally designed for mesh-based data,
has potential for dealing with mesh-based graph data. It involves teacher and student models with
teacher’s weights updated as the exponential moving average of the student’s weights. In contrast,
the recently proposed UCVME framework (Dai et al., 2023) has demonstrated superior performance
over the Mean-Teacher (Tarvainen and Valpola, 2017) by incorporating uncertainty consistency and
utilizing a variational model ensemble. However, because Mean-Teacher (Tarvainen and Valpola,
2017) and UCVME (Dai et al., 2023) both employ identically structured models predicting the
same target, they exhibit reduced psuedo-label diversity during training. This uniformity diminishes
synergy between the models and consequently hinders learning efficiency. Additionally, Twin Neural
Network Regression (TNNR) (Wetzel et al., 2022) is applicable to mesh-based predictions when an
appropriate model architecture is involved. However, it involves only a single twin neural network,
thus lacking the synergistic benefits of mutual supervision.
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D PSEUDO-CODE FOR COMPLEMENTARY LEARNING

Algorithm 1 Complementary learning

Input: paired LR-HR dataset: D, = {(/%u}) | ¢ = 1,2,---, Ny}, unpaired LR dataset:
Dy = {I? | ¢ = Npy1,Npia, -, N}, neural network models: feature extractor E., Fy’s
decoder D, and G 4’s decoder D¢, maximum epoch: ep, learning rate: 7, early stopping criterion
Output: Trained neural network models: E., Dp, and Dg
for epoch < 1to ep do
for step < 1to N do

Sample paired LR-HR data (u*, uf), (uf7 uf) €D,

Sample unpaired LR data u] € Dy,

Compute node embeddings by E..:

To — Bo(uf), 25  Ee(u), 2, — Eo(u])
Compute prediction by Dp:
@ Dp(x®), 4 « Dp(e?), @) « Dp(z")
Compute prediction by Dg:
ﬁzﬁ — Dg(z®,zP), ﬁﬁv « Dg(2?,27), @)% + Dg(z7,2%)

Compute loss for Fy:

Lp =000, uf) + 0(a) ,u)) + (@), 4} + kNN (u; P — Py))

+0(a@), kNN (u, —a)"; P} — P}))
Compute loss for G 4:
Lo =0(a" ug — ENN(uy; Py — P)) + (2%, @) — kNN (u; P& — PJ))
+ (i) u, — kNN(a); P} — P))

Compute total loss:
L=Lr+ Lg

Compute gradients: V., L where ¢ is the parameters of E., D, and Dg
Update weights:
Y= —nVyL

end for
if early stopping criterion is met then
Break
end if
end for
return F., Dp, and D¢

We present the pseudo-code of our complementary learning mechanism in SuperMeshNet.
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E ENN INTERPOLATION

We provide a brief explanation of the kNN interpolation procedure, which projects values defined on
nodes of a source mesh onto nodes of a target mesh.

@

0 (P2, ¥2)
© "¢ 0
@1,y1)-00®e,¥0?)
0o -0
(p3,¥3)
)

Figure 6: Schematic illustration of NN interpolation with £ = 3. Yellow nodes belong to the target
mesh, blue nodes to the source mesh, and the darker blue nodes indicate the k£ nearest neighbors
of the darker yellow node. Given the positions of the k£ nearest source nodes p; (1 < ¢ < k), their
corresponding values y;, and the target node position pg, the value at the target node gy can be
estimated via weighted averaging.

1. Find & nearest neighbors (kNN). For each node in the target mesh, identify the k closest
nodes in the source mesh. For example, as illustrated in Figure 6, the darker blue nodes
represent the three nearest neighbors of the darker yellow node.

2. Known information. The nodal positions of the k nearest source nodes p; (1 < i < k),
their values y;, and the target node position py.

3. Unknown quantity. The value at the target node, denoted by .

4. Compute the target node value via weighted averaging. The interpolation weight for
each neighbor is defined as the inverse squared distance from the target node:

B 1
d(po, pi)?
The interpolated value at the target node yg is then obtained as
k
Yo = Zi:1 w;Y;
=l
Dim1 Wi
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F MODEL ARCHITECTURES

F.1 MODEL ARCHITECTURES

The architecture of Fy, illustrated in Figure 7, is basically built upon SRGNN (Barwey et al., 2024),
with the key difference that the MPNNs in the LR and HR processors are enriched with our proposed
inductive biases. The G4, visualized in Figure 8, extends Fj to accommodate two input samples,
maintaining a comparable structure. A notable architectural feature is the use of a shared feature
extractor between Fy and G, which helps reduce computational costs during training. A detailed
description of the model architectures follows.

F.1.1 MODEL ARCHITECTURE OF Fjy

The role of Fy is to transform LR data into HR data, which is conducted by the lowermost upsampler
in Figure 7. To surpass the performance of kNN interpolation by the lowermost upsampler, we
have introduced additional upsampling in latent space. Specifically, an encoder maps the physical
quantities into high-dimensional latent space. The LR processor applies message passing to refine LR
representations, which are then upsampled to HR latent embeddings. Subsequently, the HR processor
applies additional message passing to further enhance the HR representations. Finally, a decoder
maps the latent embeddings back to the physical space. The final HR output is obtained by adding the
two upsampled HR fields: one from the kNN-based upsampler and the other from the latent-space
upsampling pathway.

More precisely, Fy is designed to make prediction @] from an LR data sample u;. The LR data
sample v is input to the Fy as a form of an input graph g/'. More specifically, input graph g;’s node
feature ° X { is the concatenation of LR data sample u; and node position P,’. Depending on MPNN
types used in the LR and HR processors (refer to Appendix G), the g/ may further include edge
feature, which is the concatenation of positions of source and target nodes of the edge E;'. The Fj
comprises an encoder, an LR processor, upsamplers, an HR processor, and a decoder. The encoder
can be an multi-layer perceptron (MLP) that can convert low-dimensional ° X 7 to high-dimensional
node embeddings Ox?. The LR processor updates the node embedding Ox? to x through stacked
H; MPNN layers enriched by our inductive biases. Here, the prescript 0 and H; indicate the index of
the MPNN layers. The node embedding z defined on nodes located at P is upsampled onto nodes
of g positioned at P! by using kNN interpolation. The HR processor similarly updates °z} to #» ]
through stacked H;, MPNN layers equipped with our inductive biases. Then, the decoder, which is
an MLP, predicts low-dimensional output from » z}. Finally, the LR data sample ] upsampled
onto P/ by kNN interpolation is added to the output of the decoder to obtain the final prediction
@}. The upsampled LR data sample serves as a rough estimation of the prediction, enabling the
super-resolution model to focus on learning the finer details, thereby simplifying the learning task.

Shared feature extractor 0,9 _ Hi..q. pq q
°x{ = [uf; P]] xp = KNN("xp; Py = Py)
a q
9h h
C
q =¥ H =3 H
gi % |28 |l | B 23 | ®
ol i = o T (o] 9_'.‘?!1
Z2 > 3 z2 = 8 h
Z3 = Z3 o}
<o ® <o =
£ e
Upsampler

kNN(uf; P} > P)

Figure 7: The schematic overview of the primary model Fy.The Fy aims to predict 4} targeting HR
data sample ] from LR data sample u]. The LR data sample u] is input to the Fy as a part of node

feature ° X ¢ of an input graph g/'.
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F.1.2 MODEL ARCHITECTURE OF G

The model G is responsible for predicting the difference between two HR samples corresponding
two LR inputs. Again, to go beyond simple kNN-based upsampling by upsampler in Figure 8, we
have further performed latent-space processing. We have extracted latent embeddings from the two
LR inputs using a shared encoder. The shared encoder is the one used for the model Fy depicted in
Figure 7. Then, we subtracted the embeddings, and decoded the result to predict the HR difference.
Here, we incorporated subtraction because the goal is to predict the difference between two HR
samples. The final HR output is obtained by adding the two upsampled HR fields: one from the
kNN-based upsampler and the other from the latent-space upsampling pathway. The interpolators
in the Figure 8 serve only to address mesh mismatches when the two LR samples are defined on
different meshes. Since the underlying computational domain geometry may vary across samples,
direct point-wise operations, such as subtraction or addition, are generally infeasible. To overcome
this, we apply kNN interpolation to project one mesh onto another, enabling consistent alignment
between mesh structures.

More precisely, the auxiliary model G is designed to make prediction #;° from a pair of LR data
samples u; and u]. More specifically, The two input LR data samples v; and ;] are fed into the G
as parts of node features of two input graphs g; and g7, respectively. In order to reduce computational
costs, Iy and G4 share a feature extractor comprising the encoder, the LR processor, the interpolator,
and the HR processor. The feature extractor returns node embeddings z}, and x7 from input graphs
g; and g7, respectively. Then, z;, is subtracted from z; to yield z}°. Here, kNN interpolator is used
to enable subtraction operation between two node embeddings x} and x7 defined at different nodal
positions. The x}° is fed into the decoder, and the upsampled difference between u; and uj through
kNN interpolation is added to the decoder’s output. Here, the interpolated difference between u; and
uj also serves as a rough estimation of the prediction 4;°. Again, an kNN interpolator is used to
enable subtraction operation between u; and u; defined on different nodal positions.

' —>= Shared feature extractor — Xp

9—» up’

91 Interpolator

uj Jaa\

— Upsampler
uj
Interpolator

Japodaq

Shared feature extractor —’ x},

Figure 8: The schematic overview of the auxiliary model G 4. The G aims to predict @;° targeting
difference between two input LR data samples u; and u]. The two input LR data samples u; and u]
are fed into the G4 as parts of node features of two input graphs g; and g7, respectively. In order to
reduce computational cost, Fy and G share a feature extractor in Figure 7 consisting of an encoder,
an LR processor, an upsampler, and an HR processor.
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G INCORPORATION OF INDUCTIVE BIASES INTO MPNN ARCHITECTURES

This section describes how inductive biases are incorporated into each of MPNN models.

G.1 INDUCTIVE BIASES-ENRICHED GCN (KIPF AND WELLING, 2017)

T
msgij = @ ejia:j

Ti = ag99i = Z mSgij
JEN (D)

1 n
Ti<— T — — E X,
n -
i=1

where O is a learnable parameter.

G.2 INDUCTIVE BIASES-ENRICHED GRAPHSAGE (SAGE) (HAMILTON ET AL., 2017)

msg;; = Iy

1
aggi = : msgij
N0, 2, "

1 n
aggi ¢ aggi — ~» _agg:

i=1
i < Wiz + Waagg;

1 n
Ti &= L — — E Ti,
n “
=1
where W7 and W5 are learnable parameters.

G.3 INDUCTIVE BIASES-ENRICHED GAT (VELICKOVIC ET AL., 2018)

B exp(LeakyReLU (al ©sz; + al ©425)
- ZkEN(i) exp(LeakyReLU (aT©4x; + al ©421))

msgij = aij(—)txj

Olij

Ti = aggi = Z msgij
JEN(3)

1 n
T; < T; — — E T,
n-
i=1

where ag, s; Oy, and Oy are learnable parameters.
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G.4 INDUCTIVE BIASES-ENRICHED GRAPH TRANSFORMER (GTR) (SHIET AL., 2021)

Q= softmax((ngi)T(W4zj))
msg;; = OLZ‘jWQJCj

ag99i = Z msgij
JEN ()
wig - a ,_lz":a | (17)
i 99i n & 99i
1=

z; + Wiz, + agg;
1 n
T; < Ty — — Z.’E“
n -
=1

where Wy, Wy, W3 and W, are learnable parameters.

G.5 INDUCTIVE BIASES-ENRICHED GIN (XU ET AL., 2019)

msgi; = Iy
agg9i = Z msgij
JEN(3)

1 n
aggi < aggi — — > _agg: (18)
i=1

x; < MLPo((1+ €)x; + agg;)
1 n

P T T — E i

T T - i:1x

where M L P, is a learnable MLP and ¢ is a learnable parameter.

G.6 INDUCTIVE BIASES-ENRICHED MESHGRAPHNET (MGN) (PFAFF ET AL., 2021)
€ij — MLPE(I‘Z‘, Zj, eij)
msgi; = €ij

aggi = Z mMsgij
JEN (@)
agg; < aggi — = iagg‘ (19
7 (3 n g 7

z; < MLP;(v;,a99;)
1 n
Ty < Ty — — in7
n
=1

where M LP, and M LP, are learnable MLPs.
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H DATASETS FOR EXPERIMENTAL EVALUATIONS

H.1 DATASET 1

The first dataset is inspired by simustruct (Ribeiro et al., 2023), the dataset for machine learning-based
methods in structural analysis. Examples of HR and LR data samples from Dataset 1 are visualized
in Figure 9. As depicted in the figure, the computational domain is a rectangle measuring 0.25 x 0.5
in the x- and y-directions, containing six circular holes, each with a diameter of 0.05. For the HR
mesh, the mesh size around outer four sides is 10 x 10~2, while the mesh size around the circular
holes is set to be 4 x 1073. For the LR mesh, the mesh size around the outer sides is 40 x 1072, and
the mesh size around the circular holes is 16 x 1073.

On the computation domain, the following linear elasticity equation is solved:
—V-o(u)=0
o(u) = Ar(e(w)) I + 2ue(u),

) (20)
e(u) = 5 (Vu+ (VU)T) ,

where o(u) is the stress tensor, A and p are Lamé’s elasticity parameters for the material, I is the

identity tensor, tr is the trace operator on a tensor, ¢(u) is the symmetric strain tensor (symmetric

gradient), and u is the displacement vector field.

A force of 1 x 108 is applied to the top side of the rectangle in angles between 40° and 140° relative
to the x-axis, while the bottom side of the rectangle is fixed to zero displacement. Lamé’s first and
second parameters are 1.25, and 80.8 x 107, respectively. Von Mises stress is evaluated at each node
of the meshes. In order to solve the equation for each dataset, we leverage FEniCSx (Baratta et al.,
2023; Scroggs et al., 2022b;a; Alnaes et al., 2014), an open-source computing platform for solving
PDEs with the FEM.
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Figure 9: Examples of LR and HR data samples with various angles of applied force relative to the
x-axis from Dataset 1.
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H.2 DATASET 2

The geometry of the second dataset resembles that of the first dataset, with the primary difference
being the shapes of the holes. Specifically, the holes in the second dataset are elliptical, with varying
ratios between the lengths of the major and minor axes. The mesh sizes remain the same as those in
Dataset 1. Similarly as in Dataset 1, the linear elasticity equation in Eq. (20) is solved. The applied
force is directed along the y-axis, while all other conditions and constants remain identical to those in
Dataset 1. Examples of HR and LR data samples from Dataset 2 are visualized in Figure 10.

Ratio=1.31 Ratio=2.36 Ratio=1.77
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le8
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Figure 10: Examples of LR and HR data samples with various ratios between the lengths of the major
and minor axes from Dataset 2.
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H.3 DATASET 3

The geometry and mesh sizes of Dataset 3 are identical to those of Dataset 2. However, instead of
solving the linear elasticity equation, the following Poisson equation is solved.

Vu =0, (1)
where u is an electrical potential.

The boundary conditions are defined as follows: the four outer sides are set to 0 V, while the elliptical
holes have alternating boundary values. Specifically, the holes centered at (0.08, 0.15), (0.17, 0.25),
and (0.08, 0.35) are assigned a value of -1 V, whereas the holes centered at (0.17, 0.15), (0.08, 0.25),
and (0.17, 0.35) are assigned a value of 1 V. The magnitude of the electric field is calculated at
each node of the mesh. Examples of HR and LR data samples from the Dataset 3 are visualized in
Figure 11.
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Figure 11: Examples of LR and HR data samples with various ratios between the lengths of the major
and minor axes from Dataset 3.
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H.4 TIME-DEPENDENT PDE DATASET

Examples of HR and LR data samples from the time-dependent PDE dataset are visualized in
Figure 12. As depicted in the figure, the computational domain is a square measuring 2 x 2 in the x-
and y-directions, containing one cylinder at the center of the domain with a diameter of 0.05. The
mesh size is set to be finer around the cylinder.

On the computation domain, the following incompressible Navier-Stokes equation is solved:
V-v=0, (22)

p (?; +u- Vu) = —Vp+ uV?u, (23)
where u is velocity, p is pressure, and p is density, p is dynamic viscosity. The velocity at the left
side of the square varies from 1 to 10 as time proceeds from O to 5. The density and the dynamic
viscosity are set to be 1 and 107>, respectively. A speed, a magnitude of velocity, is evaluated at each
node of the meshes. In order to solve the equation, we leverage OpenFOAM(OpenCFD, 2024), an
open-source CFD toolbox.
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Figure 12: Examples of LR and HR data samples corresponding to multiple timestamps from the
time-dependent PDE dataset.
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H.5 REAL-WORLD GEOMETRY DATASET

An Example of HR and LR data samples from the real-world geometry dataset are visualized in
Figure 13. As depicted in the figure, the computational domain is a rectangular box of size 20 x 8 x 8
in the x-, y- and z-directions, containing a rider on a motorbike. The mesh size is set to be finer around
the rider and the motorbike. The dataset is built upon a bike tutorial of OpenFOAM (OpenCFD,
2024) by varying angle of attack from 0° to -90°.

On the computation domain, the following Laplacian equation is solved:
V26 =0, (24)
u= Vo, (25)

where u is velocity, and ¢ is velocity potential.

Then, pressure is calculated utilizing the following Bernoulli equation:

1
p:pref+§(‘uref|2_|u‘2)v (26)
where pr.r and u,..¢ are the pressure and velocity at a reference location, respectively. The speed of

fluid at the left side of the rectangular box is set to be 20. In order to solve the equation, we leverage
OpenFOAM (OpenCFD, 2024).

26



Under review as a conference paper at ICLR 2026

1404

1405

1406 Angle of attack=0
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

1452 Figure 13: An example of LR and HR data samples corresponding to an angle of attack of 0° from

1455 the real-world geometry dataset.
1454

1455
1456
1457

LR

183,

LR magnified view

l x -163. -83.7 473 742
I

l X -163. -83.7 4.73 74.2 1
I

53.

HR

HR maghnified view

27



Under review as a conference paper at ICLR 2026

I COMPARISON OF MAGNET, FULLY SUPERVISED BASELINE, AND
SUPERMESHNET

Table 10: RMSE comparison of MAgNet (Boussif et al., 2022), the baseline using fully supervised
learning, and SuperMeshNet. SuperMeshNet is MGN with inductive biases trained with N}, = 20
and N = 200, and the baseline is MGN without inductive biases trained with N, = N = 200.
MAgNet is a zero-shot super-resolution method trained with N, = 0 (i.e., no HR data) and N = 200.

Dataset 1 Dataset 2 Dataset 3
MAgNet 0.0979+ 0.0009  0.13054 0.0007 0.0754+0.0014
Fully supervised learning  0.0228+0.0015  0.04614+0.0004  0.0243+0.0017
SuperMeshNet 0.0226£0.0007 0.0507+£ 0.0011  0.024540.0005

We empirically show the effect of HR training data over the case using zero-shot super-
resolution (Boussif et al., 2022). Table 10 demonstrates that MAgNet’s RMSE is far apart from that of
the fully supervised baseline and SuperMeshNet across all three datasets, while being approximately
up to four times higher.
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J  IMPACT OF MEAN OF INPUT LR DATA SAMPLES IN SUPER-RESOLUTION

Table 11: RMSEs of MGN trained with N=N;=200, using the following as input: LR data sample,
its deviation from its mean, and the mean.

Dataset 1 Dataset 2 Dataset 3

LR data 0.0228 £ 0.0015 0.0461 £ 0.0004 0.0243 £+ 0.0017
deviation of LR data  0.0235 £ 0.0017  0.0463 + 0.0003  0.0241 £ 0.0012
mean of LR data 0.0617 £0.0012  0.0715 £ 0.0014  0.0405 £ 0.0006

Our two inductive biases are motivated by the intuition that, for the super-resolution task, local
deviations from the global mean are more informative than the mean itself. This intuition is empirically
supported by the results in Table 11. The results demonstrate that using the deviation of the LR
data samples from its mean yields an RMSE comparable to that obtained using the original LR
data samples. This indicates that subtracting the mean has a negligible impact on super-resolution
performance. In contrast, using only the mean of the LR data samples as input leads to a significant
degradation in RMSE performance. These results suggest that the deviation from the mean plays a
critical role in super-resolution, whereas the mean value alone contributes little.
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K COMPARISON WITH FULL SUPERVISION

Table 12: The RMSE of SuperMeshNet (with inductive biases) and SuperMeshNet-O (without
inductive biases) trained with N, = 20 HR data samples and N = 200 LR data samples across
six MPNNs and three datasets, in comparison with two fully supervised MPNNs including 1)
Np = N =20 and 2) N, = N = 200. The best performer is highlighted as bold.

Method MPNN
(Nn, N) GCN SAGE GAT GTR GIN MGN
Fully supervised 0.0874 0.0876 0.0826 0.0758 0.0819 0.0655
(20, 20) +0.0039 +£0.0015 $0.0042 +£0.0068 £0.0047 =+ 0.0030
— Fully supervised 0.0575 0.0544 0.0512 0.0450 0.0381 0.0228
o (200, 200) +0.0035 +£0.0025 £0.0016 +£0.0023 £0.0027 =+ 0.0015
£ SuperMeshNet-O 0.0613 0.0589 0.0544 0.0451 0.0404 0.0269
a (20, 200) £+ 0.0020 +£0.0021 £0.0008 +£0.0020 £0.0028 =+ 0.0019
SuperMeshNet 0.0431 0.0450 0.0457 0.0385 0.0277 0.0226
(20, 200) £+ 0.0009 +£0.0010 £0.0016 £0.0029 £0.0006 =+ 0.0007
Fully supervised 0.0972 0.1025 0.0983 0.0983 0.0775 0.0730
(20, 20) +0.0082 +£0.0052 +0.0026 +£0.0016 +0.0073 =+ 0.0075
N Fully supervised 0.0624 0.0633 0.0637 0.0572 0.0534 0.0461
g (200, 200) +0.0022 +£0.0032 £0.0013 +£0.0016 +£0.0009 =+ 0.0004
£ SuperMeshNet-O 0.0636 0.0664 0.0680 0.0631 0.0569 0.0514
A (20, 200) +0.0013 +£0.0032 +0.0023 +£0.0018 +0.0023 =+ 0.0003
SuperMeshNet 0.0574 0.0624 0.0634 0.0600 0.0537 0.0507
(20, 200) +0.0003 +£0.0006 =+0.0018 +£0.0012 +0.0015 =£0.0011
Fully supervised 0.0587 0.0611 0.0616 0.0513 0.0569 0.0523
(20, 20) +0.0038 +£0.0043 £0.0050 +£0.0052 £0.0016 =+ 0.0055
) Fully supervised 0.0370 0.0340 0.0374 0.0329 0.0317 0.0243
g (200, 200) +0.0029 +£0.0015 £0.0012 +£0.0021 £0.0022 =+ 0.0017
£ SuperMeshNet-O 0.0380 0.0366 0.0375 0.0363 0.0316 0.0281
A (20, 200) +0.0018 +£0.0021 £0.0009 +£0.0023 £0.0010 = 0.0006
SuperMeshNet 0.0297 0.0297 0.0310 0.0294 0.0258 0.0245
(20, 200) +0.0008 +£0.0014 £0.0012 +£0.0011 =£0.0008 =+ 0.0005

Table 13: The RMSE and its standard deviation of SuperMeshNet trained with N}, = 40 HR data
samples and N = 200 LR data samples, in comparison with a fully supervised MPNN trained with
Ny, = N = 200. Experiments are conducted only for cases where using N, = 20 is insufficient to
outperform the fully supervised baseline.

Dataset Method Ny, N  MPNN RMSE

SuperMeshNet 40 200 GTR  0.0568 +£ 0.0015
Fully supervised 200 200 GTR  0.0572 £ 0.0016

SuperMeshNet 40 200 GIN  0.0501 £ 0.0004
Fully supervised 200 200 GIN 0.0534 £ 0.0009

SuperMeshNet 40 200 MGN  0.0461 £ 0.0011
Fully supervised 200 200 MGN 0.0461 + 0.0004

SuperMeshNet 40 200 MGN  0.0225 £+ 0.0003
Fully supervised 200 200 MGN 0.0243 £ 0.0017

LW W NN

In Table 12, we present the full version of Table 4 from the main manuscript, now including the
standard deviation of RMSE values. In some cases, SuperMeshNet (N,=20, N=200) yields higher
RMSEs than the fully supervised baselines (N;,=N=200). In such cases, Table 13 provides additional
results using SuperMeshNet with N,=40 and N = 200, where N}, is set to a slightly larger value
than our default setting (i.e., N, = 20) but still significantly smaller than 200, in comparison with the
fully supervised (N}, =NN=200) baselines. These results demonstrates that using only 20% of HR data
samples (i.e., N, = 40) in SuperMeshNet is sufficient to outperform the fully supervised baseline.
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L COMPARISON WITH SUPER-RESOLUTION COMPETITORS

Table 14: The RMSE and its standard deviation of MGN-based SuperMeshNet trained with varying
numbers of HR data samples N, and a fixed N=200 LR data samples in comparison with SRGNN
with full supervision (N=N;,=200).

Dataset Methods Ny, RMSE

5 0.0447 £ 0.0010
10 0.0280 £ 0.0013
20 0.0226 £ 0.0007
40  0.0191 £ 0.0021

SRGNN (Barwey et al., 2024) 200 0.0247 £ 0.0013

5 0.0723 £0.0018
10 0.0645 £ 0.0022

SuperMeshNet

2 SuperMeshNet 20 0.0507 + 0.0011
40 0.0461 + 0.0011

SRGNN (Barwey et al., 2024) 200  0.0487 + 0.0011

5 0.0353 +0.0015

10 0.0294 + 0.0010

3 SuperMeshNet 20 0.0245 + 0.0005

40  0.0225 £ 0.0003
SRGNN (Barwey et al., 2024) 200 0.0254 + 0.0011

In Table 14, we present the full version of Table 5 from the main manuscript, now including the
mean and standard deviation of RMSE values for all datasets. Across all datasets, SuperMeshNet
achieves a lower RMSE with a significantly smaller number of HR data samples, /N, compared to
the most recent and relevant benchmark super-resolution method, SRGNN (Barwey et al., 2024).
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M COMPARISON WITH BENCHMARK SEMI-SUPERVISED REGRESSION
METHODS

Table 15: Comparison with benchmark semi-supervised regression methods in terms of the RMSE
and training time (in second). Here, MGN is employed as an MPNN architecture for each method.
Training is conducted when N, = 20 and N = 200 for each dataset. The best performer is
highlighted as bold.

Dataset Methods RMSE Training time (s)

mean-teacher (Tarvainen and Valpola, 2017)  0.0325 4 0.0016 694 + 50
TNNR (Wetzel et al., 2022) 0.0624 + 0.0202 477 + 333

1 UCVME (Dai et al., 2023) 0.0293 £+ 0.0012 1123 + 102
SuperMeshNet-O 0.0269 + 0.0019 503 + 64
SuperMeshNet 0.0226 + 0.0007 421 +£93
mean-teacher (Tarvainen and Valpola, 2017)  0.0499+ 0.0007 402 + 28
TNNR (Wetzel et al., 2022) 0.0823 £ 0.0055 350 +90

2 UCVME (Dai et al., 2023) 0.0484 + 0.0006 739 £ 59
SuperMeshNet-O 0.0514 + 0.0003 306 + 16
SuperMeshNet 0.0507 4+ 0.0011 250 +£9
mean-teacher (Tarvainen and Valpola, 2017)  0.0270 4 0.0003 446 + 33
TNNR (Wetzel et al., 2022) 0.0393 £ 0.0027 437 + 83

3 UCVME (Dai et al., 2023) 0.0281+ 0.0013 700 £+ 89
SuperMeshNet-O 0.0281 + 0.0006 345 + 10
SuperMeshNet 0.0245 + 0.0005 286 + 18

Table 16: Comparison with benchmark semi-supervised regression methods in terms of the RMSE
and training time (in second). Here, MGN is employed as an MPNN architecture for each method.
Training is conducted when N, = 40 and N = 200 for each dataset. The best performer is
highlighted as bold.

Dataset Methods RMSE Training time (s)
mean-teacher (Tarvainen and Valpola, 2017)  0.0474 + 0.0007 427 + 37
TNNR (Wetzel et al., 2022) 0.0807 + 0.0074 409 + 143
2 UCVME (Dai et al., 2023) 0.0474 £ 0.0013 780 £ 89
SuperMeshNet-O 0.0479 £ 0.0005 348 £ 15
SuperMeshNet 0.0461 + 0.0011 292 + 25

Table 15 presents the full version of Table 6 from the main manuscript, now including the mean
and standard deviation of RMSE and training time for all datasets under the setting of N, = 20 HR
data samples and N = 200 LR data samples. SuperMeshNet consistently results in the shortest
training time across all datasets, in comparison with benchmark semi-supervised regression methods.
It also achieves the lowest RMSE on Datasets 1 and 3. For Dataset 2, while SuperMeshNet
yields a slightly higher RMSE, it significantly reduces training time compared to all the benchmarks.
Overall, SuperMeshNet is shown to reveal strong potential in terms of both predictive accuracy
and training efficiency. In Table 16, we additionally report that, for Dataset 2 with N, = 40 and
N = 200, SuperMeshNet still exhibits both the lowest RMSE and the shortest training time among
all evaluated methods.
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N COMPARISON OF PREDICTION DIVERSITY BETWEEN UCVME AND
SUPERMESHNET

Table 17: Comparison of prediction diversity between UCVME and SuperMeshNet. The prediction
diversity is quantified as the root mean square of the difference between two predictions made by
MGN model pairs trained by each method with N;,=20 and N=200 on each dataset. The dropout
probability in UCVME is set to 0.1.

Dataset Methods Prediction diversity
1 UCVME (Dai et al., 2023) 0.0017 £ 0.0001
SuperMeshNet 0.0200 4+ 0.0014
) UCVME (Dai et al., 2023) 0.0024 + 0.0002
SuperMeshNet 0.0514 +0.0011
3 UCVME (Dai et al., 2023) 0.0014 £ 0.0001
SuperMeshNet 0.0294 4+ 0.0004

The results in Table 17 demonstrate that SuperMeshNet exhibits consistently greater prediction
diversity across all datasets, compared to the case of UCVME (Dai et al., 2023). The prediction
diversity is quantified as the root mean square of the difference between two predictions made by
MGN model pairs, each trained with N, = 20 and N = 200 on each dataset. This implies that our

architectural design in complementary learning apparently more promotes diversity into the learning
process than the case of UCVME.
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O ABLATION STUDIES ON INDUCTIVE BIASES

Table 18: Ablation studies on inductive biases. The RMSE of SuperMeshNet across six MPNNs
under four inductive bias conditions (O: without inductive biases, N: node-level centering, M :
message-level centering, and N+M: both node-level and message-level centerings) trained with
Ny = 20 and N = 200 for each dataset is compared. For each MPNN, the lowest RMSE value
among the four inductive bias conditions is highlighted as bold.

Dataset MPNN RMSE
0 N M N+M

GCN  0.0613 +0.0020 0.0431 + 0.0009 - -
SAGE  0.0589 + 0.0021 0.0493 & 0.0024  0.0528 & 0.0018  0.0450 = 0.0010

| GAT  0.0544 + 0.0008 0.0457 -+ 0.0016 i i
GTR  0.0451 & 0.0020 0.0405 = 0.0025 0.0438 + 0.0010 0.0385 + 0.0029
GIN  0.0404 & 0.0028 0.0290 + 0.0026 0.0281 + 0.0015 0.0277 + 0.0006
MGN  0.0269 = 0.0019 0.0237 +0.0010 0.0247 + 0.0014  0.0226 + 0.0007

GCN  0.0636 £ 0.0013  0.0574 + 0.0003 - -
SAGE  0.0664 & 0.0032  0.0623 = 0.0005 0.0652 4+ 0.0009 0.0624 + 0.0006

) GAT  0.0680 + 0.0023  0.0634 - 0.0018 i i
GTR 00631 £ 00018 0.0607 & 0.0009 0.0617 & 0.0025  0.0600 = 0.0012
GIN  0.0569 & 0.0023 0.0523 = 0.0009 0.0549 + 0.0008 0.0537 % 0.0015
MGN 00514 +0.0003 0.0488 + 00013 0.0509 + 0.0004 0.0507 - 0.0011

GCN  0.0380 £ 0.0018  0.0297 & 0.0008 - -
SAGE  0.0366 & 0.0021 0.0309 & 0.0018 0.0346 = 0.0018  0.0297 + 0.0014

5 GAT  0.0375+0.0009 0.0310 - 0.0012 i i
GTR  0.0363 +0.0023 0.0312 & 0.0008 0.0327 + 0.0006 0.0294 + 0.0011
GIN 00316+ 0.0010 0.0261 +0.0002 0.0268 + 0.0007 0.0258 + 0.0008
MGN  0.0281 +0.0006 0.0245 + 0.0003 0.0246 + 0.0006 0.0245 + 0.0005

Table 19: Additional ablation studies on inductive biases. The RMSE of SuperMeshNet across six
MPNNs under four inductive bias conditions (O: without inductive biases, N: node-level centering,
M : message-level centering, and N+M: both node-level and message-level centerings) trained with
N}, = 80 and N = 200 for Dataset 2 is compared. For each MPNN, the lowest RMSE value among
the four inductive bias conditions is highlighted as bold.

Dataset MPNN RMSE
0 N M N+M

GCN  0.0630 £ 0.0017 0.0556 + 0.0006 - -
SAGE  0.0626 & 0.0023  0.0606 = 0.0016 0.0628 + 0.0026  0.0606 & 0.0011

) GAT  0.0637 +0.0005 0.0606 - 0.0016 i i
GTR  0.0606 & 0.0011 0.0560 = 0.0010 0.0574% 0.0012  0.0554 + 0.0013
GIN 00528+ 0.0011 0.0481 &+ 0.0007 0.0470 = 0.0006 0.0468 % 0.0006
MGN  0.0463 + 0.0005 0.0447 +0.0009 0.0448 +0.0011 0.0432 + 0.0003

Table 18 presents the full version of Table 7 from the main manuscript, now including the mean and
standard deviation of RMSE values for all datasets. On Dataset 2, the combination of both inductive
biases (N+M) occasionally results in a higher RMSE than using a single inductive bias (N). To further
investigate this, Table 19 reports additional results on Dataset 2 using SuperMeshNet with V;, = 80
and N = 200, where N}, is set to a slightly larger value than our default setting (i.e., N;, = 20) yet
still significantly smaller than 200. With the larger IV}, the incorporation of both inductive biases
consistently yields the lowest RMSE among the four inductive bias settings. These findings reveal
the existence of a dataset-dependent threshold for /V;, above which leveraging both inductive biases
becomes beneficial.
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Table 20: Effect of noise on the RMSE of SuperMeshNet (with inductive biases), denoted as N+M,
and SuperMeshNet-O (without inductive biases), denoted as O. Noise is added to node embeddings
x; and aggregated messages agg; in MGN, trained with N;, = 20 and N = 200 for each dataset.

Dataset noise condition O N+M

without noise 0.0263 +£0.0013 0.0214 £ 0.0015

1 noise in mean 0.0300 + 0.0014 0.0214 £+ 0.0015
noise in deviation  0.0285 + 0.0012 0.0328 £ 0.0017

without noise 0.0508 + 0.0010  0.0500 £ 0.0011

2 noise in mean 0.0518 +=0.0012 0.0500 £ 0.0011
noise in deviation 0.0512 + 0.0010 0.0513 £ 0.0011

without noise 0.0280 + 0.0007 0.0243 £ 0.0005

3 noise in mean 0.0292 + 0.0009 0.0243 4 0.0005

noise in deviation

0.0283 £+ 0.0007

0.0259 £ 0.0005

Table 20 presents the full version of Table 8 from the main manuscript, now including the standard
deviation of RMSE values for all datasets. Table 20 consistently presents that addition of noise to
the mean component of z; and agg; significantly impact the RMSE of SuperMeshNet-O (without
inductive biases), denoted as O in Table 20. while perturbations in the deviation component has
relatively little effect. It indicates a strong reliance on global mean information, which is undesirable
for super-resolution tasks. In contrast, SuperMeshNet (with inductive biases), denoted as N+M
in Table 20, demonstrates robustness to mean perturbations but exhibits increased sensitivity to
deviations. This suggests that the model with inductive biases prioritizes local deviation-related
information. These findings justifies our claim that, regardless of datasets, the proposed inductive
biases effectively guide the model’s attention to local deviations from the global mean, which are
more pertinent to high-resolution reconstruction.
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P APPLICATION TO TIME-DEPENDENT PDES AND REAL-WORLD GEOMETRY

Table 21: The RMSE of MGN-based SuperMeshNet trained with N, = 40 HR data samples
and N = 200 LR data samples for the time-dependent PDE and real-world geometry datasets, in
comparison with two fully supervised MGNSs including 1) N, = N =40 and 2) N;, = N = 200.

Dataset Methodology N, N RMSE

SuperMeshNet 40 200 0.0310
Time-dependent PDE  fully supervised 200 200 0.0318
fully supervised 40 40  0.0599

SuperMeshNet 40 200 0.0185
Real-World Geometry  fully supervised 200 200 0.0189
fully supervised 40 40 0.0323

We further quantitatively evaluate the applicability of SuperMeshNet to time-dependent PDE and
real-world geometry datasets. The results in Table 21 show that SuperMeshNet, trained with only
20 HR data samples, achieves even a lower error than the case of the fully supervised model trained
with 200 HR data samples, demonstrating its effectiveness on to time-dependent PDE and real-world
geometry datasets.
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Q COMPARISON WITH STANDARD NORMALIZATION

Table 22: Comparison of our inductive biases in SuperMeshNet with layer normalization (Ba
et al.,, 2016) and batch normalization (Ioffe and Szegedy, 2015). All models are based on the
MGN architecture and trained using complementary learning with N, = 20 and N = 200. The
best-performing result in each case is highlighted in bold.

Dataset Methods RMSE

layer normalization (Ba et al., 2016) 0.0310 + 0.0014

1 batch normalization (Ioffe and Szegedy, 2015)  0.0165 + 0.0009
SuperMeshNet 0.0226 + 0.0007

layer normalization (Ba et al., 2016) 0.0587 + 0.0008

2 batch normalization (Ioffe and Szegedy, 2015) 0.0508 + 0.0507
SuperMeshNet 0.0507 + 0.0011

layer normalization (Ba et al., 2016) 0.0297 + 0.0013

3 batch normalization (Ioffe and Szegedy, 2015)  0.0250 £ 0.0003
SuperMeshNet 0.0245 + 0.0005

Similar to our inductive biases, conventional normalization techniques such as layer normalization (Ba
et al., 2016) and batch normalization (Ioffe and Szegedy, 2015) also involve mean subtraction. In
the context of MPNNSs, layer normalization computes the mean across features within each node
embedding, whereas batch normalization computes the mean across node embeddings, which is
also leveraged in our inductive biases. Thus, batch normalization (Ioffe and Szegedy, 2015) is more
similar to our inductive biases than layer normalization (Ba et al., 2016). Standard normalization
techniques typically include additional operations such as scaling by the standard deviation and
the use of learnable shift and scale parameters. The results in Table 22 demonstrate that, without
these additional components, SuperMeshNet consistently outperforms layer normalization and,
in some cases, even surpasses batch normalization. This suggests that centering alone—i.e., mean
subtraction—acts as a crucial inductive bias for the super-resolution task.

Although our inductive bias is simpler and closely related to conventional normalization methods,
it offers several key insights. First, computing the mean across nodes (as in batch normalization
and SuperMeshNet) is proven to be more effective than computing the mean within each node (as
in layer normalization), likely because super-resolution benefits more from local deviations from
a global mean. Second, the additional components of standard normalization, such as division by
standard deviation and learnable affine parameters, do not necessarily improve performance. This
underscores that centering is the most essential component for super-resolution tasks.

37



Under review as a conference paper at ICLR 2026

R TIME COMPLEXITY

SuperMeshNet alleviates the reliance on expensive HR training data samples but incurs a longer
training time compared to a fully supervised baseline. Figures 14—16 display how the training time
increase and data generation time decrease—resulting from the introduction of SuperMeshNet
(Np, = 20, N = 200)—scale with mesh size, relative to fully supervised learning (N, = N = 200).
To estimate the data generation time decrease, we measure the time required to generate 180 HR
data samples by solving the PDE using a direct solver on an Intel(R) Core(TM) 17-9700K CPU @
3.60GHz. For the training time increase, we compute the difference between the training times of
MGN under fully supervised learning and SuperMeshNet, using an Intel (R) Core (TM) i9-10920X
CPUs@3.50 GHz and an NVIDIA RTX A6000 GPU. The slopes in each figure are computed using
the least square method. Comparison of two slopes, representing the sensitivity of training time
increase and data generation time decrease to mesh size, respectively, reveals that data generation
time grows more rapidly as mesh size decreases. This trend is particularly important in our target
regime, where fine meshes lead to significant computational cost. We expect that for sufficiently fine
meshes, the savings in data generation time will outweigh the additional training time, resulting in an
overall reduction in computational costs.
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Figure 14: Training time increase (left) and data generation time decrease (right), resulting from
the introduction of SuperMeshNet (N, = 20, N = 200), relative to fully supervised learning
(N, = N = 200) on Dataset 1 and its mesh-size variants. All experiments use MGN as the
underlying MPNN architecture.
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Figure 15: Training time increase (left) and data generation time decrease (right), resulting from
the introduction of SuperMeshNet (N, = 20, N = 200), relative to fully supervised learning
(N, = N = 200) on Dataset 2 and its mesh-size variants. All experiments use MGN as the
underlying MPNN architecture.
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Figure 16: Training time increase (left) and data generation time decrease (right), resulting from
the introduction of SuperMeshNet (N, = 20, N = 200), relative to fully supervised learning
(N, = N = 200) on Dataset 3 and its mesh-size variants. All experiments use MGN as the
underlying MPNN architecture.
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S SCALABILITY

Table 23: Training time (in second) and RMSE of MGN-based SuperMeshNet trained with 40 HR
and 200 LR data samples from Dataset 1 as a function of mesh size while fixing the magnification
ratio.

Smallest mesh size  Training time (s) RMSE

0.016 383.28 0.0112
0.008 443.34 0.0158
0.004 587.50 0.0194
0.002 710.96 0.0121

Table 24: RMSE of MGN-based SuperMeshNet trained with 40 HR and 200 LR data samples from
Dataset 1 as a function of magnification ratio (HR mesh size) while fixing the LR mesh size.
Magnification ratio RMSE

2x2 0.0099
4 x4 0.0112
8§ x 8 0.0689
16 x 16 0.0796

In Table 23, we evaluate the scalability of our framework SuperMeshNet by measuring the training
time and RMSE as a function of mesh size (while fixing the magnification ratio). These experiments
have been conducted using MGN, trained with 40 HR and 200 LR data samples from Dataset 1.
According to the results, the training time increases moderately as the mesh becomes finer. The
RMSE tends to increase and then decrease again as the mesh becomes extremely fine. This is because
we fixed the magnification ratio (the ratio between the LR mesh size and the HR mesh size) while
varying both the LR mesh size and the HR mesh size. When the mesh becomes finer, the HR data
samples contain more detailed features, making the LR-to-HR transformation more challenging.
However, once the mesh resolution exceeds the characteristic length scale of the domain geometry,
no additional details can be represented in the HR mesh. At the same time, the LR data samples
already capture most of the meaningful features, and the LR-to-HR transformation becomes easier
again. For comparison, we have provided Table 24, presenting experimental results where the LR
mesh size is fixed while the magnification ratio (the HR mesh size) varies. In this case, the RMSE
tends to monotonically increases as the HR mesh becomes finer since the LR mesh size is fixed.
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T USE OF LARGE LANGUAGE MODELS

The writing of this paper was refined with the assistance of a Large Language Model (LLM).
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