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ABSTRACT

Mesh-based simulations provide high-fidelity solutions to partial differential equa-
tions (PDEs), but achieving such accuracy typically requires fine meshes, leading
to substantial computational overhead. Super-resolution techniques aim to miti-
gate this cost by reconstructing high-resolution (HR), high-fidelity solutions from
low-cost, low-resolution (LR) counterparts. However, training neural networks
for super-resolution often demands large amounts of expensive HR supervision
data, posing a major practical limitation. To address this challenge, we propose
SuperMeshNet, an HR data-efficient super-resolution framework for mesh-based
simulations aided by message passing neural networks (MPNNs). As its core, Su-
perMeshNet introduces complementary learning that effectively leverages both a
small amount of paired LR–HR data and abundant unpaired LR data via two jointly
trained, complementary MPNN-based models. Theses models are enriched by
task-specific inductive biases that emphasize local variations critical for accurate
super-resolution. Extensive experiments demonstrate that SuperMeshNet—an
MPNN-based model with inductive biases trained on a dataset with 10% paired LR–
HR data and 90% unpaired LR data—achieves an even lower root mean square error
(RMSE) than the same MPNN without inductive biases trained on 100% of LR–HR
pairs, while in turn requiring 90% less HR data. The source code and datasets are
available at https://anonymous.4open.science/r/SuperMeshNet/README.md.

1 INTRODUCTION

Mesh-based simulations—such as the finite element method (FEM), finite volume method (FVM),
or computational fluid dynamics (CFD)—are widely used to obtain high-fidelity solutions to partial
differential equations (PDEs) across a range of scientific and engineering domains. In mesh-based
simulations, the mesh size is carefully chosen to balance computational costs against solution fidelity:
finer meshes offer higher fidelity but incur significantly greater computational expenses (Obiols-Sales
et al., 2024). Super-resolution techniques are developed to alleviate this trade-off by predicting
high-resolution (HR) simulation results from low-resolution (LR) counterparts, thereby aiming to
deliver high-fidelity solutions at a reduced cost (Barwey et al., 2024; Obiols-Sales et al., 2024).
However, training super-resolution models via conventional fully supervised learning demands
substantial quantities of computationally expensive HR training data, making data collection a
significant bottleneck (Obiols-Sales et al., 2024). In this context, improving the HR data efficiency of
super-resolution model training is of paramount importance in reality.

As summarized in Table 1, several unsupervised learning approaches tackled this challenge but pose
their own limitations. For example, PhysRNet (Arora, 2022) performs super-resolution without any
HR training data by incorporating PDEs and constraints into its loss function; however, PhysRNet
uses a finite-difference scheme for derivative calculations, which limits its applicability to irregular
meshes. MAgNet (Boussif et al., 2022) offers an alternative with zero-shot super-resolution through
an interpolator trained on LR data; yet, the prediction error of MAgNet is much larger than that of
supervised methods (see Appendix I). To the best of our knowledge, semi-supervised learning has not
been applied to the super-resolution task for mesh-based simulations. This may be partly due to the
limited exploration of semi-supervised regression methods, especially those compatible with message
passing neural networks (MPNNs), compared to semi-supervised classification. Refer to Appendix C
for detailed explanations and limitations of existing semi-supervised regression approaches.
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Table 1: Comparison between prior studies and our work. Here, r = number of HR data samples
number of LR data samples .

Reference Learning method Model

Li and McComb (2022),
fully supervised (r = 1) CNNYonekura et al. (2023),

Obiols-Sales et al. (2024)
de Avila Belbute-Peres et al. (2020), fully supervised (r = 1) MPNNBarwey et al. (2024)

Arora (2022) unsupervised (r = 0) CNN
Boussif et al. (2022) unsupervised (r = 0) MPNN

SuperMeshNet (ours) semi-supervised (0 < r ≪ 1) MPNN
(complementary) (inductive biases)

Many related studies (Yonekura et al., 2023; Arora, 2022; Li and McComb, 2022; Obiols-Sales et al.,
2024) on super-resolution for mesh-based simulations rely heavily on convolutional neural networks
(CNNs), which cannot directly handle irregular mesh structures. CNNs require interpolating irregular
mesh-based data onto a regular grid, which often necessitates a significantly larger number of nodes
to achieve the same fidelity as an irregular mesh, leading to relatively lower computational efficiency.
Some studies have adopted MPNNs, such as graph convolutional networks (GCNs) (de Avila Belbute-
Peres et al., 2020) or SRGNN (Barwey et al., 2024), which can directly handle irregular mesh data.
However, the task-specific design of inductive biases for improving mesh-based super-resolution
performance remains largely underexplored.

To address these limitations, we propose SuperMeshNet, an HR data-efficient super-resolution
framework tailored for mesh-based simulations under very scarce HR supervision, which basically
differs from the supervised and unsupervised settings. To the best of our knowledge, this is the first
general framework that can be applied across diverse MPNN architectures for the super-resolution
task. To be specific, SuperMeshNet introduces two key components: complementary learning
and inductive biases for MPNNs. First, the complementary learning is a novel semi-supervised
learning method that exploits a small amount of paired LR–HR training data for supervised learning,
while judiciously leveraging a large pool of unpaired LR data in an unsupervised manner. Our
complementary learning is built upon two models; an MPNN-based primary model predicts HR
solutions from LR counterparts, while an MPNN-based auxiliary model predicts the difference be-
tween two HR solutions corresponding to two LR counterparts. The predictions from each model are
utilized to calculate pseudo-ground truths, which serve as ground truth for the other, enabling mutual
supervision. Since conventional semi-supervised methods typically employ two identical models, they
often produce highly similar pseudo-ground truths, making them less informative. On the other hand,
owing to distinct but interrelated input–output configurations of our complementary learning, the
auxiliary model captures intra-resolution relation while the primary model focuses on inter-resolution
relation. This division of roles fosters synergies in mutual supervision, enhancing super-resolution
performance while reducing training time compared to prior semi-supervised strategies.

Second, to improve the performance of mesh-based super-resolution, we introduce inductive biases
for MPNNs, guided by the empirical observation that local deviations carry richer super-resolution in-
formation than the global mean. Specifically, we propose two MPNN-architecture-agnostic inductive
biases: node-level centering and message-level centering. The node-level centering centers each
node embedding by subtracting the global mean of all node embeddings from each node embedding,
while the message-level centering performs a similar centering operation over aggregated messages.
Subtracting the global mean removes redundant background information and highlights fine-grained
variations that are critical for super-resolution.

We carry out extensive experiments to validate the effectiveness of our two components in SuperMe-
shNet. Our results demonstrate that, even with only a small portion (e.g., 10%) of paired LR–HR
data, SuperMeshNet surpasses a fully supervised (e.g., 100% paired) benchmark method lacking
inductive biases in terms of the root mean square error (RMSE). We also prove that the injected
inductive biases consistently reduce the RMSE across six different MPNN architectures, underscoring
their general applicability. Finally, our main contributions are summarized as follows:

•MPNN-agnostic applicability. SuperMeshNet provides a general super-resolution framework for
mesh-based simulations, applicable to various MPNNs, under very scarce HR supervision scenarios.
•Complementary learning. To the best of our knowledge, this is the first attempt to incorporate semi-
supervised learning compatible with MPNNs into super-resolution for the mesh-based simulations.
• Inductive biases. We introduce node-level centering and message-level centering, which can
substantially enhance super-resolution performance across different MPNN types.
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2 METHODOLOGY1

2.1 PROBLEM DEFINITION

𝑴𝒍 𝑷𝒍, 𝒖𝒍

𝑬𝒍

𝑴𝒉

𝑬𝒉

𝑷𝒉, ෝ𝒖𝒉

Figure 1: Problem setting. We aim to
make prediction ûh on HR mesh Mh,
containing nodes at positions Ph and
edges Eh, from LR data sample ul de-
fined on LR mesh Ml, comprising nodes
at positions Pl and edges El.

Briefly, we aim to predict an HR solution ûh from an
LR solution ul of the same PDE, while relying on as few
HR solutions uh as possible for training. Formally, let
Ω ⊂ RD be the computational domain on which the PDE
is solved. Here, D denotes the spatial dimension. A pa-
rameter µ represents all variations of PDE instances, such
as material coefficients, domain geometry, or boundary
conditions. For example, µ could be an angle of an applied
force or an aspect ratio of an elliptical hole (see Figures 9–
11 in Appendix H). Each choice of µ defines a different
PDE instance. We discretize Ω with an LR mesh Ml = (Pl, El) and an HR mesh Mh = (Ph, Eh),
where Pl ∈ Rnl×D and Ph ∈ Rnh×D are the positions of the nodes on Ml and Mh, respectively, and
El and Eh are edges on Ml and Mh, respectively. Running a PDE solver on these meshes yields: LR
and HR solutions, which we regard as an LR data sample ul and an HR data sample uh, defined on
the nodes on Ml and Mh, respectively. Our objective is to predict ûh ∈ Rnh×d from ul as closely as
possible to uh, while minimizing the amount of HR data uh required for training, where d denotes
the dimension of the solution field.

2.2 COMPLEMENTARY LEARNING

2.2.1 DATASET SETTING
𝒖𝒍
𝟏 𝒖𝒍

𝑵𝒉…

𝒖𝒉
𝟏 𝒖𝒉

𝑵𝒉…

Paired LR-HR

𝒖𝒍
𝑵𝒉+𝟏

Unpaired LR
𝑵−𝑵𝒉

𝒖𝒍
𝑵…LR

HR

pair
𝒖𝒍
𝑵𝒉+𝟐

Training dataset
𝑵

𝑵𝒉

…

Figure 2: Dataset setting. Complemen-
tary learning utilizes a paired LR–HR
training dataset, including Nh paired
data samples (green hexagons), and an
unpaired LR training dataset, contain-
ing N −Nh unpaired LR data samples
(white hexagons). In total, complemen-
tary learning can reduce N − Nh HR
data samples compared to the case of
fully supervised learning.

As depicted in Figure 2, the complementary learning
leverages both a paired LR–HR training dataset Da =
{(uql , u

q
h) | q = 1, 2, · · · , Nh} having Nh LR–HR data

samples and an unpaired LR training dataset Db = {uql |
q = Nh+1, Nh+2, · · · , N} having N −Nh LR data sam-
ples. The total number of LR data samples is N , among
which only Nh have HR counterparts, with Nh ≪ N in
practice. In other words, N −Nh fewer HR data samples
are required compared to fully supervised learning. Here,
the superscript q is simply an index to distinguish different
samples corresponding to different parameters µ. For in-
stance, if µ is the angle of an applied force, then (u1l , u1h)
corresponds to one angle µ1, and (u2l , u2h) corresponds to
another µ2.

2.2.2 THE TWO MODELS: Fθ AND Gϕ

To fully exploit unpaired LR training data, the complementary learning utilizes mutual supervision
between two models, namely, Fθ and Gϕ, trained jointly under different roles. The primary model
Fθ, which is used for inference only, predicts an HR solution ûqh from its LR counterpart uql :

Fθ(u
q
l ) = ûqh (ground truth : uqh). (1)

On the other hand, the auxiliary model Gϕ, which is used only during training, predicts the difference
between two HR solutions ûrsh corresponding to two LR input samples url , u

s
l to further utilize

intra-resolution relations. Here, r and s indicate two LR samples corresponding to different µ’s.
Since computational geometry may vary across samples with different µ, urh and ush may be defined
on different positions P rh and P sh . Thus, direct subtraction is not possible. To resolve this, we apply
k-nearest neighbor (kNN) interpolation (Qi et al., 2017) to project solutions defined on P sh onto P rh :

Gϕ(u
r
l , u

s
l ) = ûrsh (ground truth : urh − kNN (ush;P

s
h → P rh)). (2)

Detailed calculation of kNN interpolation and architectures of Fθ and Gϕ are available in Appen-
dices E and F, respectively.

1Notations are summarized in Appendix B.
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2.2.3 LEARNING PROCEDURE VIA OUR LOSS

As depicted in Figure 3, each training step combines supervised and unsupervised learning of both
Fθ and Gϕ. In other words, the loss functions for training Fθ and Gϕ, denoted by LF and LG,
respectively, are expressed as:

LF = LF,sup + LF,unsup (3)
LG = LG,sup + LG,unsup, (4)

where the subscripts sup and unsup represent supervised and unsupervised learning, respectively.
To this end, three samples are randomly sampled: 1) two paired LR samples uαl and uβl from the
paired LR–HR dataset Da for supervised learning and 2) one additional unpaired LR sample uγl from
the unpaired LR dataset Db for unsupervised learning. Here, α, β, and γ are the indices referring to
distinct parameters µ.

In supervised learning, an HR data sample uαh is available. As depicted in Figure 3, Fθ is trained to
reduce the MSE between its prediction ûαh and its target, which is the ground truth uαh . An analogous
procedure is applied to β, thus resulting in:

LF,sup = ℓ(ûαh , u
α
h) + ℓ(ûβh, u

β
h), (5)

where ℓ(·, ·) denotes the MSE. Similarly, as expressed in Eq. (2), Gϕ is trained to reduce the MSE
between its predictions ûαβh and its target, which is the ground truth difference between uαh and uβh
alongside the following loss:

LG,sup = ℓ(ûαβh , uαh − kNN (uβh ;P
β
h → Pαh )). (6)

In unsupervised learning, the ground truth HR data sample uγh is unavailable. Under this circum-
stance, we leverage mutual supervision between Fθ and Gϕ. For example, as depicted in Figure 3, if
Gϕ(u

γ
l , u

α
l ) predicts ûγαh that approximates the difference uγh − uαh , then adding this to the known

uαh yields an estimate of uγh. This pseudo-ground truth can serve as a target for Fθ(u
γ
l ). Similarly,

if Fθ(u
γ
l ) produces ûγh close to uγh, then subtracting known uαh from ûγh provides an approximation

of uγh − uαh , which can serve as a target for Gϕ(u
γ
l , u

α
l ), accordingly. An analogous procedure is

applied to the pair (β, γ). It should be noted that a thorough treatment of kNN interpolation is also
required to effectively handle mesh mismatches. For example, in Eq. (7), uβh − û

βγ
h can be used to

approximate uγh. However, the values are defined on P βh , whereas ûγh is defined on P γh . To reconcile
this discrepancy, kNN interpolation is employed to project the values from P γh onto P βh . The resultant
loss functions are:

LF,unsup = ℓ(ûγh, û
γα
h + kNN (uαh ;P

α
h → P γh )) + ℓ(ûγh, kNN (uβh − û

βγ
h ;P βh → P γh )) (7)

LG,unsup = ℓ(ûγαh , ûγh − kNN (uαh ;P
α
h → Pγh )) + ℓ(ûβγh , uβh − kNN (ûγh ;P

γ
h → Pβh )). (8)

A pseudo-code for the complementary learning mechanism can be found in Appendix D.
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Figure 3: A schematic overview of complementary learning in SuperMeshNet. It leverages both
supervised and unsupervised learning to jointly train two neural network models, Fθ and Gϕ. Fθ
predicts an HR solution from its LR counterpart, while Gϕ predicts the difference between two HR
solutions from two LR counterparts to enable synergistic mutual supervision. More specifically,
for supervised learning, Fθ and Gϕ are trained with pairs of LR–HR data (green hexagons). In
unsupervised learning, the prediction of one model (yellow and purple hexagons predicted by Fθ
and Gϕ, respectively) is used to calculate a pseudo-ground truth that serves as the target for training
another model (as depicted by sol;id and dotted red arrows).
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2.3 INDUCTIVE BIASES FOR MPNNS

Beyond our learning mechanism, we now turn to addressing our task-specific model. The two models,
Fθ and Gϕ, utilize MPNN layers (See Appendix F) to handle irregular mesh-based data. To further
improve super-resolution performance, we incorporate two inductive biases into the message passing
mechanism of each MPNN layer. This subsection first reviews conventional MPNNs, and then
presents the two proposed inductive biases: node-level centering and message-level centering.

2.3.1 PRELIMINARIES: MPNNS

MPNNs are a class of graph neural networks (GNNs) that propagate information across nodes using
message passing mechanisms (Gilmer et al., 2020). In each MPNN layer, a target node i receives
information, referred to as a message msgij , from its neighboring node j ∈ N (i). Here, msgij is
typically a function of the source node’s embedding xj . Furthermore, msgij can be dependent on
other factors such as the target node’s embedding xi or the edge embedding eij :

msgij = fm({xj} ∪ Sij) for Sij ⊆ {xi, eij}, (9)

where fm is a message function determined by the specific design of the MPNNs. Each node i
aggregates messages msgij from its neighboring nodes j:

aggi =
∑

j∈N (i)

msgij . (10)

Finally, the node embedding xi is updated based on its current embedding xi and the aggregated
message aggi:

xi ← fx(xi, aggi), (11)
where fx is an update function determined by the types of MPNNs. The message aggregation in
Eq. (10) and the node embedding update in Eq. (11) are repeated in the next MPNN layer. In some
MPNNs, the message aggregation and the node embedding update steps are fused into a single step.

2.3.2 NODE-LEVEL CENTERING

The first inductive bias, node-level centering, subtracts the mean of node embeddings xi’s from each
individual xi:

xi ← xi −
1

n

n∑
i=1

xi, (12)

where n denotes the number of nodes in LR mesh Ml or the number of nodes in HR mesh Mh.
This step can be applied after the node embedding update step in Eq. (11). Refer to Appendix G
for implementation details for each MPNN type. This inductive bias is motivated by the intuition
that, in the super-resolution task, global mean information is less relevant, while deviations from the
mean carry more meaningful signals. Experimental results (see Appendix J) show that subtracting
the mean from LR data samples has minimal impact on super-resolution performance. This implies
that the global mean is mostly uninformative in this context. By enforcing the node-level centering,
MPNNs are encouraged to focus on deviations from the mean, leading to improved super-resolution
performance.

2.3.3 MESSAGE-LEVEL CENTERING

For MPNNs employing an explicit two-step message passing mechanism, we experimentally found
that removing mean component from the aggregated message aggi also leads to super-resolution
performance improvement. Specifically, the message-level centering subtracts the mean of the
aggregated messages aggi’s from the individual aggregated message aggi.:

aggi ← aggi −
1

n

n∑
i=1

aggi, (13)

This message-level centering step can be applied between the message aggregation in Eq. (10) and
the node embedding update in Eq. (11). Refer to Appendix G for implementation details for each
MPNN type. Similarly as in the node-level centering, this helps MPNNs focus on deviations from the
mean, which carry more informative signals in the context of super-resolution.

5
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3 EXPERIMENTAL RESULTS AND ANALYSES

Due to space limitations, we provide only a brief description of the experimental setup and a subset
of experimental results in the main text. A detailed description of the datasets and the complete set of
experiments is provided in Appendices H–S.

3.1 DATASETS

FEM Datasets. FEM datasets used in our experiments are generated by solving PDEs utilizing
FEniCSx, an open-source computing platform for FEM. Table 3 summarizes three datasets, detailing
their governing PDEs, the quantities derived from solving these equations, the parameters that vary
across the samples, and the number of nodes in LR and HR meshes. Dirichlet boundary conditions
are utilized for all datasets.

Table 2: Summary of FEM datasets.

Dataset Equation Solution Parameter LR nodes HR nodes

1 Linear elasticity von Mises stress Force angle 333 4,053
2 Linear elasticity von Mises stress Hole shape 329–387 3,959–4,157
3 Poisson equation Electric field Hole shape 324–388 3,959–4,154

CFD Datasets. To validate the applicability of SuperMeshNet to time-dependent PDEs and complex
real-world geometry, we adopt two additional datasets generated by OpenFOAM (OpenCFD, 2024).
The time-dependent PDE dataset is obtained by solving the incompressible Navier–Stokes equations
for flow around a cylinder, whereas the real-world geometry dataset is constructed by solving the
Laplace equation for potential flow around a motorbike with a rider. For the time-dependent PDE
dataset, LR data samples are generated by downsampling HR data onto LR meshes. For all other
datasets, LR data samples are obtained by independently solving the governing PDEs on LR meshes.
Detailed descriptions of each dataset are provided in Appendix H. We refer to Section 3.7 to see
results on CFD datasets and their relevant discussions.

Table 3: Summary of CFD datasets.

Dataset Equation Solution Parameter LR nodes HR nodes

Time-dependent PDE Incompressible Speed Time 576 7,440Navier-Stokes
Real-world geometry Laplace Pressure Angle of attack 10,897 46,004

3.2 EXPERIMENTAL SETUP

We evaluate our methodology using six representative MPNNs, including GCN (Kipf and Welling,
2017), GraphSAGE (SAGE) (Hamilton et al., 2017), GAT (Veličković et al., 2018), Graph Trans-
former (GTR) (Shi et al., 2021), GIN (Xu et al., 2019), and MeshGraphNet (MGN) (Pfaff et al.,
2021). Each MPNN consists of three layers for processing in LR and additional three layers for
processing in HR, and hidden dimension of each layer is 30. Throughout the experiments, we adopt
Adam optimizer with learning rate of 1× 10−3 and PyTorch’s automatic mixed precision training
to improve computational efficiency. All experiments are carried out on a machine with Intel (R)
Core (TM) i9-10920X CPUs@3.50 GHz and an NVIDIA RTX A6000 GPU. The RMSE is used as a
metric where lower values indicate better performance.

3.3 COMPARISON WITH FULL SUPERVISION

Table 4 compares the RMSE of each MPNN integrated with our framework SuperMeshNet, and
its variant without inductive biases, SuperMeshNet-O, against two fully supervised baselines—the
same type of MPNNs but trained with full supervision without inductive biases. SuperMeshNet-O
trained with 20 HR data samples (i.e., Nh = 20) and 200 LR data samples (i.e., N = 200) achieves a
significantly lower RMSE compared to the MPNNs trained exclusively on 20 paired LR–HR samples
(i.e., Nh = N = 20). The improvement is attributed to complementary learning, which is inherently
designed to effectively leverage the 180 unpaired LR samples that fully supervised learning cannot

6
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utilize. Remarkably, despite being trained only with 20 HR data samples, SuperMeshNet-O achieves
RMSE values that are on par with the second fully supervised baseline trained with the entire 200
HR data samples (i.e., Nh = N = 200). SuperMeshNet, enriched by inductive biases, surpasses
the second baseline in most cases, highlighting the efficacy of the proposed inductive biases tailored
for super-resolution in improving performance. This implies the potential to reduce up to 90% of
the effort required to generate HR training data. Furthermore, our findings consistently demonstrate
the improvement of SuperMeshNet in terms of HR data efficiency across all six MPNNs. This
underscores its versatility and effectiveness in enhancing super-resolution performance, regardless of
types of underlying MPNN architectures.

Table 4: The RMSE of SuperMeshNet (with inductive biases) and SuperMeshNet-O (without
inductive biases) trained with Nh = 20 HR data samples and N = 200 LR data samples across
six MPNNs and three datasets, in comparison with two fully supervised MPNNs including 1)
Nh = N = 20 and 2) Nh = N = 200. The best performer is highlighted as bold.

Method Nh, N MPNN

GCN SAGE GAT GTR GIN MGN

D
at

as
et

1 Fully supervised 20, 20 0.0874 0.0876 0.0826 0.0758 0.0819 0.0655
Fully supervised 200, 200 0.0575 0.0544 0.0512 0.0450 0.0381 0.0228

SuperMeshNet–O 20, 200 0.0613 0.0589 0.0544 0.0451 0.0404 0.0269
SuperMeshNet 20, 200 0.0431 0.0450 0.0457 0.0385 0.0277 0.0226

D
at

as
et

2 Fully supervised 20, 20 0.0972 0.1025 0.0983 0.0983 0.0775 0.0730
Fully supervised 200, 200 0.0624 0.0633 0.0637 0.0572 0.0534 0.0461

SuperMeshNet–O 20, 200 0.0636 0.0664 0.0680 0.0631 0.0569 0.0514
SuperMeshNet 20, 200 0.0574 0.0624 0.0634 0.0600 0.0537 0.0507

D
at

as
et

3 Fully supervised 20, 20 0.0587 0.0611 0.0616 0.0513 0.0569 0.0523
Fully supervised 200, 200 0.0370 0.0340 0.0374 0.0329 0.0317 0.0243

SuperMeshNet–O 20, 200 0.0380 0.0366 0.0375 0.0363 0.0316 0.0281
SuperMeshNet 20, 200 0.0297 0.0297 0.0310 0.0294 0.0258 0.0245

3.4 COMPARISON WITH SUPER-RESOLUTION COMPETITORS

Table 5: The RMSE of MGN-based Su-
perMeshNet trained with varying num-
bers of HR data samples Nh and a fixed
N=200 LR data samples for Dataset 1
in comparison with SRGNN with full
supervision (N=Nh=200), and MAgNet
with no supervision (N=200, Nh=0).

Methods Nh RMSE

SuperMeshNet

5 0.0447
10 0.0280
20 0.0226
40 0.0191

SRGNN 200 0.0247

MAgNet 0 0.0979

Although the primary objective of SuperMeshNet is to
improve super-resolution performance across a wide range
of MPNNs rather than to outperform a specific state-of-the-
art method, we compare a special case of SuperMeshNet
using MGN with the most recent and relevant benchmarks,
SRGNN (Barwey et al., 2024) and MAgNet (Boussif et al.,
2022), to further validate its effectiveness. The results in
Table 5 signify that SuperMeshNet, even when trained
with only 20 HR data samples, outperforms SRGNN (Bar-
wey et al., 2024) trained with 200 HR data samples, under-
scoring its superior training data efficiency. Furthermore,
the results demonstrate that SuperMeshNet significantly
outperforms the unsupervised baseline, MAgNet (Boussif
et al., 2022), even under minimal HR supervision (Nh=5).

3.5 COMPARISON WITH BENCHMARK
SEMI-SUPERVISED REGRESSION METHODS

Table 6 compares complementary learning in SuperMeshNet against benchmark semi-supervised
regression methods on Dataset 1, using MGN as an MPNN architecture for each method. As presented
in Table 6, SuperMeshNet achieves the lowest RMSE while also exhibiting the shortest training time
among all benchmark semi-supervised regression methods. The performance improvements achieved
by SuperMeshNet likely stem from its inherent characteristics of using two complementary models.
Mean-Teacher (Tarvainen and Valpola, 2017) and UCVME (Dai et al., 2023) employ two models to
predict the same target, i.e., an HR data sample. Similarly, TNNR (Wetzel et al., 2022) uses one twin
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Table 6: Comparison with benchmark semi-supervised regression methods in terms of the RMSE
and training time (in second). Here, MGN is employed as an MPNN for each method. Training is
conducted when Nh = 20 and N = 200 for Dataset 1. The best performer is highlighted as bold.

Methods RMSE Training time (s)

mean-teacher (Tarvainen and Valpola, 2017) 0.0325 693.84
TNNR (Wetzel et al., 2022) 0.0624 477.48
UCVME (Dai et al., 2023) 0.0293 1122.62

SuperMeshNet-O 0.0269 503.2
SuperMeshNet 0.0226 421

neural network to predict the difference between two HR data. On the other hand, SuperMeshNet
employs the complementary learning mechanism that leverages two distinct yet cooperative models:
primary model Fθ, which learns to predict an HR data sample, and auxiliary Gϕ, which learns to
predict the difference between two HR data samples, as formulated in Eq. (2). While Fθ operates
on single LR input, Gϕ utilizes two LR data samples along with one HR data sample, enabling the
two models to make predictions from distinct informational viewpoints. This architectural design
promotes diversity into the learning process (See Table 17 in Appendix N) .

3.6 ABLATION STUDIES ON INDUCTIVE BIASES

Table 7: Ablation studies on inductive biases. The
RMSE of SuperMeshNet across six MPNNs un-
der four inductive bias conditions (O: without
inductive biases, N: node-level centering, M :
message-level centering, and N+M: both node-
level and message-level centerings) trained with
Nh = 20 and N = 200 for Dataset 1 is compared.
For each MPNN, the lowest RMSE value among
the four inductive bias conditions is highlighted as
bold.

MPNN RMSE

O N M N + M

GCN 0.0613 0.0431 - -
SAGE 0.0589 0.0493 0.0528 0.0450
GAT 0.0544 0.0457 - -
GTR 0.0451 0.0405 0.0438 0.0385
GIN 0.0404 0.0290 0.0281 0.0277

MGN 0.0269 0.0237 0.0247 0.0226

Table 8: Effect of noise on the RMSE of SuperMe-
shNet (with inductive biases), denoted as N+M,
and SuperMeshNet-O (without inductive biases),
denoted as O. Noise is added to node embeddings
xi and aggregated messages aggi in MGN, trained
with Nh = 20 and N = 200 for Dataset 1.

O N+M

without noise 0.0269 0.0236
noise in mean 0.0312 0.0236

noise in deviation 0.0290 0.0359

Table 7 presents ablation results on the two
inductive biases in SuperMeshNet, demon-
strating their effect on super-resolution perfor-
mance in terms of the RMSE across six different
MPNNs2. For all MPNNs, the incorporation of
node-level centering (N) and message-level cen-
tering (M) into the MPNN architecture leads
to substantial improvements in super-resolution
performance (i.e., a lower RMSE) compared to
MPNNs without inductive biases (O). We claim
that this improvement may be attributed to the
reduced reliance on global mean information
and an increased emphasis on local deviations
from the mean.

We investigate whether the proposed inductive
biases encourage the models to focus on local
deviations rather than global mean information
by analyzing the sensitivity of super-resolution
performance to perturbations in the node em-
bedding xi (see Eq. (11)) and the aggregated
message aggi (see Eq. (10)). Specifically, we
quantify the change in the RMSE when addi-
tive Gaussian noise with standard deviation of
0.01 is applied either to the global mean com-
ponent or to the deviation component of xi’s
and aggi’s, where the results are summarized
in Table 8 when MGN is used as an MPNN. In
SuperMeshNet-O (without inductive biases),
denoted as O in Table 8, the RMSE is highly
sensitive to noise added to the mean component
while remaining relatively unaffected by pertur-
bations in the deviation component, indicating a
strong reliance on global mean information, which is undesirable for super-resolution tasks. In con-
trast, SuperMeshNet (with inductive biases), denoted as N+M in Table 8, demonstrates robustness

2Note that, in MPNNs such as GCN and GAT, the message-level centering cannot be employed independently
since the message aggregation in Eq. (10) and the node embedding updates in Eq. (11) are integrated into a
single step.
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to mean perturbations but exhibits increased sensitivity to deviations. This suggests that the model
with inductive biases prioritizes local deviation-related information. These findings justifies our claim
that the proposed inductive biases effectively guide the model’s attention to local deviations from the
global mean, which are more pertinent to high-resolution reconstruction.

3.7 APPLICATION TO TIME-DEPENDENT PDES AND REAL-WORLD GEOMETRY

SuperMeshNet
(𝑁ℎ = 20,𝑁 = 200)

Fully supervised
(𝑁ℎ = 200,𝑁 = 200)

Squared error

Fully supervised
(𝑁ℎ = 20,𝑁 = 20)

0.00202 0.00714 0.0123 0.0174 0.0225

Figure 4: Comparison of squared error
fields between SuperMeshNet and fully su-
pervised baselines on real-world geometry
dataset. Here, Nh and N represent the num-
ber of HR and LR training data samples, re-
spectively. For all cases, MGN is utilized as
the underlying MPNN.

Figures 4 and 5 present the applicability of SuperMe-
shNet to real-world geometry and time-dependent
PDE datasets, respectively, when MGN is employed
as an MPNN. Figure 4 shows the error distribution on
the real-world geometry dataset, where darker blue
indicates higher error. Figure 4 apparently demon-
strates that SuperMeshNet, trained with only 20
HR data samples, exhibits even smaller errors than
the case of the fully supervised model trained with
200 HR data samples, especially around the front
region of the motorbike. Additionally, Figure 5 dis-
plays the qualitative comparisons of prediction on the
time-depndent PDE dataset. The prediction by Su-
perMeshNet, trained with only 20 HR data samples,
is even closer to the ground truth than the case of
the fully supervised model trained with 200 HR data
samples, particularly around the blue wake region be-
hind the cylinder. We refer to Table 21 in Appendix P
for the quantitative analysis.

4 CONCLUSIONS AND LIMITATIONS

In this paper, we explored the open problem of super-
resolution for mesh-based simulations by presenting
SuperMeshNet, which judiciously harnesses com-
plementary learning and inductive biases to achieve
remarkable HR data efficiency. The complementary
learning enabled effective utilization of unpaired LR
data, while the inductive biases further enhanced per-
formance across a variety of MPNN architectures.
We expect that this improvement can facilitate the
broader adoption of simulations across various en-
gineering disciplines, potentially accelerating inno-
vation by lowering the barriers to conducting com-
plex simulations. However, while our complementary
learning mechanism achieves shorter training time compared to benchmark semi-supervised learning
methods, it still remains slower than the case of full supervision. Further reducing the computational
cost of complementary learning is a potential avenue of our future research.

SuperMeshNet
(𝑁ℎ = 20,𝑁 = 200)

Fully supervised
(𝑁ℎ = 200,𝑁 = 200)

Fully supervised
(𝑁ℎ = 20,𝑁 = 20)

Ground truth

Figure 5: Comparison of ground-truth and predicted fluid flow speeds on the time-dependent PDE
dataset. Here, Nh and N represent the number of HR and LR training data samples, respectively. For
all cases, MGN is utilized as the underlying MPNN.
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B NOTATIONS

Table 9: Summary of notations

Notation Description

µ PDE parameters
Fθ, Gϕ neural network models
ul, u

q
l , u

r
l , u

s
l , u

α
l , uβl , uγl LR data samples

uh, uqh, urh, ush, uαh , uβh, uγh HR data samples
ûh, ûαh , ûβh, ûγh prediction by Fθ
ûαβh , ûβγh , ûγαh prediction by Gϕ
Ml LR mesh
Mh HR mesh
Pl nodal positions of LR mesh
Ph nodal positions of HR mesh
El edges of LR mesh
Eh edges of HR mesh
nl number of nodes in LR mesh
nh number of nodes in HR mesh
n number of nodes in graph
Da paired LR–HR training dataset
Db unpaired LR training dataset

N
total number of training data samples

= number of LR training data samples

Nh
number of paired LR–HR training data sampels

= number of HR training data
LF loss function for training Fθ
LG loss function for training Gϕ
ℓ mean squared error
kNN k-nearest neighbor interpolation
gl input graph
0Xq

l node feature
0xql ,

Hlxql ,
0xqh, Hhxqh node embeddings

xi node embedding of node i
xj node embedding of node j
eij edge embedding between nodes i and j
msgij message between nodes i and j
aggi aggregated message of node i
fm message function
fx node embedding update function
N (i) set of neighboring nodes of i

Table 9 summarizes the notations used throughout the paper.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C RELATED WORK

MPNNs for mesh-based simulations. Conventional methods for solving PDEs, such as the FEM,
typically rely on mesh-based approaches. Nevertheless, CNNs, which are not well-suited for ir-
regular mesh-based data, have gained popularity as surrogate models, due to their simplicity and
efficiency (Pfaff et al., 2021). Among notable advancements, MeshGraphNet (MGN) (Pfaff et al.,
2021) represents a significant breakthrough, demonstrating that MPNNs can outperform CNN-based
models for mesh-based simulation tasks. However, MGN, like other MPNNs, is constrained by a
limited interaction range. Since MPNNs exchange information with immediate neighbors, extending
interactions to nodes farther away requires stacking additional message passing layers. Most MPNNs
suffer from over-smoothing, a phenomenon where output node embeddings become overly uniform
as the number of stacked message passing layers increases, leading to performance degradation.
While MGN has been reported to exhibit robustness against over-smoothing, an increased number
of message passing layers still results in significantly higher computational costs. To address this
limitation, researchers (Cao et al., 2023; Fortunato et al., 2022; Gladstone et al., 2024) proposed
incorporating additional coarse meshes alongside the original fine mesh. This approach enables
messages to propagate more efficiently across the coarse meshes while allowing the fine mesh to
finely adjust node embeddings. Moreover, an attention mechanism was integrated into MGN to
further refine the aggregation function, enhancing the neural network’s ability to adaptively prioritize
relevant information during message passing (Deng et al., 2024).

Super-resolution for simulations. Similarly as in surrogate models for simulations, early super-
resolution models for simulations predominantly employed CNN-based image super-resolution
architectures, such as SRGAN (Li and McComb, 2022) and UNet (Yonekura et al., 2023). As
pioneering work, CFD-GCN (de Avila Belbute-Peres et al., 2020) introduced GCNs for the super-
resolution of computational fluid dynamics (CFD) simulations. This method demonstrated both
improved generalization to unseen data and enhanced cost efficiency. More recently, advanced MPNN
architectures like SRGNN was applied to the super-resolution of fluid flows (Barwey et al., 2024).
Despite these advancements, inductive biases tailored for MPNNs in the context of super-resolution
for mesh-based simulations are largely underexplored.

Semi-supervised regression. Semi-supervised regression involves predicting real-valued output us-
ing both labeled and unlabeled datasets. Compared to semi-supervised classification, semi-supervised
regression remains largely underexplored (Kostopoulos et al., 2018). A co-training approach typically
splits input features into groups, with each group used to train a separate model (Brefeld et al., 2006).
However, in scenarios with limited features, such as FEM-relevant data including only nodal positions
and nodal values, splitting features can lead to insufficient information for accurate predictions. As
an alternative, CoREG (Zhou and Li, 2005) was presented to eliminate the need for feature splitting
by using two k-nearest neighbor (kNN) regressors with different distance metrics. Unfortunately, this
approach is restricted to kNN regressors and is unsuitable for predicting values at the node-level. A
recent method, Rankup (Huang et al., 2024), reformulated regression tasks into classification tasks to
leverage a rich set of methodologies developed for semi-supervised classification. However, this tech-
nique lacks generalizability for regression tasks involving mesh-based graph data. The Mean-Teacher
framework (Tarvainen and Valpola, 2017), though not originally designed for mesh-based data,
has potential for dealing with mesh-based graph data. It involves teacher and student models with
teacher’s weights updated as the exponential moving average of the student’s weights. In contrast,
the recently proposed UCVME framework (Dai et al., 2023) has demonstrated superior performance
over the Mean-Teacher (Tarvainen and Valpola, 2017) by incorporating uncertainty consistency and
utilizing a variational model ensemble. However, because Mean-Teacher (Tarvainen and Valpola,
2017) and UCVME (Dai et al., 2023) both employ identically structured models predicting the
same target, they exhibit reduced psuedo-label diversity during training. This uniformity diminishes
synergy between the models and consequently hinders learning efficiency. Additionally, Twin Neural
Network Regression (TNNR) (Wetzel et al., 2022) is applicable to mesh-based predictions when an
appropriate model architecture is involved. However, it involves only a single twin neural network,
thus lacking the synergistic benefits of mutual supervision.
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D PSEUDO-CODE FOR COMPLEMENTARY LEARNING

Algorithm 1 Complementary learning
Input: paired LR–HR dataset: Da = {(Iq, uqh) | q = 1, 2, · · · , Nh}, unpaired LR dataset:
Db = {Iq | q = Nh+1, Nh+2, · · · , N}, neural network models: feature extractor Ec, Fθ’s
decoder DF , and Gϕ’s decoder DG, maximum epoch: ep, learning rate: η, early stopping criterion
Output: Trained neural network models: Ec, DF , and DG

for epoch← 1 to ep do
for step← 1 to N do

Sample paired LR–HR data (uαl , u
α
h), (u

β
l , u

β
h) ∈ Da

Sample unpaired LR data uγl ∈ Db
Compute node embeddings by Ec:

xα ← Ec(u
α
l ), xβ ← Ec(u

β
l ), xγ ← Ec(u

γ
l )

Compute prediction by DF :

ûαh ← DF (x
α), ûβh ← DF (x

β), ûγh ← DF (x
γ)

Compute prediction by DG:

ûαβh ← DG(x
α, xβ), ûβγh ← DG(x

β , xγ), ûγαh ← DG(x
γ , xα)

Compute loss for Fθ:

LF =ℓ(ûαh , u
α
h) + ℓ(ûβh, u

β
h) + ℓ

(
ûγh, û

γα
h + kNN(uαh ;P

α
h → P γh )

)
+ ℓ

(
ûγh, kNN(uβh − û

βγ
h ;P βh → P γh )

)
Compute loss for Gϕ:

LG =ℓ
(
ûαβh , uαh − kNN(uβh;P

β
h → Pαh )

)
+ ℓ

(
ûγαh , ûγh − kNN(uαh ;P

α
h → P γh )

)
+ ℓ

(
ûβγh , uβh − kNN(ûγh;P

γ
h → P βh )

)
Compute total loss:

L = LF + LG
Compute gradients: ∇ψL where ψ is the parameters of Ec, DF , and DG

Update weights:
ψ ← ψ − η∇ψL

end for
if early stopping criterion is met then

Break
end if

end for
return Ec, DF , and DG

We present the pseudo-code of our complementary learning mechanism in SuperMeshNet.
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E kNN INTERPOLATION

We provide a brief explanation of the kNN interpolation procedure, which projects values defined on
nodes of a source mesh onto nodes of a target mesh.

(𝑝2, 𝑦2)

(𝑝0, 𝒚𝟎? )

(𝑝3, 𝑦3)

(𝑝1, 𝑦1)

Figure 6: Schematic illustration of kNN interpolation with k = 3. Yellow nodes belong to the target
mesh, blue nodes to the source mesh, and the darker blue nodes indicate the k nearest neighbors
of the darker yellow node. Given the positions of the k nearest source nodes pi (1 ≤ i ≤ k), their
corresponding values yi, and the target node position p0, the value at the target node y0 can be
estimated via weighted averaging.

1. Find k nearest neighbors (kNN). For each node in the target mesh, identify the k closest
nodes in the source mesh. For example, as illustrated in Figure 6, the darker blue nodes
represent the three nearest neighbors of the darker yellow node.

2. Known information. The nodal positions of the k nearest source nodes pi (1 ≤ i ≤ k),
their values yi, and the target node position p0.

3. Unknown quantity. The value at the target node, denoted by y0.
4. Compute the target node value via weighted averaging. The interpolation weight for

each neighbor is defined as the inverse squared distance from the target node:

wi =
1

d(p0, pi)2
.

The interpolated value at the target node y0 is then obtained as

y0 =

∑k
i=1 wiyi∑k
i=1 wi

.
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F MODEL ARCHITECTURES

F.1 MODEL ARCHITECTURES

The architecture of Fθ, illustrated in Figure 7, is basically built upon SRGNN (Barwey et al., 2024),
with the key difference that the MPNNs in the LR and HR processors are enriched with our proposed
inductive biases. The Gϕ, visualized in Figure 8, extends Fθ to accommodate two input samples,
maintaining a comparable structure. A notable architectural feature is the use of a shared feature
extractor between Fθ and Gϕ, which helps reduce computational costs during training. A detailed
description of the model architectures follows.

F.1.1 MODEL ARCHITECTURE OF Fθ

The role of Fθ is to transform LR data into HR data, which is conducted by the lowermost upsampler
in Figure 7. To surpass the performance of kNN interpolation by the lowermost upsampler, we
have introduced additional upsampling in latent space. Specifically, an encoder maps the physical
quantities into high-dimensional latent space. The LR processor applies message passing to refine LR
representations, which are then upsampled to HR latent embeddings. Subsequently, the HR processor
applies additional message passing to further enhance the HR representations. Finally, a decoder
maps the latent embeddings back to the physical space. The final HR output is obtained by adding the
two upsampled HR fields: one from the kNN-based upsampler and the other from the latent-space
upsampling pathway.

More precisely, Fθ is designed to make prediction ûqh from an LR data sample uql . The LR data
sample uql is input to the Fθ as a form of an input graph gql . More specifically, input graph gql ’s node
feature 0Xq

l is the concatenation of LR data sample uql and node position P ql . Depending on MPNN
types used in the LR and HR processors (refer to Appendix G), the gql may further include edge
feature, which is the concatenation of positions of source and target nodes of the edge Eql . The Fθ
comprises an encoder, an LR processor, upsamplers, an HR processor, and a decoder. The encoder
can be an multi-layer perceptron (MLP) that can convert low-dimensional 0Xq

l to high-dimensional
node embeddings 0xql . The LR processor updates the node embedding 0xql to Hlxql through stacked
Hl MPNN layers enriched by our inductive biases. Here, the prescript 0 and Hl indicate the index of
the MPNN layers. The node embedding Hlxql defined on nodes located at P ql is upsampled onto nodes
of gqh positioned at P qh by using kNN interpolation. The HR processor similarly updates 0xqh to Hhxqh
through stacked Hh MPNN layers equipped with our inductive biases. Then, the decoder, which is
an MLP, predicts low-dimensional output from Hhxqh. Finally, the LR data sample uql upsampled
onto P qh by kNN interpolation is added to the output of the decoder to obtain the final prediction
ûqh. The upsampled LR data sample serves as a rough estimation of the prediction, enabling the
super-resolution model to focus on learning the finer details, thereby simplifying the learning task.
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Figure 7: The schematic overview of the primary model Fθ.The Fθ aims to predict ûqh targeting HR
data sample uqh from LR data sample uql . The LR data sample uql is input to the Fθ as a part of node
feature 0Xq

l of an input graph gql .
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F.1.2 MODEL ARCHITECTURE OF Gϕ

The model Gϕ is responsible for predicting the difference between two HR samples corresponding
two LR inputs. Again, to go beyond simple kNN-based upsampling by upsampler in Figure 8, we
have further performed latent-space processing. We have extracted latent embeddings from the two
LR inputs using a shared encoder. The shared encoder is the one used for the model Fθ depicted in
Figure 7. Then, we subtracted the embeddings, and decoded the result to predict the HR difference.
Here, we incorporated subtraction because the goal is to predict the difference between two HR
samples. The final HR output is obtained by adding the two upsampled HR fields: one from the
kNN-based upsampler and the other from the latent-space upsampling pathway. The interpolators
in the Figure 8 serve only to address mesh mismatches when the two LR samples are defined on
different meshes. Since the underlying computational domain geometry may vary across samples,
direct point-wise operations, such as subtraction or addition, are generally infeasible. To overcome
this, we apply kNN interpolation to project one mesh onto another, enabling consistent alignment
between mesh structures.

More precisely, the auxiliary model Gϕ is designed to make prediction ûrsh from a pair of LR data
samples url and usl . More specifically, The two input LR data samples url and usl are fed into the Gϕ
as parts of node features of two input graphs grl and gsl , respectively. In order to reduce computational
costs, Fθ and Gϕ share a feature extractor comprising the encoder, the LR processor, the interpolator,
and the HR processor. The feature extractor returns node embeddings xrh and xsh from input graphs
grl and gsl , respectively. Then, xsh is subtracted from xsh to yield xrsh . Here, kNN interpolator is used
to enable subtraction operation between two node embeddings xrh and xsh defined at different nodal
positions. The xrsh is fed into the decoder, and the upsampled difference between url and usl through
kNN interpolation is added to the decoder’s output. Here, the interpolated difference between url and
usl also serves as a rough estimation of the prediction ûrsh . Again, an kNN interpolator is used to
enable subtraction operation between url and usl defined on different nodal positions.

Shared feature extractor D
e
co
d
e
rShared feature extractor

𝒈𝒍
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𝒙𝒉
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Interpolator
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𝒓𝒔

ෝ𝒖𝒉
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𝒖𝒍
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𝒖𝒍
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Figure 8: The schematic overview of the auxiliary model Gϕ. The Gϕ aims to predict ûrsh targeting
difference between two input LR data samples url and usl . The two input LR data samples url and usl
are fed into the Gϕ as parts of node features of two input graphs grl and gsl , respectively. In order to
reduce computational cost, Fθ and Gϕ share a feature extractor in Figure 7 consisting of an encoder,
an LR processor, an upsampler, and an HR processor.
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G INCORPORATION OF INDUCTIVE BIASES INTO MPNN ARCHITECTURES

This section describes how inductive biases are incorporated into each of MPNN models.

G.1 INDUCTIVE BIASES-ENRICHED GCN (KIPF AND WELLING, 2017)

msgij = ΘT ejixj

xi = aggi =
∑

j∈N (i)

msgij

xi ← xi −
1

n

n∑
i=1

xi,

(14)

where Θ is a learnable parameter.

G.2 INDUCTIVE BIASES-ENRICHED GRAPHSAGE (SAGE) (HAMILTON ET AL., 2017)

msgij = xj

aggi =
1

|N (i)|
∑

j∈N (i)

msgij

aggi ← aggi −
1

n

n∑
i=1

aggi

xi ←W1xi +W2aggi

xi ← xi −
1

n

n∑
i=1

xi,

(15)

where W1 and W2 are learnable parameters.

G.3 INDUCTIVE BIASES-ENRICHED GAT (VELIČKOVIĆ ET AL., 2018)

αij =
exp(LeakyReLU(aTs Θsxi + aTt Θtxj)∑

k∈N (i) exp(LeakyReLU(aTs Θsxi + aTt Θtxk))

msgij = αijΘtxj

xi = aggi =
∑

j∈N (i)

msgij

xi ← xi −
1

n

n∑
i=1

xi,

(16)

where as, st Θs, and Θt are learnable parameters.
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G.4 INDUCTIVE BIASES-ENRICHED GRAPH TRANSFORMER (GTR) (SHI ET AL., 2021)

αij = softmax((W3xi)
T (W4xj))

msgij = αijW2xj

aggi =
∑

j∈N (i)

msgij

aggi ← aggi −
1

n

n∑
i=1

aggi

xi ←W1xi + aggi

xi ← xi −
1

n

n∑
i=1

xi,

(17)

where W1, W2, W3 and W4 are learnable parameters.

G.5 INDUCTIVE BIASES-ENRICHED GIN (XU ET AL., 2019)

msgij = xj

aggi =
∑

j∈N (i)

msgij

aggi ← aggi −
1

n

n∑
i=1

aggi

xi ←MLPΘ((1 + ϵ)xi + aggi)

xi ← xi −
1

n

n∑
i=1

xi,

(18)

where MLPθ is a learnable MLP and ϵ is a learnable parameter.

G.6 INDUCTIVE BIASES-ENRICHED MESHGRAPHNET (MGN) (PFAFF ET AL., 2021)

eij ←MLPe(xi, xj , eij)

msgij = eij

aggi =
∑

j∈N (i)

msgij

aggi ← aggi −
1

n

n∑
i=1

aggi

xi ←MLPx(xi, aggi)

xi ← xi −
1

n

n∑
i=1

xi,

(19)

where MLPe and MLPx are learnable MLPs.
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H DATASETS FOR EXPERIMENTAL EVALUATIONS

H.1 DATASET 1

The first dataset is inspired by simustruct (Ribeiro et al., 2023), the dataset for machine learning-based
methods in structural analysis. Examples of HR and LR data samples from Dataset 1 are visualized
in Figure 9. As depicted in the figure, the computational domain is a rectangle measuring 0.25× 0.5
in the x- and y-directions, containing six circular holes, each with a diameter of 0.05. For the HR
mesh, the mesh size around outer four sides is 10× 10−3, while the mesh size around the circular
holes is set to be 4× 10−3. For the LR mesh, the mesh size around the outer sides is 40× 10−3, and
the mesh size around the circular holes is 16× 10−3.

On the computation domain, the following linear elasticity equation is solved:

−∇ · σ(u) = 0

σ(u) = λ tr(ϵ(u))I + 2µϵ(u),

ϵ(u) =
1

2

(
∇u+ (∇u)T

)
,

(20)

where σ(u) is the stress tensor, λ and µ are Lamé’s elasticity parameters for the material, I is the
identity tensor, tr is the trace operator on a tensor, ϵ(u) is the symmetric strain tensor (symmetric
gradient), and u is the displacement vector field.

A force of 1× 108 is applied to the top side of the rectangle in angles between 40◦ and 140◦ relative
to the x-axis, while the bottom side of the rectangle is fixed to zero displacement. Lamé’s first and
second parameters are 1.25, and 80.8× 109, respectively. Von Mises stress is evaluated at each node
of the meshes. In order to solve the equation for each dataset, we leverage FEniCSx (Baratta et al.,
2023; Scroggs et al., 2022b;a; Alnaes et al., 2014), an open-source computing platform for solving
PDEs with the FEM.

LR
H
R

Angle=139.9°Angle=90.0° Angle=115°

Figure 9: Examples of LR and HR data samples with various angles of applied force relative to the
x-axis from Dataset 1.
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H.2 DATASET 2

The geometry of the second dataset resembles that of the first dataset, with the primary difference
being the shapes of the holes. Specifically, the holes in the second dataset are elliptical, with varying
ratios between the lengths of the major and minor axes. The mesh sizes remain the same as those in
Dataset 1. Similarly as in Dataset 1, the linear elasticity equation in Eq. (20) is solved. The applied
force is directed along the y-axis, while all other conditions and constants remain identical to those in
Dataset 1. Examples of HR and LR data samples from Dataset 2 are visualized in Figure 10.

LR
H
R

Ratio=1.77Ratio=1.31 Ratio=2.36

Figure 10: Examples of LR and HR data samples with various ratios between the lengths of the major
and minor axes from Dataset 2.
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H.3 DATASET 3

The geometry and mesh sizes of Dataset 3 are identical to those of Dataset 2. However, instead of
solving the linear elasticity equation, the following Poisson equation is solved.

∇2u = 0, (21)

where u is an electrical potential.

The boundary conditions are defined as follows: the four outer sides are set to 0 V, while the elliptical
holes have alternating boundary values. Specifically, the holes centered at (0.08, 0.15), (0.17, 0.25),
and (0.08, 0.35) are assigned a value of -1 V, whereas the holes centered at (0.17, 0.15), (0.08, 0.25),
and (0.17, 0.35) are assigned a value of 1 V. The magnitude of the electric field is calculated at
each node of the mesh. Examples of HR and LR data samples from the Dataset 3 are visualized in
Figure 11.

LR
H
R

Ratio=1.40Ratio=2.55 Ratio=1.80

Figure 11: Examples of LR and HR data samples with various ratios between the lengths of the major
and minor axes from Dataset 3.
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H.4 TIME-DEPENDENT PDE DATASET

Examples of HR and LR data samples from the time-dependent PDE dataset are visualized in
Figure 12. As depicted in the figure, the computational domain is a square measuring 2× 2 in the x-
and y-directions, containing one cylinder at the center of the domain with a diameter of 0.05. The
mesh size is set to be finer around the cylinder.

On the computation domain, the following incompressible Navier-Stokes equation is solved:

∇ · v = 0, (22)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u, (23)

where u is velocity, p is pressure, and ρ is density, µ is dynamic viscosity. The velocity at the left
side of the square varies from 1 to 10 as time proceeds from 0 to 5. The density and the dynamic
viscosity are set to be 1 and 10−5, respectively. A speed, a magnitude of velocity, is evaluated at each
node of the meshes. In order to solve the equation, we leverage OpenFOAM(OpenCFD, 2024), an
open-source CFD toolbox.

Time=2Time=1 Time=1.5

LR
H
R

Figure 12: Examples of LR and HR data samples corresponding to multiple timestamps from the
time-dependent PDE dataset.
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H.5 REAL-WORLD GEOMETRY DATASET

An Example of HR and LR data samples from the real-world geometry dataset are visualized in
Figure 13. As depicted in the figure, the computational domain is a rectangular box of size 20× 8× 8
in the x-, y- and z-directions, containing a rider on a motorbike. The mesh size is set to be finer around
the rider and the motorbike. The dataset is built upon a bike tutorial of OpenFOAM (OpenCFD,
2024) by varying angle of attack from 0◦ to -90◦.

On the computation domain, the following Laplacian equation is solved:

∇2ϕ = 0, (24)

u = ∇ϕ, (25)
where u is velocity, and ϕ is velocity potential.

Then, pressure is calculated utilizing the following Bernoulli equation:

p = pref +
1

2
(|uref |2 − |u|2), (26)

where pref and uref are the pressure and velocity at a reference location, respectively. The speed of
fluid at the left side of the rectangular box is set to be 20. In order to solve the equation, we leverage
OpenFOAM (OpenCFD, 2024).
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Figure 13: An example of LR and HR data samples corresponding to an angle of attack of 0◦ from
the real-world geometry dataset.
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I COMPARISON OF MAGNET, FULLY SUPERVISED BASELINE, AND
SUPERMESHNET

Table 10: RMSE comparison of MAgNet (Boussif et al., 2022), the baseline using fully supervised
learning, and SuperMeshNet. SuperMeshNet is MGN with inductive biases trained with Nh = 20
and N = 200, and the baseline is MGN without inductive biases trained with Nh = N = 200.
MAgNet is a zero-shot super-resolution method trained with Nh = 0 (i.e., no HR data) and N = 200.

Dataset 1 Dataset 2 Dataset 3

MAgNet 0.0979± 0.0009 0.1305± 0.0007 0.0754±0.0014
Fully supervised learning 0.0228±0.0015 0.0461±0.0004 0.0243±0.0017

SuperMeshNet 0.0226±0.0007 0.0507± 0.0011 0.0245±0.0005

We empirically show the effect of HR training data over the case using zero-shot super-
resolution (Boussif et al., 2022). Table 10 demonstrates that MAgNet’s RMSE is far apart from that of
the fully supervised baseline and SuperMeshNet across all three datasets, while being approximately
up to four times higher.
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J IMPACT OF MEAN OF INPUT LR DATA SAMPLES IN SUPER-RESOLUTION

Table 11: RMSEs of MGN trained with N=Nh=200, using the following as input: LR data sample,
its deviation from its mean, and the mean.

Dataset 1 Dataset 2 Dataset 3

LR data 0.0228 ± 0.0015 0.0461 ± 0.0004 0.0243 ± 0.0017
deviation of LR data 0.0235 ± 0.0017 0.0463 ± 0.0003 0.0241 ± 0.0012

mean of LR data 0.0617 ± 0.0012 0.0715 ± 0.0014 0.0405 ± 0.0006

Our two inductive biases are motivated by the intuition that, for the super-resolution task, local
deviations from the global mean are more informative than the mean itself. This intuition is empirically
supported by the results in Table 11. The results demonstrate that using the deviation of the LR
data samples from its mean yields an RMSE comparable to that obtained using the original LR
data samples. This indicates that subtracting the mean has a negligible impact on super-resolution
performance. In contrast, using only the mean of the LR data samples as input leads to a significant
degradation in RMSE performance. These results suggest that the deviation from the mean plays a
critical role in super-resolution, whereas the mean value alone contributes little.
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K COMPARISON WITH FULL SUPERVISION

Table 12: The RMSE of SuperMeshNet (with inductive biases) and SuperMeshNet-O (without
inductive biases) trained with Nh = 20 HR data samples and N = 200 LR data samples across
six MPNNs and three datasets, in comparison with two fully supervised MPNNs including 1)
Nh = N = 20 and 2) Nh = N = 200. The best performer is highlighted as bold.

Method MPNN

(Nh, N ) GCN SAGE GAT GTR GIN MGN

D
at

as
et

1

Fully supervised 0.0874 0.0876 0.0826 0.0758 0.0819 0.0655
(20, 20) ± 0.0039 ± 0.0015 ± 0.0042 ± 0.0068 ± 0.0047 ± 0.0030

Fully supervised 0.0575 0.0544 0.0512 0.0450 0.0381 0.0228
(200, 200) ± 0.0035 ± 0.0025 ± 0.0016 ± 0.0023 ± 0.0027 ± 0.0015

SuperMeshNet–O 0.0613 0.0589 0.0544 0.0451 0.0404 0.0269
(20, 200) ± 0.0020 ± 0.0021 ± 0.0008 ± 0.0020 ± 0.0028 ± 0.0019

SuperMeshNet 0.0431 0.0450 0.0457 0.0385 0.0277 0.0226
(20, 200) ± 0.0009 ± 0.0010 ± 0.0016 ± 0.0029 ± 0.0006 ± 0.0007

D
at

as
et

2

Fully supervised 0.0972 0.1025 0.0983 0.0983 0.0775 0.0730
(20, 20) ± 0.0082 ± 0.0052 ± 0.0026 ± 0.0016 ± 0.0073 ± 0.0075

Fully supervised 0.0624 0.0633 0.0637 0.0572 0.0534 0.0461
(200, 200) ± 0.0022 ± 0.0032 ± 0.0013 ± 0.0016 ±0.0009 ± 0.0004

SuperMeshNet–O 0.0636 0.0664 0.0680 0.0631 0.0569 0.0514
(20, 200) ± 0.0013 ± 0.0032 ± 0.0023 ± 0.0018 ± 0.0023 ± 0.0003

SuperMeshNet 0.0574 0.0624 0.0634 0.0600 0.0537 0.0507
(20, 200) ± 0.0003 ± 0.0006 ± 0.0018 ± 0.0012 ± 0.0015 ± 0.0011

D
at

as
et

3

Fully supervised 0.0587 0.0611 0.0616 0.0513 0.0569 0.0523
(20, 20) ± 0.0038 ± 0.0043 ± 0.0050 ± 0.0052 ± 0.0016 ± 0.0055

Fully supervised 0.0370 0.0340 0.0374 0.0329 0.0317 0.0243
(200, 200) ± 0.0029 ± 0.0015 ± 0.0012 ± 0.0021 ± 0.0022 ± 0.0017

SuperMeshNet–O 0.0380 0.0366 0.0375 0.0363 0.0316 0.0281
(20, 200) ± 0.0018 ± 0.0021 ± 0.0009 ± 0.0023 ± 0.0010 ± 0.0006

SuperMeshNet 0.0297 0.0297 0.0310 0.0294 0.0258 0.0245
(20, 200) ± 0.0008 ± 0.0014 ± 0.0012 ± 0.0011 ± 0.0008 ± 0.0005

Table 13: The RMSE and its standard deviation of SuperMeshNet trained with Nh = 40 HR data
samples and N = 200 LR data samples, in comparison with a fully supervised MPNN trained with
Nh = N = 200. Experiments are conducted only for cases where using Nh = 20 is insufficient to
outperform the fully supervised baseline.

Dataset Method Nh N MPNN RMSE

2 SuperMeshNet 40 200 GTR 0.0568 ± 0.0015
2 Fully supervised 200 200 GTR 0.0572 ± 0.0016

2 SuperMeshNet 40 200 GIN 0.0501 ± 0.0004
2 Fully supervised 200 200 GIN 0.0534 ± 0.0009

2 SuperMeshNet 40 200 MGN 0.0461 ± 0.0011
2 Fully supervised 200 200 MGN 0.0461 ± 0.0004

3 SuperMeshNet 40 200 MGN 0.0225 ± 0.0003
3 Fully supervised 200 200 MGN 0.0243 ± 0.0017

In Table 12, we present the full version of Table 4 from the main manuscript, now including the
standard deviation of RMSE values. In some cases, SuperMeshNet (Nh=20, N=200) yields higher
RMSEs than the fully supervised baselines (Nh=N=200). In such cases, Table 13 provides additional
results using SuperMeshNet with Nh=40 and N = 200, where Nh is set to a slightly larger value
than our default setting (i.e., Nh = 20) but still significantly smaller than 200, in comparison with the
fully supervised (Nh=N=200) baselines. These results demonstrates that using only 20% of HR data
samples (i.e., Nh = 40) in SuperMeshNet is sufficient to outperform the fully supervised baseline.
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L COMPARISON WITH SUPER-RESOLUTION COMPETITORS

Table 14: The RMSE and its standard deviation of MGN-based SuperMeshNet trained with varying
numbers of HR data samples Nh and a fixed N=200 LR data samples in comparison with SRGNN
with full supervision (N=Nh=200).

Dataset Methods Nh RMSE

1 SuperMeshNet

5 0.0447 ± 0.0010
10 0.0280 ± 0.0013
20 0.0226 ± 0.0007
40 0.0191 ± 0.0021

SRGNN (Barwey et al., 2024) 200 0.0247 ± 0.0013

2 SuperMeshNet

5 0.0723 ± 0.0018
10 0.0645 ± 0.0022
20 0.0507 ± 0.0011
40 0.0461 ± 0.0011

SRGNN (Barwey et al., 2024) 200 0.0487 ± 0.0011

3 SuperMeshNet

5 0.0353 ± 0.0015
10 0.0294 ± 0.0010
20 0.0245 ± 0.0005
40 0.0225 ± 0.0003

SRGNN (Barwey et al., 2024) 200 0.0254 ± 0.0011

In Table 14, we present the full version of Table 5 from the main manuscript, now including the
mean and standard deviation of RMSE values for all datasets. Across all datasets, SuperMeshNet
achieves a lower RMSE with a significantly smaller number of HR data samples, Nh, compared to
the most recent and relevant benchmark super-resolution method, SRGNN (Barwey et al., 2024).
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M COMPARISON WITH BENCHMARK SEMI-SUPERVISED REGRESSION
METHODS

Table 15: Comparison with benchmark semi-supervised regression methods in terms of the RMSE
and training time (in second). Here, MGN is employed as an MPNN architecture for each method.
Training is conducted when Nh = 20 and N = 200 for each dataset. The best performer is
highlighted as bold.

Dataset Methods RMSE Training time (s)

1

mean-teacher (Tarvainen and Valpola, 2017) 0.0325 ± 0.0016 694 ± 50
TNNR (Wetzel et al., 2022) 0.0624 ± 0.0202 477 ± 333
UCVME (Dai et al., 2023) 0.0293 ± 0.0012 1123 ± 102

SuperMeshNet-O 0.0269 ± 0.0019 503 ± 64
SuperMeshNet 0.0226 ± 0.0007 421 ± 93

2

mean-teacher (Tarvainen and Valpola, 2017) 0.0499± 0.0007 402 ± 28
TNNR (Wetzel et al., 2022) 0.0823 ± 0.0055 350 ± 90
UCVME (Dai et al., 2023) 0.0484 ± 0.0006 739 ± 59

SuperMeshNet-O 0.0514 ± 0.0003 306 ± 16
SuperMeshNet 0.0507 ± 0.0011 250 ± 9

3

mean-teacher (Tarvainen and Valpola, 2017) 0.0270 ± 0.0003 446 ± 33
TNNR (Wetzel et al., 2022) 0.0393 ± 0.0027 437 ± 83
UCVME (Dai et al., 2023) 0.0281± 0.0013 700 ± 89

SuperMeshNet-O 0.0281 ± 0.0006 345 ± 10
SuperMeshNet 0.0245 ± 0.0005 286 ± 18

Table 16: Comparison with benchmark semi-supervised regression methods in terms of the RMSE
and training time (in second). Here, MGN is employed as an MPNN architecture for each method.
Training is conducted when Nh = 40 and N = 200 for each dataset. The best performer is
highlighted as bold.

Dataset Methods RMSE Training time (s)

2

mean-teacher (Tarvainen and Valpola, 2017) 0.0474 ± 0.0007 427 ± 37
TNNR (Wetzel et al., 2022) 0.0807 ± 0.0074 409 ± 143
UCVME (Dai et al., 2023) 0.0474 ± 0.0013 780 ± 89

SuperMeshNet-O 0.0479 ± 0.0005 348 ± 15
SuperMeshNet 0.0461 ± 0.0011 292 ± 25

Table 15 presents the full version of Table 6 from the main manuscript, now including the mean
and standard deviation of RMSE and training time for all datasets under the setting of Nh = 20 HR
data samples and N = 200 LR data samples. SuperMeshNet consistently results in the shortest
training time across all datasets, in comparison with benchmark semi-supervised regression methods.
It also achieves the lowest RMSE on Datasets 1 and 3. For Dataset 2, while SuperMeshNet
yields a slightly higher RMSE, it significantly reduces training time compared to all the benchmarks.
Overall, SuperMeshNet is shown to reveal strong potential in terms of both predictive accuracy
and training efficiency. In Table 16, we additionally report that, for Dataset 2 with Nh = 40 and
N = 200, SuperMeshNet still exhibits both the lowest RMSE and the shortest training time among
all evaluated methods.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

N COMPARISON OF PREDICTION DIVERSITY BETWEEN UCVME AND
SUPERMESHNET

Table 17: Comparison of prediction diversity between UCVME and SuperMeshNet. The prediction
diversity is quantified as the root mean square of the difference between two predictions made by
MGN model pairs trained by each method with Nh=20 and N=200 on each dataset. The dropout
probability in UCVME is set to 0.1.

Dataset Methods Prediction diversity

1 UCVME (Dai et al., 2023) 0.0017 ± 0.0001
SuperMeshNet 0.0200 ± 0.0014

2 UCVME (Dai et al., 2023) 0.0024 ± 0.0002
SuperMeshNet 0.0514 ± 0.0011

3 UCVME (Dai et al., 2023) 0.0014 ± 0.0001
SuperMeshNet 0.0294 ± 0.0004

The results in Table 17 demonstrate that SuperMeshNet exhibits consistently greater prediction
diversity across all datasets, compared to the case of UCVME (Dai et al., 2023). The prediction
diversity is quantified as the root mean square of the difference between two predictions made by
MGN model pairs, each trained with Nh = 20 and N = 200 on each dataset. This implies that our
architectural design in complementary learning apparently more promotes diversity into the learning
process than the case of UCVME.
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O ABLATION STUDIES ON INDUCTIVE BIASES

Table 18: Ablation studies on inductive biases. The RMSE of SuperMeshNet across six MPNNs
under four inductive bias conditions (O: without inductive biases, N: node-level centering, M :
message-level centering, and N+M: both node-level and message-level centerings) trained with
Nh = 20 and N = 200 for each dataset is compared. For each MPNN, the lowest RMSE value
among the four inductive bias conditions is highlighted as bold.

Dataset MPNN RMSE

O N M N + M

1

GCN 0.0613 ± 0.0020 0.0431 ± 0.0009 - -
SAGE 0.0589 ± 0.0021 0.0493 ± 0.0024 0.0528 ± 0.0018 0.0450 ± 0.0010
GAT 0.0544 ± 0.0008 0.0457 ± 0.0016 - -
GTR 0.0451 ± 0.0020 0.0405 ± 0.0025 0.0438 ± 0.0010 0.0385 ± 0.0029
GIN 0.0404 ± 0.0028 0.0290 ± 0.0026 0.0281 ± 0.0015 0.0277 ± 0.0006

MGN 0.0269 ± 0.0019 0.0237 ± 0.0010 0.0247 ± 0.0014 0.0226 ± 0.0007

2

GCN 0.0636 ± 0.0013 0.0574 ± 0.0003 - -
SAGE 0.0664 ± 0.0032 0.0623 ± 0.0005 0.0652 ± 0.0009 0.0624 ± 0.0006
GAT 0.0680 ± 0.0023 0.0634 ± 0.0018 - -
GTR 0.0631 ± 0.0018 0.0607 ± 0.0009 0.0617 ± 0.0025 0.0600 ± 0.0012
GIN 0.0569 ± 0.0023 0.0523 ± 0.0009 0.0549 ± 0.0008 0.0537 ± 0.0015

MGN 0.0514 ± 0.0003 0.0488 ± 0.0013 0.0509 ± 0.0004 0.0507 ± 0.0011

3

GCN 0.0380 ± 0.0018 0.0297 ± 0.0008 - -
SAGE 0.0366 ± 0.0021 0.0309 ± 0.0018 0.0346 ± 0.0018 0.0297 ± 0.0014
GAT 0.0375 ± 0.0009 0.0310 ± 0.0012 - -
GTR 0.0363 ± 0.0023 0.0312 ± 0.0008 0.0327 ± 0.0006 0.0294 ± 0.0011
GIN 0.0316 ± 0.0010 0.0261 ± 0.0002 0.0268 ± 0.0007 0.0258 ± 0.0008

MGN 0.0281 ± 0.0006 0.0245 ± 0.0003 0.0246 ± 0.0006 0.0245 ± 0.0005

Table 19: Additional ablation studies on inductive biases. The RMSE of SuperMeshNet across six
MPNNs under four inductive bias conditions (O: without inductive biases, N: node-level centering,
M : message-level centering, and N+M: both node-level and message-level centerings) trained with
Nh = 80 and N = 200 for Dataset 2 is compared. For each MPNN, the lowest RMSE value among
the four inductive bias conditions is highlighted as bold.

Dataset MPNN RMSE

O N M N + M

2

GCN 0.0630 ± 0.0017 0.0556 ± 0.0006 - -
SAGE 0.0626 ± 0.0023 0.0606 ± 0.0016 0.0628 ± 0.0026 0.0606 ± 0.0011
GAT 0.0637 ± 0.0005 0.0606 ± 0.0016 - -
GTR 0.0606 ± 0.0011 0.0560 ± 0.0010 0.0574± 0.0012 0.0554 ± 0.0013
GIN 0.0528 ± 0.0011 0.0481 ± 0.0007 0.0470 ± 0.0006 0.0468 ± 0.0006

MGN 0.0463 ± 0.0005 0.0447 ± 0.0009 0.0448 ± 0.0011 0.0432 ± 0.0003

Table 18 presents the full version of Table 7 from the main manuscript, now including the mean and
standard deviation of RMSE values for all datasets. On Dataset 2, the combination of both inductive
biases (N+M) occasionally results in a higher RMSE than using a single inductive bias (N). To further
investigate this, Table 19 reports additional results on Dataset 2 using SuperMeshNet with Nh = 80
and N = 200, where Nh is set to a slightly larger value than our default setting (i.e., Nh = 20) yet
still significantly smaller than 200. With the larger Nh, the incorporation of both inductive biases
consistently yields the lowest RMSE among the four inductive bias settings. These findings reveal
the existence of a dataset-dependent threshold for Nh above which leveraging both inductive biases
becomes beneficial.
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Table 20: Effect of noise on the RMSE of SuperMeshNet (with inductive biases), denoted as N+M,
and SuperMeshNet-O (without inductive biases), denoted as O. Noise is added to node embeddings
xi and aggregated messages aggi in MGN, trained with Nh = 20 and N = 200 for each dataset.

Dataset noise condition O N+M

1
without noise 0.0263 ± 0.0013 0.0214 ± 0.0015
noise in mean 0.0300 ± 0.0014 0.0214 ± 0.0015

noise in deviation 0.0285 ± 0.0012 0.0328 ± 0.0017

2
without noise 0.0508 ± 0.0010 0.0500 ± 0.0011
noise in mean 0.0518 ± 0.0012 0.0500 ± 0.0011

noise in deviation 0.0512 ± 0.0010 0.0513 ± 0.0011

3
without noise 0.0280 ± 0.0007 0.0243 ± 0.0005
noise in mean 0.0292 ± 0.0009 0.0243 ± 0.0005

noise in deviation 0.0283 ± 0.0007 0.0259 ± 0.0005

Table 20 presents the full version of Table 8 from the main manuscript, now including the standard
deviation of RMSE values for all datasets. Table 20 consistently presents that addition of noise to
the mean component of xi and aggi significantly impact the RMSE of SuperMeshNet-O (without
inductive biases), denoted as O in Table 20. while perturbations in the deviation component has
relatively little effect. It indicates a strong reliance on global mean information, which is undesirable
for super-resolution tasks. In contrast, SuperMeshNet (with inductive biases), denoted as N+M
in Table 20, demonstrates robustness to mean perturbations but exhibits increased sensitivity to
deviations. This suggests that the model with inductive biases prioritizes local deviation-related
information. These findings justifies our claim that, regardless of datasets, the proposed inductive
biases effectively guide the model’s attention to local deviations from the global mean, which are
more pertinent to high-resolution reconstruction.
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P APPLICATION TO TIME-DEPENDENT PDES AND REAL-WORLD GEOMETRY

Table 21: The RMSE of MGN-based SuperMeshNet trained with Nh = 40 HR data samples
and N = 200 LR data samples for the time-dependent PDE and real-world geometry datasets, in
comparison with two fully supervised MGNs including 1) Nh = N = 40 and 2) Nh = N = 200.

Dataset Methodology Nh N RMSE

Time-dependent PDE
SuperMeshNet 40 200 0.0310
fully supervised 200 200 0.0318
fully supervised 40 40 0.0599

Real-World Geometry
SuperMeshNet 40 200 0.0185
fully supervised 200 200 0.0189
fully supervised 40 40 0.0323

We further quantitatively evaluate the applicability of SuperMeshNet to time-dependent PDE and
real-world geometry datasets. The results in Table 21 show that SuperMeshNet, trained with only
20 HR data samples, achieves even a lower error than the case of the fully supervised model trained
with 200 HR data samples, demonstrating its effectiveness on to time-dependent PDE and real-world
geometry datasets.
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Q COMPARISON WITH STANDARD NORMALIZATION

Table 22: Comparison of our inductive biases in SuperMeshNet with layer normalization (Ba
et al., 2016) and batch normalization (Ioffe and Szegedy, 2015). All models are based on the
MGN architecture and trained using complementary learning with Nh = 20 and N = 200. The
best-performing result in each case is highlighted in bold.

Dataset Methods RMSE

1
layer normalization (Ba et al., 2016) 0.0310 ± 0.0014

batch normalization (Ioffe and Szegedy, 2015) 0.0165 ± 0.0009
SuperMeshNet 0.0226 ± 0.0007

2
layer normalization (Ba et al., 2016) 0.0587 ± 0.0008

batch normalization (Ioffe and Szegedy, 2015) 0.0508 ± 0.0507
SuperMeshNet 0.0507 ± 0.0011

3
layer normalization (Ba et al., 2016) 0.0297 ± 0.0013

batch normalization (Ioffe and Szegedy, 2015) 0.0250 ± 0.0003
SuperMeshNet 0.0245 ± 0.0005

Similar to our inductive biases, conventional normalization techniques such as layer normalization (Ba
et al., 2016) and batch normalization (Ioffe and Szegedy, 2015) also involve mean subtraction. In
the context of MPNNs, layer normalization computes the mean across features within each node
embedding, whereas batch normalization computes the mean across node embeddings, which is
also leveraged in our inductive biases. Thus, batch normalization (Ioffe and Szegedy, 2015) is more
similar to our inductive biases than layer normalization (Ba et al., 2016). Standard normalization
techniques typically include additional operations such as scaling by the standard deviation and
the use of learnable shift and scale parameters. The results in Table 22 demonstrate that, without
these additional components, SuperMeshNet consistently outperforms layer normalization and,
in some cases, even surpasses batch normalization. This suggests that centering alone—i.e., mean
subtraction—acts as a crucial inductive bias for the super-resolution task.

Although our inductive bias is simpler and closely related to conventional normalization methods,
it offers several key insights. First, computing the mean across nodes (as in batch normalization
and SuperMeshNet) is proven to be more effective than computing the mean within each node (as
in layer normalization), likely because super-resolution benefits more from local deviations from
a global mean. Second, the additional components of standard normalization, such as division by
standard deviation and learnable affine parameters, do not necessarily improve performance. This
underscores that centering is the most essential component for super-resolution tasks.
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R TIME COMPLEXITY

SuperMeshNet alleviates the reliance on expensive HR training data samples but incurs a longer
training time compared to a fully supervised baseline. Figures 14–16 display how the training time
increase and data generation time decrease—resulting from the introduction of SuperMeshNet
(Nh = 20, N = 200)—scale with mesh size, relative to fully supervised learning (Nh = N = 200).
To estimate the data generation time decrease, we measure the time required to generate 180 HR
data samples by solving the PDE using a direct solver on an Intel(R) Core(TM) i7-9700K CPU @
3.60GHz. For the training time increase, we compute the difference between the training times of
MGN under fully supervised learning and SuperMeshNet, using an Intel (R) Core (TM) i9-10920X
CPUs@3.50 GHz and an NVIDIA RTX A6000 GPU. The slopes in each figure are computed using
the least square method. Comparison of two slopes, representing the sensitivity of training time
increase and data generation time decrease to mesh size, respectively, reveals that data generation
time grows more rapidly as mesh size decreases. This trend is particularly important in our target
regime, where fine meshes lead to significant computational cost. We expect that for sufficiently fine
meshes, the savings in data generation time will outweigh the additional training time, resulting in an
overall reduction in computational costs.

Figure 14: Training time increase (left) and data generation time decrease (right), resulting from
the introduction of SuperMeshNet (Nh = 20, N = 200), relative to fully supervised learning
(Nh = N = 200) on Dataset 1 and its mesh-size variants. All experiments use MGN as the
underlying MPNN architecture.

Figure 15: Training time increase (left) and data generation time decrease (right), resulting from
the introduction of SuperMeshNet (Nh = 20, N = 200), relative to fully supervised learning
(Nh = N = 200) on Dataset 2 and its mesh-size variants. All experiments use MGN as the
underlying MPNN architecture.
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Figure 16: Training time increase (left) and data generation time decrease (right), resulting from
the introduction of SuperMeshNet (Nh = 20, N = 200), relative to fully supervised learning
(Nh = N = 200) on Dataset 3 and its mesh-size variants. All experiments use MGN as the
underlying MPNN architecture.
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S SCALABILITY

Table 23: Training time (in second) and RMSE of MGN-based SuperMeshNet trained with 40 HR
and 200 LR data samples from Dataset 1 as a function of mesh size while fixing the magnification
ratio.

Smallest mesh size Training time (s) RMSE
0.016 383.28 0.0112
0.008 443.34 0.0158
0.004 587.50 0.0194
0.002 710.96 0.0121

Table 24: RMSE of MGN-based SuperMeshNet trained with 40 HR and 200 LR data samples from
Dataset 1 as a function of magnification ratio (HR mesh size) while fixing the LR mesh size.

Magnification ratio RMSE
2× 2 0.0099
4× 4 0.0112
8× 8 0.0689
16× 16 0.0796

In Table 23, we evaluate the scalability of our framework SuperMeshNet by measuring the training
time and RMSE as a function of mesh size (while fixing the magnification ratio). These experiments
have been conducted using MGN, trained with 40 HR and 200 LR data samples from Dataset 1.
According to the results, the training time increases moderately as the mesh becomes finer. The
RMSE tends to increase and then decrease again as the mesh becomes extremely fine. This is because
we fixed the magnification ratio (the ratio between the LR mesh size and the HR mesh size) while
varying both the LR mesh size and the HR mesh size. When the mesh becomes finer, the HR data
samples contain more detailed features, making the LR-to-HR transformation more challenging.
However, once the mesh resolution exceeds the characteristic length scale of the domain geometry,
no additional details can be represented in the HR mesh. At the same time, the LR data samples
already capture most of the meaningful features, and the LR-to-HR transformation becomes easier
again. For comparison, we have provided Table 24, presenting experimental results where the LR
mesh size is fixed while the magnification ratio (the HR mesh size) varies. In this case, the RMSE
tends to monotonically increases as the HR mesh becomes finer since the LR mesh size is fixed.
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T USE OF LARGE LANGUAGE MODELS

The writing of this paper was refined with the assistance of a Large Language Model (LLM).
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