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ABSTRACT

Tool use enables humans to solve complex physical tasks beyond their immediate capabilities. How-
ever, discovering tool use remains a major challenge for reinforcement learning (RL) agents, as it
requires mastering long-horizon behaviors with sparse, delayed feedback—resulting in poor explo-
ration and sample efficiency. While classic intrinsic motivation (IM) improves exploration, its lack
of bias toward object-tool interactions leads agents to explore irrelevant states, resulting in many
costly real-world interactions. In this paper, we investigate how RL agents can efficiently learn to
use tools by optimizing object-centric intrinsic motivations — specifically, object empowerment,
which quantifies the agent’s potential influence over specific objects in the environment. We ex-
tend this intrinsic motivation to multi-tool, multi-object environments that better reflect real-world
lifelong learning challenges. Our method enables agents to identify meaningful tool-object rela-
tionships, learn when and how to use tools, and understand their lasting effects. Experiments in
grid-based Minihack environments demonstrate that agents guided by object empowerment explore
more effectively, generalize to new object configurations, and outperform PPO under sparse reward
conditions.

1 INTRODUCTION

Efficient exploration is crucial for lifelong learning agents to continually discover and solve tasks in non-stationary
environments. In cognitive science, affordances — the action possibilities that objects or environments offer an agent
(Gibson, 1979) — have been associated with human tool use for enhancing problem-solving(Osiurak et al., 2010).
In this paper, we take inspiration from affordance-based object interactions to improve exploration for reinforcement
learning (RL).

Exploration in interactive environments requiring object–tool interactions is challenging for RL due to sparse, delayed
feedback and long-horizon dependencies. For example, an agent must find a key (tool) and carry it to a door (object),
receiving a reward only after unlocking the door. Intrinsic motivation (IM) is a promising solution by providing inter-
nal reward signals that encourage meaningful exploration beyond extrinsic rewards. Common IM approaches include
novelty-based exploration (Tang et al., 2017), curiosity-driven learning via prediction error (Pathak et al., 2017b),
information gain maximization (Houthooft et al., 2016). Among these, empowerment (Klyubin et al., 2005; Salge
et al., 2014) stands out as promising for lifelong learning because it quantifies an agent’s embodied ability to influence
and control its environment — providing an inductive bias that prioritizes exploration of meaningful and controllable
aspects of the environment. However, classical empowerment assigns equal importance to all controllable aspects of
the state space (i.e. an empty room without objects). This can lead the agent to focus on irrelevant and distracting
parts of the environment, resulting in inefficient exploration causing many infeasible environment interactions. To
overcome these limitations, (Rasheed et al., 2023) introduced object empowerment, extending empowerment to quan-
tify an agent’s control over specific objects rather than the whole environment. This work demonstrated that object
empowerment facilitates learning effective object manipulation in simple scenarios with a single tool and object. Yet,
real-world environments often contain multiple tools and objects, requiring the agent to assess each tool’s control over
each object and identify optimal tool-object pair interactions.

In this work, we extend the object empowerment framework to multi-tool, multi-object environments for efficient
exploration in RL. We propose multi-object empowerment, generalizing the measure across multiple objects, and
developing an empowerment-based tool selection mechanism. In addition to determining which tools to use, another
challenge for RL agents is deciding where to use them. For instance, some tools only become effective when the
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agent is near a task-relevant object (e.g., chimpanzees use stones to crack nuts only near specific nut trees (Günther &
Boesch, 1993)), while others can act on objects from a distance (e.g., a remote control). In more complex scenarios,
one may need to reason about the downstream effects of tool use. The interaction with an object can depend on the
satisfaction of specific preconditions or intermediate sub-goals—such as manipulating an object that lies behind a
locked door. A tool may be essential for addressing such intermediary tasks (e.g., using a key to open the door), even
when it is not directly involved in achieving the agent’s primary objective, making the context of tool use harder to
identify. Interestingly, this state-dependence of tool utility is mirrored in the nature of object empowerment, which is a
function of the agent’s state and can provide the necessary spatial context for meaningful tool-object interactions. As
we will show, object empowerment landscapes can guide agents in discovering where a tool exerts maximum influence
over its target object. Another crucial dimension of tool use is the temporal evolution of tool-object interactions. Some
tools afford repeated or persistent transformations, while others have a one-time effect and then lose control over the
object. For instance, unlocking a door with a key preserves long-term interaction possibilities (e.g., the door can be
re-locked), whereas breaking the door eliminates future interactions. We will show that object empowerment enables
the characterization tools in terms of the temporal extent to which they can continue interacting meaningfully with an
object.

2 RELATED WORK

Tool use has long fascinated researchers across fields such as cognitive science, developmental psychology, and
robotics, each aiming to understand how autonomous agents, biological or artificial, interact adaptively with their
environment. In cognitive science, studies of primates and birds have revealed spontaneous tool use, often interpreted
as evidence of planning, foresight, and embodied intelligence Biro et al. (2013). In developmental psychology, studies
have shown that infants develop tool-use skills through exploration and interaction with their environment, highlight-
ing the role of sensorimotor experiences in cognitive development Baber (2003). In robotics, research has focused on
replicating tooluse behaviors in artificial agents, enabling them to perceive affordances and execute complex manipu-
lation tasks. Studies have shown how robotic systems can autonomously identify and utilize tools to achieve specific
goals, emphasizing the importance of environmental interaction and adaptive learning Qin et al. (2023). Across these
fields, a common theme is that tool use emerges through interaction, exploration, and learned affordances, princi-
ples that are fundamental in RL. Our work builds upon these ideas by studying how RL agent can develop tool-use
capabilities in environments where multiple tools and objects interact dynamically

The formal modeling of tools use and learning is the object of a number of studies. In Jain & Inamura (2011) a
probabilistic framework is proposed that captures a triadic relationship between tools, actions, and their effects using
Bayesian networks, enabling inference over tool-action-effect combinations. This is related to our focus on the num-
ber of the tool-object interaction’s outcomes (i.e., tool to object empowerment), which we use to aid exploration in
learning. Likewise, (Stoytchev, 2005) demonstrates how tool-use capabilities can emerge from behavior-grounded ex-
ploration, where tools are represented through the effects they produce when manipulated by the agent. Other studies
leverage RL to learn tool-use skills in manipulation tasks (Wenke et al., 2019), in particular (Liu et al., 2023) use an
auxiliary reward to optimize resource constraints. Closer to our motivation-driven framework, Seepanomwan et al.
(2020) develop a developmental robotics model where tool-use emerges from IMs and planning.

The study of intrinsic drives that enable the discovery of functional affordances is embedded in the broader theory of
guided self-organization, which frames evolution and cognition as emergent processes driven by internal information
gradients, rather than purely external supervision or reward (Prokopenko, 2013). One influential line of work views
empowerment, as a foundational drive guiding adaptive behavior in both natural and artificial agents (Klyubin et al.,
2005; Salge et al., 2014). In contrast to intrinsic motivations like curiosity (Pathak et al., 2017a; Bougie & Ichise,
2020), which are mostly focused in measuring novelty in learning, empowerment is an information theoretic measure
of how much control an agent has on its environment. Empowerment can be understood as a biologically plausible
mechanism that shapes exploration and facilitates the emergence of intelligent behavior, including, we conjecture,
tool use. In computational settings, empowerment has been applied in robotic control and RL to encourage structured
exploration and skill acquisition, particularly in environments with sparse or delayed rewards (Mohamed & Rezende,
2015; Dai et al., 2023). Recent work by Lidayan et al. (2025) shows how empowerment can support open-ended skill
discovery in tool-rich environments, further highlighting its relevance for tool-use scenarios.
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3 METHODOLOGY

3.1 TOOL LEARNING FRAMEWORK

We model tool-use within a RL framework (Barto & Sutton, 2018), where an autonomous agent learns to handle tools
by manipulating objects in its surrounding. The environment is represented as a Markov Decision Process (MDP),
defined by a quadruple (S,A, T,R). Here, S is the state space, A is the action space, T is the transition function and
R is the reward function. The agent aims to find policy that maximizes the expected return

∑∞
k=0 γ

kRt+k+1, where
γ ∈ [0, 1) is a discount factor that prioritizes immediate rewards over distant ones.

In RL, agents struggle to associate specific actions with long-term beneficial outcomes due to the lack of reward
signal. To overcome this, the concept of IM has been introduced, inspired by theories of developmental learning
in psychology (Oudeyer & Kaplan, 2007; Barto et al., 2013). Rather than relying solely on task-related (extrinsic)
rewards, IMs provide internal signals that encourage agents to explore in an informed manner. The intrinsic signal
employed in this paper is object empowerment, denoted as EO. In our framework, assuming that the extrinsic reward
R(s) depends only on the state s ∈ S, we combine the latter with object empowerment EO(s) into a single regularized
reward function R̂(s) as follows

∀s ∈ S R̂(s) := R(s) + βEO(s) , (1)
where β ∈ R≥0 is a weighting factor that balances the contribution of extrinsic and intrinsic reward. The maximization
of the regularized reward R̂ encourages the agent to explore actions and states that increase object empowerment even
in the absence of immediate extrinsic rewards. A small β places greater emphasis on the completion of the task
encoded by R, while a larger β pushes the agent to maintain its control over objects of the environment, even at the
cost of not addressing the task at all when β is very large. A suitable trade-off can guide the agent to interact with
objects during early learning, thereby facilitating task completion in later stages.

3.1.1 STATE SPACE

Formally, the environment consists of an agent, a set of n tools T = {T1,T2, . . . ,Tn}, and a set of m objects
O = {O1,O2, . . . ,Om}. Each of these entities contributes to the overall state space, defined as:

S := SA ×

 n∏
j=1

STj

×

(
m∏
i=1

SOi

)
× SW (2)

Here, SA is the agent’s state space (e.g., its location in the environment), STj is the state space of the j-th tool (e.g., its
position or whether it is equipped by the agent), SOi is the state space of the i-th object (e.g., its location or condition),
SW includes other static components of the environment, such as walls or goal positions.

3.1.2 ACTION SPACE

Among all the actions in A that an agent can perform, we define now the subsets of actions that are executed while
using the tools in T. We distinguish between the following subsets of A: (i) the actions of the agent AA ⊆ A that do
not involve the use of a tool; (ii) the actions ATj ⊆ A that allow the agent to use the tool Tj , for j = 1, 2, . . . n; (iii)
the set AATj := AA ∪ATj for j = 1, 2, . . . n, containing both the actions of the agent that are not relevant to tool use
and its actions specifically relevant to tool Tj . For instance, in a navigation task, AA could contain the action “north”,
which moves the agent towards the north direction, where if the agent equips an axe, the set ATaxe could include the
action “chop”.1

3.2 OBJECT EMPOWERMENT

Empowerment(Klyubin et al., 2005) is defined as the Shannon capacity of an agent’s actuation channel between action
sequences and resulting states. Object empowerment extends the classical empowerment formalism by measuring an
agent’s influence over the state subspace SOi of specific objects of the environment Oi, rather than over the entire
state space S (Rasheed et al., 2023). Furthermore, given a tool Tj , object empowerment is defined by using the tool
actions subset ATj as source of the agent’s actuation channel, instead of the full agent action set A as in classical
empowerment. This formulation not only quantify the degree of influence that an agent has over specific objects of

1In this paper, interactions between objects and tools Tj are always performed using actions from the set AATj . For notational
simplicity, we denote this set as ATj throughout the text.
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the environment Oi, but also allows one to measure the impact of those interactions that are exclusively mediated via
tool Tj .

Given a tool Tj ∈ T, let ahTj
:= (a

Tj

1 , a
Tj

2 , . . . , a
Tj

h ) ∈ Ah
Tj

be a tool action sequence of length h, where Ah
Tj

denotes
the set of all possible sequences of h tool Tj actions. Let St be a random variable representing the agent’s state at time
t, and Ah

Tj
the random variable for the h-step tool Tj action sequence starting at time t. 2 Let SOi

t+h be the random
variable representing the state of object Oi at time t + h. The h-step object empowerment Eh

TjOi
(s) of state s ∈ S

from tool Tj to object Oi is defined as the Shannon capacity of the channel between the tool Tj action sequence and
the resulting state of object Oi, conditioned on the current state s:

Eh
TjOi

(s) := max
P (ah

Tj
|s)

I(SOi

t+h;A
h
Tj

| St = s) (3)

where I(X;Y ) denotes the mutual information between the random variables X and Y . Eh
TjOi

measures how much
the actions of the tool Tj can reliably influence the state of the object Oi. To capture an agent’s control over multiple
objects jointly, we extend the above formulation to define multi-object empowerment. Let D = {D1,D2, . . . ,Dq} ⊆
O be a subset of objects. The h-step multi-object empowerment from tool Tj to objects D is then defined as:

Eh
TjD(s) := max

P (ah
Tj

|s)
I(SD1

t+h . . . S
Dq

t+h;A
h
Tj

| St = s) (4)

In deterministic settings, where transitions and observations are uniquely determined by actions and state, the mutual
information in Equation 3 reduces to the log-cardinality of the set of distinct states of object Oi that the agent can
observe from s after executing all possible h-step tool action sequences ahTj

:

Eh
TjOi

(s) = log2

(∣∣∣Sh
TjOi

(s)
∣∣∣) (5)

where Sh
TjOi

(s) := {st+h | ahTj
∈ Ah

Tj
, st+h = Th(s, ahTj

)} is the set of states reachable from s after applying all
ahTj

in Ah
Tj

, and Th(s, ah) denotes the h-step transition function.

3.3 TOOL SELECTION MECHANISM

In scenarios with multiple tools and objects an agent may benefit by knowing which tools enables the largest control
over each object of the environment. While more than one tool may exert some influence on a certain object, the
level of influence may vary, with some tools that may be very effective while others may be useless. To represent all
possible tool-object relationships, we define the tool-object empowerment matrix. It contains the state-averaged object
empowerment Êh

TjOi
of each tool to each object in the environment (see Table 1). We define the h-step tool-object

empowerment matrix T ∈ Rn×m as

T[j, i] = Êh
TjOi

j = 1, . . . , n, i = 1, . . . ,m.

O1 . . . Oi∗ · · · Om

T1 Êh
T1O1

· · · Êh
T1Oi∗

· · · Êh
T1Om

...
...

...
...

...
...

Tj∗ Êh
Tj∗O1

· · · Êh
Tj∗Oi∗

· · · Êh
Tj∗Om

...
...

...
...

...
...

Tn Êh
TnO1

· · · Êh
TnOi∗

· · · Êh
TnOm

Table 1: Tool-object empowerment matrix T showing the state-averaged empowerment Êh
TjOi

for each tool-object
pair. Values indicate the degree of influence each tool has over each object and i∗ indicates the object of interest.

Tools with non-zero average object empowerment with certain objects constitute candidates tools for interacting with
those objects. On the contrary, if an item exhibits zero average object empowerment toward all objects, it can not be

2When writing Ah
Tj

we omit the time index t to have a more compact notation.
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considered a tool for that environment. Finally, there is the tool with maximum average object empowerment for an
object. Given an object of interest Oi∗ , this is defined as follows:

Tj∗ := argmax
j

Êh
TjOi∗

. (6)

Equation 6 enables the design of a tool selection mechanism that can be used by artificial agents to automatically select
tools when interacting with specific objects Oi∗ . One can expect that, without prior knowledge about the tools, on
average, the tool selected by Equation 6 has the largest chance of being useful when interacting with the task object
Oi∗ . Thus, in our RL experiments, we used Equation 6 to choose the object empowerment Eh

Tj∗Oi∗
from the selected

tool Tj∗ to the task objects Oi∗ as intrinsic reward in Equation 1. We will show that the object empowerment of the
selected tool can guide exploration toward meaningful object interactions.

4 EXPERIMENTS

We conduct our experiments in MiniHack environments (Samvelyan et al., 2021), which allows complex interactions
between tools and objects in a grid-based world. Let represent with W all possible cells of the grid-word. The
employed state space S includes the grid location of the agent sA ∈ W , the positions of all the tools, sT1

p , . . . , sTn
p ∈

Wn, and the locations of all the objects, sO1
p , . . . , sOm

p ∈ Wm. In addition, the tools states STj include an equipped
status, indicating whether the tool has been picked up by the agent and added to its inventory, and a hidden status that
says whether a tool is visible from the agent’s point of view. Similarly, the object states SOi include a hidden status
and a flag that indicates whether an object has been destroyed by the agent. The employed action space A includes
the agent movements in the grid AA (i.e., north, south, east, west) and the tools actions ATj , which only take effect
when a tool is equipped. Tools are equipped automatically when the agent moves onto the the cell where the tool is
located (i.e., sA = s

Tj
p ). Tool actions are based on the MiniHack game mechanics, where the use of a tool involves

the following three transitions: first, the agent needs to decide that it wants use a tool by executing the “apply” action;
then, it chooses which tool from its inventory to use via tool identifiers actions; finally, the agent specifies one of
the four cardinal directions to which apply the tool. For example, applying an axe to the north may destroy a tree
located in that direction. The grid-world dynamics T is deterministic, so we have used Equation 5 to compute object
empowerment Eh

TjD
. Each experiment is formulated as an episodic MDP. The employed reward structure is sparse:

agent is rewarded only for achieving the task objective, such as destroying designated objects, when the agent receives
a reward of +1 and transitions to a terminal state. Otherwise, each other transition incurs a reward of 0. To solve the
MDPs considered in our experiments, we used the Proximal Policy Optimization (PPO) algorithm (Schulman et al.,
2017), as implemented in the Ray’s RLlib library (Liang et al., 2018).

5 EXPERIMENT 1: EMPOWERMENT-GUIDED TOOL SELECTION IN SINGLE-OBJECT TASK

The environment reported in Figure 1a includes two manipulable objects, a tree and a wall, and four available tools:
an axe, a pickaxe, a tin opener and a key. We considered the task of chopping the tree and the one of destroying the
wall. We start with the first one, hence, here the tree is the task-relevant object Otree*.

To support tool selection, we compute the tool-object empowerment matrix T for this environment and report it in
Table 2. Among all the tools of this environment, only the axe has an influence over the state of the tree (Êh

TaxeOtree*
=

4.233× 10−8 bits). 3 The pickaxe has only an effect on the state of the wall (Êh
TpickaxeOwall

= 4.233× 10−8 bits). The

tin opener and the key have no impact on any object (Êh
TtinopOtree*

= 0 bits, Êh
TkeyOwall

= 0 bits)), so they should not
be considered tools for this environment. Since the axe yields the highest object empowerment for the tree, Taxe* is
selected through the tool selection mechanism of Equation ( 6).

3The MDP representing this environment has more than 70000 states, due to the combinatorial contribution of the states of all
the tools an objects in the environment, each one having three possible states. For this reason, and the sparsity of the landscape, in
this experiment, and the following ones, the state averaged object empowerment is a very small number.
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(a) Initial state of the environment. Black cells represent unob-
served areas outside the agent’s field of view.

(b) 3-step axe to tree empowerment E3
Taxe* Otree*

landscape for
all possible agent’s locations (in bits), when the agent is
equipped with the axe.

Figure 1: (a) Experiment 1 environment setup. The agent must use the appropriate tool (e.g., axe for the tree) while
other tools act as distractors. (b) Empowerment landscape shows non-zero values only when the agent is adjacent to
the tree.

Otree* Owall*

Taxe* 4.233× 10−8 0
Tpickaxe* 0 4.233× 10−8

Ttinop 0 0
Tkey 0 0

Table 2: State-averaged tool to object empowerment Êh
TjOi

in bits for each tool-object combination of experiment 1.

To illustrate the spatial distribution of object empowerment in this environment, we examine the empowerment land-
scape before and after the axe is equipped. When the axe is not equipped, it E8

Taxe*Otree*
is nonzero only in the cell

where the axe is located, indicating that from there in 8 steps the agent can reach tree and chop it. There, the value
of E8

Taxe*Otree*
(sTaxe*

p ) is 1 bit, because the agent can either chop the tree or leave it intact. When E8
Taxe*Otree*

is used as
intrinsic reward, this acts as a beacon towards the tool location, helping the agent to find the axe while exploring the
environment. In Figure 1b we report the landscape of E3

Taxe* Otree*
for when the tool is equipped. The landscape shows

non-zero values (i.e., 1 bit) of E3
Taxe* Otree*

in locations adjacent to the tree. This indicates that from those positions, the
agent can chop the tree in the 3 steps necessary to execute the “apply”→“choose”→“direction” sequence of actions
illustrated in the previous section. This landscape reflects the fact that the axe is a tool whose influence is highly
localized and effective only when the agent is next to its target object. When used as intrinsic reward, E3

Taxe*Otree*
acts

as beacon that attracts the agent to the tree once the axe is equipped, helping it to fulfill the spatial conditions under
which meaningful tool-object interactions become possible. Since the agent needs more steps to interact with an object
when a tool is unequipped (i.e., additional steps are necessary to reach the tool and pick it up), in our experiments we
have used a longer horizon h for states where the tool is unequipped and a shorter horizon for states where the tool is
equipped (here, h = 8 and h = 3 respectively).

To evaluate learning performance under sparse reward conditions, we compare a standard PPO agent with an intrinsi-
cally motivated agent whose reward is regularized with object empowerment. Figure 2 shows the average cumulative
reward across training episodes, computed over 10 independent runs. The agent using Eh

Taxe*Otree*
(β = 0.0009) shows

a faster convergence to optimal performance compared to the baseline PPO agent. This improvement highlights how
object empowerment helps guide exploration in sparse reward environments where useful tool-object interactions must
be discovered.
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Figure 2: The agent using the axe to tree empowerment Eh
Taxe* Otree*

as a regularizer (green) shows faster convergence
compared to the standard PPO (blue). Shaded regions represent standard deviation across 10 independent runs.

Similar results were obtained when the objective was to destroy the wall Owall* and the the pickaxe Tpickaxe* was
selected as a tool, confirming the generality of the proposed approach.

6 EXPERIMENT 2: EMPOWERMENT-GUIDED TOOL SELECTION IN MULTI-OBJECT TASK

(a) Initial state of the environment of experiment 2.

(b) 6-step wand to boulder-door empowerment
E6
Twand* Obould*Odoor*

landscape for all possible agent’s loca-
tions, when the agent is equipped with the wand.

Figure 3: (a) Experiment 2 environment setup. (b) Empowerment landscape

In this experiment, we explore a more challenging scenario where the agent is required to destroy two distinct objects:
a boulder and a door (i.e., with multiple targets Obould*Odoor*). The agent receives a reward of 1 for each object
successfully destroyed. The environment (see Figure 3a) contains four tools: a wand, an axe, a tin opener, and a
katana. Here, the wand can destroy both the boulder and the door, the axe is capable of only destroying the door, while
the tin opener and katana serve as distractors with no effect on the environment’s objects. In addition, the environment
includes walls that act as static barriers, preventing agent movement, which do not serve as manipulable objects.

We report the tool-object empowerment matrix T for this environment in Table 3. In addition to the average tool
to object empowerment of the individual objects, this table also reports the average tool to object empowerment
Êh
Tj Obould*Odoor*

of the two objects considered together (see Equation 4). Being Êh
Twand Obould*Odoor*

the largest average
object empowerment for both targets, our tool selection method chooses the wand Twand* and its boulder-door empow-
erment as intrinsic reward for RL.
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Obould Odoor Obould*Odoor*

Twand* 5.292× 10−7 6.138× 10−7 9.564× 10−7

Taxe 0 3.281× 10−7 3.281× 10−7

Ttinop 0 0 0
Tkata 0 0 0

Table 3: State-averaged tool to object empowerment Êh
TjOi

for each tool-object combination. The last column reflects

the multi-object empowerment Êh
Tj Obould*Odoor*

.

In this experiment we use h = 5 when the wand is unequipped for reward regularization, because this horizon yields an
object empowerment landscape peaked in the location of the wand, and h = 6 when the wand is equipped. We report
the wand-equipped landscape of E6

Twand Obould*Odoor*
in Figure 3b. Unlike the tools in Experiment 1, which can affect

objects only when adjacent to it, here the wand’s area of influence spans a larger portion of the grid. This is because in
MiniHack, the wand can strike objects at arbitrary distances along the orthogonal directions from the agent’s position.
This observation suggests that object empowerment formalism could be used to characterized tools-object range of
interaction. The 2.0 bits peaks of E6

Twand Obould*Odoor*
are in the two cells where in 6 steps the agent can destroy both

the boulder and the door (i.e., 3 steps to destroy one plus 3 steps to destroy the other). Intermediate values, such as
1.58 and 1.0 bits, appear in locations where the agent can affect either one of the two objects or only one of the two,
respectively.

We compare learning performance using standard PPO and PPO regularized with Eh
Twand* Obould*Odoor*

. Figure 4 reports
the the cumulated reward mean per episode averaged over 10 independent runs. The TOE-augmented agent converges
rapidly and attains higher final performance compared to the baseline. In contrast, the standard PPO agent frequently
plateaus at suboptimal values, indicating it gets trapped in local optima, for instance by learning to destroy only one
object. TOE-based regularization helps overcome this limitation by encouraging policies that expand future influence
towards both objects, driving the agent toward broader interaction strategies that ultimately solve the full task.

Figure 4: The agent using Eh
Twand* Obould*Odoor*

as a regularizer with β = 0.0009 (green) learns faster and more reliably
than the standard PPO agent (blue).

7 EXPERIMENT 3: TOOL USE TO ACHIEVE SUB-GOALS

In this last experiment, we examine a more complex scenario, where tools enable task completion not through direct
manipulation of the goal object, but via the interaction with another object whose manipulation is a pre-condition to
reach the goal object. We depict the environment in Figure 5a. The environment contains an axe and a key as tools,
and a door and a boulder as objects. The task for the agent is to move the boulder onto a designated goal location
(highlighted as a blue square). To “push” the boulder the agent must occupy a cell adjacent to a it and execute a
movement action toward it, then both the agent and the boulder are displaced by one cell in the same direction. Hence,
the boulder in this environment can be moved directly by the agent without requiring any tool. However, the boulder
is initially inaccessible, positioned behind a locked door and surrounded by walls that restrict movement. To reach
and push the boulder, the agent must first move through the door—either by opening it with the key or by destroying
it using the axe. These tools therefore provide instrumental affordances: they do not act directly on the boulder but
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instead enable access to it by modifying the environment. Although the axe and the key do not impact the state of the
boulder directly, the average axe to boulder empowerment Êh

Taxe Obould*
and key to boulder empowerment Êh

Tkey Obould*

are non-zero for h ≥ 7: they emerge indirectly, through a causal chain of actions where the agent alters the door state
using a tool and subsequently moves the boulder using its own body.

(a) Initial state of the environment of experiment 3.
(b) 5-step boulder empowerment landscape after the room be-
comes accessible in experiment 3.

Figure 5: (a) Experiment 2 environment setup. (b) Empowerment landscape

In Figure 5b we report the landscape of 5-step axe to boulder empowerment Ê5
Taxe Obould*

when the axe is equipped
and the room is accessible. Differently from the objects of the previous experiments, which had only two possible
states, the boulder can be repeatedly pushed in multiple directions and transit in always more states as the number of
interactions with it increases, creating a richer object empowerment landscape. As a result, Ê5

Taxe Obould*
increases with

h and with the proximity to the boulder, two features that, when used as intrinsic reward, not only make the boulder
empowerment to act as beacon for the object, but also as a sort of gradient towards it, which in turn facilitates learning.

The tools-door interactions can themselves be characterized by their axe to door empowerment Eh
Taxe Odoor

and key
to door empowerment Eh

Tkey Odoor
, which enables downstream influence to the boulder empowerment Eh

Taxe Obould*
and

E5
Tkey Obould*

, respectively.

Figure 6: Temporal evolution of object empowerment Eh≥3
Tj ,ODoor

as the agent interacts with the door using either the
key or the axe.

9
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When the agent is located in the cell in front of the door, both tools yield a 3-step door empowerment of E3
TaxeOdoor

=

E3
TkeyODoor

= 1.0 bit (the door is either cleared, i.e. opened by the key or destroyed by the axe, or closed). Furthermore
whether the door has been opened by the key or destroyed by the axe does not make any difference w.r.t. enabling
the interaction of the agent with the boulder. But, although the axe and the door seems to act in a similar manner
here, there is a fundamental difference between the two tools. The key operates reversibly: the door can be repeatedly
opened and re-closed. In contrast, when the axe irreversibly destroys the door, it precludes any further interaction
with it. From a purely object empowerment-based perspective, both interactions have the same door empowerment
Eh
Tj Odoor

of 1 bit for h >= 3 . However, if we condition the object empowerment on the door not being closed, these
two quantities dramatically differ.

As shown in Figure 6, when conditioned, the Eh
Tj Odoor

of 1 bit for h >= 3 evolves differently depending on whether
the agent uses a key or an axe. In the Figure, the x-axis represents time steps t, and the y-axis encodes the possible
state of the door (i.e., open, closed, or destroyed). Object empowerment values are represented by the color of the
curves (red for 1 bit and blue for 0 bits). For the key, the door empowerment remains at a steady value of 1 bit even as
the door changes state, highlighting the reversibility and temporal persistence of the key’s influence on the door. By
contrast, when using the axe, the agent can only destroy the door once and, after that, no further state transitions are
possible, and empowerment drops and stays at 0 bits.

In Figure 7 we show that the agent learning with Eh
Taxe* Odoor*Obould*

as intrinsic rewards ( h = 7 for states with the
axe unequipped and h = 5 for equipped states) and (β = 0.00006) learns quicker and reaches higher asymptotic
performance compared to the PPO baseline. This improvement demonstrates how object empowerment can encourage
policies that account for multi-step dependencies, such as clearing intermediate obstacles to eventually reach the goal
object.

Figure 7: The agent using Eh
Taxe* Odoor*Obould*

as a regularizer with β = 0.0006 (green) learns faster compared to the
standard PPO agent (blue).

8 CONCLUSION

This work has explored how object empowerment, an object-centric intrinsic motivation, can guide learning of tool-
use behaviors in environments with multiple tools and objects. Rooted in cognitive science-inspired principles, our
approach reflects the idea that adaptive organisms seek to maximize their potential influence over the objects that
surround them. Across increasingly complex experiments, we demonstrated that object empowerment enables to:
(i) identify tools with the highest potential influence over task-relevant objects, (ii) characterize tools interactions
that support interactions with multiple objects, that are long ranged, or that are persistent and reversible (iii) reason
about downstream effects of tool use over sequence of objects. Our experiments showed that agents guided by object
empowerment consistently outperform vanilla baseline RL agents, converging faster and more reliably despite sparse
rewards.

9 LIMITATIONS AND FUTURE WORK

A key limitation of this work is that object empowerment is assumed and computed from known dynamics rather than
learned. In future work, we aim to learn object empowerment directly from interaction — enabling agents to infer

10
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which tools afford control over which objects, and under what conditions. Our broader goal is to scale this approach to
lifelong learning environments such as Craftax (Matthews et al., 2024) and MineRL (Guss et al., 2019), where agents
must acquire, transfer, and reuse skills across a stream of tasks. In such settings, generalization—across tools, goals,
and environments—is a central challenge.

Recent work has shown that exploration improves generalization in reinforcement learning (Jiang et al., 2023), yet
existing approaches often ignore the structure of object-tool interactions that remain consistent across tasks. We
propose that learning object empowerment can guide exploration toward such transferable structure, acting as an
inductive bias for collecting data that supports compositional generalization. To do so, we propose two future research
directions:

1. Epistemic Uncertainty for Learning Object Empowerment. Generalization in RL can be framed as a POMDP,
where limited samples lead to uncertainty over latent structure (Ghosh et al., 2021). Current object empowerment
methods ignore epistemic uncertainty over which object-tool interactions are effective, limiting adaptation in novel
settings. Incorporating epistemic uncertainty—e.g., via Bayesian methods, ensembles, or memory—could help agents
actively resolve affordance ambiguities, improving sample efficiency and generalization to new tools, objects, and
contexts (Osband et al., 2016).

2. Filtering Distractors via the Information Bottleneck. Naı̈vely maximizing object empowerment can lead agents
to overfit to spurious or irrelevant object-tool interactions. To mitigate this, we propose regularizing empowerment
using an information bottleneck (IB), focusing learning on interactions that are causally useful for control. IB-based
methods are known to discard task-irrelevant information and promote compact, transferable representations (Igl et al.,
2019).
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