
Nonconvex Federated Learning on Compact Smooth
Submanifolds With Heterogeneous Data

Jiaojiao Zhang1, Jiang Hu2∗, Anthony Man-Cho So3, Mikael Johansson1

1 KTH Royal Institute of Technology
2 University of California, Berkeley 3 The Chinese University of Hong Kong

{jiaoz, mikaelj}@kth.se, hujiangopt@gmail.com, manchoso@se.cuhk.edu.hk

Abstract

Many machine learning tasks, such as principal component analysis and low-rank
matrix completion, give rise to manifold optimization problems. Although there is
a large body of work studying the design and analysis of algorithms for manifold
optimization in the centralized setting, there are currently very few works address-
ing the federated setting. In this paper, we consider nonconvex federated learning
over a compact smooth submanifold in the setting of heterogeneous client data. We
propose an algorithm that leverages stochastic Riemannian gradients and a mani-
fold projection operator to improve computational efficiency, uses local updates to
improve communication efficiency, and avoids client drift. Theoretically, we show
that our proposed algorithm converges sub-linearly to a neighborhood of a first-
order optimal solution by using a novel analysis that jointly exploits the manifold
structure and properties of the loss functions. Numerical experiments demonstrate
that our algorithm has significantly smaller computational and communication
overhead than existing methods.

1 Introduction

Federated learning (FL), which enables clients to collaboratively train models without exchanging
their raw data, has gained significant traction in machine learning [1, 2]. The framework is appreciated
for its capacity to leverage distributed data, accelerate the training process via parallel computation,
and bolster privacy protection. The majority of existing FL algorithms address problems that are either
unconstrained or have convex constraints. However, for applications such as principal component
analysis (PCA) and matrix completion, where model parameters are subject to nonconvex manifold
constraints, there are very few options in the federated setting.

In this paper, we study FL problems over manifolds in the form of

minimize
x∈M⊂Rd×k

f(x) :=
1

n

n∑
i=1

fi(x), fi(x) =
1

mi

mi∑
l=1

fil(x;Dil). (1)

Here, n is the number of clients, x is the matrix of model parameters, and M is a compact smooth
submanifold embedded in Rd×k. Examples of such manifolds include the Stiefel, oblique, and
symplectic manifolds [3, 4, 5]. For instance, PCA-related optimization problems use the Stiefel
manifold M = St(d, k) = {x ∈ Rd×k : xTx = Ik} to maintain orthogonality [6, 7]. In (1), the
global loss f : Rd×k → R is smooth but nonconvex1, and the local loss function fi of each client i
is the average of the losses fil on the mi data points in its local dataset Di = {Di1, . . . ,Dimi

}. We
consider a heterogeneous data scenario where the statistical properties of Di differ across clients.

∗Corresponding author: Jiang Hu
1Throughout this paper, all convexity-related concepts are defined in the Euclidean space.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Manifold optimization problems of the form (1) appear in many important machine learning tasks,
such as PCA [8, 9], low-rank matrix completion [10, 11], multitask learning [12, 13], and deep neural
network training [14, 15]. Still, there are very few federated algorithms for machine learning on
manifolds. In fact, the work [16] appears to be the only FL algorithm that can deal with manifold
optimization problems of a similar generality as ours. Handling manifold constraints in an FL setting
poses significant challenges: (i) Existing single-machine methods for manifold optimization [6, 5, 4]
cannot be directly adapted to the federated setting. Due to the distributed framework, the server
has to average the clients local models. Even if each of these models lies on the manifold, their
average typically does not due to the nonconvexity of M. The current literature relies on complicated
geometric operators like the exponential map, inverse exponential map, and parallel transport, to
design an averaging operator for the manifold [16]. However, these mappings may lack closed-form
expressions and can be computationally expensive to evaluate. For example, computing the inverse
exponential map on the Stiefel manifold requires solving a nonlinear matrix equation [17]. (ii)
Extending typical FL algorithms to scenarios with manifold constraints is not straightforward, either.
Most existing FL algorithms either are unconstrained [18, 19] or only allow for convex constraints
[20, 21, 22, 23, 24], but manifold constraints are typically nonconvex. Moreover, compared to
nonconvex optimization in Euclidean space, manifold optimization necessitates the consideration of
the geometric structure of the manifold and properties of the loss functions, which poses challenges
for algorithm design and analysis. (iii) Traditional methods for enhancing communication efficiency
in FL, like local updates [25], need substantial modifications to accommodate manifold constraints.
The so-called client drift issue due to local updates and heterogeneous data [19] persists in the realm
of manifold optimization. Directly using client-drift correcting techniques originally developed for
Euclidean spaces [19, 26, 27] could lead to additional communication or computational costs due to
the manifold constraints. For instance, in [16], the correction term requires additional communication
of local Riemannian gradients and involves using parallel transport to move the correction term onto
some tangent space in preparation for the exponential mapping. Although some existing decentralized
manifold optimization algorithms [9, 28, 29] can be simplified to an FL scenario with only one local
update under the assumption of a fully connected network, these algorithms cannot be directly applied
to FL scenarios with more than one local update, especially in cases of data heterogeneity. Extending
the analysis of these algorithms to FL scenarios with multiple local updates is not straightforward. On
the other hand, the use of local updates in FL, compared to these decentralized distributed algorithms,
can more effectively reduce the number of communication rounds.

1.1 Contributions

We consider the nonconvex FL problem (1) with M being a compact smooth submanifold and allow
for heterogeneous data distribution among clients. Our contributions are summarized as follows.

1) We propose an FL algorithm for solving (1) that is efficient in terms of both computation and
communication. We employ stochastic Riemannian gradients and a projection operator to address
manifold constraints, use local updates to reduce the communication frequency between clients
and the server, and design correction terms to overcome client drift. In terms of server updates,
our algorithm ensures feasibility of all global model iterates and is computationally efficient since
it avoids the techniques used in [16] based on the exponential mapping and inverse exponential
mapping for averaging local models on manifolds. For local updates, our algorithm constructs the
correction terms locally without increasing communication costs. In comparison, the approach
presented in [16] requires each client to transmit an additional local stochastic Riemannian gradient
for constructing correction terms. Moreover, [16] necessitates parallel transport to position the
correction terms on tangent spaces so that the exponential map can be applied to ensure the feasibility
of local models, thereby increasing computational costs. In contrast, our algorithm utilizes a simple
projection operator, effectively eliminating the need for parallel transport of correction terms.

2) Theoretically, we establish sub-linear convergence to a neighborhood of a first-order optimal
solution and demonstrate how this neighborhood depends on the stochastic sampling variance and
algorithm parameters. Our analysis introduces novel proof techniques that utilize the curvature
of the manifolds and the properties of the loss functions to overcome the challenges posed by the
nonconvexity of manifold constraints in the nonconvex FL scenario. Compared to the existing work
[16] where analytical results are limited to cases where either the number of local updates is one or
the number of participating clients per communication round is one, our theoretical results allow for
an arbitrary number of local updates and support full client participation. The key components of our

2



analysis are the manifold geometry and the Lipschitz continuity of the projection operator, both of
which are inherent to the submanifold constraint.

3) Our algorithm demonstrates superior performance over alternative methods in the numerical exper-
iments. In particular, it produces high-accuracy results for kPCA and low-rank matrix completion at
a significantly lower communication and computation cost than alternative algorithms.

1.2 Related work

In this section, we first review federated learning algorithms for composite optimization with and
without constraints. Then, we discuss FL algorithms with manifold constraints.

Composite FL in Euclidean space. Problem (1) can be viewed as a special case of composite FL
where the loss function is a composition of f and the indicator function of M. It is important to
note that since the manifold is nonconvex, its indicator function is also nonconvex. Most existing
composite FL methods can only handle convex constraints. The work [20] proposed a federated dual
averaging method and established its convergence for a general loss function under bounded gradient
assumptions, but only for quadratic losses under the bounded heterogeneity assumption that the
degree of data heterogeneity among clients is bounded. In contrast, we make no assumptions about
the similarity of data across clients. The fast federated dual averaging algorithm [21] extends the
work in [20] by using both past gradient information and past model information in the local updates.
However, the work [21] requires each client to transmit the local gradient as well as the local model,
and it assumes bounded data heterogeneity. The work [22] introduces the federated Douglas-Rachford
method, and the work [23] applies this algorithm to solve dual problems. Although these two methods
avoid bounded data heterogeneity, they require an increasing number of local updates to ensure
convergence, which reduces their practicality in FL. The recent work [24] proposes a communication-
efficient FL algorithm that overcomes client drift by decoupling the proximal operator evaluation and
the communication and shows that the method converges without any assumptions on data similarity.

Federated learning on manifolds. The existing composite FL in Euclidean space [20]-[24] only
considers scenarios where the nonsmooth term in the loss functions is convex. However, incorporating
a nonconvex manifold constraint as an indicator function introduces a nonconvex nonsmooth term.
Consequently, the methods in [20]-[24] are not directly applicable. A typical challenge caused by the
nonconvex manifold constraint is that the average of local models, each of which lies on the manifold,
may not belong to the manifold. To address this issue, the work [16] introduced Riemannian federated
SVRG (RFedSVRG), where the server maps the local models onto a tangent space, calculates an
average, and then retracts the average back to the manifold. This process sequentially employs
inverse exponential and exponential mappings. Moreover, RFedSVRG employs a correction term
to overcome client drift but requires additional communication of local Riemannian gradients to
construct the correction term. In addition, the method uses parallel transport to position the correction
term, which increases the computation cost even further. Note that the manifold we consider is
a compact smooth submanifold embedded in Rd×k, which is more restrictive than the manifolds
discussed in [16]. However, this approach still encompasses many common manifolds, including the
Stiefel, oblique, and symplectic manifolds [3, 4, 5]. The work [30] explores the differential privacy
of RFedSVRG. The work [31] considers the specific manifold optimization problem that appears in
PCA and investigates an ADMM-type method that penalizes the orthogonality constraint. However,
this algorithm requires solving a subproblem to desired accuracy, which increases computational
cost. The work [32] introduces a differentially private FL algorithm for solving PCA. Finally, the
works [33] and [34] consider the leading eigenvector problem with homogeneous data across clients,
where the loss functions are quadratic and the manifold is a sphere. In contrast, we consider a more
general setting with heterogeneous data, where x lies on M and the loss functions are smooth and
nonconvex.

Notations. We use Ik to denote a k × k identity matrix. We use ∥ · ∥ to denote Frobenius norm
and tr(·) to denote the trace of a matrix. For a set B, we use |B| to denote the cardinality. For
a random variable v, we use E[v] to denote the expectation and E[v|F ] to denote the expectation
given event F . For an integer n, we use [n] to denote the set {1, . . . , n}. For two matrices x, y ∈
Rd×k, we define their Euclidean inner product as ⟨x, y⟩ :=

∑d
i=1

∑k
j=1 xijyij . For matrices

z1, . . . , zn ∈ Rd×k, we use z := col{zi}ni=1 := [z1; . . . ; zn] ∈ Rnd×k to denote the vertical stack
of all matrices. The bold notations ẑ, c, and Λ are defined similarly. Specifically, for a matrix

3



x ∈ Rd×k, we define x := col{x}ni=1 := [x; . . . ;x] ∈ Rnd×k. We use r to denote the index of the
communication round and t to denote the index of local updates. Given the local Riemannian gradient
gradfi(z

r
i,t;Br

i,t) at point zri,t with the mini-batch dataset Br
i,t, we define the stack of Riemannian

gradients as gradf(zrt ;Br
t ) := col{gradfi(zri,t;Br

i,t)}ni=1 and the stack of average local Riemannian
gradients as gradf(zrt ;Br

t ) := col
{

1
n

∑n
i=1 gradfi(z

r
i,t;Br

i,t)
}n
i=1

. Given col{zi}ni=1 and PM(zi),
we define PM(col{zi}ni=1) = col{PM(zi)}ni=1. Given a positive definite matrix x, we use x−1/2

to denote the inverse of the square root of x, i.e., x−1/2x−1/2 = x−1. We define D2 to be the
second-order differential operator.

2 Preliminaries

Below, we introduce fundamental definitions and inequalities for optimization on manifolds.

2.1 Optimization on manifolds

Manifold optimization aims to minimize a real-valued function over a manifold, i.e., minx∈M f(x).
Throughout the paper, we restrict our discussion to embedded submanifolds of the Euclidean space,
where the associated topology coincides with the subspace topology of the Euclidean space. We refer
to these as embedded submanifolds. Some examples of such manifolds include the Stiefel manifold,
oblique manifold, and symplectic manifold [3, 4, 5]. We define the tangent space of M at point
x as TxM, which contains all tangent vectors to M at x, and the normal space as NxM which is
orthogonal to the tangent space. With the definition of tangent space, we can define the Riemannian
gradient that plays a central role in the characterization of optimality conditions and algorithm design
for manifold optimization.
Definition 2.1 (Riemannian gradient gradf(x)). The Riemannian gradient gradf(x) of a function f
at the point x ∈ M is the unique tangent vector that satisfies

⟨gradf(x), ξ⟩x = df(x)[ξ], ∀ξ ∈ TxM,

where ⟨·, ·⟩x is the Riemannian metric and df denotes the differential of function f .

For a submanifold M, the Riemannian gradient gradf(x) (under the Euclidean inner product) can
be computed as [5, Proposition 3.61]

gradf(x) = PTxM(∇f(x)),

where PTxM(∇f(x)) represents the orthogonal projection of ∇f(x) onto TxM. The Riemannian
gradient gradf(x) reduces to the Euclidean gradient ∇f(x) when M is the Euclidean space Rd×k.

2.2 Proximal smoothness of M

In our federated manifold learning algorithm, the server needs to fuse models that have undergone
multiple rounds of local updates by the clients. Due to the nonconvexity of the manifold, the average
of points on the manifold is not guaranteed to belong to the manifold. The tangent space-based
exponential mapping or other retraction operations commonly used in manifold optimization are
expensive in FL [16]. Specifically, the server needs to map the local models onto a tangent space
using inverse exponential mapping, calculate an average on the tangent space, and then perform an
exponential mapping to retract this average back onto the manifold. This exponential mapping, due
to its dependency on the tangent space, also calls for parallel transport during the local updates when
there are correction terms. To overcome this difficulty, we use a projection operator PM defined by

PM(x) ∈ argmin
u∈M

∥x− u∥2 (2)

to ensure the feasibility of manifold constraints. The projection operator PM can be explicitly
calculated for many common submanifolds, as discussed in [35]. For the Stiefel manifold, the closed-
form expression for PM(x) of a given matrix x with full column rank is PM(x) = x(xTx)−1/2;
see [35, Proposition 7]. It is worth noting that PM can be regarded as a special retraction operator
when restricted to the tangent space [35]. However, unlike a typical retraction operator, its domain is
Rd×k, not just the tangent space, which enables a more practical averaging operation across clients in

4



FL. Despite these advantageous properties, the nonconvex nature of M means that PM(x) may be
set-valued and non-Lipschitz, making the use and analysis of PM in the FL setting highly nontrivial.
To tackle this, we introduce the concept of proximal smoothness that refers to a property of a closed
set, including M, where the projection becomes a singleton when the point is sufficiently close to the
set.
Definition 2.2 (γ̂-proximal smoothness of M). For any γ̂ > 0, we define the γ̂-tube around M as

UM(γ̂) := {x : dist(x,M) < γ̂},
where dist(x,M) := minu∈M ∥u− x∥ is the Eulidean distance between x and M. We say that M
is γ̂-proximally smooth if the projection operator PM(x) is a singleton whenever x ∈ UM(γ̂).

It is worth noting that any compact smooth submanifold M embedded in Rd×k is a proximally
smooth set [36, 37]. The constant γ̂ can be calculated with the method of supporting principle for
proximally smooth sets [38, 39]. For instance, the Stiefel manifold is 1-proximally smooth.
Assumption 2.3. The manifold M is assumed to be a compact smooth submanifold embedded in
Rd×k, with the Euclidean inner product serving as its Riemannian metric. Moreover, we assume that
the proximal smoothness constant of M is 2γ.

With Assumption 2.3, we can ensure not only the uniqueness of the projection but also the Lips-
chitz continuity of the projection operator PM around M, analogous to the non-expansiveness of
projections under Euclidean convex constraints.

Lipschitz continuity of PM. Define UM(γ) := {x : dist(x,M) ≤ γ} as the closure of UM(γ).
Following the proof in [36, Theorem 4.8], for a 2γ-proximally smooth M, the projection operator
PM is 2-Lipschitz continuous over UM(γ) such that

∥PM(x)− PM(y)∥ ≤ 2∥x− y∥, ∀x, y ∈ UM(γ). (3)

Normal inequality. In the normal space NxM, we exploit the so-called normal inequality [36, 37].
Following [36], given a 2γ-proximally smooth M, for any x ∈ M and v ∈ NxM, it holds that

⟨v, y − x⟩ ≤ ∥v∥
4γ

∥y − x∥2, ∀y ∈ M. (4)

Intuitively, when x and y are close enough, the matrix y − x is approximately in the tangent space,
thus being nearly orthogonal to the normal space.

3 Proposed algorithm

In this section, we develop a novel algorithm for nonconvex federated learning on manifolds. The
algorithm is inspired by the proximal FL algorithm for strongly convex problems in Euclidean
space recently proposed in [24] but includes several non-trivial extensions. These include the use of
Riemannian gradients and manifold projection operators and the ability to handle nonconvex loss
functions, which call for a different convergence analysis.

3.1 Algorithm description

The per-client implementation of our algorithm is detailed in Algorithm 1. Similarly to the well-
known FedAvg, it operates in a federated learning setting with one server and n clients. Each
client i engages in τ steps of local updates before updating the server. We use r as the index of
communication rounds and t as the index of local updates.

At any communication round r, client i downloads the global model xr from the server and computes
PM(xr). Each client i updates two local variables, ẑri,t and zri,t, where ẑri,t aggregates the Riemannian
gradients from local updates, and zri,t = PM(ẑri,t) ensures that Riemannian gradients can be computed
at points on M. The update of ẑri,t is given in Line 8, where Br

i,t is a mini-batch dataset and cri is a
correction term to eliminate client drift. After τ local updates, client i sends ẑri,τ to the server.

The server receives all ẑri,τ , computes their average to form the global model xr+1 following Line 13,
and broadcasts xr+1 to each client i that uses xr+1 to locally construct the correction term cr+1

i .

5



Algorithm 1 Proposed algorithm

1: Input: R, τ , η, ηg , η̃ = ηηgτ , x1, and c1i = 0 for all i ∈ [n]
2: for r = 1, 2, . . . , R do
3: Client i
4: Set ẑri,0 = PM(xr) and zri,0 = PM(xr)
5: for t = 0, 1, . . . , τ − 1 do
6: Sample a mini-batch dataset Br

i,t ⊆ Di with |Br
i,t| = b

7: Update gradfi(z
r
i,t;Br

i,t) =
1
b

∑
Dil∈Br

i,t
gradfil(z

r
i,t;Dil)

8: Update ẑri,t+1 = ẑri,t − η
(
gradfi(z

r
i,t;Br

i,t) + cri
)

9: Update zri,t+1 = PM
(
ẑri,t+1

)
10: end for
11: Send ẑri,τ to the server
12: Server
13: Update xr+1 = PM(xr) + ηg

(
1
n

∑n
i=1 ẑ

r
i,τ − PM(xr)

)
14: Broadcast xr+1 to all the clients
15: Client i
16: Receive xr+1

17: Update cr+1
i = 1

ηgητ
(PM(xr)− xr+1)− 1

τ

∑τ−1
t=0 gradfi(z

r
i,t;Br

i,t)

18: end for
19: Output: PM(xR+1)

In the proposed algorithm, each client i downloads xr at the start of local updates and uploads ẑri,τ
at the end of the local updates. Therefore, each communication round involves each client and the
server exchanging only a single d× k matrix.

3.2 Algorithm intuition and innovations

To better understand the proposed algorithm, we present its equivalent and more compact form:

ẑrt+1 = ẑrt − η
(
gradf (zrt ;Br

t ) +
1

τ

τ−1∑
t=0

gradf
(
zr−1
t ;Br−1

t

)
− 1

τ

τ−1∑
t=0

gradf
(
zr−1
t ;Br−1

t

) )
,

zrt+1 = PM
(
ẑrt+1

)
,

xr+1 = PM(xr)− ηgη

τ−1∑
t=0

gradf (zrt ;Br
t ) .

(5)

For the initialization of correction term, we set gradfi
(
z0i,t;B0

i,t

)
= 0 for all t and i so that

1
τ

∑τ−1
t=0 gradf

(
z0t ;B0

t

)
− 1

τ

∑τ−1
t=0 gradf

(
z0t ;B0

t

)
= 0, which coincides with the initialization

c1i = 0 in Algorithm 1. The equivalence between Algorithm 1 and (5) can be proved following the
similar derivations in [24] and is therefore omitted.

With (5), we highlight the key properties and innovations of the proposed algorithm.

1) Recovery of the centralized algorithm in special cases. Substituting the definitions of x,
gradf (zrt ;Br

t ), and η̃ into the last step in (5), we have

PM(xr+1) = PM

(
PM(xr)− η̃

1

nτ

n∑
i=1

τ−1∑
t=0

(
gradfi

(
zri,t;Br

i,t

)))
. (6)

Thanks to the introduction of the variable ẑri,t during the local updates for each client i in Algorithm
1, the server after averaging ẑri,τ obtains an accumulation of τ local Riemannian gradients across
local updates and an average of the local Riemannian gradients across all clients. In the special case
where τ = 1 and b = mi, i.e., with the local full Riemannian gradient for each client i, the update of
(6) recovers the centralized projected Riemannian gradient descent (C-PRGD)

x̃r+1 := PM (PM(xr)− η̃gradf(PM(xr))) . (7)

6



In our analysis, we will compare the sequence PM(xr+1) generated by our algorithm with the virtual
iterate x̃r+1 to establish the convergence of our algorithm.

2) Feasibility of all iterates at a low computational cost. Our algorithm uses PM to obtain
feasible solutions on the manifold, which is computationally more efficient than the commonly used
exponential mapping. In fact, since the exponential mapping relies on a point on the manifold and
the tangent space at that point, it cannot be directly used in our algorithm. In the local updates, it is
difficult to perform exponential mapping on ẑrt+1 because ẑrt is not on the manifold; see the first step
in (5). As shown in [24], ẑrt+1 is essential for the server to obtain aggregated Riemannian gradients
from n clients after τ local updates. Moreover, at the server, although PM(xr) is on the manifold, the
aggregated direction does not lie in the tangent space at PM(xr). The algorithm suggested in [16]
uses an exponential mapping to fuse local models. It needs to map the local models to a tangent
space using the inverse exponential mapping and then retract the result back to the manifold, which is
computationally expensive. Our use of PM on a point in the Euclidean space close to the manifold
avoids these high computational costs, but creates new challenges for the analysis.

3) Overcoming client drift. Inspired by [24], we use a correction term cri to address client drift.
According to the first step of (5), the correction employs the idea of “variance reduction”, which
involves replacing the old local Riemannian gradient 1

τ

∑τ−1
t=0 gradf

(
zr−1
t ;Br−1

t

)
with the new

one gradf (zrt ;Br
t ) in the average of all client Riemannian gradients 1

τ

∑τ−1
t=0 gradf

(
zr−1
t ;Br−1

t

)
,

where the “variance” refers to the differences in Riemannian gradients among clients caused by data
heterogeneity. Compared to [16], our correction improves communication and computation. The
correction approach in [16] necessitates extra transmissions of local Riemannian gradients, while our
correction term can be locally generated, leading to a significantly reduced communication overhead.
Furthermore, [16] employs parallel transport to position the correction term with a specific tangent
space for the exponential mapping to ensure local model feasibility. Our approach, which utilizes
PM, eliminates the need for parallel transport and reduces the computations per iteration even further.

4 Analysis

In this section, we analyze the convergence of the proposed Algorithm 1. Throughout the paper, we
make the following assumptions, which are common in manifold optimization.

Assumption 4.1. Each fil(x;Dil) : Rd×k 7→ R has L̂-Lipschitz continuous gradient ∇fil(x;Dil)
on the convex hull of M, denoted by conv(M), i.e., for any x, y ∈ conv(M), it holds that

∥∇fil(x;Dil)−∇fil(y;Dil)∥ ≤ L̂∥x− y∥. (8)

With the compactness of M, there exists a constant Df > 0 such that the Euclidean gradient
∇fil(x;Dil) of fil is bounded by Df , i.e., maxi,l,x∈M ∥∇fil(x;Dil)∥ ≤ Df . It then follows from
[28, Lemma 4.2] that there exists a constant L̂ ≤ L < ∞ such that for any x, y ∈ M,

fil(y;Dil) ≤ fil(x;Dil) + ⟨gradfil(x;Dil), y − x⟩+ L

2
∥x− y∥2,

∥gradfil(x;Dil)− gradfil(y;Dil)∥ ≤ L∥x− y∥.

To address the stochasticity introduced by the random sampling Br
i,t, we define Fr

t as the σ-algebra
generated by the set {Br̃

i,t̃
| i ∈ [n], r̃ ∈ [r], t̃ ∈ [t − 1]} and make the following assumptions

regarding the stochastic Riemannian gradients, similar to [40, Assumption 2].
Assumption 4.2. Each stochastic Riemannian gradient gradfi(zri,t;Br

i,t) in Algorithm 1 satisfies

E
[
gradfi(z

r
i,t;Br

i,t)|Fr
t

]
= gradfi(z

r
i,t),

E
[∥∥gradfi(zri,t;Br

i,t)− gradfi(z
r
i,t)
∥∥2 |Fr

t

]
≤ σ2

b
.

(9)

Considering the nonconvexity of f and the manifold constraints, we characterize the first-order
optimality of (1). A point x⋆ is defined as a first-order optimal solution of (1) if x⋆ ∈ M and
gradf(x⋆) = 0. We employ the norm of Gη̃(PM(xr)) as a suboptimality metric, defined as

Gη̃(PM(xr)) :=
1

η̃
(PM(xr)− x̃r+1), (10)

7



and x̃r+1 defined in (7) is used only for analytical purposes. In optimization on Euclidean space
such that M = Rd×k, the quantity Gη̃(PM(xr)) serves as a widely accepted metric to assess first-
order optimality for nonconvex composite problems [41]. In optimization on manifold, we have
Gη̃(PM(xr)) = 0 if and only if gradf(PM(xr)) = 0 for any η̃ > 0. Moreover, for a suitable η̃, the
use of Riemannian gradients in the update of x̃r+1 helps us to establish a quasi-isometric property,
specifically that 1/2∥gradf(PM(xr))∥ ≤ ∥Gη̃(PM(xr))∥ ≤ 2∥gradf(PM(xr))∥; see Lemmas
A.1 and A.2. With Gη̃(PM(xr)), we have the following theorem.
Theorem 4.3. Under Assumptions 2.3, 4.1, and 4.2, if the step sizes satisfy

η̃ := ηgητ ≤ min

{
1

24ML
,

γ

6Df
,

1

DfLP

}
, ηg =

√
n, (11)

where M = max
{
diam(M)/γ, 2

}
, diam(M) = maxx,y∈M∥x − y∥, Df =

maxi,l,x∈M ∥∇fil(x;Dil)∥, and LP = maxx∈UM(γ) ∥D2PM(x)∥, then the sequence PM(xr)

generated by Algorithm 1 satisfies

1

R

R∑
r=1

E∥Gη̃(PM(xr))∥2 ≤ 8Ω1

√
nητR

+
64σ2

nτb
, (12)

where Ω1 > 0 is a constant related to initialization.

In Theorem 4.3, the first term on the right hand of (12) converges at a sub-linear rate, which is
common for constrained nonconvex optimization [41, 42]. The second term is a constant error caused
by the variance σ2 of stochastic Riemannian gradients.

Theoretical contributions. The work [16] establishes convergence rates of O(1/R) for τ = 1 and
O(1/(τR)) for τ > 1 but only if a single client participates in the training per communication round.
In contrast, our Theorem 4.3 achieves a rate of O(1/(

√
nτR)) for τ > 1 and full client participation.

Our theorem indicates that multiple local updates enable faster convergence, which distinguishes
our algorithm from decentralized manifold optimization algorithms [9, 28] that limit clients to do a
single local update. The works [43] and [1] study smooth nonconvex FL with heterogeneous data in
Euclidean space, relying on the assumptions of bounded second moments [43, Assumption 1] and B-
local dissimilarity [1, Definition 3], respectively, to establish convergence. These assumptions imply
some similarity between client data. Our main analytical advantages over [43] and [1] are twofold:
We do not assume data similarity, and we completely eliminate client drift. This is reflected in our
convergence error, which eliminates the error introduced by data heterogeneity. Our convergence
analysis relies on several novel techniques. Specifically, we capitalize on the structure of M and
exploit the proximal smoothness of M to guarantee the uniqueness of PM and Lipschitz continuity
of PM within a tube around M. Additionally, we carefully select the step sizes to ensure that the
iterates remain close to M, thus preserving the established properties throughout the iterations. Last
but not least, we select an appropriate first-order optimality metric (see (10)) and jointly consider the
properties of M and the loss functions to establish some new inequalities for the convergence of this
metric, given in Appendix.

5 Numerical experiments

In this section, we conduct numerical experiments on two applications on the Stiefel manifold:
kPCA and the low rank matrix completion (LRMC). We compare with existing algorithms, including
RFedavg, RFedprox, and RFedSVRG. RFedavg and RFedprox are direct extensions of FedAvg [25]
and Fedprox [1]. For RFedSVRG, there are no theoretical guarantees when we set τ > 1 and make
all clients participate. In all alternative algorithms, the calculations of the exponential mapping, its
inverse, and the parallel transport on the Stiefel manifold are needed. The exponential mapping has a
closed-form expression but involves a matrix exponential [6], the inverse exponential mapping needs
to solve a nonlinear matrix equation [17], and the parallel transport needs to solve a linear differential
equation [44], all of which are computationally challenging. In their implementations, approximate
versions of these mappings are used [16, 45, 46].

kPCA. Consider the kPCA problem

minimize
x∈St(d,k)

f(x) =
1

n

n∑
i=1

fi(x), fi(x) = −1

2
tr(xTAT

i Aix),

8



where St(d, k) = {x ∈ Rd×k | xTx = Ik} denotes the Stiefel manifold, and AT
i Ai ∈ Rd×d is the

covariance matrix of the local data Ai ∈ Rp×d of client i. We conduct experiments where the matrix
Ai is from the Mnist dataset. The specific experiment settings can be found in Appendix A.4.1.

0 500 1000 1500 2000
Communication round

10 7

10 3

101

105
gr

ad
f(x

r )

0 1000 2000 3000 4000
Communication quantity

10 7

10 3

101

105

gr
ad

f(x
r )

0 100 200
Runtime (s)

10 7

10 3

101

105

gr
ad

f(x
r )

RFedavg RFedprox RFedSVRG our

Figure 1: kPCA problem with Mnist dataset: Comparison on ∥gradf(xr)∥.

In the first set of experiments, we compare our algorithm with RFedavg, RFedprox, and RFedSVRG.
RFedSVRG requires each client to transmit two d × k matrices per communication round, while
our algorithm only transmits a single matrix. We use communication quantity to count the total
number of d× k matrices that per client transmits to the server. We use the local full gradient ∇fi
to mitigate the effects of stochastic gradient noise. In Figs. 1, we set τ = 10 and η = 1/β for all
algorithms, where β is the square of the largest singular value of col{Ai}ni=1. We set ηg = 1 to
facilitate comparison with other algorithms. As noted below (40) in the Appendix, all analytical
results leading up to (40) remain valid for ηg = 1. It can be observed that RFedavg and RFedprox
face the issue of client drift and have low accuracy. Both RFedSVRG and our algorithm overcome
the client drift, but our algorithm, though being similar in terms of communication rounds, is much
faster in terms of communication quantity and run time.

In the second set of experiments, we test the impact of τ . For all the algorithms, we set the step
size η = 1/β and τ ∈ {10, 15, 20}. For our algorithm, we set ηg = 1. The experiment results are
shown in Figs. 2. For all values of τ , our algorithm achieves better convergence and requires less
communication quantity.

0 1000 2000 3000 4000
Communication quantity

10 10

10 6

10 2

102

106

gr
ad

f(x
r )

= 10

0 1000 2000
Communication quantity

10 10

10 6

10 2

102

106

gr
ad

f(x
r )

= 15

0 500 1000 1500 2000
Communication quantity

10 10

10 6

10 2

102

106

gr
ad

f(x
r )

= 20

RFedavg RFedprox RFedSVRG our

Figure 2: kPCA with Mnist dataset: The impacts of τ .

In addition, we test the impact of stochastic Riemannian gradients with different batch sizes. We set
η = 1/(20β). As shown in Figs. 3, our algorithm converges to a neighborhood due to the sampling
noise and larger batch size leads to faster convergence. Additional experimental results can be found
in Appendix A.4.1.

LRMC. LRMC aims to recover a low-rank matrix A ∈ Rd×T from its partial observations.
Let Ω be the set of indices of known entries in A, the rank-k LRMC problem can be written as
minimizeX∈St(d,k),V ∈Rk×T

1
2∥PΩ(XV −A)∥2, where the projection operator PΩ is defined in an

entry-wise manner with (PΩ(A))l1l2 = Al1l2 if (l1, l2) ∈ Ω and 0 otherwise. In terms of the FL
setting, we consider the case where the observed data matrix PΩ(A) is equally divided into n clients

9



0 2500 5000 7500 10000
Communication round

102

103

104

105

gr
ad

f(x
r )

= 10

0 2000 4000
Communication round

102

103

104

105

gr
ad

f(x
r )

= 15

0 2000 4000
Communication round

102

103

104

105

gr
ad

f(x
r )

= 20

batchsize 200 batchsize 500 batchsize 1000

Figure 3: kPCA problem with Mnist dataset: The impacts of stochastic Riemannian gradients.

0 100 200 300 400
Communication round

10 5

10 3

10 1

101

gr
ad

f(x
r )

0 200 400 600 800
Communication quantity

10 5

10 3

10 1

101

gr
ad

f(x
r )

0 50 100 150 200
Runtime (s)

10 5

10 3

10 1

101

gr
ad

f(x
r )

RFedavg RFedprox RFedSVRG our

Figure 4: LRMC: Comparison on ∥gradf(xr)∥.

by columns, denoted by A1, . . . , An. Then, the FL LRMC problem is

minimize
X∈St(d,k)

1

2n

n∑
i=1

∥PΩi(XVi(X)−Ai)∥2, (13)

where Ωi is the subset corresponding to client i in Ω and Vi(X) := argminV ∥PΩi(XV −Ai)∥. In
the experiments, we set T = 1000, d = 100, k = 2, n = 10, and use the local full gradients. The
other settings can be found in Appendix A.4.2.

The numerical comparisons with RFedavg, RFedprox, and RFedSVRG are presented in Figs. 4. Our
algorithm and RFedSVRG achieve similar convergence for communication rounds, but our algorithm
converges faster than RFedSVRG in terms of communication quantity and run time. Additional
experimental results can be found in Appendix A.4.2.

6 Conclusions and limitations

This paper addresses the challenges of FL on compact smooth submanifolds. We introduce a novel
algorithm that enables full client participation, local updates, and heterogeneous data distributions. By
leveraging stochastic Riemannian gradients and a manifold projection operator, our method enhances
computational and communication efficiency while mitigating client drift. By exploiting the manifold
structure and properties of the loss function, we prove sub-linear convergence to a neighborhood of a
first-order stationary point. Numerical experiments show a superior performance of our algorithm in
terms of computational and communication costs compared to the state-of-the-art.

Our paper motivates several questions for further investigation. First, the absence of closed-form
solutions for the projection operator PM for certain manifolds necessitates exploring methods to
calculate projections approximately. Additionally, our step-size selection relies on the proximal
smoothness constant γ, underscoring the need for estimating γ either off-line for specific manifolds
or adaptively on-line. Furthermore, designing algorithms for partial participation and devising
corresponding client-drift correction mechanisms require further investigation.

10



Acknowledgments

This research is supported in part by the Hong Kong Research Grant Council (RGC) through the
General Research Fund (GRF) project CUHK 14205421, in part by the Knut and Alice Wallenberg
Foundation through grant 2022.0050, and in part by the Swedish Research Council through grant
2023-05538.

References
[1] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia

Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning
and Systems, 2:429–450, 2020.

[2] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

[3] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix
manifolds. Princeton University Press, 2009.

[4] Jiang Hu, Xin Liu, Zaiwen Wen, and Yaxiang Yuan. A brief introduction to manifold optimiza-
tion. Journal of the Operations Research Society of China, 8:199–248, 2020.

[5] Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University
Press, 2023.

[6] Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, and Tong Zhang. Proximal gradient
method for nonsmooth optimization over the stiefel manifold. SIAM Journal on Optimization,
30(1):210–239, 2020.

[7] Lei Wang and Xin Liu. Decentralized optimization over the Stiefel manifold by an approximate
augmented lagrangian function. IEEE Transactions on Signal Processing, 70:3029–3041, 2022.

[8] Haishan Ye and Tong Zhang. DeEPCA: Decentralized exact PCA with linear convergence rate.
Journal of Machine Learning Research, 22(238):1–27, 2021.

[9] Shixiang Chen, Alfredo Garcia, Mingyi Hong, and Shahin Shahrampour. Decentralized Rrie-
mannian gradient descent on the Stiefel manifold. In International Conference on Machine
Learning, pages 1594–1605. PMLR, 2021.

[10] Nicolas Boumal and P-A Absil. Low-rank matrix completion via preconditioned optimization
on the Grassmann manifold. Linear Algebra and its Applications, 475:200–239, 2015.

[11] Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic
gradient algorithms on matrix manifolds. In International Conference on Machine Learning,
pages 3262–3271. PMLR, 2019.

[12] Nilesh Tripuraneni, Chi Jin, and Michael Jordan. Provable meta-learning of linear repre-
sentations. In International Conference on Machine Learning, pages 10434–10443. PMLR,
2021.

[13] Nikolaos Dimitriadis, Pascal Frossard, and François Fleuret. Pareto manifold learning: Tackling
multiple tasks via ensembles of single-task models. In International Conference on Machine
Learning, pages 8015–8052. PMLR, 2023.

[14] German Magai. Deep neural networks architectures from the perspective of manifold learning.
In 2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence
(PRAI), pages 1021–1031. IEEE, 2023.

[15] Thomas Yerxa, Yilun Kuang, Eero Simoncelli, and SueYeon Chung. Learning efficient coding
of natural images with maximum manifold capacity representations. Advances in Neural
Information Processing Systems, 36:24103–24128, 2023.

11



[16] Jiaxiang Li and Shiqian Ma. Federated learning on Riemannian manifolds. arXiv preprint
arXiv:2206.05668, 2022.

[17] Ralf Zimmermann and Knut Huper. Computing the Riemannian logarithm on the Stiefel mani-
fold: Metrics, methods, and performance. SIAM Journal on Matrix Analysis and Applications,
43(2):953–980, 2022.

[18] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of FedAvg on non-iid data. In International Conference on Learning Representations, 2019.

[19] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143, 2020.

[20] Honglin Yuan, Manzil Zaheer, and Sashank Reddi. Federated composite optimization. In
International Conference on Machine Learning, pages 12253–12266, 2021.

[21] Yajie Bao, Michael Crawshaw, Shan Luo, and Mingrui Liu. Fast composite optimization and
statistical recovery in federated learning. In International Conference on Machine Learning,
pages 1508–1536, 2022.

[22] Quoc Tran Dinh, Nhan H Pham, Dzung Phan, and Lam Nguyen. FedDR–randomized Douglas-
Rachford splitting algorithms for nonconvex federated composite optimization. Advances in
Neural Information Processing Systems, 34:30326–30338, 2021.

[23] Han Wang, Siddartha Marella, and James Anderson. FedADMM: A federated primal-dual
algorithm allowing partial participation. In 2022 IEEE 61st Conference on Decision and Control
(CDC), pages 287–294, 2022.

[24] Jiaojiao Zhang, Jiang Hu, and Mikael Johansson. Composite federated learning with heteroge-
neous data. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 8946–8950. IEEE, 2024.

[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282, 2017.

[26] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi,
Sebastian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic
algorithms in federated learning. arXiv preprint arXiv:2008.03606, 2020.

[27] Aritra Mitra, Rayana Jaafar, George J Pappas, and Hamed Hassani. Linear convergence in
federated learning: Tackling client heterogeneity and sparse gradients. Advances in Neural
Information Processing Systems, 34:14606–14619, 2021.

[28] Kangkang Deng and Jiang Hu. Decentralized projected Riemannian gradient method for smooth
optimization on compact submanifolds. arXiv preprint arXiv:2304.08241, 2023.

[29] Jun Chen, Haishan Ye, Mengmeng Wang, Tianxin Huang, Guang Dai, Ivor Tsang, and Yong
Liu. Decentralized Riemannian conjugate gradient method on the Stiefel manifold. In The
Twelfth International Conference on Learning Representations, 2024.

[30] Zhenwei Huang, Wen Huang, Pratik Jawanpuria, and Bamdev Mishra. Federated learning on
Riemannian manifolds with differential privacy. arXiv preprint arXiv:2404.10029, 2024.

[31] Tung-Anh Nguyen, Jiayu He, Long Tan Le, Wei Bao, and Nguyen H Tran. Federated PCA on
Grassmann manifold for anomaly detection in iot networks. In IEEE INFOCOM 2023-IEEE
Conference on Computer Communications, pages 1–10. IEEE, 2023.

[32] Andreas Grammenos, Rodrigo Mendoza Smith, Jon Crowcroft, and Cecilia Mascolo. Federated
principal component analysis. Advances in Neural Information Processing Systems, 33:6453–
6464, 2020.

12



[33] Long-Kai Huang and Sinno Pan. Communication-efficient distributed pca by riemannian
optimization. In International Conference on Machine Learning, pages 4465–4474. PMLR,
2020.

[34] Foivos Alimisis, Peter Davies, Bart Vandereycken, and Dan Alistarh. Distributed principal
component analysis with limited communication. Advances in Neural Information Processing
Systems, 34:2823–2834, 2021.

[35] P-A Absil and Jérôme Malick. Projection-like retractions on matrix manifolds. SIAM Journal
on Optimization, 22(1):135–158, 2012.

[36] Francis H Clarke, Ronald J Stern, and Peter R Wolenski. Proximal smoothness and the lower-C2
property. Journal of Convex Analysis, 2(1-2):117–144, 1995.

[37] Damek Davis, Dmitriy Drusvyatskiy, and Zhan Shi. Stochastic optimization over proximally
smooth sets. arXiv preprint arXiv:2002.06309, 2020.

[38] MV Balashov. Nonconvex optimization. Control theory (additional chapters): tutorial. Moscow:
Lenand, 2019.

[39] MV Balashov and AA Tremba. Error bound conditions and convergence of optimization
methods on smooth and proximally smooth manifolds. Optimization, 71(3):711–735, 2022.

[40] Pan Zhou, Xiao-Tong Yuan, and Jiashi Feng. Faster first-order methods for stochastic non-
convex optimization on Riemannian manifolds. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 138–147. PMLR, 2019.

[41] Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal stochastic
methods for nonsmooth nonconvex finite-sum optimization. Advances in Neural Information
Processing Systems, 29, 2016.

[42] Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive
methods for nonconvex optimization. Advances in neural information processing systems, 31,
2018.

[43] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 33, pages 5693–5700, 2019.

[44] Alan Edelman, Tomás A Arias, and Steven T Smith. The geometry of algorithms with or-
thogonality constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–353,
1998.

[45] Nicolas Boumal, Bamdev Mishra, P-A Absil, and Rodolphe Sepulchre. Manopt, a Matlab
toolbox for optimization on manifolds. The Journal of Machine Learning Research, 15(1):1455–
1459, 2014.

[46] James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox
for optimization on manifolds using automatic differentiation. Journal of Machine Learning
Research, 17(137):1–5, 2016.

[47] Robert L Foote. Regularity of the distance function. Proceedings of the American Mathematical
Society, 92(1):153–155, 1984.

[48] Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. Differentially private federated
learning on heterogeneous data. In International Conference on Artificial Intelligence and
Statistics, pages 10110–10145, 2022.

13



A Appendix

A.1 Notations

We analyze the proposed algorithm using the Lyapunov function Ωr defined by

Ωr := f(PM(xr))−f⋆ +
1

nη̃
∥Λr −Λ

r∥2, (14)

where f⋆ is the optimal value of problem (1) and we define

Λr := η(τgradf(PM(xr)) +

τ−1∑
t=0

gradf(zr−1
t ;Br−1

t )−
τ−1∑
t=0

gradf(zr−1
t ;Br−1

t ))

and Λ
r
:= col

{
1
n

∑n
i=1 Λ

r
i

}n
i=1

.

The Lyapunov function consists of two parts: to bound the suboptimality of the global model PM(xr)
and the reduction of “variance” among clients, respectively.

A.2 Preliminary lemmas

Let us start with the following lemma on the global-like Lipschitz-continuity property of PM.

Lemma A.1. There exists a constant M > 0 such that for any x ∈ M,

∥PM(x+ u)− x∥ ≤ M∥u∥. (15)

Proof. Let us consider two cases:

• ∥u∥ ≥ γ: Since PM(x+ u) and x belong to M, we have

∥PM(x+ u)− x∥ ≤ diam(M) ≤ diam(M)

γ
∥u∥,

where diam(M) := maxx,y∈M∥x− y∥ is the diameter of M.

• ∥u∥ ≤ γ: By the 2-Lipschitz continuity of PM over UM(γ) in (3), we have

∥PM(x+ u)− x∥ ≤ 2∥u∥.

Setting M := max
{

diam(M)
γ , 2

}
, we complete the proof.

In the following, we show the reasonableness of the suboptimality metric ∥Gη̃(·)∥.

Lemma A.2. Consider Gη̃(·) defined by (10). Then, for any x ∈ M, it holds that

gradf(x) = 0 if and only if Gη̃(x) = 0.

In addition, under Assumptions 2.3 and 4.1, if η̃ ≤ min
{

γ
Df

, 1
DfLP

}
with LP being the smoothness

constant of D2PM(·) over UM(γ), it holds that

∥gradf(x)∥ ≤ 2∥Gη̃(x)∥. (16)

Proof. If gradf(x) = 0, it follows directly from the definition of Gη̃(·) that Gη̃(x) = 0. Conversely,
if Gη̃(x) = 0, we have

x = PM (x− η̃gradf(x)) := argmin
y∈M

∥y − x+ η̃gradf(x)∥2.

It follow from the optimality of x that 0 = PTxM(η̃gradf(x)), which implies that gradf(x) = 0.

14



With [47, Lemma], PM(·) is sufficiently smooth over UM(γ). Let us define LP :=
maxx∈UM(γ) ∥D2PM(x)∥, where D2 denotes the second-order differential operator. Then, we
have

∥Gη̃(x)∥ =
1

η̃
∥x− PM(x− η̃gradf(x))∥

≥ ∥gradf(x)∥ − 1

2
LP η̃∥gradf(x)∥2

≥ 1

2
∥gradf(x)∥,

where we use η̃ ≤ γ
Df

in the first inequality and η̃ ≤ 1
LPDf

in the second inequality. This gives
(16).

To prove Theorem 4.3, we use the following lemma to establish a recursion on the second term on
Λr in the Lyapunov function.

Lemma A.3. Under Assumptions 2.3, 4.1, and 4.2, if η̃ ≤ min
{

ηg

16L ,
γηg

2Df

}
, we have

1

n
E∥Λr+1 −Λ

r+1∥2 − 2η2τ2L2E
∥∥PM(xr+1)− PM(xr)

∥∥2 (17)

≤ 1

n
4η2τL2

(
3nM2τ3η2∥gradf(PM(xr))∥2 + 9τE∥Λr −Λ

r∥2 + 18nτ2η2
σ2

b

)
+

1

n
4η2n2τ2

σ2

nτb
.

Proof. As a first step, we bound the drift error
∥∥zri,t+1 − PM(xr)

∥∥2 that is caused by the local
updates. If τ = 1, the error is zero since zri,t = PM(xr). When τ ≥ 2, repeating the local updates
for t steps and substituting ẑri,0 = PM(xr) and zri,t+1 = PM(ẑri,t+1), we have

E
∥∥zri,t+1 − PM(xr)

∥∥2 = E
∥∥PM

(
PM(xr)− η

t∑
ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ) + cri
))

− PM(xr)
∥∥2. (18)

To bound the right-hand side of (18), we compare our algorithm with the exact C-PRGD step given
in (7) under the step size (t+ 1)η

x̃r+1
C−PRGD := PM (PM(xr)− (t+ 1)ηgradf(PM(xr))) .

It follows from (15) that

∥x̃r+1
C−PRGD − PM(xr)∥ ≤ Mτη∥gradf(PM(xr))∥.

Then from (18) we have

E
∥∥zri,t+1 − PM(xr)

∥∥2 (19)

= E
∥∥PM

(
PM(xr)− η

t∑
ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ) + cri
))

− x̃r+1
C−PRGD + x̃r+1

C−PRGD − PM(xr)
∥∥2

≤ 2E
∥∥PM

(
PM(xr)− η

t∑
ℓ=0

(gradfi(z
r
i,ℓ;Br

i,ℓ) + cri )
)
− x̃r+1

C−PRGD

∥∥2
︸ ︷︷ ︸

(I)

+2M2τ2η2∥gradf(PM(xr))∥2,

where we use ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2 in the inequality.

To bound the term (I) on the right hand of (19), from η̃ ≤ γηg

2Df
and maxi,l,x∈M ∥∇fil(x;Dil)∥ ≤ Df ,

we have ∥∥∥∥∥η
t∑

ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ) + cri
)∥∥∥∥∥ ≤ γ.

15



Thus, by substituting definition of x̃r+1
C−PRGD, we can invoke the 2-Lipschitz continuity of PM over

UM(γ) given in (3) and get

(I) = 2E
∥∥PM

(
PM(xr)− η

t∑
ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ) + cri
))

− PM
(
PM(xr)− (t+ 1)ηgradf(PM(xr))

)∥∥2
≤ 4E

∥∥∥η t∑
ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ) + cri − gradf(PM(xr))
)∥∥∥2.

(20)

Next, to bound the right-hand side of (20) we rewrite it in terms of ∥Λr −Λ
r∥2 by substituting the

definition of the cri given in (5)

(I) ≤ 4E
∥∥∥η t∑

ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ)− gradfi(PM(xr)) (21)

+ gradfi(PM(xr)) +
1

τ

τ−1∑
t=0

1

n

n∑
i=1

gradfi(z
r−1
i,t ;Br−1

i,t )

− 1

τ

τ−1∑
t=0

gradfi
(
zr−1
i,t ;Br−1

i,t

)
− gradf(PM(xr))

)∥∥∥2
= 4E

∥∥∥η t∑
ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ)− gradfi(PM(xr)) +
1

ητ

(
Λr
i − Λ

r))∥∥∥2
≤ 8E

∥∥η t∑
ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ)− gradfi(PM(xr))
)∥∥2

︸ ︷︷ ︸
(II)

+8E
∥∥∥ t+ 1

τ
Λr
i −

t+ 1

τ
Λ
r
∥∥∥2.

Next, for the term (II), substituting Assumption 4.2 yields

(II) = 8E
∥∥η t∑

ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ)− gradfi(z
r
i,ℓ) + gradfi(z

r
i,ℓ)− gradfi(PM(xr))

)∥∥2 (22)

≤ 16(t+ 1)2E
∥∥∥ η

t+ 1

t∑
ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ)− gradfi(z
r
i,ℓ)
)∥∥∥2

+ 16E
∥∥η t∑

ℓ=0

(
gradfi(z

r
i,ℓ)− gradfi(PM(xr))

)∥∥2.
For the first term can be handled by the fact [48, Corollary C.1] that

16(t+ 1)2η2E
∥∥∥ 1

t+ 1

t∑
ℓ=0

(
gradfi(z

r
i,ℓ;Br

i,ℓ)− gradfi(z
r
i,ℓ)
) ∥∥∥2 (23)

=
16(t+ 1)2η2

(t+ 1)2

t∑
ℓ=0

E
[
E
[
∥
(
gradfi

(
zri,ℓ;Br

i,ℓ

)
− gradfi

(
zri,ℓ
))

∥2|Fr
t

]]
≤ 1

t+ 1

σ2

b
.

Combining (22), (23), and (21), we have

(I) ≤16(t+ 1)η2L2
t∑

ℓ=0

E∥zri,ℓ − PM(xr)∥2 + 8

(
t+ 1

τ

)2

E∥Λr
i − Λ

r∥2 + 16(t+ 1)η2
σ2

b
, (24)

where we use Assumption 4.1. Next we substitute (24) into (19) to get

E[
∥∥zri,t+1 − PM(xr)

∥∥2] (25)

16



≤ 16(t+ 1)η2L2
t∑

ℓ=0

E∥zri,ℓ − PM(xr)∥2

+ 2M2τ2η2∥gradf(PM(xr))∥2 + 8E∥Λr
i − Λ

r∥2 + 16τη2
σ2

b︸ ︷︷ ︸
:=Ar

.

The following proof is similar to that in [24]. We define Ar as the sum of the last three terms
on the right hand of (25) and Sr

i,t :=
∑t

ℓ=0 E∥zri,ℓ − PM(xr)∥2. By E[
∥∥zri,t+1 − PM(xr)

∥∥2] =
Sr
i,t+1 − Sr

i,t and (25), we have

Sr
i,t+1 ≤ (1 + 1/(16τ))Sr

i,t +Ar, (26)

where the inequality is from η̃ ≤ ηg/(16L) and thus 16(t+ 1)η2L2 ≤ 1/(16τ). With (26), we get

Sr
i,τ−1 ≤Ar

τ−2∑
ℓ=0

(1 + 1/(16τ))
ℓ ≤ 1.1τAr, (27)

where we use
∑τ−2

ℓ=0 (1 + 1/(16τ))
ℓ ≤

∑τ−2
ℓ=0 exp (ℓ/(16τ)) ≤

∑τ−2
ℓ=0 exp(1/16) ≤ 1.1τ . Sum-

ming (27) over all the clients i, we get

E
[ n∑

i=1

τ−1∑
t=0

∥∥zri,t − PM(xr)
∥∥2 ]

≤ 3nM2τ3η2∥gradf(PM(xr))∥2 + 9τE∥Λr −Λ
r∥2 + 18nτ2η2

σ2

b
.

(28)

Now we are ready to bound 1
nE∥Λ

r+1 −Λ
r+1∥2. By the definition of Λr+1 and Λ

r+1
we have

E∥Λr+1 −Λ
r+1∥2 (29)

= η2E
∥∥τgradf (PM(xr+1)

)
−

τ−1∑
t=0

gradf (zrt ;Br
t )− τgradf(PM(xr+1)) +

τ−1∑
t=0

gradf (zrt ;Br
t )
∥∥2

≤ η2E
∥∥τgradf (PM(xr+1)

)
−

τ−1∑
t=0

gradf (zrt ;Br
t )
∥∥2

= η2E
∥∥∥τgradf (PM(xr+1)

)
− τgradf (PM(xr)) + τgradf (PM(xr))

−
τ−1∑
t=0

gradf (zrt ) +

τ−1∑
t=0

gradf (zrt )−
τ−1∑
t=0

gradf (zrt ;Br
t )
∥∥∥2

≤ 2η2τ2L2nE
∥∥PM(xr+1)− PM(xr)

∥∥2 + 4η2τL2
n∑

i=1

τ−1∑
t=0

E
∥∥zri,t − PM(xr)

∥∥2 + 4η2τn
σ2

b
.

Here, the first inequality is due to ∥Λr+1 − Λ
r+1∥2 ≤ ∥Λr+1∥2, the last inequality is due to

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, Assumption 4.1, and following similar derivations as in (23).

By substituting (28) into (29) and reorganizing the results, we complete the proof of Lemma A.3.

A.3 Proof of Theorem 4.3

To bound the first term in the Lyapunov function, we focus on the server-side update. We begin with
the following lemma over the manifolds.
Lemma A.4. Given x ∈ M, v ∈ TxM, η > 0, x− ηv ∈ UM(γ), and x+ = PM(x− ηv), it holds
that

f(x+) ≤ f(z) +
〈
gradf(x)− v, x+ − z

〉
− 1

2η
(∥x+ − x∥2 − ∥z − x∥2)−

(
1

2η
− 3∥v∥

4γ

)
∥z − x+∥2

+
L

2
∥x+ − x∥2 + L

2
∥z − x∥2,∀z ∈ M.

(30)

17



Proof. For any µ-strongly convex function h, we have for any y, z ∈ M

h(z) ≥ h(y) + ⟨∇h(y), z − y⟩+ µ

2
∥z − y∥2

= h(y) + ⟨gradh(y) +∇h(y)− gradh(y), z − y⟩+ µ

2
∥z − y∥2

≥ h(y) + ⟨gradh(y), z − y⟩+
(
µ

2
− ∥∇h(y)∥

4γ

)
∥z − y∥2,

(31)

where the second inequality is from the normal inequality (4) and ∥∇h(y)− gradh(y)∥ ≤ ∥∇h(y)∥.
Setting h(y) = 1

2η∥y − (x− ηv)∥2 in (31) with µ = 1/η, y = x+, and noting the optimality of x+

(i.e., gradh(x+) = 0), we have

1

2η
∥z − (x− ηv)∥2 ≥ 1

2η
∥x+ − (x− ηv)∥2 +

(
1

2η
− ∥y − (x− ηv)∥

4ηγ

)
∥z − x+∥2

≥ 1

2η
∥x+ − (x− ηv)∥2 +

(
1

2η
− 3∥v∥

4γ

)
∥z − x+∥2,

where the second inequality is from x− ηv ∈ UM(γ) and ∥PM(x− ηv)− (x− ηv)∥ ≤ ∥PM(x−
ηv)− x∥+ η∥v∥ ≤ 3η∥v∥. Rearranging the above inequality leads to〈

v, z − x+
〉
≥ 1

2η
(∥x+ − x∥2 − ∥z − x∥2) +

(
1

2η
− 3∥v∥

4γ

)
∥z − x+∥2. (32)

It follows from the L-smoothness of f that

f(x+) ≤ f(x) +
〈
gradf(x), x+ − x

〉
+

L

2
∥x+ − x∥2

≤ f(z) +
〈
gradf(x), x+ − z

〉
+

L

2
∥z − x∥2 + L

2
∥x+ − x∥2,

where we use f(x) + ⟨gradf(x), z − x⟩ − L
2 ∥z − x∥2 ≤ f(z) in the last inequality. Combining the

above inequality and (32) gives (30).

In the following, we use Lemma A.4 to (7) and (6), respectively. First, to apply Lemma A.4 to (7),
we substitute x+ = x̃r+1, z = PM(xr), x = PM(xr), and v = gradf(PM(xr)) and get

E
[
f
(
x̃r+1

)]
≤ E

[
f (PM(xr)) +

(
L

2
− 1

2η̃

)∥∥x̃r+1 − PM(xr)
∥∥2 − 1− η̃ρ

2η̃

∥∥x̃r+1 − PM(xr)
∥∥2 ],

(33)

where we use η̃ ≤ γ
Df

to guarantee x̃r+1 ∈ UM(γ) and ρ :=
3Df

2γ .

Next, to use Lemma A.4 to (6), we set x+ = PM(xr+1), x = PM(xr), z = x̃r+1, and v = vr and
get

E
[
f(PM(xr+1))

]
(34)

≤ E
[
f(x̃r+1) +

〈
gradf(PM(xr))− vr,PM(xr+1)− x̃r+1

〉
− 1

2η̃

(
∥PM(xr+1)− PM(xr)∥2 − ∥x̃r+1 − PM(xr)∥2

)
− 1− η̃ρ

2η̃
∥x̃r+1 − PM(xr+1)∥2

+
L

2

∥∥PM(xr+1)− PM(xr)
∥∥2 + L

2
∥x̃r+1 − PM(xr)∥2

]
= E

[
f
(
x̃r+1

)
+
〈
gradf(PM(xr))− vr,PM(xr+1)− x̃r+1

〉
+

(
L

2
− 1

2η̃

)∥∥PM(xr+1)− PM(xr)
∥∥2

+

(
L

2
+

1

2η̃

)∥∥x̃r+1 − PM(xr)
∥∥2 − 1− η̃ρ

2η̃

∥∥PM(xr+1)− x̃r+1
∥∥2 ],

where we use η̃ ≤ γηg

2Df
to guarantee PM(xr+1) ∈ UM(γ).

18



Recall that

PM(xr+1) = PM

(
PM(xr)− η̃

1

nτ

n∑
i=1

τ−1∑
t=0

(
gradfi

(
zri,t;Br

i,t

))
︸ ︷︷ ︸

:=vr

)
.

Combining the above inequality, (33), and (34) yields

E
[
f(PM(xr+1))

]
(35)

≤ E
[
f (PM(xr)) +

(
L− 1

2η̃
+

ρ

2

)
∥x̃r+1 − PM(xr)∥2 +

(
L

2
− 1

2η̃

)
∥PM(xr+1)− PM(xr)∥2

−1− η̃ρ

2η̃

∥∥PM(xr+1)− x̃r+1
∥∥2︸ ︷︷ ︸

(IV)

+
〈
PM(xr+1)− x̃r+1, gradf (PM(xr))− vr

〉︸ ︷︷ ︸
(V)

]
.

According to ∥a+ b∥2 ≤ 1
2η̃∥a∥

2 + η̃
2∥b∥

2, we have

(IV) + (V) (36)

≤ (IV) +
1− η̃ρ

2η̃
∥PM(xr+1)− x̃r+1∥2 + η̃

2(1− η̃ρ)
∥gradf(PM(xr))− vr∥2

=
η̃

2(1− η̃ρ)
∥gradf(PM(xr))− vr∥2.

To bound the above inequality, following similar derivations as in (23) we obtain

E ∥vr − gradf(PM(xr))∥2

= E
∥∥ 1

nτ

n∑
i=1

τ−1∑
t=0

(
gradfi

(
zri,t;Br

i,t

)
− gradfi(z

r
i,t) + gradfi(z

r
i,t)− gradfi(PM(xr))

)∥∥2
≤ 2L2 1

nτ

n∑
i=1

τ−1∑
t=0

E∥zri,t − PM(xr)∥2 + 2

τn

σ2

b
.

(37)

Substituting (36) and (37) into (35), we have

E[f(PM(xr+1))] (38)

≤E
[
f (PM(xr)) +

(
L− 1

2η̃
+

ρ

2

)∥∥x̃r+1 − PM(xr)
∥∥2 + (L

2
− 1

2η̃

)∥∥PM(xr+1)− PM(xr)
∥∥2

+
η̃

2(1− η̃ρ)

(
2L2

nτ

n∑
i=1

τ−1∑
t=0

∥zri,t − PM(xr)∥2 + 2

τn

σ2

b

)]
.

The final term is the drift-error that can be bounded in (28). Thus, (38) becomes

E[f(PM(xr+1))] (39)

≤ E
[
f (PM(xr)) +

(
L− 1

2η̃
+

ρ

2

)∥∥x̃r+1 − PM(xr)
∥∥2 + (L

2
− 1

2η̃

)∥∥PM(xr+1)− PM(xr)
∥∥2

+
η̃

2(1− η̃ρ)

2L2

nτ

(
12nM2τ3η2∥Gη̃g(PM(xr))∥2 + 9τE∥Λr −Λ

r∥2 + 18nτ2η2
σ2

b

)
+

η̃

2(1− η̃ρ)

2

τn

σ2

b

]
,

where we use ∥gradf(PM(xr))∥ ≤ 2∥Gη̃(PM(xr))∥ from Lemma (A.2). By substituting η̃ ≤ 1
4ρ as

η̃ ≤ γ
6Df

, we have η̃
2(1−η̃ρ) ≤ η̃. Combining the recursions given by Lemma A.3 and (39), we have

for the Lyapunov function that

E
[ (

f(PM(xr+1))− f⋆
)
+

1

η̃n
∥Λr+1 −Λ

r+1∥2
]

(40)

19



≤E
[
(f(PM(xr))− f⋆) +

1

η̃n
∥Λr −Λ

r∥2 − η̃

8
∥G(PM(xr))∥2

]
+

8η̃

nτ

σ2

b
,

where we substitute conditions (11) on the step sizes and omit straightforward algebraic calculations.
Substituting the definition of the Lyapunov function Ωr and repeating the above inequality, we
complete the proof of Theorem 4.3.

Discussion on step sizes. In our analysis, the condition ηg =
√
n is applied only in the final step,

when combining Lemma A.3 and (39) to derive the recursion on the Lyapunov function in (40). Up
to this point, we retain ηg as a variable without assigning a specific value, ensuring that all preceding
results remain valid for ηg = 1 as well. We choose ηg =

√
n in (40) to conveniently cancel out the

number of clients n, yielding a more concise expression in the final result.

In (11), we require that η̃ := ηgητ ≤ min
{

1
24ML ,

γ
6Df

, 1
DfLP

}
. The term γ

6Df
controls the

client drift, see (39); the term 1
DfLP

is used to derive (16), which ensures that when the metric
∥Gη̃(PM(xr))∥ approaches zero, the first-order optimality condition is met. The term 1

24ML is used
to establish the Lyapunov function recursion (40) by combining the recursions in (17) and (39).
Additional conditions on the step sizes ensure that the iterates remain within the 2γ-tube during our
analysis, such as in (17), (33), and (34), but they are implied by the three terms in (11).

A.4 Additional results for numerical experiments

A.4.1 kPCA

The settings for kPCA problem with Mnist Dataset. The Mnist dataset consists of 60,000
handwritten digit images ranging from 0 to 9, each with dimensions of 28× 28. We reshape these
images into a data matrix A ∈ R60000×784. To construct the heterogeneous Ai, we sort the rows in
increasing order of their associated digits and then split every 60000/n rows, with n = 10 as the
number of clients, among each client. This data partition introduces significant data heterogeneity. In
our setup, d = 784, p = 6000, and k = 2.

For kPCA problem with Mnist dataset, when τ = 10, the comparison on f(xr) − f⋆ is shown in
Figs. 5. Our algorithm performs much better than alternative methods in terms of communication
quantity and run time.

0 200 400 600 800 1000
Communication round

10 9

10 5

10 1

103

f(x
r )

f

0 500 1000 1500 2000
Communication quantity

10 9

10 5

10 1

103

f(x
r )

f

0 20 40 60 80 100
Runtime (s)

10 9

10 5

10 1

103

f(x
r )

f

RFedavg RFedprox RFedSVRG our

Figure 5: kPCA problem with Mnist dataset: Comparison on f(xr)− f⋆.

Synthetic Dataset. We also solve kPCA with synthetic datasets on larger networks with n = 30.
We generate each entry of Ai from Gaussian distribution N

(
0, 2i

n

)
such that Ai are heterogeneous

among clients. We set (d, k) = (20, 5) and p = 15. We use the local full gradient ∇fi to remove the
influence of stochastic Riemannian gradient noise.

In the first set of experiments, we compare with existing algorithms, including RFedavg, RFedprox,
and RFedSVRG. For all algorithms, we set the number of local steps as τ = 5 and the step size as
η = 4e−3. For our algorithm, we set ηg = 1. The experimental results are shown in Figs. 6. The
y-axis represents ∥gradf(xr)∥ and (f(xr)−f⋆) respectively, while the x-axis represents the number
of communication rounds, communication quantity, and run time, respectively. It can be observed
that RFedavg and RFedprox face the issue of client drift, hence they do not converge accurately. Both
FedSVRG and our algorithm can overcome the client drift issue, but our algorithm is slightly faster

20



in terms of communication rounds and is much faster in terms of both communication quantity and
run time.

0 1000 2000 3000 4000
Communication round

10 15

10 11

10 7

10 3

101

gr
ad

f(x
r )

0 2000 4000 6000 8000
Communication quantity

10 15

10 11

10 7

10 3

101

gr
ad

f(x
r )

0 10 20 30 40
Runtime (s)

10 15

10 11

10 7

10 3

101

gr
ad

f(x
r )

RFedavg RFedprox RFedSVRG our

0 500 1000 1500 2000
Communication round

10 16

10 12

10 8

10 4

100

f(x
r )

f*

0 1000 2000 3000 4000
Communication quantity

10 16

10 12

10 8

10 4

100

f(x
r )

f*

0 5 10 15 20
Runtime (s)

10 16

10 12

10 8

10 4

100

f(x
r )

f*

RFedavg RFedprox RFedSVRG our

Figure 6: kPCA with synthetic dataset: Comparison on ∥gradf(xr)∥ and f(xr)− f⋆.

In the second set of experiments, we test the impact of the number of local updates τ . For all the
algorithms, we set R = 4000, the step size η = 0.7e−3, and τ ∈ {10, 15, 20}. For our algorithm, we
set ηg = 1. The results are shown in Figs. 7, with the y-axis representing ∥gradf(xr)∥ and x-axis
representing the communication quantity. When τ increases, the convergence becomes faster. For all
values of τ , our algorithm achieves high accuracy and requires less time.

0 2000 4000 6000 8000
Communication quantity

10 15

10 11

10 7

10 3

101

gr
ad

f(x
r )

= 10

0 2000 4000 6000 8000
Communication quantity

10 15

10 11

10 7

10 3

101

gr
ad

f(x
r )

= 15

0 2000 4000 6000 8000
Communication quantity

10 15

10 11

10 7

10 3

101

gr
ad

f(x
r )

= 20

RFedavg RFedprox RFedSVRG our

Figure 7: kPCA with synthetic dataset: The impacts of τ .

A.4.2 Low-rank matrix completion

For numerical tests, we consider random generated A. To be specific, we first generate two random
matrices L̂ ∈ Rd×k and R̂ ∈ Rk×T , where each entry obeys the standard Gaussian distribution.
For the indices set Ω, we generate a random matrix B with each entry following from the uniform
distribution, then set Ωij = 1 if Bij ≤ ν and 0 otherwise. The parameter ν is set to 10k(d + T −
k)/(dT ).

As shown in Figs. 8, our algorithm is faster than existing algorithms in terms of communication
quantity and run time.

We also show the impact of τ and the impact of n. As shown in Figs. 9, larger τ yields less
communication quantity to achieve the same accuracy. As shown in Figs. 10, for n = 10, n = 20,
and n = 30, our algorithm consistently outperforms the compared algorithms.

21



0 100 200 300 400
Communication round

10 8

10 5

10 2

101

f(x
r )

0 200 400 600 800
Communication quantity

10 8

10 5

10 2

101

f(x
r )

0 50 100 150 200
Runtime (s)

10 8

10 5

10 2

101

f(x
r )

RFedavg RFedprox RFedSVRG our

Figure 8: LRMC: Comparison on f(xr).

0 200 400 600
Communication quantity

10 9

10 6

10 3

100

gr
ad

f(x
r )

= 5

0 200 400 600
Communication quantity

10 12

10 9

10 6

10 3

100

gr
ad

f(x
r )

= 15

0 200 400 600
Communication quantity

10 12

10 9

10 6

10 3

100

gr
ad

f(x
r )

= 20

RFedavg RFedprox RFedSVRG our

Figure 9: LRMC: The impacts of τ .

0 100 200 300 400
Communication round

10 4

10 2

100

gr
ad

f(x
r )

0 200 400 600 800
Communication quantity

10 4

10 2

100

gr
ad

f(x
r )

0 50 100 150
Runtime (s)

10 4

10 2

100
gr

ad
f(x

r )

RFedavg RFedprox RFedSVRG our

0 100 200 300 400
Communication round

10 4

10 2

100

gr
ad

f(x
r )

0 200 400 600 800
Communication quantity

10 4

10 2

100

gr
ad

f(x
r )

0 50 100 150 200
Runtime (s)

10 4

10 2

100

gr
ad

f(x
r )

RFedavg RFedprox RFedSVRG our

0 100 200 300 400
Communication round

10 4

10 2

100

gr
ad

f(x
r )

0 200 400 600 800
Communication quantity

10 4

10 2

100

gr
ad

f(x
r )

0 50 100 150 200
Runtime (s)

10 4

10 2

100

gr
ad

f(x
r )

RFedavg RFedprox RFedSVRG our

Figure 10: LRMC: The impacts of n. (First row: n = 10, second row: n = 20, and third row:
n = 30. We set τ = 5. )

22



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract outlines the topic of the research, the methods used, and the
results obtained. In the introduction section, we summarize in detail the three contributions
of this paper: algorithm contributions, theoretical contributions, and experimental results,
all of which are explained in detail in the subsequent main body of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:[Yes]
Justification: See Conclusions and limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23



Answer: [Yes]
Justification: See Assumptions we made and Appendix A.1–A.3 for a complete (and correct)
proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Numerical experiments and Appendix A.4 for details of experiment
settings and additional results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We did not provide the code during the submission stage.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See numerical experiments and Appendix A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our algorithm uses stochastic gradients. We fixed the random seed to better
compare the impact of algorithm parameters on the accuracy of the algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our experiments can be completed on a laptop.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use open datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28


	Introduction
	Contributions
	Related works

	Preliminaries
	Optimization on manifolds
	Proximal smoothness of M

	Proposed algorithm
	Algorithm description
	Algorithm intuition and innovations

	 Analysis
	Numerical experiments
	Conclusions and limitations
	Appendix
	Notations
	Preliminary lemmas
	Proof of Theorem 4.3
	Additional results for numerical experiments
	kPCA
	Low-rank matrix completion



