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ABSTRACT

Although Transformer networks outperform various natural language processing
tasks, many aspects of their theoretical nature are still unclear. On the other hand,
fully connected neural networks have been extensively studied in terms of their
approximation and estimation capability where the target function is included in
such function classes as Hölder class and Besov class. Besov spaces play an im-
portant role in several fields such as wavelet analysis, nonparametric statistical
inference and approximation theory. In this paper, we study the approximation
and estimation error of Transformer networks in a setting where the target func-
tion takes a fixed-length sentence as an input and belongs to two variants of Besov
spaces known as anisotropic Besov and mixed smooth Besov spaces, in which it
is shown that Transformer networks can avoid curse of dimensionality. By over-
coming the difficulties in limited interactions among tokens, we prove that Trans-
former networks can accomplish minimax optimal rate. Our result also shows that
token-wise parameter sharing in Transformer networks decreases dependence of
the network width on the input length. Moreover, we prove that, under suitable
situations, Transformer networks dynamically select tokens to pay careful atten-
tion to. This phenomenon matches attention mechanism, on which Transformer
networks are based. Our analyses strongly support the reason why Transformer
networks have outperformed various natural language processing tasks from a the-
oretical perspective.

1 INTRODUCTION

Transformer networks, which were proposed in Vaswani et al. (2017), have outperformed various
natural language processing (NLP) tasks, including text classifications (Shaheen et al., 2020), ma-
chine translation (Vaswani et al., 2017), language modeling (Radford et al.; Devlin et al., 2018)), and
question answering (Devlin et al., 2018; Yang et al., 2019). Transformer networks make it feasible
to approximate functions which can take a sequence of tokens (i.e., text) as input due to their specific
architecture which is a stack of blocks of self-attention layers and token-wise feed-forward layers.
However, despite of these great successes in various NLP tasks, many aspects of their theoretical
nature are still unclear.

On the other hand, fully connected neural networks have been extensively studied in terms of their
function approximation and estimation capability. A remarkable property of neural network is its
universal approximation capability, which means that any continuous function with compact sup-
port can be approximated with arbitrary accuracy with two fully connected layers (Cybenko, 1989).
However, Cybenko (1989) did not state anything about an upper bound of the network size. There-
fore, a relation between properties of the target function and the network size is a next question.
By imposing certain properties such as smoothness on target functions, the representabiliy of neu-
ral network can be studied more precisely. Barron (1993) developed an approximation theory for
functions with limited capacity that is measured by integrability of their Fourier transform. Deep
neural networks with ReLU activation (Nair & Hinton, 2010; Glorot et al., 2011) has also been ex-
tensively studied from the viewpoint of the approximation and the estimation ability. For example,
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Yarotsky (2016) proved the approximation error of fully connected layers with the ReLU activa-
tion for functions in Sobolev spaces. Schmidt-Hieber (2017) derived an estimation error bound of
regularized least squared estimator performed by deep ReLU network based on an approximation
error analysis in a regression setting. Suzuki (2019) derived approximation and estimation error
rates of fully connected layers with ReLU activation for the Besov space, which were also shown
to be almost minimax optimal. Although the derived rates of convergence are almost optimal, they
suffer from the curse of dimensionality, which is one of the main issues of machine learning. A
typical consequence of the curse of dimensionality is that, when the dimension of data increases,
the approximation accuracy (and estimation accuracy) deteriorates exponentially against the dimen-
sion. However, under some specific structure on the data and the target function, we may avoid this
issue. Indeed, Suzuki (2019) and Suzuki & Nitanda (2021) showed that, by assuming that the target
function has mixed smoothness or anisotropic smoothness, we can avoid curse of dimensionality.
Okumoto & Suzuki (2022) derived approximation and estimation errors in a severe setting in which
input data are infinite-dimesional.

Although many researches on the representation ability of fully connected layers and convolution
layers are developed, relatively few researches on that of Transformer networks are found. Kratsios
et al. (2021) proved that there exists a pair of an input sequence and output particles which mini-
mize a given proper loss functions under a given constraint set. Vuckovic (2020) proved that, when
regarding attention layers as functions from measures to measures, attention layers have the Lips-
chitz continuity property from a viewpoint of Wasserstein distances. Both Kratsios et al. (2021) and
Vuckovic (2020) regard an input sentence as a measure, that is, particles or a bag of words, which is
an interesting viewpoint. However, these papers do not specify how approximate Transformer net-
works are to a given function from an input sequence to an output. Therefore, these papers’ results
are different from this paper’s main purpose to explain why Transformer networks can outperform
various NLP tasks represented by target functions in various function spaces. Yun et al. (2020), Za-
heer et al. (2020) and Shi et al. (2021) proved that Transformer networks are universal approximators
of sequence to sequence functions. However, since these papers did not assume smoothness of the
target function, the results of these papers did not specify an upper bound of Transformer network
depths, which corresponds to the fact that universal approximation capability of neural networks did
not state anything about an upper bound of the network width. Thus, this paper studies a question
which naturally arises as to how properties of the target function are related to the network size and
precision required.

In this paper, we study the approximation and estimation error of the Transformer architecture in a
setting where the target function takes a fixed-length sentence as an input and belongs to a mixed
smooth Besov space and an anisotropic Besov space. We prove that Transformer networks accom-
plish almost minimax optimal rate by analyzing the Transformer network architecture and approxi-
mation ability of the two function spaces. Moreover, we prove that, under suitable situations, Trans-
former networks can dynamically select tokens to pay careful attention to. The essence of the proof
strategy is as follows: First, for a given target function, we obtain a sum of piece-wise polynomial
functions which is approximate to the target function in a certain rate. Next, one constructs a neural
network approximate to a piece-wise polynomial functions. Finally, one constructs a neural network
approximate to the sum. The problem is the second phase in which one constructs a neural network
approximate to a cardinal B-spline function. The proof of the phase is based on fully connected
layers approximate to xy in Yarotsky (2016). However, Transformer networks are permitted to do
limited interactions among tokens. In this paper, we propose how to construct an attention layer
which values exchanges between different tokens. By using attention layers constructed above, we
can construct a Transformer network approximate to cardinal B-spline function. This difficulty is
common to previous papers (Yun et al., 2020; Zaheer et al., 2020; Shi et al., 2021), though their
strategies of obtaining a piece-wise constant approximation are different from ours in a viewpoint
of exploitation of function smoothness.

Our contributions can be summarized as follows:

1. We consider a situation in which the target function takes a fixed-length sentence as an input
and belongs to a mixed smooth Besov space and an anisotropic Besov space, in which it is
shown that Transformer networks can avoid curse of dimentionality and accomplish almost
minimax optimal rate. We also shows that token-wise parameter sharing in Transformer
networks decreases dependence of the network width on the input length.
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2. We prove that, under suitable situations, Transformer networks dynamically select tokens
to pay careful attention to. Moreover, we show that the count of tokens to pay careful atten-
tion to is decided by an NLP task, and the accuracy required. This phenomenon matches
attention mechanism, on which Transformer networks are based.

2 NOTATIONS AND PROBLEM SETTINGS

In this section, we define the notations and introduce the problem setting. Throughout this paper,
we use the following notations. Let X be a finite set. Then we shall write ♯X for the cardinality of
X . Write Z for the ring of rational integers and R for the field of real numbers. Let Λ ∈ {Z,R} and
a ∈ Λ. Then we denote by Λ>a := {a′ ∈ Λ | a′ > a}, Λ≥a := {a′ ∈ Λ | a′ ≥ a}. Let Ω ⊆ Rd

be a domain of the functions. For a function f : Ω → R, let ∥f∥p := ∥f∥Lp(Ω) :=
(∫

Ω
|f |pdx

) 1
p

for 0 < p < ∞ and ∥f∥∞ := ∥f∥L∞(Ω) := supx∈Ω |f(x)| for p = ∞. For α ∈ Rd, p ∈ R>0, we

denote by ∥α∥p :=
(∑d

i=1 |αi|p
) 1

p

, ∥α∥∞ := maxdi=1 |αi|, ∥α∥0 := ♯{i ∈ Z|1 ≤ i ≤ d, αi ̸= 0}.

For α ∈ Rd
>0, we denote by ᾱ := max(α), α := min(α), α̃ :=

(∑d
i=1

1
αi

)−1

. For α ∈ Zd
≥0,

we denote by Dαf(x) := ∂∥α∥1

∂α1x1...∂
αdxd

f(x). We also define some utility functions as follows: Let
x ∈ R. Then we denote by x+ := max(x, 0), x ∨ y := max(x, y), ⌊x⌋ := min{n ∈ Z|n ≤ x},
⌈x⌉ := max{n ∈ Z|n ≥ x}.

In the following subsections, the function classes for which we develop error bounds, and the set of
Transformer networks with given hyper-parameters.

2.1 MIXED SMOOTH BESOV SPACE

In this section, we define the mixed smooth Besov space, one of the function classes which we
discuss. To define the mixed smooth Besov space, we first introduce the modulus of smoothness.

Definition 1 (r-th modulus of smoothness). Let Ω be a measurable subset of RD, p ∈
R>0 ∪ {∞} and r ∈ Z≥1. For a function f ∈ Lp(Ω) and t ∈ RD

>0, the r-th modu-
lus of smoothness of f is defined by wr,p(f, t) := sup|hi|≤ti ||∆

r
h(f)||p, where ∆r

h(f)(x) :={∑r
j=0

(
r
j

)
(−1)r−jf(x+ jh) (x ∈ Ω, x+ rh ∈ Ω).

0 (otherwise).

Next, based on the modulus of smoothness, we introduce the notion of mixed modulus of smooth-
ness.

Definition 2 (Mixed modulus of smoothness). Let d ∈ Z≥1, Ω be a measurable subset of Rd, p ∈
R>0 ∪{∞}, r ∈ Zd

≥1, h ∈ Rd, and a function f ∈ Lp(Ω). Then we define the coordinate difference
operator as follows: ∆r,i

h (f)(x) := ∆r
hi
(f(x1, . . . , xi−1, ·, xi+1, . . . , xd))(xi). Accordingly, for

e ⊆ {1, . . . , d}, we define the mixed difference operator ∆r,e
h (f) :=

{∏
i∈e ∆

r,i
hi
(f) (e ̸= ∅)

f (e = ∅)
(note that, for any i ̸= j, ∆r,i

hi
◦∆r,j

hj
= ∆r,j

hj
◦∆r,i

hi
) and the r-th mixed modulus of smoothness of f

we
r,p(f, t) := sup|hi|≤ti ||∆

r,e
h (f)||p.

Finally, based on the mixed modulus of smoothness, the mixed smooth Besov space is defined as in
the following definition.

Definition 3 (mixed smooth Besov space). Let d ∈ Z≥1, Ω be a measureable subset of Rd, p, q ∈
R>0 ∪ {∞}, α ∈ Rd

>0, r := ⌊α⌋ + 1, e ⊆ {1, . . . , d}. Then, for e ⊆ {1, . . . , d}, we define the
seminorm | · |MBα,e

p,q
as follows:

|f |MBα,e
p,q

:=


(∫

Ω
((
∏

i∈e t
−αi
i )we

r,p(f, t))
q dt∏

i∈e ti

) 1
q

(q < ∞),

supt∈Ω((
∏

i∈e t
−αi
i )we

r,p(f, t)) (q = ∞).
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Note that |f |
MBα,∅

p,q
= ||f ||Lp(Ω). The norm of the mixed smooth Besov space MBα

p,q(Ω) can be
defined as the sum of the semi-norm over the choice of e by ||f ||MBα

p,q
:=
∑

e⊆{1,...,d} |f |MBα,e
p,q

,

and we define

MBα
p,q(Ω) :=

{
f ∈ Lp(Ω)

∣∣||f ||MBα
p,q

< ∞
}
,MUα

p,q(Ω) :=
{
f ∈ MBα

p,q(Ω)
∣∣||f ||MBα

p,q
≤ 1
}
.

The mixed smooth Besov space was originally introduced by Schmeisser (1987); Sickel & Ullrich
(2009). Various researches showed that an appropriate estimator for these models can avoid curse of
dimensionality (Meier et al., 2009; Raskutti et al., 2012; Kanagawa et al., 2016; Suzuki et al., 2016).
The relation between mixed smooth Besov spaces and ordinary Besov spaces, the definition of which
are found in Gine & Nickl (2015); Suzuki (2019), can be informally explained as follows. A mixed
smooth Besov space consists of functions for which the “maximum” of the orders of the derivatives
is “bounded”: maxᾱ=n D

αf while an ordinary Besov space consists of functions for which the
“sum” of the orders of the derivatives is “bounded”

∑
∥α∥=n D

αf . This difference directly affects
the rate of convergence of approximation accuracy (Düng et al. (2016); Suzuki (2019)), but, for this
reason, mixed smooth Besov spaces do not include ordinary Besov spaces in general.

2.2 ANISOTORPIC BESOV SPACE

In this section, we define the anisotropic Besov space, the other of the function classes which we
discuss. Here we define the anisotropic Besov space as follows.
Definition 4 (Anisotropic Besov space). Let d ∈ Z≥1, Ω be a measureable subset of RD, p, q ∈
R>0 ∪ {∞}, α ∈ Rd

>0, r := max(⌊αi⌋) + 1. Then we define the seminorm | · |ABα
p,q

as follows:

|f |ABα
p,q

:=


(∑∞

k=0(2
kwr,p(f, (2

− k
α1 , . . . , 2

− k
αd )))q

) 1
q

(q < ∞),

supk≥0(2
kwr,p(f, (2

− k
α1 , . . . , 2

− k
αd ))) (q = ∞).

The norm of the anisotropic Besov space ABα
p,q(Ω) can be defined as ∥f∥ABα

p,q
:= ∥f∥Lp +

|f |ABα,e
p,q

, and we define

ABα
p,q(Ω) :=

{
f ∈ Lp(Ω)

∣∣||f ||ABα
p,q

< ∞
}
, AUα

p,q(Ω) :=
{
f ∈ ABα

p,q(Ω)
∣∣||f ||ABα

p,q
≤ 1
}
.

The statistical analysis on an anisotropic Besov space can be dated back to Ibragimov &
Khas’minskii (1984), who considered an estimation of a density function which is assumed to be in-
cluded in an anisotropic Sobolev space with p ≤ 2. Afterwards, several studied have been conducted
from the viewpoint of non-parametric statistics, such as nonlinear kernel estimator (Kerkyacharian
et al., 2001), and kernel ridge regression (Hang & Steinwart, 2018).

Here, we present some relations with anisotropic Besov spaces and other function classes. First, if
α1 = · · · = αd = α then it follows from the definition of anisotropic Besov spaces that anisotropic
Besov spaces are equal to oridinary Besov spaces with smoothness parameter α. Hence, the defini-
tion of anisotropic Besov spaces includes that of the ordinary Besov spaces as a special case, while
the definition of mixed smooth Besov spaces do not include that of the ordinary Besov spaces in
general. Moreover, anisotropic Besov spaces are closely related to Hölder spaces. We present the
definition of Hölder spaces as follows.
Definition 5 (Hölder space). Let α ∈ R>0 such as α /∈ N and we denote by m := ⌊α⌋. For an
m times differentiable function f : Rd → R, let the norm of the Hölder space Cα(Ω) be ∥f∥Cα

:=

max∥nd∥1≤m ∥∂ndf∥∞ +max∥nd∥1=m supx,y∈Ω
|∂ndf(x)−∂ndf(y)|

∥x−y∥α−m . Then, (α-)Hölder space Cα is
defined as Cα(Ω) := {f |∥f∥Cα < ∞}.

Let p, q ∈ R∞
>0, α ∈ Rd

>0, and α0 ∈ R>0 such that α̃ > 1
p . and we denote by α′ := (α0, . . . , α0)

⊤.

Then, Triebel (2011) shows that ABα′

∞,∞ = Cα0 , ABα
p,q ↪→ C0. This result shows that, if the

average smoothness α̃ is sufficiently large (α̃ > 1
p ), then the functions in ABα

p,q are continuous.
However, it can be shown that, if it is small ( α̃ < 1

p ), then they are no longer continuous. Actually,
there exists functions in which spikes and jumps appear (see Donoho & Johnstone (1998) for this
perspective, from the viewpoint of wavelet analysis).
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2.3 TRANSFORMER NETWORKS

In this section, we define the set of Transformer networks with given hyper-parameters such as fully
connected layer count, transformer block count, layer width, etc. Let us denote Mat(Rd,Rd′

)

by the set of linear transformations from Rd to Rd′
, for any f : Rd 7→ Rd′

, the function
Π(f) : (Rd)l → (Rd′

)l by Π(f)(x) := (f(xi))i, for any v, k, q ∈ (Rd)l, the attention func-
tion Attn : (Rd)l × (Rd)l × (Rd)l → (Rd)l by Attn(v, k, q) :=

(∑l
j=1 vj

exp(⟨kj ,qi⟩)∑l
k=1 exp(⟨kk,qi⟩)

)
i
,

by DAttn(x;MK ,MQ,MV ,MO) := MO · Attn(Π(MV )(x),Π(MK)(x),Π(MQ)(x)), for any
PE ∈ (RE)l, the concatenation function Concat[PE ] : (Rd)l → (Rd+E)l by Concat[PE ](x) :=(

x
PE

)
, and the head function Head : (Rd)l → Rd by Head(x) := x1.

Definition 6 (Transformer networks). Define the transformer architecture
TN(L, T,E,W,H, S,B) with dense layer count L, transformer block count T , width
W , head count H , sparsity constraint S and norm constraint B recursively as follows:
FL(W,S,B) :=

{
f(x) := x+ (M · (x+) + b)

∣∣M ∈ Mat(W,W ), b ∈ RW ,

||M ||0 + ||b||0 ≤ S, ||M ||∞ ∨ ||b||∞ ≤ B
}
,

FN(L,W,S,B) :=
{
f (L) ◦ · · · ◦ f (1)

∣∣f (l) ∈ FL(W,Sl, Bl),
∑L

l=1 Sl ≤ S,max1≤l≤L Bl ≤ B
}

,

AL(W,H,S,B) :=
{
f(x) := x+

∑H
h=1 DAttn(x;M

(h)
K ,M

(h)
Q ,M

(h)
V ,M

(h)
O )

∣∣M (h)
s ,M

(h)
Q ,M

(h)
V ,

M
(h)
O ∈ Mat(W,W ),

∑
s∈{K,Q,V,O}

∑H
h=1(||M

(h)
s ||0) ≤ S,max 1≤h≤H

s∈{K,Q,V,O}
(||M (h)

s ||∞) ≤ B
}

,

TL(L,W,H, S,B) :=
{
Π(g) ◦ f

∣∣f ∈ AL(W,H,S1, B1), g ∈ FN(L,W, S2, B2),∑2
i=1 Si ≤ S,maxi=1,2 Bi ≤ B

}
,

STL(L, T,W,H, S,B) :=
{
f (T ) ◦ · · · ◦ f (1)

∣∣f (t) ∈ TL(Lt,W,H, St, Bt),∑T
t=1 Lt ≤ L,

∑T
t=1 St ≤ S,max1≤l≤T Bl ≤ B

}
,

TN(L, T,E,W,H, S,B) :=
{
Head ◦ f ◦Concat[PE ]

∣∣PE ∈ (RE)l,

f ∈ STL(L, T,W,H, S1, B), S1 + ∥PE∥0 ≤ S, ∥PE∥∞ ≤ B
}

.

We incorporate the architecture proposed in Vaswani et al. (2017) into our definition of Transformer
networks. We denote FL by the set of a single fully connected layer, FN by the set of a stack of
fully connected layers, AL by the set of a multi-head attention layer, TL by the set of a Transformer
block which composes of multi-head attention layer and a stack of fully connected layers, STL by
the set of a stack of transformer blocks, TN by the set of an overall Transformer network with
positional encoding. Note that, in order to exaggerate a count of interactions among tokens, we
define a Transformer block as a concatenation of a multi-head attention layer and a stack of fully
connected layers, not a single fully connected layers.

3 APPROXIMATION ERROR ANALYSIS

In this section, we evaluate how well the functions in mixed smooth Besov and anisotropic Besov
spaces can be approximated by Transformer networks. To evaluate the accuracy of the deep neural
network model in approximating target functions, we first define the worst case approximation error.
Definition 7 (Worst case approximation error). Let d ∈ Z≥1, r ∈ R>0 ∪ {∞} and F ,H be subsets
of measurable functions on Ω(⊆ Rd). Then we define the worst case approximation error as follows:

Rr(F ,H) := sup
f◦∈H

inf
f∈F

||f◦ − f ||Lr(Ω).

Note that F is the set of functions used for approximation, and H is the set of target functions.

Here, we present the results on the approximation ability.
Theorem 1 (Approximation ability for mixed smooth Besov spaces). Suppose that p, q, r ∈ R>0 ∪
{∞}, α ∈ (Rd)l,m ∈ Z≥1. Let δ :=

(
1
p − 1

r

)
+

(note that δ > 0 is equivalent to p < r) and

assume that δ < α, ᾱ < min(m,m− 1 + 1
p ).
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Then, for K ∈ Z≥1, there exist absolute constant C ∈ R>0, constants which define hyper-
parameters

Dk,d′ :=

(
1 +

d′ − 1

k

)k (
1 +

k

d′ − 1

)d′−1

, η :=


( 1
min(r,1) −

1
q )+ (r ≤ p),

( 1r − 1
q )+ (p < r and r < ∞),

(1− 1
q )+ (p < r and r = ∞),

ν :=
α− δ

2δ
,K∗ :=

⌈
K(1 + ν−1)

⌉
, N := (2 + (1− 2−ν)−1)2KDK∗,dl,

ϵ := 2
−
(
α+(1+ν−1)( 1

p−α)
+

)
K
, T0 := ⌈log2 l⌉, L1 = C

⌈
log

(
4dl

ϵ

)⌉
,

L2 = 3 + 2

⌈
log2

(
4l · 3d∨m

ϵc(d,m)

)
+ 5

⌉
⌈log2(d ∨m)⌉ , L3 = C

⌈
log

(
6T0

ϵ

)⌉
,

W0 := 6dm(m+ 2) + 2d

and hyper-parameters of the set of Transformer networks

T := T0, E := l,H := 1, L := L1 + L2 + T (L3 + 2) + 1,W := W0N + E,

S := C(Nl + L1) + L2W
2
0N + CT0((N + E) + L3) +N,B ≲ N (1+ 1

ν )(( 1
p−α)+∨1).

such that
Rr(TN(L, T,E,W,H, S,B),MUα

p,q([0, 1]
dl)) ≲ 2−αKDη

K,dl.

Theorem 2 (Approximation ability for anisotropic Besov spaces). Suppose that p, q, r ∈ R>0 ∪
{∞}, α ∈ (Rd)l,m ∈ Z≥1. Let δ :=

(
1
p − 1

r

)
+

(note that δ > 0 is equivalent to p < r) and

assume that δ < α̃, ᾱ < min(m,m− 1 + 1
p ).

Then, for K ∈ Z≥1, there exist absolute constant C ∈ R>0, constants which define hyper-
parameters

ν :=
α̃− δ

2δ
,K∗ :=

⌈
K(1 + ν−1)

⌉
, N := (2 + (1− 2−ν)−1)Ñ ,

ϵ := Ñ
−
(
α̃+(1+ν−1)( dlᾱ

p −α)
+

)
, T0 := ⌈log2 l⌉, L1 = C

⌈
log

(
4dl

ϵ

)⌉
,

L2 = 3 + 2

⌈
log2

(
4l · 3d∨m

ϵc(d,m)

)
+ 5

⌉
⌈log2(d ∨m)⌉ , L3 = C

⌈
log

(
6T0

ϵ

)⌉
,

W0 := 6dm(m+ 2) + 2d

and hyper-parameters of the set of Transformer networks

T := T0, E := l,H := 1, L := L1 + L2 + T (L3 + 2) + 1,W := W0N + E,

S := C(Nl + L1) + L2W
2
0N + CT0((N + E) + L3) +N,B ≲ Ñ (1+ν−1)(( dlᾱ

p −α)+∨ᾱ).

such that
Rr(TN(L, T,E,W,H, S,B), AUα

p,q([0, 1]
dl)) ≲ Ñ−α̃.

The proofs of these theorems are provided in Appendix D. Note that the upper bound in the inequal-
ity of Theorem 1 depends only on DK,dl (DK,dl mildly depends on d and l) and the upper bound
in that of Theorem 2 does not depend on d or l. This means that if the target function is included
these function classes, we can ease the curse of dimensionality. Moreover, thanks to the token-wise
parameter sharing property in Transformer networks, the width of the network architecture does not
depend on the input length l, but only on the feature dimension d. Thus, our result also shows that
the extent to which the network width and the approximation error upper bounds depend on the
input length can be relaxed. Hence, Transformer networks are more efficient in a network size than
fully-connected layers (See Suzuki (2019) and Suzuki & Nitanda (2021)).
Remark 1. We give the following approximation bound by using an adaptive sampling recovery
method developed by (Dũng, 2011a). The key point of this technique is that, instead of the whole set
of the basis functions, we adaptively select much smaller functions from the whole set to approximate
functions. If the target function belongs to mixed smooth or anisotropic Besov spaces, we can use
this adaptive technique. Therefore, we deal with the variants of Besov spaces in this paper.
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4 ESTIMATION ERROR ANALYSIS

In this section, we connect the approximation theory to estimation error analysis. First, we define
the settings in the non-parametric regression model:

Definition 8 (Non-parametric regression model for statistical analysis). Let f◦ : ([0, 1]d)l → R be
a measurable function and

yi := f◦(xi) + ξi

where xi ∼ PX with density function 0 ≤ p(x) < R on ([0, 1]d)l, and ξi ∼ N(0, σ2). We denote
the training data Dn := (xi, yi)

n
i=1 which are independently identically distributed. Here, we define

a regularized learning estimator as follows:

f̂ := argmax
f̄ :f∈Φ(L,T,E,W,H,S,B)

n∑
i=1

(yi − f̄(xi))
2

where f̄ is the clipping of f defined by f̄ := min{max{f,−F}, F} for F > 0 which is realized by
ReLU units.

In practice, it is hard to exactly compute f̂ in the definition above. Therefore, there are numerous
researches which study how to approximately compute f̂ by applying sparse regularization such as
L1 regularization and optimal parameter search through Bayesian optimization. In this study, we
assume that the optimal solution f̂ is computable. Thus, we can assume that f̂ in the definition
above is valid.

Here, we provide the estimation error rate of deep learning to estimate functions in Besov spaces by
using the approximation error bound given in the previous sections.

Theorem 3. Suppose that p, q ∈ R>0 ∪ {∞}, α ∈ (Rd
>0)

l. If f◦ ∈ MBα
p,q ∩ L∞(Ω) and

||f◦||MBα
p,q

≤ 1 and ||f◦||L∞ ≤ F , then letting (L, T,E,W,H, S,B) be as in Theorem 1, we
obtain

EDn

(
||f◦ − f̂ ||L2(PX)

)
≲ n− 2α

2α+1 log(n)
2(dl−1)(η+α)+6α

1+2α

where η := ηp,q,r as in the notation of Theorem 1.

Theorem 4. Suppose that p, q ∈ R>0 ∪ {∞}, α ∈ (Rd
>0)

l. If f◦ ∈ ABα
p,q ∩ L∞(Ω) and

||f◦||ABα
p,q

≤ 1 and ||f◦||L∞ ≤ F , then letting (L, T,E,W,H, S,B) be as in Theorem 1, we
obtain

EDn

(
||f◦ − f̂ ||L2(PX)

)
≲ n− 2α̃

2α̃+1 log(n)
6α̃

1+2α̃ .

The proofs are given in Appendix D. The condition ∥f◦∥∞ ≤ F is used to fill a gap between the
empirical L2-norm and the population L2-norm. A key factor of these results is a fact that the
complexity of Transformer networks is not so high as that of fully connected layers to some extent.
By combining this fact and the approximation error analysis in Section 3, the above estimations
follows. Note that the dimensional parameters d, l do not appear in the exponent of n in the upper
bounds, but only in the exponent of log(n) term. Thus, the risk bound (Theorem 3 and Theorem 4)
indicates that curse of dimensionality can be relaxed in the two variants of Besov spaces. We can see
that there does not appear d, l directly in the exponent of the convergence rate (although it appears
in the poly-log term for the mixed smooth case). Instead, the rate is mainly characterized by α, α̃.
This means that the curse of dimensionality is eased by utilizing the smoothness structure of the true
function f◦.

Remark 2. According to Suzuki (2019) and Suzuki & Nitanda (2021),
inf f̂ supf◦∈U EDn

(
||f◦ − f̂ ||L2(PX)

)
≳ n− 2α̃

2α̃+1 log(n)
6α̃

1+2α̃ in the case of mixed smooth
Besov spaces and anisotropic Besov spaces holds. Thus, by combining Theorem 3 and 4, we show
that Transformer networks accomplish almost minimax optimal rate up to a poly-log(n) order, and,
especially, under the conditions of p < 2 and 1/2 − 1/q > 0, accomplish almost minimax optimal
rate up to log(n)3 order.

Thus, Transformer networks have the potential to best fit the target function in either mixed smooth
Besov spaces or anisotropic Besov spaces among all estimators. Note that it has been already shown
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in Suzuki (2019) and Suzuki & Nitanda (2021) that fully connected layers achieve almost minimax
optimal rate. Therefore, by Definition 6, it is intuitively true that Transformer networks also achieve
almost minimax optimal rate. The important thing is that we prove that Transformer networks are
more efficient than fully connected layers in a setting where this intuition is true. For an instance, the
extent to which the network width and the approximation error upper bounds depend on the input
length can be relaxed, as we show in Section 3.

5 TOKEN EXTRACTION

In this section, we discuss the token extraction property of Transformer networks. First, we introduce
a new function class which is a variant of mixed smooth Besov spaces to express a situation in which
Transformer networks dynamically select important tokens for an input sequence.

Definition 9. Let Ω,Ωi ⊆ Rd and Ω =
⊔n

i=1 Ωi, and αi ∈ Zd
≥0 where Ω,Ωi are written as Πd

i=1Ii
when Ii := [ai, bi], [ai, bi), (ai, bi], or (ai, bi). We denote a partition of Ω as π := (Ωi), and
piecewise smoothness as α := (αi). Then, the norm of the variable mixed smooth Besov space
V Bα,π

p,q (Ω) can be defined as follows:

∥f∥V Bα,π
p,q

:=

n∑
i=1

∥f∥MB
αi
p,q(Ωi)

,

and we define

V Bα,π
p,q (Ω) :=

{
f ∈ Lp(Ω)

∣∣||f ||V Bα,π
p,q

< ∞
}
, V Uα

p,q(Ω) :=
{
f ∈ V Bα

p,q(Ω)
∣∣||f ||V Bα

p,q
≤ 1
}
.

Intuitively, the target function in the variable mixed smooth Besov space changes a direction to
regard as important or as a noise, according to an input. For each region Ωi, a corresponding
smoothness parameter αi decides whether a direction is important or a noise. By regarding each
direction as a token, we can express that the target function decide which tokens to pay attention to,
for an input sequence (or a set of input sequences).

Next, we introduce input quantization masks. Input quantization masks are used to cut off informa-
tion of masked tokens to specify that Transformer networks extract much more information from
non-masked tokens and much less information from masked tokens.

Definition 10. Let t, u ∈ Z≥1. Then we denote as Qt,u the set of input quantization masks f as
follows: If there exist a partition π := (Ωk) and subsets Sk ⊆ {1, 2, . . . , l} such that ♯Sk ≤ t,

f(x) := (xijI(x, j)) where I(x, j) :=

{
xij (x ∈ Ωk, j ∈ Sk)
⌈xiju⌉

u (x ∈ Ωk, j /∈ Sk)
. By using the definition of the

set of input masks, we define the set of transformer networks with input mask as follows:

MTNt,u(L, T,E,W,H, S,B) :=
{
f ◦ q

∣∣f ∈ TN(L, T,E,W,H, S,B), q ∈ Qt,u

}
.

Intuitively, masked tokens have much less information than non-masked tokens because masked
tokens are rounded up by multiples of u. For example, when u = 2, xij ∈ (0, 1/2] are rounded up
to 1/2, and xij ∈ (1/2, 1] are rounded up to 1. Hence, we see that this round-up quantization cut
off much information of original tokens. Note that the higher the parameter u is, more roughly an
input value is rounded up (or quantized). The parameter u in the definition is needed for a certain
technical reason. The reason is why we use cardinal B-splines (which is not a constant function but
a piecewise polynomial) to approximate the target function in this paper.

By using the definitions above, we can present the main result in this section.

Theorem 5 (Token extraction property of Transformer networks). Let s ∈ R>1∨ 1
p
, π := (Ωk) , α :=

(αk), σ := (σk) where αk ∈ (Rd
>0)

l and σk be a permutation on {1, 2, . . . , l}. Moreover, we
assume that r ≥ 1 and (αk)ij ≥ sσk(j)−1. Then, for K ∈ Z≥1, letting (L, T,E,W,H, S,B) be as

in Theorem 1, there exists constants t :=
⌈
log( 1

p+K)

log s

⌉
and u := 2K such that a following estimation

holds:
Rr(MTNt,u(L, T,E,W,H, S,B), V Uα

p,q([0, 1]
dl)) ≲ 2−KDη∨1

K,dl.
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The proof is given in Appendix E. First, we explain the role of variable mixed smooth Besov spaces.
Variable mixed smooth Besov spaces can be regarded as the set of target functions which, for an
input sequence (or a set of input sequences) decide which tokens to pay attention to. Smoothness
parameters αi ∈ (Rd)l have control over this token selection process. For example, let us consider
a text classification task. When classifying a text “FRB is stepping up its battle on inflation” to a
finance category, we will pay attention to the first word “FRB” and the eighth word “inflation”, and,
when classifying a text “Moreover, borrowing costs are going sharply higher” to a finance category,
we will pay attention to the second word “borrowing” and the third word “inflation”. Therefore,
variable mixed smooth Besov spaces can grasp how a task decide which tokens to pay attention to.
Under the settings of Theorem 5, the smoothness parameters (αk)ij increases with respect to σ(j)
in an exponential order. This means that the importance of token j by token i exponentially decays
under an appropriate permutation σk which can depend on the input x. Then, Theorem 5 shows
that the Transformer can detect the input-dependent importance between tokens and achieves the
addaptive rate which cannot be obtained by imposing a fixed smoothness over the entire input x.

Next, we explain the role of input quantization masks. Note that the range of masked token fea-
ture values is {0, 1

u ,
2
u , . . . , 1−

1
u , 1}, while the range of non-masked token features is [0, 1]. Thus,

the cardinality of the range of masked token feature values is finite while the cardinality of the
range of non-masked token feature values are uncountably infinite. Hence, masked tokens have
much less information than non-masked tokens. Thus, input masks expresses a situation in which
Transformer networks extract much more information from non-masked tokens and much less in-
formation from masked tokens. As mentioned above, the parameter u in the definition is needed for
a certain technical reason. In this paper, we use cardinal B-splines (which is not a constant func-
tion but a piecewise polynomial) to approximate the target function, and, since piecewise constant
functions are needed to approximate cardinal B-splines, input masks need quantization. Actually,
since Okumoto & Suzuki (2022) considered a space of functions which are (possibly infinite) sums
of finite products of trigonometric functions, this technical problem did not occur in Okumoto &
Suzuki (2022).

Consequently, MTNt in Definition 10 can be regarded as the set of transformer networks which,
for an input sequence (or a set of input sequences), fully exploit at most t tokens’ features of an
input sequence.

Thus, Theorem 5 shows that, for a general NLP task and accuracy required, Transformer networks
can dynamically select t tokens to pay careful attention to (a value t is decided by the target function
which represents the NLP task and the accuracy required). This token selection property matches
attention mechanism, on which Transformer networks are based.

6 CONCLUSION

This paper investigated the learning ability of Transformer networks when the target function is in
mixed smooth Besov spaces or anisotropic Besov spaces. By overcoming the difficulties in lim-
ited interactions among tokens, we show that Transformer networks can adaptively avoid curse of
dimensionality and accomplish minimax optimal rate. Our result also shows that dependence of
the network width on the input length and the approximation error upper bounds can be relaxed,
thanks to token-wise parameter sharing in Transformer networks. Moreover, we prove that, when the
smoothness parameters αij increases in an exponential order of a permutation of the token location
j, Transformer networks dynamically select tokens to pay careful attention to. This phenomenon
matches attention mechanism, and the result suggests that this favorable property is derived to the
architecture of Transformer networks. Our analyses strongly support the reason why Transformer
networks have outperformed various natural language processing tasks from a theoretical perspec-
tive.

This paper did not discuss the optimization aspect of networks. In this paper, we assume that the op-
timal solution of regularized least squares are computable. For future works, it would be interesting
to incorporate non-convex optimization techniques into our study.
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Dinh Düng. On recovery and one-sided approximation of periodic functions of several variables. In
Dokl. Akad. SSSR, volume 313, pp. 787–790. 1990.
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possible with transformers. arXiv preprint arXiv:2110.03303, 2021.
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A DEFINITION AND VARIOUS RESULTS ON THE CARDINAL B-SPLINE

Here, we define the cardinal B-spline and present auxiliary lemmas. If the target function belongs
to various Besov spaces (DeVore & Popov, 1988; DeVore et al., 1993; Dũng, 2011a). we can obtain
its B-spline interpolant representations. Thus, we can see that an approximation of a function in
various Besov spaces can reduce to an approximation of the cardinal B-spline.
Definition 11 (Cardinal B-spline). We define the cardinal B-spline of order m as follows:

N (x) :=

{
1 (x ∈ [0, 1])

0 (x /∈ [0, 1])

and N0(x) := N (x), Nm+1(x) := Nm(x) ∗ N (x) where (f ∗ g)(x) :=
∫
R f(x − t)g(t)dt is a

convolution of f and g.

Let d ∈ Z≥1, k, j ∈ Zd
≥0. Then we define

Md
0,0(x) :=

d∏
i=1

Nm(xi),

Md
k,j(x) := Md

0,0(2
kixi − ji).

Jd
m(k) := {−m,−(m− 1), . . . , 2k1 − 1, 2k1} × · · · × {−m,−(m− 1), . . . , 2kd − 1, 2kd}.

Lemma 1 (Property of B-splines). ∥Nm∥L∞ ≤ 1 and, if m ≥ 1, Nm are 1-Lipschitz.
∥∥Md

0,0

∥∥
L∞ ≤

1 and, if m ≥ 1, Md
0,0 are d-Lipschitz.

Proof. If m = 0, it clearly follows from the definition of N that ||Nm||L∞ ≤ 1. If m ≥ 1, it follows
that

∥Nm∥L∞ = sup
x∈R

∣∣∣∣∫
R
Nm−1(x− t)N (t)dt

∣∣∣∣ ≤ sup
x∈R

∣∣∣∣∫
R
N (t)dt

∣∣∣∣ = 1,

and

|Nm(x1)−Nm(x2)| =
∣∣∣∣∫

R
(Nm−1(x1 − t)−Nm−1(x2 − t))N (t)dt

∣∣∣∣
≤ |x1 − x2| ·

∣∣∣∣∫
R
N (t)dt

∣∣∣∣ = |x1 − x2| .

Thus, it clearly follows
∥∥Md

0,0

∥∥
L∞ ≤ 1 and∣∣Md

0,0(x1)−Md
0,0(x2)

∣∣
L∞

=
∑

1≤i≤d

∣∣∣∣∣∣
∏

1≤j≤i−1

Nm((x1)i)

∣∣∣∣∣∣ |Nm((x1)i)−Nm((x2)i)|

∣∣∣∣∣∣
∏

i+1≤j≤d

Nm((x2)i)

∣∣∣∣∣∣
≤
∑

1≤i≤d

|(x1)i − (x2)i| ≤ d ∥x1 − x2∥∞ .
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Lemma 2 (Lp norm of a linear combination of B-splines). Let d ∈ Z≥1, k ∈ Zd
≥0, and f :=∑

j∈Jd
m(k) cjM

d
k,j a linear combination of B-splines. Then we estimate the Lp norm of the linear

combination f as follows:

||f ||Lp ≃ 2−
||k||1

p

 ∑
j∈Jd

m(k)

|cj |p
 1

p

The proof is found in Suzuki (2019).

B SUB-NETWORKS

Here, we present auxiliary lemmas, which are used to sub-networks of which Transformer networks
compose. A key step to show the approximation accuracy is to construct a ReLU neural network
which can approximate the cardinal B-spline with high accuracy. By using the technique developed
by Yarotsky (2016), we can construct fully connected layers with ReLU activation functions to
approximate the cardinal B-spline. By combining the result B-spline approximation results and
the results in this section, we can obtain the optimal approximation error bound for Transformer
networks.

Lemma 3 (Approximation of x2). Let ϵ ∈ R>0. Then, there exist constants

L1 :=

⌈
log2

(
1

ϵ

)⌉
,W1 := 4, S1 := 8

⌈
log2

(
1

ϵ

)⌉
, B1 := 1,

and a neural network M1 ∈ Φ2(L1,W1, S1, B1).such that

sup
x∈[0,1]

∣∣x2 −M1(x)
∣∣ ≤ ϵ.

Moreover, if R ∈ R≥1, then, there exist constants

L2 :=

⌈
log2

(
R2

ϵ

)⌉
+ 3,W2 := 4, S2 := 8

⌈
log2

(
R2

ϵ

)⌉
+ 3, B2 := R,

and a neural network M2 ∈ Φ2(L,W, S,B).such that

sup
x∈[0,R]

∣∣x2 −M2(x)
∣∣ ≤ ϵ.

Proof. If R = 1, the proof is found in Proposition 2, Yarotsky (2016). If R > 1, we can obtain the
following network:

x
× 1

R2−−−→ · M1−−→ · ×R−−→ · ×R−−→ ·.

Lemma 4 (Approximation of xy). Let ϵ, R ∈ R≥1. Then, there exist constants

L :=

⌈
log

(
6R2

ϵ

)⌉
+ 5,W := 12, S := 24

⌈
log

(
6R2

ϵ

)⌉
+ 14, B := R,

and a neural network M ∈ Φ2(L,W,S,B).such that

sup
x∈[0,R]

|xy −M((x, y))| ≤ ϵ.

Proof. The proof strategy is found in Proposition 3, Yarotsky (2016).
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Lemma 5 (Approximation of cardinal B-spline basis by the ReLU activation). Let d ∈ Z≥1. Then,
there exists a constant c(d,m) depending only on d and m such that, for all ϵ > 0, there exist
constants

L0 := 3 + 2

⌈
log2

(
3d∨m

ϵc(d,m)

)
+ 5

⌉
⌈log2(d ∨m)⌉ ,W0 := 6dm(m+ 2) + 2d,

S0 := L0W
2
0 , B0 := 2(m+ 1)m,

and a neural network M ∈ Φ2(L,W,S,B).such that

||Md
0,0 −M ||L∞(Rd) ≤ ϵ

and M(x) = 0 (∀x /∈ [0,m+ 1]d).

Proof. The proof is found in Lemma 1, Suzuki (2019).

C PROOF OF THE STATEMENTS OF SECTION 3

Here, we give technical details behind the approximation bound. We will use the so-called sparse
grid technique which Smolyak (1963) introduced to the function approximation theory field. The key
point of this technique is that, instead of the whole set of the regular grid, we put the basis on a sparse
grid which is a subset of the whole set and has much smaller cardinality than the whole set. The
applications of approximation algorithm were developed by Düng (1990; 1991; 1992); Temlyakov
(1982; 1993a;b). Afterwards, the sparse grid technique develops into an optimal adaptive sampling
recovery method by (Dũng, 2011b), and we adopt this method on the cardinal B-spline bases. We
follow the proof strategy for Suzuki (2019) and Suzuki & Nitanda (2021).
Definition 12. Let d ∈ Z≥1, pk ∈ R for k ∈ Zd

≥0, and ck,j ∈ R for k ∈ Zd
≥0, j ∈ Jd

m(k). Then we
define a quasi-norm over a set of functions by

|(pk)|bαq (Lp) :=


 ∑
k∈Zd

≥0

(2⟨α,k⟩∥pk∥p


q

1
q

,

and a quasi-norm over a set of coefficients by

|(ck,j)|mbαp,q
:=


 ∑
k∈Zd

≥0

(2⟨α,k⟩−
∥k∥
p

 ∑
j∈Jd

m(k)

|ck,j |p
 1

p


q

1
q

.

Theorem 6 (Cardinal B-spline approximation for mixed smooth Besov spaces). Suppose that
p, q, r ∈ R>0 ∪ {∞}, α ∈ Rd

>0. Let δ :=
(

1
p − 1

r

)
+

(note that δ > 0 is equivalent to p < r)

and assume that m ∈ Z≥1, and δ < α, ᾱ < min
(
m,m− 1 + 1

p

)
.

Then, for any f ∈ MBα
p,q and K ∈ Z≥1, there exist constants

η :=


( 1
min(r,1) −

1
q )+ (r ≤ p),

( 1r − 1
q )+ (p < r and r < ∞),

(1− 1
q )+ (p < r and r = ∞),

ν :=
α− δ

2δ
,K∗ :=

⌈
K
(
1 + ν−1

)⌉
, nk :=

⌈
2K−ν(||k||−K)

⌉
,

S(k) ⊆ Jd
m(k) such that ♯(S(k)) = nk,

and
RK(f) :=

∑
k∈Z≥0

||k||1≤K

∑
j∈Jd

m(k)

ck,jM
d
k,j(x) +

∑
k∈Z≥0

K<||k||1≤K∗

∑
j∈S(k)

ck,jM
d
k,j(x)

14
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such that

||f −RK(f)||r ≲ 2−αKD
ηp,q,r

K,d ||f ||MBα
p,q

,

♯E(K) := {(k, j) ∈ Zd
≥0 × Zd

≥0|ck,j ̸= 0} ≤
(
2 + (1− 2−ν)−1

)
2KDK∗,d,

kmax := max
1≤i≤d
k∈EK

ki ≤ K∗, cmax := max
1≤i≤d
k∈EK

ck,j ≲ 2
K∗( 1

p−α)
+ ∥f∥MBα

p,q
.

Proof of Theorem 6. According to Suzuki (2019) (see also Dũng (2011a)), there exist a collection
of functions (Pk)k∈Zd

≥0
from MBα

p,q to MBα
p,q such that

∥f∥MBα
p,q

≃ ∥(pk)∥bαq (Lp) ≃ ∥(ck,j)∥mbαp,q

where pk := Pk(f) =
∑

j∈Jd
m(k) ck,jM

d
k,j(x).

(1) the case of r ≤ p. Then, the assertion can be shown in the same manner as Theorem 3.1 of
Dũng (2011a).

(2) the case of p < r. We need to use an adaptive approximation method. In the following, we
assume p < r. For a given K, by choosing K∗ appropriately later, we set

RK(f) :=
∑

k∈Z≥0

||k||1≤K

pk +
∑

k∈Z≥0

K<||k||1≤K∗

Gk(pk)

where Gk(pk) is given as

Gk(pk) :=

nk∑
i=1

ck,jiM
d
k,j(x)

where (ck,ji) is the sorted coefficients in decreasing order of their absolute value: |ck,j1 | ≥ |ck,j1 | ≥
· · · ≥

∣∣ck,♯Jd
m(k)

∣∣.
RK(f) :=

∑
k∈Z≥0

||k||1≤K

∑
j∈Jd

m(k)

ck,jM
d
k,j(x) +

∑
k∈Z≥0

K<||k||1≤K∗

∑
j∈Jd

m(k)

ck,jM
d
k,j(x)

Then, it holds that

∥pk −Gk(pk)∥r ≤ ∥pk∥p2δ∥k∥1n−δ
k ,

where δ := (1/p− 1/r) (see also the proof of Dũng (2011a) and Dũng (2011b)).

Here we denote by

ν :=
α− δ

2δ
,K∗ :=

⌈
K
(
1 + ν−1

)⌉
, nk :=

⌈
2K−ν(||k||−K)

⌉
.

Then, by Lemma 5.3 of Dũng (2011a), it follows that

||f −RK(f)||rLr ≲
∑

k∈Z≥0

K<||k||1≤K∗

(
2⟨δ1,k⟩n−δ

k ||pk||Lp

)r
+

∑
k∈Z≥0

K∗<||k||1

(
2⟨δ1,k⟩||pk||Lp

)r
.

15
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(2-1) the case of r < ∞ and q ≤ r

||f −RK(f)||qLr

≲

 ∑
k∈Z≥0

K<||k||1≤K∗

(
2⟨δ1,k⟩n−δ

k ||pk||Lp

)r
+

∑
k∈Z≥0

K∗<||k||1

(
2⟨δ1,k⟩||pk||Lp

)r
q
r

≤
∑

k∈Z≥0

K<||k||1≤K∗

(
2⟨δ1,k⟩n−δ

k ||pk||Lp

)q
+

∑
k∈Z≥0

K∗<||k||1

(
2⟨δ1,k⟩||pk||Lp

)q (
since

q

r
≤ 1
)

≤2−δKq2−(α−δ)Kq
∑

k∈Z≥0

K<||k||1≤K∗

(
2−(α−δ−δν)(||k||1−K)2⟨α,k⟩||pk||Lp

)q

+2−q(α−δ)K∗ ∑
k∈Z≥0

K∗<||k||1

(
2⟨α,k⟩||pk||Lp

)q
≲2−αKq||f ||MBα

p,q
.

(2-2) the case of r < ∞ and q > r

Since 1
r
q
+ 1

q−r
q

= 1, then it follows by applying Hölder’s inequality that

||f −RK(f)||rLr

≲
∑

k∈Z≥0

K<||k||1≤K∗

(
2δ||k||1n−δ

k ||pk||Lp

)r
+

∑
k∈Z≥0

K∗<||k||1

(
2δ||k||1 ||pk||Lp

)r

≲2−αKr

( ∑
k∈Z≥0

K<||k||1≤K∗

(
2−(α−δ−δν)(||k||1−K)2⟨α,k⟩||pk||Lp

)r

+
∑

k∈Z≥0

K∗<||k||1

(
2−(α−δ)(||k||1−K∗)2⟨α,k⟩||pk||Lp

)r )

≤2−αKr

( ∑
k∈Z≥0

K<||k||1≤K∗

(
2⟨α,k⟩||pk||Lp

)q
+

∑
k∈Z≥0

K∗<||k||1

(
2⟨α,k⟩||pk||Lp

)q )

×
( ∑

k∈Z≥0

K<||k||1≤K∗

(2−(α−δ−δν)(||k||1−K))
qr

q−r +
∑

k∈Z≥0

K∗<||k||1

(
2−(α−δ)(||k||1−K∗)

) qr
q−r

) q−r
q

≲2−αKr||f ||rMBα
p,q

D
r( 1

r−
1
q )

K,d .

(2-3) the case of r = ∞

16



Under review as a conference paper at ICLR 2023

We can execute the same the analysis as in the case of q > r. Since 1
q +

1
q

q−1
= 1, then it follows by

applying Hölder’s inequality that

||f −RK(f)||L∞

≲
∑

k∈Z≥0

K<||k||1≤K∗

(
2δ||k||1n−δ

k ||pk||Lp

)
+

∑
k∈Z≥0

K∗<||k||1

(
2δ||k||1 ||pk||Lp

)

≲2−αK

( ∑
k∈Z≥0

K<||k||1≤K∗

(
2−(α−δ−δν)(||k||1−K)2⟨α,k⟩||pk||Lp

)

+
∑

k∈Z≥0

K∗<||k||1

(
2−(α−δ)(||k||1−K∗)2⟨α,k⟩||pk||Lp

))

≤2−αK

( ∑
k∈Z≥0

K<||k||1≤K∗

(
2⟨α,k⟩||pk||Lp

)q
+

∑
k∈Z≥0

K∗<||k||1

(
2⟨α,k⟩||pk||Lp

)q )

×
( ∑

k∈Z≥0

K<||k||1≤K∗

(2−(α−δ−δν)(||k||1−K))
q

q−1 +
∑

k∈Z≥0

K∗<||k||1

(
2−(α−δ)(||k||1−K∗)

) q
q−1

) q−1
q

≲2−αK ||f ||MBα
p,q

D
1− 1

q

K,d .

Estimation of ♯E(K), kmax and cmax: First, we estimate the cardinality of E(K). It follows from
easy calculations that

♯E(K) =

K∑
κ=0

2κ
(
κ+ d− 1

d− 1

)
+

∑
k:K<||k||1≤K∗

nk

≤2K+1

(
K + d− 1

d− 1

)
+

∑
K<κ≤K∗

2K−ν(κ−K)

(
κ+ d− 1

d− 1

)
≤2K+1DK,d + 2K(1− 2−ν)−1DK∗,d

≤
(
2 + (1− 2−ν)−1

)
2KDK∗,d.

Next, it clearly follows that kmax ≤ ∥k∥1 ≤ K∗.

Finally, we estimate cmax. Since the inequality below holds

2(α−
1
p )∥k∥1 |ck,j | ≤ 2⟨α,k⟩−

∥k∥1
p |ck,j | ≲ ∥f∥MBα

p,q
,

it follows that

cmax = max
1≤i≤d
k∈EK

ck,j ≲ 2(
1
p−α)∥k∥1 ∥f∥MBα

p,q
≤ 2

K∗( 1
p−α)

+ ∥f∥MBα
p,q

.

This completes the proof.

Theorem 7 (Cardinal B-spline approximation for anisotropic Besov spaces). Suppose that p, q, r ∈
R>0 ∪ {∞}, α ∈ (Rd)l. Let δ :=

(
1
p − 1

r

)
+

(note that δ > 0 is equivalent to p < r) and assume

that m ∈ Z>0, and δ < α̃, ᾱ < min(m,m− 1 + 1
p ).

Then, for any f ∈ ABα
p,q and K ∈ Z≥1, there exist constants

ν :=
α̃− δ

2δ
, N̄ :=

⌈
2∥K∥α

⌉
, nk :=

⌈
2∥K∥α−ν(||k||α−∥K∥α)

⌉
,K∗ :=

⌈
K
(
1 + ν−1

)⌉
,
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S(k) ⊆ Jd
m(k) such that ♯(S(k)) =

⌈
2K−ν(||k||1−K∗)

⌉
,

where ∥k∥α :=
∑d

i=1

⌊
kα
αi

⌋
, and

RK(f) :=

K∑
k=0

∑
j∈Jd(k)

ck,jM
d
k,j(x) +

K∗∑
k=K+1

∑
j∈S(k)

ck,jM
d
k,j(x)

such that
||f −RK(f)||r ≲ Ñ−α||f ||ABα

p,q
,

♯E(K) := {(k, j) ∈ Zd
≥0 × Zd

≥0|ck,j ̸= 0} ≤
(
2 + (1− 2−ν)−1

)
Ñ ,

kmax := max
1≤i≤d
k∈EK

ki ≤ K∗, cmax := max
1≤i≤d
k∈EK

ck,j ≲ 2
K∗( dᾱ

p −α)
+ ∥f∥ABα

p,q
.

Moreover, it follows that 2K ≤ Ñ .

Proof. For the existence of RK(f): See the proof in Suzuki & Nitanda (2021).

Estimation of ♯E(K), kmax and cmax: First, we estimate the cardinality of E(K). It follows from
easy calculations that

♯E(K) =

K∑
k=0

2k +
∑

k:K<||k||1≤K∗

nk

≤2K+1 +
∑

K<κ≤K∗

2K−ν(κ−K)

≤2K+1 + 2K(1− 2−ν)−1

≤
(
2 + (1− 2−ν)−1

)
N̄ .

Next, since it clearly follows that kmax ≤ K∗, we estimate cmax. Since the inequality below holds

2
k

(
α−

∑d
i=1⌊kαi⌋

kp

)
|ck,j | ≲ ∥f∥ABα

p,q
,

it follows that

cmax = max
1≤i≤d
k∈EK

ck,j ≲ 2
k

(∑d
i=1⌊kαi⌋

kp −α

)
+ ∥f∥ABα

p,q
≤ 2

K∗( dᾱ
p −α)

+ ∥f∥ABα
p,q

.

Finally, it clearly follows that 2K ≤ 2∥K∥α/α ≤ N .

This completes the proof.

By using the results of Theorem 6 and Theorem 7, we can prove Theorem 1, which shows the
approximation ability of Transformer networks for the target function in a mixed smooth Besov
space or an anisotropic Besov space.

Proof of Theorem 1. Let

g :=

N∑
n=1

cnM
dl
kn,jn(x),

and we define
kmax := max

1≤n≤N
kn, cmax := max

1≤n≤N
cn.

Fix ε ∈ R>0. Now, we construct an approximate Transformer network T [g] of g.
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It follows from Lemma 3 that, for any ϵ, R ∈ R>0, there exist constants

L̄ϵ,R :=

⌈
log2

(
R

ϵ

)⌉
, W̄ϵ,R := 3, S̄ϵ,R := 5L̄ϵ,R, B̄ϵ,R := 1,

and a neural network M̄ϵ,R ∈ Φ2(L̄ϵ,R, W̄ϵ,R, S̄ϵ,R, B̄ϵ,R), such that

sup
x,y∈[0,R]

∣∣xy − M̄ϵ,R(x)
∣∣ ≤ ϵ.

Positional encoding and B-spline coefficients: Let ε1 := ε
4dlcmax

,

PE := I,K :=

k1
...

kN

 , J :=

 j1
...
jN

 ,

M1,1 :=

(IdO
) (

Od

K

)
O I

 ,M1,2 :=

(
INd −J
O I

)
.

Let M1 := M1,2 ◦ M̄ε1,2kmax ◦M1,1, M̃1 := Π(M1) ◦Π(M) ◦Concat[PE ]. Then, it follows that,
for any integer j(1 ≤ j ≤ l), For k, j ∈ Zd

≥0, x ∈ Rd, it follows that∥∥∥∥∥∥∥
2k1x− j1

...
2khx− jh

− M̃1(x)

∥∥∥∥∥∥∥
L∞

≤ ε

4dlcmax

where

2kx− j :=

2k1x1 − j1
...

2kdxd − jd

 .

Token-wise B-splines: Let y1, . . . , yH ∈ Rd, ε2 := ε
4lcmax

.

It follows from Lemma 5 that there exist constants

L2,ε2 := 3 + 2

⌈
log2

(
3d∨m

ϵc(d,m)

)
+ 5

⌉
⌈log2(d ∨m)⌉ ,

W2,ε2 := 6dm(m+ 2) + 2d, S2,ε2 := L0W
2
0 , B2,ε2 := 2(m+ 1)m,

and a neural network M2,1 ∈ Φ2(L2,ε2 ,W2,ε2 , S2,ε2 , B2,ε2) such that

||Md
0,0 −M2,1||L∞(RD) ≤ ε2.

Then we define

M2




y1
...
yH
e


 :=


M2,1(y1)

...
M2,1(yH)

e

 ,

and M̃2 := Π (M2) ◦ M̃1. Since it holds from Lemma 1 that, for any r ∈ R, Nm(x) is 1-Lipschitz
and ∥Nm(x)∥L∞ ≤ 1, it follows that∥∥∥∥∥∥∥

 Md
k1,j1

(x1) · · · Md
(k1)l,(j1)l

(xl)
...

. . .
...

Md
(kh)1,(jh)1

(x1) · · · Md
(kh)l,(jh)l

(xl)

− M̃2(x)

∥∥∥∥∥∥∥
L∞(([0,1]d)l)

≤ sup
1≤h≤H

∥∥∥Md
0,0(2

khx− jh)−Md
0,0(M̃1,h(x))

∥∥∥
L∞(([0,1]d)l)

+ sup
1≤h≤H

∥∥∥Md
0,0(M̃1,h(x))−Mb,ε2(M̃1,h(xi))

∥∥∥
L∞(Rd)

≤ ε

4lcmax
+

ε

4lcmax
≤ ε

2lcmax
.
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Multiplication between tokens: Let T3 := ⌈log2 l⌉, ε3 := ε
6T3cmax

, γ := log
(

l
ε3

)
, and δ :=

eγ

(l−1)+eγ . Note that

1 ≥ δ =
eγ

(l − 1) + eγ
≥ 1− le−γ = 1− ε3.

W3,1 :=

(−I O
−I O

) (
1 o · · ·
o 1 · · ·

)
O I

 ,M3,1(x) := x+W3,1((x)+)

If all the elements xij of xi are 0 ≤ xij ≤ 1, then it follows from easy calculations that

M3,1

(x1

0

) (
x2

0

)
· · ·

e1 e2 · · ·

 :=

(1− x1

−x1

) (
−x2

1− x2

)
· · ·

e1 e2 · · ·

 ,

(M3,1 ◦M3,1)

(x1

0

) (
x2

0

)
· · ·

e1 e2 · · ·

 :=

(x1

0

) (
0
x2

)
· · ·

e1 e2 · · ·

 .

Let H := 1,M
(1)
K :=

O

B B · · ·
B B · · ·
...

...
. . .


 ,M

(1)
Q = (O I) ,M

(1)
V =

(
I O
O O

)
,M

(1)
O := I

where B := γ

(
0 0
1 0

)
. Since

Π(M
(1)
V )(x) =

(
x1 x2 · · ·
0 0 · · ·

)
,Π(M

(1)
K )(x) = γ

B O · · ·
O B · · ·
...

...
. . .

 ,Π(M
(1)
Q )(x) = I,

then, it follows that

Attn(Π(M
(1)
V )(x),Π(M

(1)
K )(x),Π(M

(1)
Q )(x)) = δ

(
x2

1
l

∑l
i=1 xi x4

1
l

∑l
i=1 xi · · ·

0 0 0 0 · · ·

)
+R

where R =

(
1−δ
l−1

((∑l
i=1 xi

)
− x2

)
0 1−δ

l−1

((∑l
i=1 xi

)
− x4

)
0 · · ·

0 0 0 0 · · ·

)
. Thus, it holds

that

M3,2

(x1

0

) (
0
x2

)
· · ·

e1 e2 · · ·


=

(x1

0

) (
0
x2

)
· · ·

e1 e2 · · ·

+Π(M
(1)
O )(Attn(Π(M

(1)
V )(x),Π(M

(1)
K )(x),Π(M

(1)
Q )(x)))

=

(x1

0

) (
0
x2

)
· · ·

e1 e2 · · ·

+ δ

( 0
x2

)
∗
(
0
x4

)
∗ · · ·

0 0 0 0 · · ·

+R

=

( x1

δx2

)
∗
(
x3

δx4

)
∗ · · ·

0 0 0 0 · · ·

+R

Let M3,3 := M̄ε3,1 and M1
3 := Π (M3,3) ◦ M3,2 ◦ Π(M3,1 ◦ M3,1). We denote mh,i by the i-th

element of Md
0,0(2

khx − jh), M2,h,i by the i-th element of M̃2(x), and M3,h,i by the i-th element
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of
(
M1

3 ◦ M̃2

)
(x). Then, the following inequality holds:

sup
x∈[0,1]dl

|mh,2i−1(x)mh,2i(x)−M3,h,2i−1(x)|

≤ sup
1≤h≤H

|mh,2i−1(x)mh,2i(x)−M2,h,2i−1(x)mh,2i(x)|

+ sup
1≤h≤H

|M2,h,2i−1(x)mh,2i(x)−M2,h,2i−1(x)M2,h,2i(x)|

+ sup
1≤h≤H

|M2,h,2i−1(x)M2,h,2i(x)−M2,h,2i−1(x)δM2,h,2i(x)|

+ sup
1≤h≤H

|M2,h,2i−1(x)δM2,h,2i(x)−M3,h,2i−1(x)|

≤ sup
1≤h≤H

|mh,2i−1(x)−M2,h,2i−1(x)|+ sup
1≤h≤H

|mh,2i(x)−M2,h,2i(x)|+ (1− δ) + (ε3 + (1− δ))

≤2

l

ε

2cmax
+

1

T3

ε

2cmax
.

Next, as well as M1
3 , we can sequentially construct M2

3 , . . . ,M
T3
3 (we can execute these construction

by replacing B by

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

, . . . ), and define M3 := MT3
3 ◦ · · · ◦M1

3 and M̃3 := M3 ◦ M̃2

such that∥∥∥Mdl
k,j(x)− M̃3(x)

∥∥∥
L∞(([0,1]d)l)

=

∥∥∥∥∥
l∏

i=1

mh,i(x)− M̃3(x)

∥∥∥∥∥
L∞(([0,1]d)l)

≤ ε

cmax
.

Linear combination of B-splines: Let M ′ := (c1 . . . cN ′). Finally, we define an approximate
Transformer network T [g] of g.

T [g] := Head ◦Π(M ′) ◦ M̃3.

Then, it follows from the estimations above that

sup
x∈[0,1]dl

|g(x)− T [g](x)| ≤ ε.

Estimation of the bounds of hyper-parameters: Let f ∈
{
MUα

p,q

AUα
p,q

. Then, it follows from

Theorem 6 and Theorem 7 that there exist constants

D :=

{
DK,dl,

1,
D∗ :=

{
DK∗,dl,

1,
N̂ :=

{
2K ,

Ñ ,
α̂ :=

{
α,

α̃,

N∗ := (2 + (1− 2−ν)−1)N̂D∗, γ :=


(

1
p − α

)
+
,(

dlᾱ
p − α

)
+
,

η :=


( 1
min(r,1) −

1
q )+ (r ≤ p),

( 1r − 1
q )+ (p < r and r < ∞),

(1− 1
q )+ (p < r and r = ∞),

and an approximation function

RK(f)(x) :=

N∑
n=1

cnM
dl
kn,jn(x).

such that
||f −RK(f)||r ≲ N̂−α̂Dη,

21



Under review as a conference paper at ICLR 2023

N ≤ N∗, kmax := max
1≤n≤N

kn ≤ K∗, cmax := max
1≤n≤N

cn ≲ 2K
∗γ , 2K ≤ N̂ .

Let ε := N̂−α̂. Then, from above estimations, it immediately follows that

||f − T [RK(f)]||r ≲ ||f −RK(f)||r + ||RK(f)− T [RK(f)]||r ≲ N̂−α̂Dη.

Second, it follows from that there exist absolute constant C ∈ R>0. Third, we define constants
which define hyper-parameters as follows:

ϵ := N̂−(α̂+(1+ν−1)γ), T0 := ⌈log2 l⌉, L1 = C

⌈
log

(
4dl

ϵ

)⌉
,

L2 = 3 + 2

⌈
log2

(
4l · 3d∨m

ϵc(d,m)

)
+ 5

⌉
⌈log2(d ∨m)⌉ , L3 = C

⌈
log

(
6T0

ϵ

)⌉
,

W0 := 6dm(m+ 2) + 2d, ζ :=

{
1,

ᾱ.

Note that ϵ ≲ ε
cmax

.

Finally, we estimate hyper-parameters of the Transformer network. Because of the above estima-
tions, it immediately follows that

T = T0,

E = l,

H = 1,

L = L1 + L2 + T (L3 + 2) + 1

W = W0N
∗ + E

S ≤ C(N∗l + L1) + L2W
2
0N

∗ + CT ((N∗ + E) + L3) +N∗,

B ≲ N̂ (1+ν−1)(γ∨ζ).

This completes the proof.

D PROOF OF THE STATEMENTS OF SECTION 4

To prove Theorem 3, we define a covering number with respect to a given metric space.

Definition 13 (Covering number and packing number). Let ϵ ∈ R>0, (V, d) be a metric space, and
F be a subset of V . Then, we define a covering number N (ϵ,F , (V, d)) of F with respect to (V, d))
as follows:

N (ϵ,F , (V, d)) := min

N

∣∣∣∣N = ♯(K),K ⊆ F ,F ⊆
⋃

fi∈K

{f ∈ V |d(f, fi) ≤ ϵ}

 .

Before proving Theorem 3, we have to estimate the covering number of the set of transformer
networks TN(L, T,E,W,H, S,B) with respect to L∞.

Lemma 6 (Covering number estimation of the set of Transformer networks). The covering number
of TN(L, T,E,W,H, S,B) can be bounded by

logN (δ,TN(L, T,E,W,H, S,B), || · ||L∞)

≤S log
(
4δ−1(L+ T + 1)(W + 1)2L+2T (B + 1)L+2T+1HT

)
.

Proof. First, we define
F [M, b](x) := x+M · (x)+ + b.
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Then, the following estimations hold:

∥F [M, b](x)∥L∞

≤∥x∥∞ +max
j

∥Mj,:∥1 ∥x∥∞ + |b| ≤ (WB + 1) ∥x∥∞ +B

≤(W + 1)(B + 1)(∥x∥∞ ∨ 1),

∥F [M, b](x1)−F [M, b](x2)∥L∞

≤∥x1 − x2∥∞ +max
j

∥Mj,:∥1 ∥(x1)+ − (x2)+∥∞ ≤ ∥x1 − x2∥∞ +WB ∥x1 − x2∥∞

≤(WB + 1) ∥x1 − x2∥∞ ,

and, if δ′ := ∥M −M ′∥∞ ∨ ∥b− b′∥∞, then it follows that

∥F [M, b](x)−F [M ′, b′](x)∥L∞ ≤ δ (W ∥x∥∞ + 1) .

Next, we define

A[Mh
∗ ](x) := x+

H∑
h=1

Π(Mh
O)(Attn(Π(Mh

V )(x),Π(Mh
K)(x),Π(Mh

Q)(x))).

Then, the following estimations holds∥∥A[Mh
∗ ](x)

∥∥
L∞

≤∥x∥∞ +Hmax
j

∥∥(Mh
O)j,:

∥∥
1
max

j

∥∥(Mh
V )j,:

∥∥
1
∥x∥∞

≤(HW 2B2 + 1) ∥x∥∞ ,∥∥A[Mh
∗ ](x1)−A[Mh

∗ ](x2)
∥∥
L∞

≤∥x1 − x2∥∞ +Hmax
j

∥∥(Mh
O)j,:

∥∥
1
max

j

∥∥(Mh
V )j,:

∥∥
1
∥x1 − x2∥∞ .

≤∥x1 − x2∥∞ +HW 2B2 ∥x1 − x2∥∞
≤(HW 2B2 + 1) ∥x1 − x2∥∞ ,

and, if δ′ := max1≤h≤H,∗∈{O,V,K,Q}
∥∥Mh

∗ − (M ′)h∗
∥∥
∞, then it follows that∥∥A[Mh

∗ ](x)−A[(M ′)h∗ ](x)
∥∥
L∞ ≤ 2δHW 2B ∥x∥∞ .

Next, we define

Fk(x) := (Lk ◦ · · · ◦ L0) (x),F ′
k(x) := (L′

k ◦ · · · ◦ L′
0) (x),

Bk(x) := (LL+T ◦ · · · ◦ Lk) (x),B′
k(x) :=

(
L′
L+T ◦ · · · ◦ L′

k

)
(x)

where, for k = 0, Lk(x) := Concat[PE ](x) and L′
k(x) := Concat[P ′

E ](x), and, for k ≥ 1,
either one of the following cases is true:

1. Lk(x) := Π(F [Mk, bk])(x) and L′
k(x) := Π(F [M ′

k, b
′
k])(x),

2. Lk(x) := A[(Mk)
h
∗ ](x) and L′

k(x) := A[(M ′
k)

h
∗ ](x).

Moreover, for k ≥ 1, we denote

fk := ♯{i ∈ Z∥1 ≤ i ≤ k,Li(x) := A[(Mi)
h
∗ ](x)},

lk := ♯{i ∈ Z∥i = k,Li(x) := A[(Mi)
h
∗ ](x)},

bk := ♯{i ∈ Z∥k ≤ i ≤ L+ T,Li(x) := A[(Mi)
h
∗ ](x)}.

If f = FL+T (x), f
′ = F ′

L+T (x)(f, f
′ ∈ TN(L, T,E,W,H, S,B)), and

δ′ := max
1≤k≤L+T

{
∥PE − P ′

E∥∞ ∨∥Mk −M ′
k∥∞ ∨ ∥bk − b′k∥∞

∨ max
1≤h≤H,∗∈{O,V,K,Q}

∥∥(Mk)
h
∗ − (M ′

k)
h
∗
∥∥
∞

}
,
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then it follows that

∥f − f ′∥L∞

≤
L+T∑
k=0

∥∥B′
k+1 ◦ Lk ◦ Fk−1 − B′

k+1 ◦ L′
k ◦ Fk−1

∥∥
L∞

≤
L+T∑
k=0

(WB + 1)L+T−k−bk+1(HW 2B2 + 1)bk+1 ∥Lk ◦ Fk−1 − L′
k ◦ Fk−1∥L∞

≤(WB + 1)L(HW 2B2 + 1)T δ′

+

L+T∑
k=1

(WB + 1)L+T−k−bk+1(HW 2B2 + 1)bk+1δ′(W + 1)lk(2HW 2B)lk (∥Fk−1∥L∞ ∨ 1)

≤(WB + 1)L(HW 2B2 + 1)T δ′

+

L+T∑
k=1

(WB + 1)L+T−k−bk+1(HW 2B2 + 1)bk+1δ′(W + 1)lk(2HW 2B)lk

· (W + 1)k−1−fk−1(B + 1)k−1−fk−1(HW 2B2 + 1)fk−1 (∥L0∥∞ ∨ 1)

≤
L+T∑
k=0

2δ′HT (W + 1)L+2T (B + 1)L+2T−1(B ∨ 1)

≤2δ′(L+ T + 1)HT (W + 1)L+2T (B + 1)L+2T

Thus, for a fixed sparsity pattern (the locations of non-zero parameters), the covering number is
bounded by (

2B · 2(L+ T + 1)HT (W + 1)L+2T (B + 1)L+2T

δ

)S

.

Thus, the covering number of the whole space TN(L, T,E,W,H, S,B) is bounded as(
(W + 1)L

S

)(
2B · 2(L+ T + 1)HT (W + 1)L+2T (B + 1)L+2T

δ

)S

≤
(
4δ−1HT (L+ T + 1)(W + 1)2L+2T (B + 1)L+2T+1

)S
.

This completes the proof.

Next, to prove Theorem 3, we need the following result which connects the approximation theory to
generalization error analysis.

Proposition 1 (Schmidt-Hieber (2017)). Let F be a set of functions, let f̂ be any estimator in F .
Define

∆n := EDn

(
1

n

n∑
i=1

(yi − f̂(xi))
2 − inf

f∈F

(
1

n

n∑
i=1

(yi − f̂(xi))
2

))
.

Assume that ||f◦|| ≤ F and all f ∈ F satisfies ||f ||L∞ ≤ F for some F ≥ 1. If 0 < δ < 1 satisfies
N (δ,F , || · ||L∞), then there exists a universal constant C such that

EDn

(
||f◦ − f̂ ||L2(PX)

)
≤C(1 + ϵ)2

(
inf
f∈F

||f − f◦||2L2(PX) + F 2 logN (δ,F , || · ||L∞)− log δ

nϵ
+ δF 2 +∆n

)
for any ϵ ∈ (0, 1].

Proof. See the proof in Schmidt-Hieber (2017) and Suzuki (2019).

Finally, based on the definition and the results above, we can prove Theorem 3.
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Proof of Theorem Theorem 3 and Theorem 4. Note that the estimations below holds:

D ≲ D∗, L ≲ log N̂ , T ≲ 1,W ≲ N̂D,H ≲ 1, S ≲ N̂D log N̂ , B ≲ N̂(1+ν−1)(γ∨ζ).

Lemma 6 gives an upper bound of the covering number as

logN (δ,Φ(L, T,E,W,H, S,B), || · ||L∞)

≤S log
(
4δ−1(L+ T + 1)(W + 1)2L+2T (B + 1)L+2T+1HT

)
≲N̂D log N̂

(
(log N̂)2 + log

(
δ−1
))

.

Next, it follows from Theorem 1 that

||f −RK(f)||L2 ≲ N̂−α̂Dη

where η := ηp,q,r. Since PX has a density function 0 ≤ p(x) < R on ([0, 1]d)l, then it holds that

||f −RK(f)||L2(PX) ≲ ||f −RK(f)||L2

for any f : ([0, 1]d)l → R, and by applying Proposition 1 with δ = 1
n , it follows that

EDn

(
||f◦ − f̂ ||L2(PX)

)
≲ N̂−2α̂D2η +

N̂D log N̂
(
(log N̂)2 + log n

)
n

+
1

n
.

The case of mixed smooth Besov spaces: Note that N̂ = 2K , D = Dk,dl. Since

Dk,dl :=

(
1 +

dl − 1

k

)k (
1 +

k

dl − 1

)dl−1

≲ Kdl−1

then we obtain the following upper bound estimation:

EDn

(
||f◦ − f̂ ||L2(PX)

)
≲ 2−2αKK2η(dl−1) +

Kdl2K(K2 + log n)

n
.

Then, the right hand side is minimized by K =
⌈

1
1+2α log2 n+ (2η−1)(dl−1)+3

1+2α log2 log n
⌉

up to
log log n-order. Then we obtain the following result:

≲ n− 2α
2α+1 (log n)

2(dl−1)(η+α)+6α
1+2α .

The case of anisotropic Besov spaces: Note that N̂ = Ñ ,D = 1. The right hand side is minimized
by Ñ =

⌈
n

1
1+2α̃ (log n)−

3
1+2α̃

⌉
up to log log(n)-order. Then we obtain the following result:

≲ n− 2α̃
2α̃+1 (log n)

6α̃
1+2α̃ .

This completes the proof.

E PROOF OF THE STATEMENTS OF SECTION 5

Proof of Theorem 5. In the proof of Theorem 6, we can easily check that how to construct RK(f)
is independent of the smoothness parameter α. And, since α = s, as in the proof of Theorem 6, we
obtain the following estimation

||f −RK(f)||r ≲ 2−sKD
ηp,q,r

K,d ||f ||V Bα,π
p,q

.

such that
RK(f) :=

∑
(k,j)∈E(K)

ck,jM
d
k,j(x),

♯E(K) := {(k, j) ∈ Zd
≥0 × Zd

≥0|ck,j ̸= 0} ≤
(
2 + (1− 2−ν)−1

)
2KDK∗,d.
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From now on, we consider the case in which π = {Ω}. For a general π, we can adapt the same

proof strategy. Let t0 :=
⌈
log(2K+ 1

p )

log s

⌉
( ⇐⇒ st0 − 1

p ≥ 2K) and

R̃K(f) :=
∑

(k,j)∈E(K)
k·,i′ ̸=0,σ(i′)<t0

ck,jM
d
k,j(x).

If k·,i′ ̸= 0, σ(i′) ≥ t0, since s ≥ 1
p , the following inequality holds:

22K |ck,j | ≤ 2(s
t0− 1

p )|ck,j | ≤ 2⟨α,k⟩−
∥k∥1

p |ck,j | ≲ ∥f∥MBα
p,q

.

Thus, since r ≥ 1, it follows that∥∥∥RK(f)− R̃K(f)
∥∥∥
r
≤

∑
(k,j)∈E(K)

k·,i′ ̸=0,σ(i′)≥t0

|ck,j |
∥∥Md

k,j

∥∥
r
≤ ♯E(K)2−2K ∥f∥V Bα,π

p,q

≤
(
2 + (1− 2−ν)−1

)
2KDK∗,d2

−2K ∥f∥V Bα,π
p,q

≲ 2−KDK∗,d ∥f∥V Bα,π
p,q

.

From estimations above, it follows that∥∥∥f − R̃K(f)
∥∥∥
r
≲ 2−KD

ηp,q,r∨1
K,d ∥f∥V Bα,π

p,q
.

Let

Nm(x) :=

2K(m+1)∑
i=1

1[2−K(i−1),2−Ki)(x)Nm(2−K
⌈
2Kx

⌉
)

(the expressions 2−K
⌈
2Kx

⌉
correspond to input quantization masks). Then, it follows from Lemma

1 that ∥∥Nm(x)−Nm(x)
∥∥
∞ ≤ 2−K .

If k·,i′ ̸= 0, σ(i′) ≥ t0, we denote RK(f) as the expression which we can obtain by replacing Nm

in R̃K(f) by Nm. Then the following estimation follows:

||R̃K(f)−RK(f)||r ≲ 2−K .

Consequently, as in the proof of Theorem 1, it follows that

Rr(MTNt,2K (L, T,E,W,H, S,B), V Uα
p,q([0, 1]

dl)) ≲ 2−KDη∨1
K,dl.

For a general π, we execute the same proof strategy. For each Ωi, we set Ai :=
{i′|k·,i′ ̸= 0, σi(i

′) ≥ t0}. Since σi ̸= σi′ for i ̸= i′ in general, it also holds that Ai ̸= Ai′ for
i ̸= i′ in general. For each Ai, we can construct

(
RK(f)

)
i

and this expression
(
RK(f)

)
i

corre-
sponds to each quantization mask.

This completes the proof.
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