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Abstract

The performance of large language models001
(LLMs) is highly dependent on the way they in-002
teract with input data, where improper handling003
can lead to undesirable outcomes, including the004
exacerbation of biases and unsafe behaviors.005
Current optimization techniques often neglect006
the model’s underlying pre-training knowledge007
and treat each input independently, missing008
the potential for more efficient and safer learn-009
ing. In this work, we present Learning to Safe010
Prompt (L2P), a novel approach that integrates011
hierarchical meta-learning with optimization012
strategies to enhance the safety and reliabil-013
ity of LLMs. L2P trains a model to adapt its014
responses through a meta-learning framework015
that prioritizes both performance and risk miti-016
gation, ensuring that the model behaves safely017
across a wide range of inputs. Our extensive018
evaluation shows that L2P outperforms exist-019
ing methods by significantly improving both020
the safety and effectiveness of LLM responses021
while maintaining high performance.022

1 Introduction023

In recent years, artificial intelligence has witnessed024

remarkable advancements, giving rise to the emer-025

gence of large language models (LLMs), such as026

ChatGPT (Ray, 2023) and Llama (Touvron et al.,027

2023). These LLMs have demonstrated signifi-028

cant capabilities across various NLP tasks. How-029

ever, it is important to acknowledge that the be-030

havior of these LLMs is highly influenced by the031

inputs they receive. Extensive research has shown032

that when LLMs are given unclear or imprecise in-033

puts, they may produce undesirable or harmful out-034

puts (Hosseini and Horbach, 2023). This concern035

becomes especially critical in safety-sensitive ap-036

plications (Harrer, 2023), where even minor flaws037

in the input can lead to severe consequences. Thus,038

ensuring that inputs are clear and well-defined is039

essential to minimizing potential risks and maxi-040

mizing the safe application of LLMs.041

Research has proposed two main approaches to 042

address the safety issues of LLMs with the modi- 043

fication of the input prompt. One approach advo- 044

cates for manual prompt crafting (Reynolds and 045

McDonell, 2021), but this method can be limited 046

by the lack of expertise among users and certain in- 047

herent constraints (Webson and Pavlick, 2021). An- 048

other line of research focuses on automated prompt 049

optimization. For white-box models like Llama, 050

gradient-based techniques are employed to adjust 051

the prompt (Qin and Eisner, 2021; Gao, 2021). In 052

contrast, black-box models like ChatGPT pose a 053

greater challenge due to the limited information 054

available. Recent studies, such as EVOPROMPT 055

(Guo et al., 2023), have tackled prompt optimiza- 056

tion in black-box models using techniques that 057

do not rely on gradient information, such as evo- 058

lutionary algorithms (Bäck and Schwefel, 1993). 059

However, these methods encounter challenges, in- 060

cluding performance degradation when faced with 061

previously unseen prompts, and are highly depen- 062

dent on the sequence of optimizing known prompts, 063

resulting in an imbalanced emphasis on samples 064

optimized later in the sequence. 065

To address these limitations, we propose Learn- 066

ing to Safe Prompt (L2P), with the goal of not 067

only optimizing the target prompt but also sum- 068

marizing the common properties as a meta-prompt 069

derived from the global learning processes of a 070

collection of optimized individual prompts. This 071

meta-prompt can then be generalize and improve 072

the performance for newly encountered prompts. 073

The L2P framework consists of three stages: indi- 074

vidual prompt optimization, global learning for the 075

meta-prompt, and the transfer of the learned meta- 076

prompt to optimize new prompts. Specifically, for 077

individual prompt optimization, we leverage LLM 078

to optimize the prompt towards the expected re- 079

wards. Then, in the global learning process, we 080

employ a global-learning LLM-based optimizer to 081

condense the optimization process for a set of in- 082
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dividual prompts and obtain the meta-prompt. By083

doing so, the meta-prompt can be generalize to the084

newly encountered prompts.085

In summary, our primary contribution is L2P,086

a framework that leverages an LLM-based opti-087

mizer and a chain-of-thought global learning mech-088

anism to refine the inputs. L2P arises from our089

thorough analysis of the challenges associated with090

current black-box approaches. Our experiments091

rigorously evaluate L2P across a variety of tasks092

and LLM types. Compared to existing methods,093

L2P demonstrates significant improvements in en-094

hancing the safety of LLM outputs, as measured095

by task-specific metrics. Notably, L2P excels in096

several critical LLM applications, including toxi-097

city reduction, news summarization, and sentence098

simplification. It achieves an impressive 30% im-099

provement in optimizing original inputs and a 25%100

improvement with newly generated inputs.101

2 Related Work102

103

2.1 Large Language Models as Optimizer104

The expansion of large language models (LLMs)105

(Naveed et al., 2023) in terms of size and complex-106

ity has been paralleled by their increasingly supe-107

rior performance on a wide array of downstream108

natural language processing (NLP) tasks (Xie et al.,109

2023; Salnikov et al., 2023; Madaan et al., 2023).110

Recent research (Yang et al., 2023) showed LLM111

can be utilized as powerful optimizers in various112

tasks (Suzgun et al., 2022), pointing out that their113

ability to understand semantic content out a new114

possibility, simply describing them in everyday lan-115

guage to a LLM, for optimization. In our L2P, we116

employ the LLM as optimizers for both the indi-117

vidual prompt optimization and the global learning118

(Hospedales et al., 2021) mechanism.119

120

2.2 Prompts Engineering with LLMs121

The prompt engineering (Liu et al., 2023a) refer122

to optimize the original prompts, of which the pri-123

mary goal is to find a prompt that can enhance the124

language model’s performance in a special down-125

stream NLP tasks (Strobelt et al., 2022; Clavié126

et al., 2023; Luo et al., 2022). While LLMs are127

sensitive to how prompts are formatted, with stud-128

ies showing that even semantically similar prompts129

can lead to varied results (Wei et al., 2023; Zhao130

et al., 2021), prompt engineering is of great im- 131

portance for them. The effectiveness of a prompt 132

can depend on both the specific model and the task 133

at hand (White et al., 2023), however, some ro- 134

bustness prompts show decent performance across 135

various models and tasks (Yang et al., 2023). In ad- 136

dition, compared to the fine-turning methods (Chen 137

et al., 2023; Zhang et al., 2023), prompt engineer- 138

ing, which balances performance and efficiency 139

(McDonald et al., 2022), is gaining recognition as a 140

vital tool in the application of LLMs, especially in 141

environments with limited computational resources 142

and rapidly changeable tasks (Lin et al., 2023). 143

144

2.3 Black-Box Prompt Engineering 145

In the field of prompt engineering for Large Lan- 146

guage Models (LLMs), the methods are broadly 147

classified into two types: gradient-based (Qin and 148

Eisner, 2021; Gao, 2021; Liu et al., 2023b; Zhang 149

et al., 2021) and gradient-free, which is also known 150

as black-box prompt engineering (Zhang et al., 151

2022; Zhou et al., 2022; Pryzant et al., 2023). The 152

latter one is becoming increasingly important, espe- 153

cially as LLMs accessible only via APIs are more 154

common. These methods are varied, including sim- 155

ple additions of tokens or task-specific instructions 156

manually (Jiang et al., 2020), to more complex 157

approaches like automatic prompt searching and 158

optimization (Zhou et al., 2022). Since gradient- 159

related information is not available, gradient-free 160

optimization methods such as reinforcement learn- 161

ing (Deng et al., 2022) and evolutionary algorithms 162

(Guo et al., 2023) are also utilized. However, these 163

emerging methods are highly dependent on the or- 164

der of optimization of known prompts. Our L2P 165

employs the chain-of-thought (Wei et al., 2022) 166

aided global learning, which exhibits better robust- 167

ness against these issues. 168

3 Learning How to Prompt 169

In this section, we detail our method, Learning to 170

Safe Prompt (L2P), whose framework, along with 171

one representative example, is shown in Figure 1. 172

L2P aims to obtain the meta-prompt result, which 173

is a prompt containing indispensable high-scoring 174

features. This is achieved through global learning, 175

which analyze optimized individual prompt results 176

and the associated scores, mitigating the negative 177

effects caused by inappropriate optimization se- 178

quences and improving robustness. Specifically, 179
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L2P begins with the individual prompt optimiza-180

tion stage, where it utilizes LLMs as optimizers to181

enhance prompts by analyzing their performance182

with the scoring function. Following this, in the183

global learning stage, a global-learning LLM-based184

optimizer is employed to summarize the intrinsic185

features shared by high-scoring individual prompt186

results obtained during the individual prompt op-187

timization stage. Our global learning approach188

utilizes a chain-of-thought mechanism to unearth189

deeply hidden features, further enhancing the trust-190

worthiness and robustness of L2P.191

3.1 Individual Prompt Optimization in192

Black-Box LLM193

In our approach, we follow a process that begins194

with a fixed question q and an adjustable prompt p,195

which leads to the LLM generating an output. The196

process concludes with the scoring of this output.197

The specific form of p depends on the type of q,198

and it can serve either as a system prompt that199

describes the characteristics of LLMs or as a user200

prompt that guides LLM in performing specific201

tasks (Ray, 2023; Touvron et al., 2023). Essentially,202

we are addressing an optimization problem where203

our goal is to achieve the highest possible score for204

each response generated by the target LLMs.205

p∗ = argmax
p

Eq∼D[fsc(Lta(p, q)))], (1)206

where we use q and p to represent the question207

and prompt, both derived from the training dataset208

D. Notably, q remains fixed, while p is subject to209

optimization. Our goal is to find an abstract strat-210

egy or function for generating prompts based on211

questions and the training history h. To simplify212

our writing, we sometimes combine the tuple (q, p)213

and collectively refer to it as d. When we refer to214

optimizing d, we specifically mean optimizing the215

p component within the tuple. The function fsc216

represents the scoring function used to evaluate the217

performance of the LLM, while Lta denotes the218

target LLM’s output when given a specific prompt.219

In most cases, we do not know the exact output220

a given input will produce, and we are uncertain221

about the specific adjustments needed to enhance222

the model’s scores in a certain task. Consequently,223

we treat this problem, where we cannot design spe-224

cific solution steps, as a gradient-free black-box225

optimization problem.226

As we describe in the Algorithm 10, consid- 227

ering a training set with n prompts, denoted as 228

Dtr = dtr1 , . . . , dtrn . We introduce an optimizer 229

based on the LLM, denoted as Lop. This optimizer 230

refines the training prompts to change the perfor- 231

mance of the target LLM, noted as the Lta, after 232

the individual training process, the global learning 233

LLM Lgl try to find the common pattern shared by 234

the high-score training data samples. The LLM- 235

based optimizers, Lop and Lgl, are powered with 236

the vast semantic knowledge these models have ac- 237

quired during pre-training, allowing us to create op- 238

timization tasks without the detailed descriptions. 239

The optimization process is guided by the score 240

functions fsc of question q. For each tuple (q, p), 241

there will be a associated score s = fsc(q, p) , we 242

note the tuple (p, s) as one record of the optimiza- 243

tion history. The whole optimization history can be 244

defined mathematically as 245

h = {(p1, s1), (p2, s2), . . . , (pn, sn)} (2) 246

where each tuple represents a prompt and its score, 247

usually the p associated with higher s have more 248

characteristics to achieve better performance. For 249

this reason, combined with the LLM token limi- 250

tations, we only utilize the high-scoring portions 251

of history h when feeding the Lop. As we stated 252

before, as a black-box prompt engineering method, 253

L2P only rely on the output of the Lta, with the 254

optimization objection 2 stated before, L2P update 255

the p with Lop as followings: 256

pnew = Lop(pnow, sort(h)) (3) 257

The instruction-optimization function 258

sort() is introduced to provided the Lop 259

with data with higher information density, 260

chosen from historical data h, represented as 261

the top n elements of (pi, si)
n
i=1 sorted by si in 262

descending order. 263

3.2 Meta-Prompt Summarization 264

In this section, we will delve into the comprehen- 265

sive development and benefits of our global learn- 266

ing LLM optimizer, denoted as Lgl, which stands in 267

contrast to earlier prompt engineering approaches, 268

such as the OPRO, which optimize individual data 269

points in a sequential manner. These methods 270

utilize the outcome p obtained upon completing 271

the optimization of the last sample dtrn from the 272

known prompt set Dtr as the final result. As we 273

stated before, for individual prompt optimization, 274
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Global Learning LLM-based Optimizer

Chain-of-Thought

LLM-based Optimizer

User n New UserUser 1 

Update Guidance

User 2 

Training History

Knowledge Transfer

Figure 1: Pipeline of L2P. It automatically optimizes candidate prompts based on their performance scores, as
indicated by the score. It achieves this using LLM-based optimizers. Additionally, it harnesses a global-learning
LLM-based optimizer, employing the Chain of Thought (COT) mechanism to analyze valuable information from the
optimization history. This information serves as guidance for the subsequent rounds of optimization. This iterative
process continues until the specified number of optimization rounds is reached or convergence is achieved.

our Lop will optimize each sample dtri in a syn-275

chronous manner. Each sample is optimized inde-276

pendently, unaffected by the optimization process277

of other samples.278

After the stage of individual prompt optimiza-279

tion, Lgl attempts to summarize the meta-prompt,280

which is a distilled essence of the dataset captur-281

ing core features necessary for achieving high per-282

formance scores with fsc. It does so by utilizing283

the chain-of-thought mechanism, which filters opti-284

mization results to select high-performing and rep-285

resentative prompts. This meta-prompt is denoted286

as Pgl, and this process of meta-prompt summa-287

rization can be formulated as:288

Fkey = Lgl(pdtr1
, pdtr2

, . . . , pdtri
)

FPer = Lgl(pdtr1
, pdtr2

, . . . , pdtri
)

}
(4)289

−→ pgl = Lgl(Fkey, FPer, (pdtr1
, . . . , pdtri

)) (5)290

Here, pdtri represents the individually optimized291

results using the sample dtri , and Fkey signifies292

the key feature required to achieve optimal per-293

formance, while unrelated personal features are294

denoted as Fper. From Equation 5, it is evident295

that the optimization order is irrelevant to the final296

result of pgl. This approach preserves semantic297

integrity, preventing information loss during opti-298

mization and ensuring robustness. The chain of299

thought mechanism plays a crucial role by identify- 300

ing and integrating commonalities and differences 301

among the optimized prompts. Lgl tries to keep key 302

features Fkey necessary for optimal performance 303

while discarding unrelated personal features Fper. 304

3.3 Generalizing to New Prompt 305

In this section, we focus on generalizing the results 306

obtained from known prompts to new prompts, em- 307

phasizing the high efficiency, predictability, and 308

exceptional transferability of the L2P model. The 309

optimized results achieved through L2P can be di- 310

rectly applied to new prompts without the need 311

for a costly fine-tuning process, while ensuring 312

consistent, high-quality performance. This makes 313

L2P particularly suitable for devices with limited 314

computational resources and for rapid-response ap- 315

plications, such as real-time news analysis based 316

on LLMs. 317

The transferability of L2P arises from the ro- 318

bustness of the optimized results. The outcomes it 319

generates are not only applicable to new prompts 320

but can also seamlessly adapt to new types of LLM 321

configurations of various sizes and types, ranging 322

from efficiency-oriented LLMs suitable for mobile 323

devices to giant LLMs used on cloud servers. The 324

performance estimation of generalization to new 325

prompts can be expressed as: 326
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Eq∼Dte [fsc (Lta(pgl, q))] (6)327

Where Dte represents a new or altered set of328

prompts. In conclusion, with the assistance of the329

global optimizer Lgl’s key features Fkey summa-330

rization mechanism, the superior ability of L2P331

to generalize to new prompts without further re-332

training highlights L2P’s high efficiency and adapt-333

ability in resource-constrained or changeable de-334

manding environments.335

Algorithm 1 Learning to Prompt (L2P),

Require: The training dataset Dtr =
{dtr1 , dtr2 , ..., dtrn} and the test dataset
Dte = {dte1 , dte2 , ..., dten}; Lop, Lta, Lgl:
The individual LLM-based optimizer, the
Target LLM, and the global learning optimizer;
fsc : Lta(d) → R: score function for
Evaluating.

1: Initial/Resume the Global Prompt: pgl
2: while not converged do
3: Choose a random training subset D̃tr ⊆ Dtr
4: for dn in D̃tr do
5: Optimize: pdn ← Lop(dn, fsc, pgl)
6: end for
7: Select: the top i% of results with highest

score improvement Pi ⊆ PD̃tr
= {pd1 , ..., pdn}

8: Update Global Prompt: pgl ← Lgl(Pi)
9: end while

10: Return: pgl with the highest score expectation
E[fsc(Lta(d)))] over the Dtr.

4 Experiments336

In this section, we evaluate the performance of337

L2P, aiming to answer the following questions: Q1:338

Compared to corresponding prior approaches, can339

L2P improve the in-distribution performance for340

known prompts, and out-of-distribution robustness341

with the new prompts? Q2: How does L2P perform342

when using the new types of LLMs rather than the343

original one? Q3: Is L2P get benefits from the344

using of the chain of the thought?345

346

4.1 Experimental Settings347

Evaluation Setup. Our experiment focuses on348

how our L2P optimizes prompts to maximize the349

performance of large language models for specific350

tasks with original prompts and new prompts. We351

will introduce the problem setup and provide details352

on the experimental design. Both input and output 353

are presented in text format. The task is defined 354

as a dataset with original prompt and new prompt 355

splits, where the original prompt dataset split is 356

used during the optimization process, acting as the 357

target value, and the new prompts dataset split is 358

evaluated after optimization. 359

Backbone Models and Hyperparameter Settings. 360

As we noted before, We refer to the LLM used for 361

target evaluation as the Lta, the LLM used for in- 362

dividual prompt optimization as the Lop, and the 363

LLM utilized for the global learning task as the 364

Lgl. Our evaluation method uses common evalua- 365

tion problems. For all the following experiments 366

We utilize the ChatGPT-3.5 Turbo as the Lop and, 367

GPT-4 as the Lgl. We have utilized various types 368

of LLMs as the Lta, including, LLama 7B, LLama 369

13B, LLama 70B, ChatGPT-3,5 and the GPT-4 370

Turbo. The superior results obtained with various 371

different types and sized of LLMs demonstrate the 372

excellent performance and robustness of L2P. All 373

GPT-related LLMs are accessed through API calls, 374

while the locally run Llama model is operated us- 375

ing 4*Nvidia RTX6000 GPUs, each with 48GB of 376

VRAM. 377

Baselines. Similar to others black-box prompt en- 378

gineering works, we mainly employ different black- 379

box baselines for evaluation. The comparison meth- 380

ods include: Original, which directly use the initial 381

default prompts without optimization for the tasks. 382

Chain-of-Thought (CoT) (Wei et al., 2022), which 383

is based on our designed chain of thought-based 384

instructions, which will firstly try to rewrite the 385

original prompts, and based on the changes of the 386

performance to get the optimal prompts, result- 387

ing in improved performance. APE (Zhou et al., 388

2022), a method that applies the LLM approach on 389

top of instruction induction to further refine and 390

enhance the original initial prompts. In our imple- 391

mentation, we primarily used their designed LLMs 392

as Re-sampling Models to align with the design 393

framework of our experiments. OPRO (Yang et al., 394

2023), in this work, involves optimizing with large 395

language models, based on the final score to opti- 396

mize all the prompts. EVOPROMPT (Guo et al., 397

2023), employs a evolutionary strategy and aims 398

to make the model output to get the highest fitness 399

scores. 400

4.2 Toxicity Task 401

This project aims to adjust language model prompts 402
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Initial meta prompt: you are a helpful assistant

Step1: model setting

Updated Prompt:
Donald Trump’s speech at a black church in ... and peel 

away minority voters from Hillary Clinton.

User1

Updated Prompt:
The London train bomb situation led to an arrest 

and investigation.

User2

Updated Prompt:
U.S. Senator Ted Cruz's wife was escorted off the 
floor of the Republican convention for her safety.

User3

Updated Meta Prompt：
High-profile events and figures, from political speeches and policy criticisms to 

safety measures and criminal investigations, draw significant attention.

Step2: model setting

…
Step3: Analysis

Step4: Getting  Results

• All sentences describe significant events, majority involving 

political figures.

• All sentences navigate around the theme of news, 

particularly high-profile incidents or individuals.

① Similarity Analyze:

The topics of each situation differ greatly, from speeches and 
addresses, to criticism of bills, safety concerns at a political 
convention, and criminal investigations.

② Difference Analyze:

• All sentences describe significant events, majority involving 

political figures.

• All sentences navigate around the theme of news, 

particularly high-profile incidents or individuals.

① Similarity Analyze:

The topics of each situation differ greatly, from speeches and 
addresses, to criticism of bills, safety concerns at a political 
convention, and criminal investigations.

② Difference Analyze:

Figure 2: Training process of L2P, an illustrative example of the optimization process for prompts carried out jointly
by the LLM-based optimizer and the global learning LLM-based optimizer.

to control sentence toxicity while maintaining403

meaning, focusing on ethical text tone manage-404

ment. This feature is vital for moderating online405

platforms, helping to identify and reduce harmful406

speech, thus promoting safer, more positive com-407

munication.408

Dataset and Evaluation Metric. Our goal is to409

optimize prompts to make the language model gen-410

erate more toxic content while maintaining seman-411

tic consistency with the original prompts. We use412

three datasets: red-team (Ganguli et al., 2022), real413

toxicity (Gehman et al., 2020), and persona (Desh-414

pande et al., 2023) to represent various scenarios.415

Our model addresses continuing writing, respond-416

ing to queries, and role-playing. To assess semantic417

changes, we utilize ChatGPT, and for evaluating418

toxicity, we rely on the Perspective API metric419

(Hosseini et al., 2017), known for its alignment420

with human evaluations.421

We measured toxicity for original prompts,422

prompts optimized using baseline methods, and423

prompts optimized using our proposed method. For424

the sake of simplifying experiments and reducing425

API access costs, we randomly select prompts from426

the dataset, which is also employed for the follow-427

ing tasks. We report scores on both known and new428

prompts, noted as original and new in the result429

table430

Results and Analysis. In Table 1, we find that431

optimization-based methods, guided by objectives432

like score functions and fitness functions, outper-433

form non-optimization-based methods like COT434

in toxicity-related tasks. This indicates that opti-435

mization objectives enhance prompt engineering 436

algorithms by facilitating exploration of prompt 437

updates and improving their performance. 438

Compared to other black-box prompt engineer- 439

ing approaches, L2P stands out with its superior 440

performance in toxicity modification across all 441

three datasets, highlighting the effectiveness of its 442

novel pipeline and chain-of-thought global learning 443

mechanism. Furthermore, L2P shows substantial 444

improvements over state-of-the-art methods in both 445

optimizing original prompts and generating new 446

ones, suggesting that L2P can excel not only in 447

optimizing existing prompts for better performance 448

but also in quickly adapting to new prompts, mak- 449

ing it advantageous in rapidly changing or resource- 450

constrained situations. 451

4.3 Summarizing Task 452

This experiment aims to optimize prompt to en- 453

hance LLMs’ ability to produce brief, accurate 454

news summaries from long articles. This is critical 455

for generating precise news summaries in practical 456

applications, ensuring the essence of the original 457

content is maintained well. 458

Dataset and Evaluation Metric. We use the 459

news-summary dataset (Ahmed et al., 2018, 2017), 460

sourced from real news articles. To assess the qual- 461

ity of summaries generated by different prompts, 462

we employ two trusted metrics: ROUGE (Lin, 463

2004), which compares machine-generated sum- 464

maries to manual references, and BLEU (Papineni 465

et al., 2002), which measures vocabulary overlap 466

between machine-generated text and references. 467
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Table 1: Results for Toxicity-related Datasets. We use the original and new prompts. The best results and second
best results are bold and underlined, respectively.

Real Toxicity Red-Teaming Persona

LLAMA ChatGPT LLAMA ChatGPT LLAMA ChatGPT

Original New Original New Original New Original New Original New Original New

ORI 6.883 4.753 8.617 4.064 8.167 4.405 4.382 2.719 8.013 4.906 13.073 7.794
COT 5.831 4.438 5.314 8.219 8.229 5.290 4.792 2.417 9.231 7.270 14.744 9.105
APE 6.989 4.547 8.485 10.154 8.640 4.702 4.760 2.608 8.924 7.235 16.308 10.316
EVOPROMPT 7.197 8.075 10.023 14.240 9.061 6.993 4.848 3.834 11.131 7.538 15.049 11.499
OPRO 7.145 9.676 11.852 17.833 9.306 6.622 6.132 3.212 10.934 5.909 13.969 6.918

L2P (Ours) 13.008 11.883 20.900 28.534 13.762 9.667 10.320 5.544 11.958 10.652 26.667 10.923

Table 2: Results for News summarizing Datasets. We
use the original and new prompts.

LLAMA ChatGPT

Original New Original New

ORI 33.372 35.091 47.745 51.454
COT 33.445 31.784 44.352 51.571
APE 34.478 31.350 53.729 52.455
EVOPROMPT 33.726 31.766 57.463 51.352
OPRO 37.766 36.194 51.632 48.566

L2P (Ours) 44.199 42.529 61.724 68.705

We combine these metrics to provide a comprehen-468

sive evaluation of the model’s performance.469

Results and Analysis. The goal is to summarize470

the key information of a detailed news, with string471

length of input detailed news ranging from 168 to472

12400, typical around 2000, and the output sum-473

marization is required concise, usually below 100.474

Consistent with previous experiments, our experi-475

ment begins with the initial general system prompt476

"you are a helpful assistant". Our expectation is to477

optimize the model through a series of optimiza-478

tion, for better summarization.479

Table 2 presents the performance of various480

algorithms on the News summarization dataset.481

Compared to ORI and COT, the optimization ap-482

proaches can more effectively enhance perfor-483

mance of the LLMs. This aligns with our previous484

conclusions on toxicity-related datasets, demon-485

strating the effectiveness of applying optimization486

objectives. Furthermore, by combining optimized487

methods with chain-of-thought global learning488

mechanism, L2P outperforms all other approaches489

on two completely different LLMs, verifying its490

robustness across diverse tasks.491

4.4 Simplification Task492

This experiment focuses on training prompts to sim-493

plify complex sentences while maintaining their494

original meaning. It involves controlling the LLMs495

Table 3: Results for sentence-simplification Datasets.
We use the Original and New prompts.

LLAMA ChatGPT

Original New Original New

ORI 39.957 37.160 42.877 40.909
COT 41.316 39.048 42.167 41.312
APE 41.876 37.427 43.817 41.000
EVOPROMPT 42.070 38.715 43.707 39.471
OPRO 42.722 37.158 44.296 41.314

L2P (Ours) 50.442 45.691 49.464 44.984

Table 4: Results for generalization performance across
various LLMs using the News dataset.

7B 13B 70B ChatGPT GPT4

ORI 35.091 42.622 53.931 51.454 45.336
OPRO on LLama-7B 36.194 43.645 48.986 49.298 48.306
OPRO on ChatGPT 36.004 41.344 50.671 48.566 43.430

L2P (Ours) on LLama-7B 42.529 51.387 61.323 65.774 54.993
L2P (Ours) on ChatGPT 39.365 57.259 63.764 68.705 61.997

output for clarity. The model must understand and 496

preserve the core intent and context, and identify 497

complex structures, which can be utilized to en- 498

hance text readability. 499

We utilize ASSET (Alva-Manchego et al., 2020), 500

a multi-reference dataset for evaluating English 501

sentence simplification. For the metric used in this 502

task, we employ SARI (Xu et al., 2016) to measure 503

the quality of the simplification system’s output 504

with different prompt inputs, with higher scores 505

indicating better quality simplifications. From the 506

Table 3, we can see that Our method L2P has a 507

significant advantage over all baseline methods. 508

4.5 Analysis of L2P 509

The generalization of our learned prompt across 510

various LLMs. Our method demonstrates excep- 511

tional generalization in black box prompt engi- 512

neering, crucial for real-world LLM-based appli- 513

cations. It remains robust across a range of LLMs, 514

from LLama 7B to 70B models, including most ad- 515

vanced GPT4 Turbo, without requiring additional 516
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training. This adaptability is essential for efficiency517

and computing resource conservation, particularly518

in mobile device deployment.519

Our approach excels across diverse datasets,520

adapting smoothly to different LLMs. For exam-521

ple, in news content, it outperforms OPRO in gen-522

eralization, improving content generation quality523

across LLMs without extra adjustments. In addi-524

tion, L2P is scalable and transferable, consistently525

performing well across LLMs of varying complex-526

ity. This cost-effective solution streamlines prompt527

engineering, enabling result prompts gain from low-528

cost LLMs to work on expensive ones, reducing529

time and upgrade expenses for LLM-based appli-530

cations.531

Ablation experiment of the COT mechanism of532

the global learning module. Our chain-of-thought533

(COT) aided global learning module plays a cru-534

cial role in improving algorithmic efficiency and535

effectiveness. It systematically analyzes results to536

extract meaningful insights, identifying Fkey and537

Fper in result prompts. This approach enhances538

critical analysis, and improves data comprehension539

by breaking down sentences of results prompts and540

exploring underlying shared features.541

Our COT ablation experiment results, shown in542

Table5, demonstrate that each designed module in543

COT significantly enhances global learning per-544

formance. "Only Module D" only focuses on Fper545

before summarizing, "Only Module C" only consid-546

ers Fkey before summarizing, and "Module C+D"547

combines both. "Without C+D" lets the global548

learning optimizer Lgl to summarize without any549

additional steps.550

Table 5: Results for ablation study of chain-of-thought
mechanism design.

LLaMa ChatGPT

Without Module D+C 5.107 22.156
Only Module D 7.239 25.001
Only Module C 8.019 23.672

Module D + C 11.883 28.534

Case Analysis. We selected several strong base-551

lines and presented a case with their own optimiza-552

tion result prompts in Figure 3. We will mark the553

background color of meaningful information as554

green and the background color of invalid informa-555

tion as yellow. Compared with other approaches,556

L2P excels in providing a higher-quality prompt,557

which includes more meaningful information to en-558

hance the performance of LLMs. In the case, L2P559

Original

L2P

EAPO

LLM-OP

You are a 
helpful 

assistant.

Benefit from the 
vast expertise and 

knowledge to 
enhance 

experience.

Imagine you are a 
helpful assistant tasked 
with assisting a user in 

generating a better 
prompt

Please provide a concise 
summary detailing the 

significant real-life events 
concerning political or security 

matters, including key 
incidents, critical responses, 

and the progress made in the 
identified situations.

Figure 3: A case study comparing the levels of mean-
ingful information gain among various baselines.

accurately learns the primary Fkey to achieve great 560

performance (e.g., the summarization should be 561

concise), while avoiding vague descriptions lack- 562

ing effective information (e.g., just telling the LLM 563

should be helpful) or personal information of the 564

data sample. Although other baselines also im- 565

prove the performance of the LLMs to some ex- 566

tent, they still exhibit vague descriptions or Fper 567

not beneficial for achieving better LLMs perfor- 568

mance. Additionally, from the results, we can 569

see that L2P can effectively provide concrete in- 570

structions to achieve better performance, such as 571

telling LLMs to provide key incidents and critical 572

responses, and progress, which LLM can easily fol- 573

low. In contrast, such as OPRO, even also provides 574

some meaningful instructions such as using exper- 575

tise knowledge to summarize, but compared with 576

the instructions of L2P, they are too vast, causing 577

difficulty for target LLMs to follow. 578

5 Conclusion 579

Our research introduces a novel prompt optimiza- 580

tion method called L2P, designed to significantly 581

enhance the security of target LLMs. L2P lever- 582

ages a hierarchical meta-learning optimization ap- 583

proach: an individual LLM-based local optimizer 584

and a COT-aided global learning optimizer. This 585

combination not only fine-tunes the performance of 586

various LLMs across a range of known and novel 587

prompts but also enhances their robustness against 588

adversarial inputs. L2P bolsters model safety and 589

reducing the risk of harmful or biased responses. 590

Our approach consistently outperforms existing 591

state-of-the-art methods across different tasks, of- 592

fering substantial advancements in performance 593

while ensuring that security considerations are an 594

integral part of the optimization process. 595
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Limitations596

Our work only considered the use of a single type597

of LLM, ChatGPT, as the individual optimizer598

Lop’s backbone. The LLM used in this work can be599

expanded to different structure LLMs, such as the600

Llama series, or a more powerful LLM like GPT4601

or GPT4 Turbo. Additionally, for both the indi-602

vidual optimizer Lop and global learning optimizer603

Lgl, we did not make the use of integrating external604

knowledge databases specific to certain domains605

to further enhance the performance of these LLM-606

based optimizers. We believe this is a promising607

direction worth considering for the next step.608
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