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Abstract

The performance of large language models
(LLMs) is highly dependent on the way they in-
teract with input data, where improper handling
can lead to undesirable outcomes, including the
exacerbation of biases and unsafe behaviors.
Current optimization techniques often neglect
the model’s underlying pre-training knowledge
and treat each input independently, missing
the potential for more efficient and safer learn-
ing. In this work, we present Learning to Safe
Prompt (L2P), a novel approach that integrates
hierarchical meta-learning with optimization
strategies to enhance the safety and reliabil-
ity of LLMs. L2P trains a model to adapt its
responses through a meta-learning framework
that prioritizes both performance and risk miti-
gation, ensuring that the model behaves safely
across a wide range of inputs. Our extensive
evaluation shows that L2P outperforms exist-
ing methods by significantly improving both
the safety and effectiveness of LLM responses
while maintaining high performance.

1 Introduction

In recent years, artificial intelligence has witnessed
remarkable advancements, giving rise to the emer-
gence of large language models (LLMs), such as
ChatGPT (Ray, 2023) and Llama (Touvron et al.,
2023). These LLMs have demonstrated signifi-
cant capabilities across various NLP tasks. How-
ever, it is important to acknowledge that the be-
havior of these LL.Ms is highly influenced by the
inputs they receive. Extensive research has shown
that when LL.Ms are given unclear or imprecise in-
puts, they may produce undesirable or harmful out-
puts (Hosseini and Horbach, 2023). This concern
becomes especially critical in safety-sensitive ap-
plications (Harrer, 2023), where even minor flaws
in the input can lead to severe consequences. Thus,
ensuring that inputs are clear and well-defined is
essential to minimizing potential risks and maxi-
mizing the safe application of LLMs.

Research has proposed two main approaches to
address the safety issues of LLMs with the modi-
fication of the input prompt. One approach advo-
cates for manual prompt crafting (Reynolds and
McDonell, 2021), but this method can be limited
by the lack of expertise among users and certain in-
herent constraints (Webson and Pavlick, 2021). An-
other line of research focuses on automated prompt
optimization. For white-box models like Llama,
gradient-based techniques are employed to adjust
the prompt (Qin and Eisner, 2021; Gao, 2021). In
contrast, black-box models like ChatGPT pose a
greater challenge due to the limited information
available. Recent studies, such as EVOPROMPT
(Guo et al., 2023), have tackled prompt optimiza-
tion in black-box models using techniques that
do not rely on gradient information, such as evo-
lutionary algorithms (Bick and Schwefel, 1993).
However, these methods encounter challenges, in-
cluding performance degradation when faced with
previously unseen prompts, and are highly depen-
dent on the sequence of optimizing known prompts,
resulting in an imbalanced emphasis on samples
optimized later in the sequence.

To address these limitations, we propose Learn-
ing to Safe Prompt (L2P), with the goal of not
only optimizing the target prompt but also sum-
marizing the common properties as a meta-prompt
derived from the global learning processes of a
collection of optimized individual prompts. This
meta-prompt can then be generalize and improve
the performance for newly encountered prompts.
The L2P framework consists of three stages: indi-
vidual prompt optimization, global learning for the
meta-prompt, and the transfer of the learned meta-
prompt to optimize new prompts. Specifically, for
individual prompt optimization, we leverage LLM
to optimize the prompt towards the expected re-
wards. Then, in the global learning process, we
employ a global-learning LLM-based optimizer to
condense the optimization process for a set of in-



dividual prompts and obtain the meta-prompt. By
doing so, the meta-prompt can be generalize to the
newly encountered prompts.

In summary, our primary contribution is L2P,
a framework that leverages an LLM-based opti-
mizer and a chain-of-thought global learning mech-
anism to refine the inputs. L2P arises from our
thorough analysis of the challenges associated with
current black-box approaches. Our experiments
rigorously evaluate L2P across a variety of tasks
and LLM types. Compared to existing methods,
L2P demonstrates significant improvements in en-
hancing the safety of LLM outputs, as measured
by task-specific metrics. Notably, L2P excels in
several critical LLM applications, including toxi-
city reduction, news summarization, and sentence
simplification. It achieves an impressive 30% im-
provement in optimizing original inputs and a 25%
improvement with newly generated inputs.

2 Related Work

2.1 Large Language Models as Optimizer

The expansion of large language models (LLMs)
(Naveed et al., 2023) in terms of size and complex-
ity has been paralleled by their increasingly supe-
rior performance on a wide array of downstream
natural language processing (NLP) tasks (Xie et al.,
2023; Salnikov et al., 2023; Madaan et al., 2023).
Recent research (Yang et al., 2023) showed LLM
can be utilized as powerful optimizers in various
tasks (Suzgun et al., 2022), pointing out that their
ability to understand semantic content out a new
possibility, simply describing them in everyday lan-
guage to a LLM, for optimization. In our L2P, we
employ the LLLM as optimizers for both the indi-
vidual prompt optimization and the global learning
(Hospedales et al., 2021) mechanism.

2.2 Prompts Engineering with LLMs

The prompt engineering (Liu et al., 2023a) refer
to optimize the original prompts, of which the pri-
mary goal is to find a prompt that can enhance the
language model’s performance in a special down-
stream NLP tasks (Strobelt et al., 2022; Clavié
et al., 2023; Luo et al., 2022). While LLMs are
sensitive to how prompts are formatted, with stud-
ies showing that even semantically similar prompts
can lead to varied results (Wei et al., 2023; Zhao

et al., 2021), prompt engineering is of great im-
portance for them. The effectiveness of a prompt
can depend on both the specific model and the task
at hand (White et al., 2023), however, some ro-
bustness prompts show decent performance across
various models and tasks (Yang et al., 2023). In ad-
dition, compared to the fine-turning methods (Chen
et al., 2023; Zhang et al., 2023), prompt engineer-
ing, which balances performance and efficiency
(McDonald et al., 2022), is gaining recognition as a
vital tool in the application of LLMs, especially in
environments with limited computational resources
and rapidly changeable tasks (Lin et al., 2023).

2.3 Black-Box Prompt Engineering

In the field of prompt engineering for Large Lan-
guage Models (LLMs), the methods are broadly
classified into two types: gradient-based (Qin and
Eisner, 2021; Gao, 2021; Liu et al., 2023b; Zhang
et al., 2021) and gradient-free, which is also known
as black-box prompt engineering (Zhang et al.,
2022; Zhou et al., 2022; Pryzant et al., 2023). The
latter one is becoming increasingly important, espe-
cially as LL.Ms accessible only via APIs are more
common. These methods are varied, including sim-
ple additions of tokens or task-specific instructions
manually (Jiang et al., 2020), to more complex
approaches like automatic prompt searching and
optimization (Zhou et al., 2022). Since gradient-
related information is not available, gradient-free
optimization methods such as reinforcement learn-
ing (Deng et al., 2022) and evolutionary algorithms
(Guo et al., 2023) are also utilized. However, these
emerging methods are highly dependent on the or-
der of optimization of known prompts. Our L2P
employs the chain-of-thought (Wei et al., 2022)
aided global learning, which exhibits better robust-
ness against these issues.

3 Learning How to Prompt

In this section, we detail our method, Learning to
Safe Prompt (L2P), whose framework, along with
one representative example, is shown in Figure 1.
L2P aims to obtain the meta-prompt result, which
is a prompt containing indispensable high-scoring
features. This is achieved through global learning,
which analyze optimized individual prompt results
and the associated scores, mitigating the negative
effects caused by inappropriate optimization se-
quences and improving robustness. Specifically,



L2P begins with the individual prompt optimiza-
tion stage, where it utilizes LLMs as optimizers to
enhance prompts by analyzing their performance
with the scoring function. Following this, in the
global learning stage, a global-learning LL.M-based
optimizer is employed to summarize the intrinsic
features shared by high-scoring individual prompt
results obtained during the individual prompt op-
timization stage. Our global learning approach
utilizes a chain-of-thought mechanism to unearth
deeply hidden features, further enhancing the trust-
worthiness and robustness of L2P.

3.1 Individual Prompt Optimization in
Black-Box LLM

In our approach, we follow a process that begins
with a fixed question ¢ and an adjustable prompt p,
which leads to the LLM generating an output. The
process concludes with the scoring of this output.
The specific form of p depends on the type of ¢,
and it can serve either as a system prompt that
describes the characteristics of LLMs or as a user
prompt that guides LLM in performing specific
tasks (Ray, 2023; Touvron et al., 2023). Essentially,
we are addressing an optimization problem where
our goal is to achieve the highest possible score for
each response generated by the target LLMs.

p* = argm}‘?XEqu[fsc(Lta(pv Q)>)]> (D

where we use g and p to represent the question
and prompt, both derived from the training dataset
D. Notably, g remains fixed, while p is subject to
optimization. Our goal is to find an abstract strat-
egy or function for generating prompts based on
questions and the training history h. To simplify
our writing, we sometimes combine the tuple (g, p)
and collectively refer to it as d. When we refer to
optimizing d, we specifically mean optimizing the
p component within the tuple. The function f,.
represents the scoring function used to evaluate the
performance of the LLM, while L;, denotes the
target LLM’s output when given a specific prompt.
In most cases, we do not know the exact output
a given input will produce, and we are uncertain
about the specific adjustments needed to enhance
the model’s scores in a certain task. Consequently,
we treat this problem, where we cannot design spe-
cific solution steps, as a gradient-free black-box
optimization problem.

As we describe in the Algorithm 10, consid-
ering a training set with n prompts, denoted as
D' = dyy,,...,ds. . We introduce an optimizer
based on the LLM, denoted as L,,,. This optimizer
refines the training prompts to change the perfor-
mance of the target LLM, noted as the Ly, after
the individual training process, the global learning
LLM Ly try to find the common pattern shared by
the high-score training data samples. The LLM-
based optimizers, L, and L, are powered with
the vast semantic knowledge these models have ac-
quired during pre-training, allowing us to create op-
timization tasks without the detailed descriptions.

The optimization process is guided by the score
functions f. of question ¢. For each tuple (g, p),
there will be a associated score s = fs.(q,p) , we
note the tuple (p, s) as one record of the optimiza-
tion history. The whole optimization history can be
defined mathematically as

h={(p1,51), (p2,52), .., (Pn,sn)} (2

where each tuple represents a prompt and its score,
usually the p associated with higher s have more
characteristics to achieve better performance. For
this reason, combined with the LLM token limi-
tations, we only utilize the high-scoring portions
of history h when feeding the L,,. As we stated
before, as a black-box prompt engineering method,
L2P only rely on the output of the L;,, with the
optimization objection 2 stated before, L2P update
the p with L, as followings:

Pnew = Lop(pnowa SO’l“t(h)) 3)

The instruction-optimization function
sort() is introduced to provided the L,
with data with higher information density,
chosen from historical data h, represented as
the top n elements of (p;, s;);, sorted by s; in
descending order.

3.2 Meta-Prompt Summarization

In this section, we will delve into the comprehen-
sive development and benefits of our global learn-
ing LLM optimizer, denoted as L, which stands in
contrast to earlier prompt engineering approaches,
such as the OPRO, which optimize individual data
points in a sequential manner. These methods
utilize the outcome p obtained upon completing
the optimization of the last sample d;,, from the
known prompt set D" as the final result. As we
stated before, for individual prompt optimization,
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Figure 1: Pipeline of L2P. It automatically optimizes candidate prompts based on their performance scores, as
indicated by the score. It achieves this using LLM-based optimizers. Additionally, it harnesses a global-learning
LLM-based optimizer, employing the Chain of Thought (COT) mechanism to analyze valuable information from the
optimization history. This information serves as guidance for the subsequent rounds of optimization. This iterative
process continues until the specified number of optimization rounds is reached or convergence is achieved.

our L, will optimize each sample dy,, in a syn-
chronous manner. Each sample is optimized inde-
pendently, unaffected by the optimization process
of other samples.

After the stage of individual prompt optimiza-
tion, L4 attempts to summarize the meta-prompt,
which is a distilled essence of the dataset captur-
ing core features necessary for achieving high per-
formance scores with f,.. It does so by utilizing
the chain-of-thought mechanism, which filters opti-
mization results to select high-performing and rep-
resentative prompts. This meta-prompt is denoted
as Py, and this process of meta-prompt summa-
rization can be formulated as:
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Here, pq,,, represents the individually optimized
results using the sample dy,;, and Fj,, signifies
the key feature required to achieve optimal per-
formance, while unrelated personal features are
denoted as Fj,.. From Equation 5, it is evident
that the optimization order is irrelevant to the final
result of py;. This approach preserves semantic
integrity, preventing information loss during opti-
mization and ensuring robustness. The chain of

thought mechanism plays a crucial role by identify-
ing and integrating commonalities and differences
among the optimized prompts. L tries to keep key
features Fy., necessary for optimal performance
while discarding unrelated personal features F,c,.

3.3 Generalizing to New Prompt

In this section, we focus on generalizing the results
obtained from known prompts to new prompts, em-
phasizing the high efficiency, predictability, and
exceptional transferability of the L2P model. The
optimized results achieved through L2P can be di-
rectly applied to new prompts without the need
for a costly fine-tuning process, while ensuring
consistent, high-quality performance. This makes
L2P particularly suitable for devices with limited
computational resources and for rapid-response ap-
plications, such as real-time news analysis based
on LLMs.

The transferability of L2P arises from the ro-
bustness of the optimized results. The outcomes it
generates are not only applicable to new prompts
but can also seamlessly adapt to new types of LLM
configurations of various sizes and types, ranging
from efficiency-oriented LLMs suitable for mobile
devices to giant LLMs used on cloud servers. The
performance estimation of generalization to new
prompts can be expressed as:
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Where Dy, represents a new or altered set of
prompts. In conclusion, with the assistance of the
global optimizer Ly;’s key features Fj., summa-
rization mechanism, the superior ability of L2P
to generalize to new prompts without further re-
training highlights L2P’s high efficiency and adapt-
ability in resource-constrained or changeable de-
manding environments.

Algorithm 1 Learning to Prompt (L2P),

Require: The training dataset Dy =
{diry,dtry, .., dtr, } and the test dataset
Dy = {dt€17dt627"'7dt6n}; L0p7Lta7Lgl:
The individual LLM-based optimizer, the
Target LLM, and the global learning optimizer;
fse @ Li(d) — R: score function for
Evaluating.

1: Initial/Resume the Global Prompt: p,

2: while not converged do

3: Choose a random training subset Dtr C Dy
4: for d,, in btr do

5: Optimize: py, < Lop(dn, fsc, Pgl)

6: end for

7:

Select: the top i% of results with highest
score improvement P; C Pp, = {pa,, .-, Pd,, }
Update Global Prompt: p,; < Ly (FP;)
9: end while
10: Return: p,; with the highest score expectation
E[fsc(Lia(d)))] over the Dy.

o]

4 Experiments

In this section, we evaluate the performance of
L2P, aiming to answer the following questions: Q1:
Compared to corresponding prior approaches, can
L2P improve the in-distribution performance for
known prompts, and out-of-distribution robustness
with the new prompts? Q2: How does L2P perform
when using the new types of LLMs rather than the
original one? Q3: Is L2P get benefits from the
using of the chain of the thought?

4.1 Experimental Settings

Evaluation Setup. Our experiment focuses on
how our L2P optimizes prompts to maximize the
performance of large language models for specific
tasks with original prompts and new prompts. We
will introduce the problem setup and provide details

on the experimental design. Both input and output
are presented in text format. The task is defined
as a dataset with original prompt and new prompt
splits, where the original prompt dataset split is
used during the optimization process, acting as the
target value, and the new prompts dataset split is
evaluated after optimization.

Backbone Models and Hyperparameter Settings.
As we noted before, We refer to the LLM used for
target evaluation as the L;,, the LLM used for in-
dividual prompt optimization as the L, and the
LLM utilized for the global learning task as the
L. Our evaluation method uses common evalua-
tion problems. For all the following experiments
We utilize the ChatGPT-3.5 Turbo as the L, and,
GPT-4 as the L. We have utilized various types
of LLMs as the Ly, including, LLama 7B, LLama
13B, LLama 70B, ChatGPT-3,5 and the GPT-4
Turbo. The superior results obtained with various
different types and sized of LLMs demonstrate the
excellent performance and robustness of L2P. All
GPT-related LLMs are accessed through API calls,
while the locally run Llama model is operated us-
ing 4*Nvidia RTX6000 GPUs, each with 48GB of
VRAM.

Baselines. Similar to others black-box prompt en-
gineering works, we mainly employ different black-
box baselines for evaluation. The comparison meth-
ods include: Original, which directly use the initial
default prompts without optimization for the tasks.
Chain-of-Thought (CoT) (Wei et al., 2022), which
is based on our designed chain of thought-based
instructions, which will firstly try to rewrite the
original prompts, and based on the changes of the
performance to get the optimal prompts, result-
ing in improved performance. APE (Zhou et al.,
2022), a method that applies the LLM approach on
top of instruction induction to further refine and
enhance the original initial prompts. In our imple-
mentation, we primarily used their designed LLMs
as Re-sampling Models to align with the design
framework of our experiments. OPRO (Yang et al.,
2023), in this work, involves optimizing with large
language models, based on the final score to opti-
mize all the prompts. EVOPROMPT (Guo et al.,
2023), employs a evolutionary strategy and aims
to make the model output to get the highest fitness
scores.

4.2 Toxicity Task

This project aims to adjust language model prompts



Step1: model setting

Initial meta prompt: you are a helpful assistant

Step2: model setting

Updated Prompt:
Donald Trump’ s speech at a black church in ...
away minority voters from Hillary Clinton.

and peel

Updated Prompt:

The London train bomb situation led to an arrest
and investigation

Userl User2

Updated Prompt:
U.S. Senator Ted Cruz's wife was escorted off the
floor of the Republican convention for her safety.
User3

Step3: Analysis

@ similarity Analyze:

® All sentences describe significant events, majority involving
political figures.

® All sentences navigate around the theme of news,
particularly high-profile incidents or individuals.

(@) pifference Analyze:

The topics of each situation differ greatly, from speeches and
addresses, to criticism of bills, safety concerns at a political
convention, and criminal investigations.

Step4: Getting Results

Updated Meta Prompt:
High-profile events and figures, from political speeches and policy criticisms to
safety measures and criminal investigations, draw significant attention.

Figure 2: Training process of L2P, an illustrative example of the optimization process for prompts carried out jointly
by the LLM-based optimizer and the global learning LLM-based optimizer.

to control sentence toxicity while maintaining
meaning, focusing on ethical text tone manage-
ment. This feature is vital for moderating online
platforms, helping to identify and reduce harmful
speech, thus promoting safer, more positive com-
munication.

Dataset and Evaluation Metric. Our goal is to
optimize prompts to make the language model gen-
erate more toxic content while maintaining seman-
tic consistency with the original prompts. We use
three datasets: red-team (Ganguli et al., 2022), real
toxicity (Gehman et al., 2020), and persona (Desh-
pande et al., 2023) to represent various scenarios.
Our model addresses continuing writing, respond-
ing to queries, and role-playing. To assess semantic
changes, we utilize ChatGPT, and for evaluating
toxicity, we rely on the Perspective API metric
(Hosseini et al., 2017), known for its alignment
with human evaluations.

We measured toxicity for original prompts,
prompts optimized using baseline methods, and
prompts optimized using our proposed method. For
the sake of simplifying experiments and reducing
API access costs, we randomly select prompts from
the dataset, which is also employed for the follow-
ing tasks. We report scores on both known and new
prompts, noted as original and new in the result
table
Results and Analysis. In Table 1, we find that
optimization-based methods, guided by objectives
like score functions and fitness functions, outper-
form non-optimization-based methods like COT
in toxicity-related tasks. This indicates that opti-

mization objectives enhance prompt engineering
algorithms by facilitating exploration of prompt
updates and improving their performance.

Compared to other black-box prompt engineer-
ing approaches, L2P stands out with its superior
performance in toxicity modification across all
three datasets, highlighting the effectiveness of its
novel pipeline and chain-of-thought global learning
mechanism. Furthermore, L2P shows substantial
improvements over state-of-the-art methods in both
optimizing original prompts and generating new
ones, suggesting that L2P can excel not only in
optimizing existing prompts for better performance
but also in quickly adapting to new prompts, mak-
ing it advantageous in rapidly changing or resource-
constrained situations.

4.3 Summarizing Task

This experiment aims to optimize prompt to en-
hance LLMs’ ability to produce brief, accurate
news summaries from long articles. This is critical
for generating precise news summaries in practical
applications, ensuring the essence of the original
content is maintained well.

Dataset and Evaluation Metric. We use the
news-summary dataset (Ahmed et al., 2018, 2017),
sourced from real news articles. To assess the qual-
ity of summaries generated by different prompts,
we employ two trusted metrics: ROUGE (Lin,
2004), which compares machine-generated sum-
maries to manual references, and BLEU (Papineni
et al., 2002), which measures vocabulary overlap
between machine-generated text and references.



Table 1: Results for Toxicity-related Datasets. We use the original and new prompts. The best results and second

best results are bold and underlined, respectively.

| Real Toxicity | Red-Teaming | Persona

| LLAMA | ChaGPT | LLAMA | ChaGPT | LLAMA |  ChaGPT

| Original | New | Original | New | Original | New | Original | New | Original | New | Original | New
ORI 6.883 4.753 8.617 4.064 8.167 |4.405| 4382 |2719| 8.013 4.906 | 13.073 | 7.794
COT 5.831 4.438 5.314 8.219 8.229 |5.290 | 4.792 | 2417 | 9.231 7.270 | 14.744 | 9.105
APE 6.989 4.547 8.485 | 10.154 | 8.640 |4.702 | 4.760 | 2.608 | 8.924 7.235 | 16.308 | 10.316
EVOPROMPT | 7.197 8.075 | 10.023 | 14.240 | 9.061 | 6.993 | 4.848 |3.834| 11.131 | 7.538 | 15.049 | 11.499
OPRO 7.145 9.676 | 11.852 | 17.833 | 9.306 | 6.622 | 6.132 |3.212 | 10.934 | 5.909 | 13.969 | 6.918
L2P (Ours) | 13.008 | 11.883 | 20.900 | 28.534 | 13.762 | 9.667 | 10.320 | 5.544 | 11958 | 10.652 | 26.667 | 10.923

Table 2: Results for News summarizing Datasets. We
use the original and new prompts.

Table 3: Results for sentence-simplification Datasets.
We use the Original and New prompts.

| LLAMA |  ChaGPT | LLAMA |  ChaGPT

| Original | New | Original | New | Original | New | Original | New
ORI 33.372 | 35.091 | 47.745 | 51.454 ORI 39.957 | 37.160 | 42.877 | 40.909
CcoT 33.445 | 31.784 | 44.352 | 51.571 COT 41.316 | 39.048 | 42.167 | 41.312
APE 34.478 | 31.350 | 53.729 | 52.455 APE 41.876 | 37.427 | 43.817 | 41.000
EVOPROMPT | 33.726 | 31.766 | 57.463 | 51.352 EVOPROMPT | 42.070 | 38.715 | 43.707 | 39.471
OPRO 37.766 | 36.194 | 51.632 | 48.566 OPRO 42.722 | 37.158 | 44.296 | 41.314
L2P (Ours) ‘ 44.199 ‘ 42.529 ‘ 61.724 ‘ 68.705 L2P (Ours) ‘ 50.442 ‘ 45.691 ‘ 49.464 ‘ 44.984

We combine these metrics to provide a comprehen-
sive evaluation of the model’s performance.
Results and Analysis. The goal is to summarize
the key information of a detailed news, with string
length of input detailed news ranging from 168 to
12400, typical around 2000, and the output sum-
marization is required concise, usually below 100.
Consistent with previous experiments, our experi-
ment begins with the initial general system prompt
"you are a helpful assistant”. Our expectation is to
optimize the model through a series of optimiza-
tion, for better summarization.

Table 2 presents the performance of various
algorithms on the News summarization dataset.
Compared to ORI and COT, the optimization ap-
proaches can more effectively enhance perfor-
mance of the LLMs. This aligns with our previous
conclusions on toxicity-related datasets, demon-
strating the effectiveness of applying optimization
objectives. Furthermore, by combining optimized
methods with chain-of-thought global learning
mechanism, L2P outperforms all other approaches
on two completely different LLMs, verifying its
robustness across diverse tasks.

4.4 Simplification Task

This experiment focuses on training prompts to sim-
plify complex sentences while maintaining their
original meaning. It involves controlling the LLMs

Table 4: Results for generalization performance across
various LL.Ms using the News dataset.

| 7B | 13B | 70B | ChaGPT | GPT4
ORI 35.001 | 42.622 | 53.931 | 51.454 |45.336
OPRO on LLama-7B 36.194 | 43.645 | 48.986 | 49.298 | 48.306
OPRO on ChatGPT 36.004 | 41.344 | 50.671 | 48.566 | 43.430
L2P (Ours) on LLama-7B | 42.529 | 51.387 | 61.323 | 65.774 | 54.993
L2P (Ours) on ChatGPT | 39.365 | 57.259 | 63.764 | 68.705 | 61.997

output for clarity. The model must understand and
preserve the core intent and context, and identify
complex structures, which can be utilized to en-
hance text readability.

We utilize ASSET (Alva-Manchego et al., 2020),
a multi-reference dataset for evaluating English
sentence simplification. For the metric used in this
task, we employ SARI (Xu et al., 2016) to measure
the quality of the simplification system’s output
with different prompt inputs, with higher scores
indicating better quality simplifications. From the
Table 3, we can see that Our method L2P has a
significant advantage over all baseline methods.

4.5 Analysis of L2P

The generalization of our learned prompt across
various LL.Ms. Our method demonstrates excep-
tional generalization in black box prompt engi-
neering, crucial for real-world LLM-based appli-
cations. It remains robust across a range of LLMs,
from LLama 7B to 70B models, including most ad-
vanced GPT4 Turbo, without requiring additional



training. This adaptability is essential for efficiency
and computing resource conservation, particularly
in mobile device deployment.

Our approach excels across diverse datasets,

adapting smoothly to different LLMs. For exam-
ple, in news content, it outperforms OPRO in gen-
eralization, improving content generation quality
across LL.Ms without extra adjustments. In addi-
tion, L2P is scalable and transferable, consistently
performing well across LLMs of varying complex-
ity. This cost-effective solution streamlines prompt
engineering, enabling result prompts gain from low-
cost LLMs to work on expensive ones, reducing
time and upgrade expenses for LLM-based appli-
cations.
Ablation experiment of the COT mechanism of
the global learning module. Our chain-of-thought
(COT) aided global learning module plays a cru-
cial role in improving algorithmic efficiency and
effectiveness. It systematically analyzes results to
extract meaningful insights, identifying Fj., and
Fer in result prompts. This approach enhances
critical analysis, and improves data comprehension
by breaking down sentences of results prompts and
exploring underlying shared features.

Our COT ablation experiment results, shown in
Table5, demonstrate that each designed module in
COT significantly enhances global learning per-
formance. "Only Module D" only focuses on Fj.,
before summarizing, "Only Module C" only consid-
ers Fj., before summarizing, and "Module C+D"
combines both. "Without C+D" lets the global
learning optimizer L, to summarize without any
additional steps.

Table 5: Results for ablation study of chain-of-thought
mechanism design.

| LLaMa | ChatGPT

Without Module D+C | 5.107 | 22.156
Only Module D 7239 | 25.001
Only Module C 8.019 | 23.672
Module D + C | 11.883 | 28.534

Case Analysis. We selected several strong base-
lines and presented a case with their own optimiza-
tion result prompts in Figure 3. We will mark the
background color of meaningful information as
green and the background color of invalid informa-
tion as yellow. Compared with other approaches,
L2P excels in providing a higher-quality prompt,
which includes more meaningful information to en-
hance the performance of LLMs. In the case, L2P

Imagine you are a

You area helpful assistant tasked
. helpful with assisting a user in
Original assistant. EAPO |  generating albetter
prompt
— o ~ Please provide a concisel "\
Benefit from the &.’\‘? summary detailing the
vast expertise and significant real-life events
B ledee t concerning political or security
LLM-OP LOWNEEEL]to L2P matters, including key
enhance incidents, critical responses,
and the progress made in the

experience.
identified situations.

Figure 3: A case study comparing the levels of mean-
ingful information gain among various baselines.

accurately learns the primary F}., to achieve great
performance (e.g., the summarization should be
concise), while avoiding vague descriptions lack-
ing effective information (e.g., just telling the LLM
should be helpful) or personal information of the
data sample. Although other baselines also im-
prove the performance of the LLMs to some ex-
tent, they still exhibit vague descriptions or Fj,,
not beneficial for achieving better LLMs perfor-
mance. Additionally, from the results, we can
see that L2P can effectively provide concrete in-
structions to achieve better performance, such as
telling LLMs to provide key incidents and critical
responses, and progress, which LLM can easily fol-
low. In contrast, such as OPRO, even also provides
some meaningful instructions such as using exper-
tise knowledge to summarize, but compared with
the instructions of L2P, they are too vast, causing
difficulty for target LLMs to follow.

5 Conclusion

Our research introduces a novel prompt optimiza-
tion method called L2P, designed to significantly
enhance the security of target LLMs. L2P lever-
ages a hierarchical meta-learning optimization ap-
proach: an individual LLM-based local optimizer
and a COT-aided global learning optimizer. This
combination not only fine-tunes the performance of
various LL.Ms across a range of known and novel
prompts but also enhances their robustness against
adversarial inputs. L2P bolsters model safety and
reducing the risk of harmful or biased responses.
Our approach consistently outperforms existing
state-of-the-art methods across different tasks, of-
fering substantial advancements in performance
while ensuring that security considerations are an
integral part of the optimization process.



Limitations

Our work only considered the use of a single type
of LLM, ChatGPT, as the individual optimizer
L,p’s backbone. The LLM used in this work can be
expanded to different structure LLMs, such as the
Llama series, or a more powerful LLM like GPT4
or GPT4 Turbo. Additionally, for both the indi-
vidual optimizer L, and global learning optimizer
L, we did not make the use of integrating external
knowledge databases specific to certain domains
to further enhance the performance of these LLM-
based optimizers. We believe this is a promising
direction worth considering for the next step.
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