
MTraining: Efficient Distributed Training for Ultra-Long Contexts via Dynamic
Sparse Attention

Wenxuan Li † * 1 Chengruidong Zhang † 2 Huiqiang Jiang † 2 Yucheng Li * 3 Yuqing Yang 2 Lili Qiu 2

Abstract
Long-context windows have become a standard
feature in modern LLMs, enabling stronger rea-
soning and broader applicability. Dynamic sparse
attention offers a promising path to reduce the
high computational cost of long-context process-
ing. However, efficiently training LLMs with
dynamic sparsity—especially in distributed set-
tings—remains challenging due to worker- and
step-level imbalance. We introduce MTraining,
a distributed training framework that leverages
dynamic sparse attention for ultra-long-context
LLMs. MTraining integrates three key compo-
nents: a dynamic sparse training pattern, balanced
sparse ring attention, and hierarchical sparse ring
attention, which together address load imbal-
ance and communication overhead. We validate
MTraining by scaling Qwen2.5-3B from 32K
to 512K context length using 32 A100 GPUs.
Experiments on RULER, PG-19, InfiniteBench,
and Needle In A Haystack show that MTraining
achieves up to 6× higher training throughput while
maintaining model accuracy.

1. Introduction
Long-context modeling is increasingly recognized as a core
capability for next-generation LLMs. Emerging applica-
tions—including long-document understanding (Caciularu
et al., 2023; Ma et al., 2024), repository-level code anal-
ysis (Jimenez et al., 2023; Jain et al., 2025), autonomous
agent systems (OpenAI; Manus), and long chain-of-thought
reasoning (Guo et al., 2025; Yang et al., 2025a)—require
models to process sequences spanning hundreds of thou-
sands to millions of tokens.

To extend LLMs’ context window lengths, continued pre-
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training and supervised finetuning on long-context inputs
has become a key trend (Liu et al., 2024a; Yang et al., 2025b;
Grattafiori et al., 2024; Gao et al., 2024). However, the
quadratic complexity of attention with respect to sequence
length imposes substantial computational costs as context
grows. As shown in Fig. 2a, once the context exceeds
300K tokens, attention’s forward and backward passes con-
tribute to over 90% of total training cost. Prior work (e.g.,
DeepSeek-V3 (Liu et al., 2024a; Yang et al., 2025b)) re-
ports that training on 20B tokens with 128K context already
consumes 5% of full pretraining resources—this fraction
grows rapidly with longer contexts and larger datasets.

Prior work has shown that attention matrices exhibit strong
dynamic sparsity, inspiring methods that reduce long-
context computation cost through dynamic sparse atten-
tion (Tang et al., 2024; Jiang et al., 2024; Lai et al., 2025;
Ribar et al., 2024). While most approaches focus on infer-
ence, recent work—NSA (Yuan et al., 2025) and MoBA (Lu
et al., 2025)—extends this to pretraining, achieving notable
efficiency gains with minimal accuracy loss. However, scal-
ing dynamic sparse attention to distributed training (e.g.,
Context Parallelism (Liu et al., 2024b)) remains difficult
due to worker- and step-level imbalance (§3.3), limiting
actual speedups. The key to reducing training latency lies
in evenly distributing activated computation across workers
and steps.

Building on this insight, we propose MTraining, a technique
that enables linear scaling of dynamic sparse attention in
distributed settings, significantly accelerating long-context
LLM training. MTraining adopts a system–algorithm co-
design approach, combining a training-oriented sparse at-
tention algorithm with a sparsity-aware context parallelism
strategy. First, we empirically and theoretically demonstrate
that RoPE-based attention exhibits a Vertical-Slash locality
pattern (§3.2). Leveraging this, we introduce an online ap-
proximate sparse budget mechanism to dynamically adapt
sparsity during training (§B.1). Second, MTraining incorpo-
rates block-level balanced sparse ring attention, extending
Striped Ring Attention (Brandon et al., 2023) to align with
observed sparsity and address worker- and step-level imbal-
ance (§4.1). Finally, MTraining integrates a Hierarchical
Sparse Ring Attention design to mitigate communication
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overhead in heterogeneous distributed environments (§4.2).

We evaluate MTraining in a long-context extension setting
by scaling Qwen2.5-3B (Yang et al., 2024) from 32K to
512K tokens on the ProLong dataset (Gao et al., 2024).
The trained models are benchmarked on a suite of long-
context tasks—RULER (Hsieh et al., 2024), Needle In A
Haystack (Kamradt, 2023), InfiniteBench (Zhang et al.,
2024), and PG-19 (Rae et al., 2019)—with sequence lengths
up to 512K tokens. Running on 32× A100-40GB GPUs,
MTraining achieves near-linear scaling for dynamic sparse
attention, delivering up to 6× throughput improvement over
dense attention and 2.6× over a naïve distributed-DSA base-
line, while maintaining or exceeding baseline accuracy.

2. Preliminary
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Figure 1. Workload distribution
over 4 CP workers (GPUs) in
Striped and Zigzag Ring Atten-
tion.

Ring Attention Atten-
tion latency has become
the primary bottleneck
in long-context training.
Ring Attention (Liu et al.,
2024b; Brandon et al.,
2023) improves scalability
by distributing sequences
across devices and over-
lapping key–value commu-
nication with blockwise at-
tention computation (Dao et al., 2022), enabling sequence
length to grow with device count.

Two main variants exist: ZigZag(Zhu, 2024), which
folds and mirrors query blocks across workers, and
Striped(Brandon et al., 2023), which partitions queries cycli-
cally by row or block (Fig. 1). During computation, Q and
O stay local, whileK and V are circulated via P2P—crucial
for Grouped Query Attention. Both variants maintain bal-
anced workloads under causal full attention.

3. Motivation
3.1. Long-context Training is Dynamic Sparse

The dynamic sparsity of attention matrices in pre-trained
LLMs—especially under long-context settings—is well-
documented (Tang et al., 2024; Jiang et al., 2024; Lai et al.,
2025; Xu et al., 2025). This phenomenon persists during
training, often with greater variability. As shown in Fig. 2b,
attention sparsity fluctuates significantly across training
steps and input samples. Different model checkpoints yield
distinct sparsity patterns even for the same input, reflecting
temporal dynamics across training. Conversely, a single
checkpoint may produce diverse sparse regions across in-
puts. These observations underscore the need for dynamic
sparsity adaptation during training.
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Figure 2. (a) Latency breakdown of the training stage. (b) The
attention recall of top-k(k=1024) from 128K context in different
sample and training step. (c-d) Visualization of attention weights
(c) and their gradients (d) during training. Results are based on
Qwen2.5-3B (Yang et al., 2024) trained with a 4×8 A100 cluster.

3.2. Attention Training Sparsity Exhibits Patterns

Based on the attention computation equations, we can derive
the gradients of the attention weights (S = QK⊤/

√
dk,

A = softmax(S)) as well as those of Q, K, and V , as
shown in Eq. 1 and Eq. 2.

∂L
∂S

= A⊙

∂L
∂A

−
∑
j

∂L
∂Aij

Aij

 (1)

By substituting ∂L
∂S into the gradient expression of attention

(Eq. 2), we observe that all matrix operations (i.e., GEMMs)
in the backward pass depend on the attention weights A.
Consequently, the dynamic sparsity in the backward can be
viewed as a superposition of the forward-phase sparsity.

As shown in Fig. 2c and Fig. 2d, the gradient ∂L
∂S exhibits

sparse patterns that closely mirror those in the forward pass.
Notably, the backward gradients display structured spar-
sity, consistently following a Vertical-Slash locality pattern
throughout training. We further attribute the emergence
of this pattern to the use of relative position embeddings,
specifically RoPE (Su et al., 2024) as shown in Appendix A.

3.3. Distributed Dynamic Sparse Attention is
Imbalanced

CommunicationComputation Timeline

Bubb. Bubb.

Figure 3. Illustration of the
bubble resulting from step-
level imbalance, where com-
putation and communication
are not overlapped.

Distributed dynamic sparse
attention introduces new
challenges absent in
single-node settings—most
notably, worker- and step-
level imbalance. As shown
in Fig. 7, the dynamic
sparsity leads to uneven
FLOPs across workers,
causing worker-level im-
balance where faster workers idle due to synchronization
barriers. For example, with xAttention (Xu et al., 2025)
at 95% sparsity and 32-way context parallelism, the
imbalance degree reaches 3.17—reducing realized speedup
to one-third of the theoretical maximum.
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In contrast, step-level imbalance refers to fluctuations in
a single worker’s computational load across Ring Atten-
tion steps, driven by varying sparsity patterns and sample
complexity. As shown in Fig. 3, this variation causes un-
even workloads over time. When computation is reduced
due to high sparsity, it may fall below communication la-
tency, making it harder to overlap compute and communica-
tion—leading to performance-degrading bubbles.

4. MTraining
Building on the analysis in §3, we propose MTraining to
accelerate distributed training of ultra-long-context LLMs.
MTraining comprises three components: 1) Dynamic Sparse
Training Pattern, tailored for the highly dynamic sparsity ob-
served during training; 2) Balanced Sparse Ring Attention,
which uses a stripe-based layout to address worker- and
step-level imbalance; 3) Hierarchical Sparse Ring Attention,
which leverages heterogeneous intra-/inter-node bandwidth
in the InfiniteBranch topology for efficient sparse communi-
cation.
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Figure 4. Overview of MTraining in distributed scenarios.

4.1. Balanced Sparse Ring Attention

As discussed in §2 and §3.3, both ZigZag and Striped imple-
mentations of Ring Attention achieve balanced computation
under full attention with a causal mask. However, in dy-
namic sparse attention settings, their distinct activation pat-
terns lead to worker- and step-level imbalance. As shown in
Fig. 5a and Fig. 8, ZigZag distributes computation along the
anti-diagonal across workers and shifts along the diagonal
over steps, while Striped follows the opposite: distribut-
ing along the diagonal and shifting along the anti-diagonal.
These differing spatiotemporal patterns result in significant
load imbalance under dynamic, data-dependent sparsity.

To address this, we propose Balanced Sparse Ring Atten-
tion, a system–algorithm co-design approach comprising
the following key components:

(i) Striped Sparse Ring Attention. As shown in §3.2 and
§B.1, RoPE-based attention during training predominantly
exhibits a Vertical-Slash sparsity pattern, where slash com-
ponents dominate the computation due to block-wise GPU
operations. To balance workload across workers, we align
them along the diagonal direction and propose a striped

dynamic sparse ring attention scheme. As shown in Fig. 5a,
this design evenly distributes slash lines across workers,
allowing each to process contiguous slash regions at each
step.

(ii) Block-level Striped Sparse Ring Attention. Due to the
block-level computation of slash operations and their spa-
tial locality, we introduce block-level striped sparse ring
attention. We adopt a 64-token stripe granularity to preserve
coherence, avoid fragmentation from token-level striping,
and maintain kernel sparsity and efficiency. This alignment
also reduces index overhead and improves runtime perfor-
mance.

(iii) Step-level Balanced Ring Attention. Our block-level
striped design also mitigates step-level imbalance. In ultra-
long-context settings, workers process fine-grained stripes
at each step—for example, with 128 workers and a 512K
sequence, each worker handles 64 block stripes sequen-
tially. This repeated, fine-grained partitioning stabilizes
computation across steps, ensuring more consistent work-
load distribution.

4.2. Hierarchical Balanced Sparse Ring Attention

Ring Attention typically overlaps computation and commu-
nication by concurrently executing matmul and communi-
cation kernels (Liu et al., 2024b). However, with dynamic
sparsity, reduced per-worker computation amplifies commu-
nication overhead, making it a dominant bottleneck. Thus,
mitigating communication cost is critical for efficient dis-
tributed training under sparse regimes.

In distributed training with heterogeneous communication
links, inter-node communication often becomes the bottle-
neck in Ring Attention. For example, inter-node bandwidth
(e.g., 25 GB/s InfiniBand HDR) is typically 3–12× slower
than intra-node links such as NVLink 3.0 (300 GB/s) or
PCIe 5.0. Recent works (Liu et al., 2024a; Gu et al., 2024)
have explored hierarchical communication topologies to re-
duce latency under such bandwidth asymmetry. Inspired
by (Gu et al., 2024), we propose Hierarchical Balanced
Sparse Ring Attention to mitigate inter-node communica-
tion overhead in sparse ring attention.

Specifically, as shown in Fig. 5b, our approach incorporates
the following design:

(i) Inner- and Outer-Ring Hierarchical Ring Attention. We
decompose the global ring communication into two hierar-
chical levels: an inner ring and an outer ring. In the inner
ring, key–value (KV) blocks are circulated among the Gnode
GPUs within each compute node. The outer ring handles
communication across Nnode nodes by exchanging aggre-
gated KV buffers. At each outer-ring step, the schedule
proceeds as follows: 1) Post Outer P2P. A non-blocking
P2P communication operation is initiated, transmitting the
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Figure 5. Step-level Computation Schedule of Striped Ring Attention (a) and Hierarchical Striped Ring Attention (b) with 4 CP workers.

current KV chunk of the local node to the next node and post-
ing a matching receive. 2) Inner-Ring Attention. While the
inter-node transfer is in progress, the GPUs enter a loop of
length Gnode, performing sparse ring attention computations
over the local KV slices within the node. 3) Synchronize.
At the end of each outer step, computation and communica-
tion are synchronized before moving to the next iteration.

(ii) Hierarchical Balanced Sparse Ring Attention. Unlike
full attention, applying hierarchical ring attention in the
sparse setting alters the propagation order of key/value
blocks across workers, potentially impacting attention com-
putation patterns. However, as shown in Fig. 5b, even with
a two-level KV transfer (inner and outer ring), computa-
tion remains diagonally aligned across steps, preserving the
Vertical-Slash pattern and maintaining load balance.

By integrating this hierarchical design into sparse ring atten-
tion in MTraining, inter-node KV transfers are fully over-
lapped with inner-ring computation, effectively mitigating
communication overhead from inter-node data movement.

5. Experiments
We explore three key questions: (i) How effective is MTrain-
ing during training?—evaluated under long-context exten-
sion settings. (ii) How well does it generalize?—assessed
on RULER, Needle-in-a-Haystack, InfiniteBench, and long-
context language modeling. (iii) How efficient is MTrain-
ing?—we analyze end-to-end training latency, scalability
across GPU counts and sequence lengths, and provide fine-
grained analysis of worker- and step-level balance.

5.1. Long-context Training

Long-context Extension Training We evaluate MTrain-
ing during the long-context extension stage by scal-
ing Qwen2.5-3B from 32K to 512K tokens using Yarn-
extrapolated RoPE (Peng et al., 2024) with a scaling factor
of 32. Training is conducted on the ProLong dataset (Gao
et al., 2024) with a maximum sequence length of 512K to-
kens, covering 1B tokens over 1 epoch. The average sparsity
ratio observed across all samples is 0.95.
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Figure 6. The training loss and throughput comparison of different
methods during continued pretraining of Qwen2.5-3B on the Pro-
Long dataset with a 512K token context window.

Training Loss As shown in Fig. 6a, we observe the fol-
lowing trends: 1) Full Attention reduces loss more rapidly
in early training but is closely matched by MTraining in
later stages, indicating strong convergence. 2) MoBA ini-
tially converges faster than MTraining, but its performance
degrades over time, resulting in a higher final loss. This may
stem from the mismatch between its coarse-grained spar-
sity index and the underlying fine-grained attention patterns,
leading to reduced representational efficiency.

6. Conclusion
We propose MTraining, a distributed training framework
that leverages dynamic sparse attention to enable efficient
large-scale training of LLMs with ultra-long contexts. It ad-
dresses key challenges of worker- and step-level imbalance,
making dynamic sparse attention scalable in distributed
settings. MTraining comprises three components: a dy-
namic sparse training pattern, balanced sparse ring atten-
tion, and hierarchical sparse ring attention. The latter two
reduce worker-level imbalance by 2.1× and 1.2×, and step-
level imbalance by 2.2× and 1.03×, respectively. We vali-
date MTraining by extending Qwen2.5-3B to a 512K con-
text window through continued pretraining on ProLong,
using 32 A100 GPUs. Experiments on RULER, PG-19,
InfiniteBench, and Needle in a Haystack show that MTrain-
ing achieves up to 6× throughput gains on 512K-token se-
quences while maintaining or improving accuracy.
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A. Proof of Theory
A.1. The Gradient of Attention

We further attribute the emergence of this pattern to the use of relative position embeddings, specifically RoPE (Su
et al., 2024). Let the query vector qn ∈ R1×d and key vector km ∈ R1×d denote the token representations at positions
n,m ∈ {0, . . . , N−1} in a sequence of length N . We define zn,m as the dot product between the RoPE-transformed query
and key vectors at positions n and m, respectively.

∂L
∂V

= A⊤ · ∂L
∂O

,

∂L
∂Q

=
1√
d
· ∂L
∂S

·K,

∂L
∂K

=
1√
d
·
(
∂L
∂S

)⊤

·Q

(2)

Theorem A.1. The expectation of the attention weights after applying RoPE depends solely on the relative position n−m,
i.e., E[zn,m] =

∑d−1
i=0 ϕ

(i)
n−m Ai +

∑d−1
i=0 ψ

(i)
n−m Bi.
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Figure 7. Imbalance in computation (FLOPs) across CP
workers using XAttention (Xu et al., 2025). Imbalance
degree = max/mean.

Based on Theorem A.1 (proved in Appendix A), we derive two key
insights: 1) Attention matrix with RoPE exhibit a Vertical-Slash
coverage pattern. The "slash" structure arises from the dependence
of expected attention weights on the relative position n −m, while
the "vertical" component results from outliers in the query/key distri-
butions, as described in Eq. 10; 2) Attention matrix with RoPE tend
to form banded sparse activation patterns. Since ϕ(i)n−m and ψ(i)

n−m

are continuous in the relative position n−m, and the coefficients Ai

and Bi in E[zn,m] are position-independent, activations tend to cluster
locally around specific relative positions.

A.2. Theorem 3.1

Let q⃗n ∈ R1×d and k⃗m ∈ R1×d, where n,m ∈ [0, N), be the query
and key vectors before applying RoPE, respectively. After applying
RoPE, their dot product zn,m is calculated as follows:

zn,m = RoPE(q⃗n, n) RoPE(k⃗m,m)T = q⃗nW⃗nW⃗
T
mk⃗

T
m = q⃗nW⃗n−mk⃗

T
m,

(3)

According to the definition of rotary matrices, the dot product zn,m can be further simplified as follows:

zn,m = q⃗nW⃗n−mk⃗
T
m

= q⃗
[0: d2 ]
n cos((n−m)θ⃗) (k⃗

[0: d2 ]
m )T + q⃗

[ d2 :d]
n cos((n−m)θ⃗) (k⃗

[ d2 :d]
m )T

+ q⃗
[0: d2 ]
n sin((n−m)θ⃗) (k⃗

[ d2 :d]
m )T − q⃗

[ d2 :d]
n sin((n−m)θ⃗) (k⃗

[0: d2 ]
m )T ,

(4)

where q⃗[a:b]n is the sub-vector of q⃗n from the a-th element (inclusive) to the b-th element (exclusive). And k⃗[a:b]m are defined
similarly. By defining the trigonometric basis functions:

ϕ
(i)
n−m = cos((n−m)θi% d

2
), and ψ

(i)
n−m = (−1)i≥

d
2 sin((n−m)θi% d

2
), (5)

Eq. 4 can be further simplified as follows:

zn,m =

d−1∑
i=0

ϕ
(i)
n−m q(i)n k(i)m +

d−1∑
i=0

ψ
(i)
n−m q(i)n k

(i+ d
2%

d
2 )

m . (6)
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Let’s model the key vectors k⃗m as a random variable as follows:

k(i)m = µ
(i)
k + χ(i)

m , (7)

where µ(i)
k = Em∈[0,N)[k

(i)
m ] is the mean value of the i-th channel of the key vectors over all positions and χ(i)

m is the
random variable with zero mean and variance σ2

i .

By substituting the key vectors with the random variable model, the dot product score zn,m in Eq. 6 can be further simplified
to two parts, the mean part z̄n,m and the fluctuation part z̃n,m:

zn,m = z̄n,m + z̃n,m, (8)

where the mean part z̄n,m is

z̄n,m =

d−1∑
i=0

ϕ
(i)
n−m q(i)n µ

(i)
k +

d−1∑
i=0

ψ
(i)
n−m q(i)n µ

(i+ d
2%

d
2 )

k , (9)

and the fluctuation part z̃n,m is

z̃n,m =

d−1∑
i=0

ϕ
(i)
n−m q(i)n χ(i)

m +

d−1∑
i=0

ψ
(i)
n−m q(i)n χ

(i+ d
2%

d
2 )

m . (10)

The attention score an,m is calculated by applying the softmax function to the dot product score zn,m row-wisely:

an,m =
exp(zn,m)∑L−1
j=0 exp(zn,j)

, (11)

where L is the length of the sequence.

Distribution of queries and keys. We assume that the queries and keys are drawn from a random distribution with mean
values E[q

(i)
n ] and E[k

(i)
m ] and covariances σi,j as follows:

σi,j = E[(q(i)n − E[q(i)n ])(k(j)m − E[k(j)m ])]. (12)

The expectation of the product q(i)n k
(j)
m is as follows:

E[q(i)n k(j)m ] = µ2
i,j + σi,j . (13)

where µi,j = E[q
(i)
n ]E[k

(j)
m ] is the product of the means of q(i)n and k(j)m . Thus, the expectation of the dot product zn,m in

Eq. 6 is as follows:

E[zn,m] =

d−1∑
i=0

ϕ
(i)
n−m E[q(i)n k(i)m ] +

d−1∑
i=0

ψ
(i)
n−m E[q(i)n k

((i+ d
2 )%

d
2 )

m ]

=

d−1∑
i=0

ϕ
(i)
n−m (µ2

i,i + σi,i) +

d−1∑
i=0

ψ
(i)
n−m (µ2

i,(i+ d
2 )%

d
2
+ σi,(i+ d

2 )%
d
2
).

(14)

As indicated by Equation 14, the expectation of dot product zn,m is a superposition of multiple sinusoidal function of
(n−m).

B. Additional Methodology
B.1. Dynamic Sparse Training Pattern

10



MTraining: Efficient Distributed Training for Ultra-Long Contexts via Dynamic Sparse Attention

Algorithm 1 Dynamic Sparse Training Head

Input: Q,K,V ∈ RS×dh , pv, ps ∈ 1, Bs ∈ N
# # Approximate attention using last_q
Â← softmax

(
Q[−last_q:]K

⊤/
√
d+mcasual

)
# # Online approximation of vertical budgets kv and Top-K
indices
kv ← topp

(
sumv(Â), pv

)
iv ← argtopk

(
sumv(Â), kv

)
# # Online approximation of slash budgets kv and Top-K
indices
ks ← topp

(
Pool(sumv(Â), Bv), pv

)
is ← argtopk

(
sums(Â), ks

)
# # Build sparse attention index
ivs ← sparseformat(iv, is)

# # Dynamic Sparse Flash-Attention
y ← sparse(softmax

(
QK⊤/

√
d
)
V , ivs)

return y

Motivated by both empirical observations and theoretical
validation of the Vertical-Slash pattern during training (see
§3.2 and Appendix A), we extend this dynamic sparse atten-
tion—originally designed for inference (Jiang et al., 2024; Lai
et al., 2025)—to the training stage. Building on MInference
and FlexPrefill, we propose a novel training-oriented dynamic
sparse pattern guided by Vertical-Slash structure. As detailed in
Algorithm 1, our approach incorporates two key components:

(i) Online Budget Approximation. To accommodate the dynamic
variation in sparsity patterns across training steps and contexts,
as well as to eliminate the overhead of offline search, we propose
an online budget approximation method. Specifically, we track
attention weight statistics within an observation window and
estimate the minimal number of vertical and slash lines required
to recall a target proportion of attention mass.

(ii) Kernel-Aware Approximation Granularity. Since vertical and
slash patterns operate at different granularities in the kernel, we
match the approximation resolution accordingly: vertical lines
are estimated at the token level, while slash lines are pooled
over 64x64 blocks. This alignment ensures fidelity between
budget estimation and actual kernel execution.

C. Additional Experimental Details

GPU A GPU B GPU C GPU D

A

  B

 C

 D

 D  D

 C  C

 B  B

 A  A
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Zigzag Ring Attention
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Step 2

Figure 8. Step-level Computation Schedule of Zigzag Ring Attention.

ZigZag Figure 8 provides a visualization of step-level compu-
tation schedule of ZigZag Ring Attention, complementing those of Striped Ring Attention and Hierarchical Balanced Sparse
Ring Attention in Figure 5.

Additional Implementation Details We conduct experiments using the state-of-the-art open-source LLM Qwen2.5-
3B (Yang et al., 2024), trained on a 4×8 Nvidia A100 40GB cluster. The interconnect includes both InfiniBand and NVLink
for high-throughput communication. For attention computation, we employ Context Parallelism = 32. For the remaining
components, we use NNScaler (Lin et al., 2024) to automatically search for the optimal parallelism configuration. To reduce
memory consumption, we adopt Zero-2 with offloading (Rajbhandari et al., 2020), along with gradient accumulation (Huang
et al., 2019) and gradient checkpointing (Chen et al., 2016). All training and inference are performed using the bfloat16
format. We implement a lightweight custom CUDA kernel that builds upon FlashAttention (Dao et al., 2022), BlockSparse
Attention (Guo et al., 2024), and the PIT dynamic sparse compiler (Zheng et al., 2023) to support our method efficiently.
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For inference evaluation, we use vLLM (Kwon et al., 2023) with greedy decoding to ensure stable and deterministic results
across all experiments.

All experiments were conducted on a 4 × 8 NVIDIA A100-40 GB cluster, where the eight GPUs inside each node
communicate via NVLink and nodes are interconnected through HDR InfiniBand. Because this study isolates the benefits of
Context Parallelism, every GPU in both training and profiling runs serves exclusively as a CP worker, with no additional data,
pipeline, or tensor parallelism enabled. We employ the nnScaler framework (Lin et al., 2024), which first traces the model
into a computation graph and then searches for an optimal parallel execution plan; its search space is constrained so that the
resulting plan assigns all GPUs to CP only. Training uses ZeRO-2 (Rajbhandari et al., 2020), 64 gradient-accumulation
steps (Huang et al., 2019), bfloat16 precision for model weights, gradients, and activations, and float32 precision for optimiser
states; the optimiser is Adam (Kingma, 2014); gradient checkpointing and recompute (Chen et al., 2016) are applied to
peak activation memory. Efficiency-profiling sessions replicate the same parallel-execution configuration. Self-attention in
MTraining are implemented with custom CUDA kernels built upon FlashAttention (Dao et al., 2022), BlockSparse (Guo
et al., 2024), and the PIT dynamic-sparse compiler (Zheng et al., 2023). For external sparse algorithms such as MoBA and
XAttention, we adapt their original code to operate under Zigzag Ring-Attention schedule.

Baselines Details 1) MoBA (Lu et al., 2025). MoBA partitions the key-value sequence into fixed-size blocks and, for
every query, an MoE-style gate chooses the top-k most relevant blocks (always including the query’s own block) before
running FlashAttention inside each selected block. In our experiments, the block size is set to 4096 and topK value is 12,
making the sparse ratio under 512K context be 0.9. The implementation published in their official repo† is adapted to
enable it to run with Zigzag Ring Attention. But the efficiency of the officially released code is suboptimal, we ignore the
comparison with it in efficiency-related experiments.

2) XAttention (Xu et al., 2025). XAttention score square blocks by summing every certain stride along their antidiagonals
and retains only the high-score blocks, giving a plug-and-play, training-free block-sparse attention that accelerates prefill
while matching dense accuracy. In our experiments, we use the following settings with granularity being 128 as the block
size, stride 16 as the sampling pitch and threshold: 0.9 for selecting blocks.

D. Additional Experimental Results
D.1. Long-context Training

Baselines We compare our method against four distributed attention training baselines: 1) Dense Attention Training.
As dense attention yields balanced computation, we report the best results among both ZigZag and Striped ring attention
implementations. 2) MoBA (Lu et al., 2025), a block-level dynamic sparse attention training method designed for long-
context training, which we adapt its open-source implementation to run with Zigzag ring attention. 3) Ours w/ ZigZag, using
ZigZag sparse ring attention without inter-node communication optimization. 4) Ours w/o Hierarchical, only using Striped
sparse ring attention without employing the hierarchical communication scheme. 5) Ours w/ XAttn Idx. indicate XAttention
is applied for computing the block sparse index.

D.2. Long-context Downstream Tasks

Benchmark and Metrics We use the following benchmarks and metrics to evaluate the effectiveness of MTraining: 1)
RULER (Hsieh et al., 2024), a comprehensive benchmark comprising 13 tasks across 4 categories, including retrieval,
multi-hop reasoning, information aggregation, and question answering. 2) Needle In A Haystack (NIAH) (Kamradt, 2023)
assesses LLMs’ performance to retrieve key information placed at various positions in a long context. 3) PG19 (Rae et al.,
2019), a long-form language modeling benchmark with sequences up to 300K tokens. We report perplexity to measure
language modeling performance. 4) InfiniteBench (Zhang et al., 2024) is a comprehensive benchmark for long-context
language processing, including question answering, code debugging, summarization etc., with average context length of
214K tokens.

RULER To further evaluate long-context capability, we benchmark MTraining on RULER, a state-of-the-art long-context
evaluation suite. As shown in Table 1, MTraining consistently outperforms baselines across various context lengths.
Compared to dense training, MTraining achieves 3% and 13.4% overall improvement under dense and MInference-based

†https://github.com/MoonshotAI/MoBA
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Table 1. Performance (%) of various training–inference combinations on RULER (Hsieh et al., 2024) at context lengths from 16K to 512K
with the long-context-extended Qwen2.5-3B.

Training Inference 16K 32K 64K 128K 256K 512K Avg.

Dense Dense 72.51 67.83 58.46 52.38 55.91 54.15 60.21
Dense MInference 54.58 54.97 49.85 43.93 38.83 41.10 47.21
MoBA Dense 64.61 55.06 45.44 38.24 35.48 34.99 45.64
MTraining w/ XAttn Idx. Dense 75.04 67.97 58.93 51.43 56.96 54.85 60.86
MTraining Dense 76.13 70.51 60.81 58.65 58.33 54.88 63.22
MTraining MInference 75.44 69.60 62.92 53.19 51.59 50.85 60.60

inference, respectively—reaching up to 6.3% gain at 128K tokens. Additionally, MTraining outperforms its variant with
fixed XAttn indexing by 2.4%, highlighting that training-time dynamics affect the representativeness of anti-diagonal
structures.
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Figure 9. Needle In A Haystack Results of the baseline checkpoint and the MTraining checkpoint.
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(a) NIAH Results of Baseline w/ MInference
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Figure 10. Needle In A Haystack Results of the baseline checkpoint and the MTraining checkpoint with MInference in the inference stage.
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Figure 11. Language Modeling Results on PG19.

Needle In A Haystack As shown in Fig. 9, MTraining
achieves near-perfect retrieval performance on the NIAH. Com-
paring to the baseline, MTraining yields a better overall retrieval
accuracy, despite MTraining’s largely reduced computational
cost. We also report the NIAH results of the baseline and
the MTraining checkpoint w/ MInference in the inference stage
shown in Fig. 10, where MTraining w/ MInference also achieves
a better overall retrieval accuracy than the baseline checkpoint.

Language Modeling We evaluate the language modeling
performance of MTraining against the baselines on the PG19

13



MTraining: Efficient Distributed Training for Ultra-Long Contexts via Dynamic Sparse Attention

dataset with perplexity as the metric. As shown in Fig. 11, MTraining well maintains a comparable perplexity to the dense
baseline across different context lengths. And the same results also hold when MInference is used in the inference stage.

Table 2. Performance (%) on InfiniteBench (Zhang et al., 2024).
Methods En.Sum En.QA En.MC En.Dia Code.Debug Avg.

Dense 18.5 8.2 63.5 6.0 26.3 24.5
w/ MInference 17.4 6.7 63.0 4.4 17.0 21.7

MTraining 19.5 6.8 65.3 3.5 34.1 25.8
w/ MInference 19.5 6.7 63.3 5.0 15.5 22.0

InfiniteBench As shown in Table 2, MTraining
achieves superior performance on InfiniteBench com-
pared to the dense baseline. Specifically, MTraining im-
proves the coding and summarization capabilities com-
pared to the baseline, while maintaining a competitive
performance on the question answering tasks. We also
report the results with MInference in the inference stage,
which also shows a similar trend.

D.3. Efficiency Results

Fig. 6b illustrates the training throughput, of different methods under distributed worker counts. Notably, MTraining
achieves up to 6× end-to-end training speedup at a 512K context length. Compared to Ours w/ ZigZag, and Ours w/o
Hierarchical, our method is respectively 2.1× and 1.3× faster.

Moreover, MTraining achieves near-linear throughput scaling with increasing worker count, enabling scalable dynamic
sparse attention. In contrast, baseline methods degrade significantly in distributed settings, yielding speedups well below
their theoretical limits.

D.4. Analysis

MTraining Effectively Reduces Worker- and Step-Level Imbalance in Distributed Dynamic Sparse Attention As
shown in Fig. 13, MTraining significantly reduces worker- and step-level imbalance in dynamic sparse attention. The
ratio between the maximum and average computation time drops by 2.4x and 2.3x, respectively, enabling near-linear
scaling in distributed settings. Furthermore, Balanced Sparse Ring Attention and Hierarchical Sparse Ring Attention reduce
worker-level imbalance by 2.1× and 1.2×, and step-level imbalance by 2.2× and 1.03×, respectively.
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Figure 12. Distribution of attention computation time in MTraining with 512K tokens on 32 GPUs: across CP workers within a fixed Ring
Attention step (Left) and across Ring Attention steps for a fixed worker (Right).

Table 3. Average imbalance degree (ID) and Computation Ratio for different training strategies.
Avg. ID

(Worker-level)
Avg. ID

(Step-level)
Avg. Comp.

Ratio (Step-level)

Dense 1.02± 0.00 1.01± 0.00 0.88± 0.05

MTraining 1.03± 0.02 1.16± 0.01 0.82± 0.00

MTraining w/o Hierarchical 1.04± 0.01 1.19± 0.04 0.76± 0.01

MTraining w/ Zigzag 2.61± 0.48 1.99± 0.35 0.42± 0.09
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Figure 13. Distribution of attention computation time using different methods with 512K tokens on 32 GPUs: across CP workers within a
fixed Ring Attention step (a) and across Ring Attention steps for a fixed worker (b).

E. Related Work
Long-context Training System To scale long-context LLM training, various parallelization strategies have been developed,
including activation parallelism(Korthikanti et al., 2023), distributed attention methods(Jacobs et al., 2024; Liu et al., 2024b),
and offloading-based approaches(Luo et al., 2024). Among them, Ring Attention(Liu et al., 2024b) offers the best scalability
by distributing KV computation via P2P communication with block-wise computation. However, it still faces two key
challenges: communication overhead and worker imbalance. Variants such as Striped(Brandon et al., 2023) and Zigzag
Ring Attention(Zhu, 2024) address imbalance, while hybrid systems (Fang & Zhao, 2024; Gu et al., 2024) combine the
benefits of Ring Attention and Ulysses. More recent work (Ge et al., 2025; Wang et al., 2025b;a) improves scheduling for
heterogeneous sequence lengths induced by sequence packing(Krell et al., 2021), and Magi-Attention(Zewei & Yunpeng,
2025) further boosts efficiency through fused kernels and overlapped communication. Despite these advancements, all
existing methods rely on dense attention, with none incorporating dynamic sparse attention, a key technique for reducing
computational cost at extreme sequence lengths.

Scaling Context Windows of LLMs Several approaches have been proposed to scale the context window of LLMs, which
can be broadly categorized into three groups: 1) Staged pretraining (Liu et al., 2024a; Yang et al., 2025b; Grattafiori et al.,
2024; Gao et al., 2024), which trains the model in multiple stages using data of increasing sequence lengths; 2) Positional
embedding manipulation, including extrapolation(Su et al., 2024; Ding et al., 2024; Gao et al., 2024; Sun et al., 2023) and
interpolation(Chen et al., 2023; Peng et al., 2024), which adjust positional encodings to extend models’ sensitivity to longer
inputs; 3) Length extrapolation (An et al., 2024; Jin et al., 2024b; An et al., 2025), where models trained on short sequences
are expected to generalize to longer contexts.

Efficiency Enhancement for Long-Context LLMs For Transformer-based LLMs, extensive research has focused on
improving computational and memory efficiency as input lengths increase. These efforts largely fall into two categories: 1)
KV cache optimization, including quantization (Liu et al., 2024c; Hooper et al., 2024), sharing (Sun et al., 2024; Goldstein
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Algorithm 2 Balanced Sparse Ring Attention fuse w/ Hierarchical Sparse Ring Atten-
tion

World size and rank: wouter, winner, r
Input data: Q,K, V
Vertical and slash Index: Iv, Is
# # Convert sparse index for current rank
Iblock, Ibar = convert_index(Iv, Is, wouter ∗ winner, r)

# # Outer ring
for i← 1 to wouter do

if i < wouter then
# # Start outer communication
next_outer_rank = (r + winner)%(wouter ∗ winner)
P2Pouter.async_send(K,next_outer_rank)
P2Pouter.async_send(V, next_outer_rank)
prev_outer_rank = (r − winner)%(wouter ∗ winner)
K′′ = P2Pouter.async_recv(prev_outer_rank)
V ′′ = P2Pouter.async_recv(prev_outer_rank)

end
# # Inner ring
for j ← 1 to winner do

if j < winner then
# # Start inner communication
next_inner_rank = (r + 1)%winner

P2Pinner.async_send(K, next_inner_rank)
P2Pinner.async_send(V, next_inner_rank)
prev_inner_rank = (r − 1)%winner

K′ = P2P.async_recv(prev_inner_rank)
V ′ = P2P.async_recv(prev_inner_rank)

end
# # Sparse attention computation
Out′, LSE′ ← block_bar_sparse_attention_forward(Q,K, V, Iblock[i ∗ winner +
j], Ibar[i ∗ winner + j])
Out, LSE ← merge_out_and_lse(Out, LSE,Out′, LSE′)
if j < winner then

# # Wait inner communication
P2Pinner.wait()
K ← K′, V ← V ′

end
end for
if i < wouter then

# # Wait outer communication
P2Pouter.wait()
K ← K′′, V ← V ′′

end
end for
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et al., 2024; Ainslie et al., 2023; Chen et al., 2024), and offloading (Jin et al., 2024a; Lee et al., 2024); 2) Attention efficiency,
aimed at mitigating the quadratic cost of self-attention, using static or clustered sparse patterns (Beltagy et al., 2020; Zaheer
et al., 2020; Kitaev et al., 2020) and dynamic sparse attention (Jiang et al., 2024; Lai et al., 2025; Tang et al., 2024; Xu et al.,
2025; Ribar et al., 2024; Zhang et al., 2025; Chen et al., 2025). Recent works such as NSA(Yuan et al., 2025) and MoBA(Lu
et al., 2025) leverage dynamic sparse attention during pretraining to achieve significant speedups with near-lossless accuracy
compared to dense baselines. However, scaling dynamic sparse attention efficiently in distributed training remains an open
problem.
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