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Abstract

Contrastive learning has proven to be highly efficient and adaptable in shaping
representation spaces across diverse modalities by pulling similar samples together
and pushing dissimilar ones apart. However, two key limitations persist: (1)
Without explicit regulation of the embedding distribution, semantically related
instances can inadvertently be pushed apart unless complementary signals guide
pair selection, and (2) excessive reliance on large in-batch negatives and tailored
augmentations hinders generalization. To address these limitations, we propose
Variational Supervised Contrastive Learning (VarCon), which reformulates su-
pervised contrastive learning as variational inference over latent class variables
and maximizes a posterior-weighted evidence lower bound (ELBO) that replaces
exhaustive pair-wise comparisons for efficient class-aware matching and grants
fine-grained control over intra-class dispersion in the embedding space. Trained
exclusively on image data, our experiments on CIFAR-10, CIFAR-100, ImageNet-
100, and ImageNet-1K show that VarCon (1) achieves state-of-the-art performance
for contrastive learning frameworks, reaching 79.36% Top-1 accuracy on ImageNet-
1K and 78.29% on CIFAR-100 with a ResNet-50 encoder while converging in
just 200 epochs; (2) yields substantially clearer decision boundaries and seman-
tic organization in the embedding space, as evidenced by KNN classification,
hierarchical clustering results, and transfer-learning assessments; and (3) demon-
strates superior performance in few-shot learning than supervised baseline and
superior robustness across various augmentation strategies. Our code is available
at https://github.com/ziwenwang28/VarContrast.

1 Introduction

Ever since its introduction, contrastive learning has become a central paradigm in representation
learning, enabling advances across computer vision, natural language processing (NLP), speech, mul-
timodal understanding, and applications in natural sciences [62, 65, 24, 64, 3, 41, 35]. Foundational
models such as SimCLR [10], MoCo [31], BYOL [29], and the fully supervised SupCon [37] have
enabled capabilities ranging from zero-shot image classification to state-of-the-art sentence embed-
dings, demonstrating that the simple “pull-together, push-apart” principle scales effectively across
domains. Despite their empirical success, these objectives function as heuristic energy functions with
opaque statistical meaning. While recent analyses have made progress [32, 46, 53, 47, 61], we still
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Figure 1: VarCon architectural flowchart and Pseudocode. Left: Input images are processed through
an encoder network to produce ℓ2-normalized embeddings z. Class-level centroids wr are computed
dynamically from mini-batch embeddings. The model determines sample’s classification difficulty
and applies confidence-adaptive temperature scaling τ2(z), which tightens constraints on challenging
samples and relaxes them for well-classified examples. Right: Pseudocode implementation of our
ELBO-derived loss function combining KL divergence and negative log-likelihood terms.

lack a principled account of how contrastive interactions shape embeddings that capture relational
structure among data samples. This gap motivates our work to establish a rigorous foundation for
contrastive learning through variational inference.

Generative models provide a complementary perspective: they introduce latent variables and estimate
parameters via maximum likelihood, assigning explicit probabilistic semantics to the representation
space [51]. In Variational Autoencoders (VAEs) [38] and flow-based architectures [42, 12, 22, 60],
Euclidean proximity in the latent space corresponds to regions of high data likelihood, endowing
distances with a rigorous statistical interpretation. Although contrastive learning is not inherently
likelihood-based, recent theory frames InfoNCE as density-ratio maximization: it optimizes the ratio
of joint probability over marginal probabilities for positive pairs relative to negatives, prioritizing
genuine pairs. Both paradigms ultimately seek embeddings where “near” implies “probable,” though
via different routes—generative models integrate over latent variables to maximize likelihood, while
contrastive methods directly sculpt the space through positive-negative comparisons. This concep-
tual convergence invites our unified framework, where variational inference provides probabilistic
grounding for contrastive objectives while preserving their proven geometric inductive biases.

In this work, we present Variational Supervised Contrastive Learning (VarCon), a probabilistically
grounded framework that preserves the geometric structure of conventional contrastive objectives
while endowing them with explicit likelihood semantics. VarCon treats the class label as a latent
variable and maximizes a posterior-weighted evidence lower bound (ELBO), replacing hard labels
with soft probabilities reflecting the model’s current belief. This formulation confers three key
benefits. First, each embedding interacts with a single class-level direction computed on the fly,
reducing computation from quadratic to nearly linear in batch size. Second, it employs a confidence-
adaptive temperature that tightens pull strength for hard samples and relaxes it for confident ones,
providing fine-grained control over intra-class compactness. Third, we develop a novel objective
with two synergistic terms: a Kullback–Leibler divergence aligning the auxiliary posterior with the
model’s class posterior, and a negative log-likelihood term for the ground-truth label. This approach
simultaneously aligns distributions, maximizes class likelihood, and prevents representational collapse.
Our main contributions are summarized as follows:

1. We propose a novel formulation of contrastive learning in variational inference with an explicit
ELBO framework, deriving the VarCon loss that explicitly regulates embedding distributions and
enforces appropriate semantic relationships between samples.

2. We propose a confidence-adaptive temperature scaling for label softening strategy that pushes the
edge of learning hard positives and negatives, proven through gradient derivation analyses.

3. We advance state-of-the-art contrastive learning performance across multiple architectures, achiev-
ing 79.36% Top-1 accuracy on ImageNet with ResNet-50 (vs. 78.72% for SupCon) and 81.87% with
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ResNet-200, while converging in 200 epochs versus SupCon’s 350 and using smaller batch sizes
(2048 vs. 4096).

4. Our learned representations demonstrate superior semantic organization with clearer hierarchical
clustering, and maintain strong performance in low-data settings and various augmentation strength.

2 Preliminaries

Contrastive Learning. Early metric-learning objectives, the pairwise contrastive loss [13], triplet
margin loss [54], and N-pair loss [56], laid the groundwork for modern contrastive frameworks. In
contrastive learning, given an input sample x with ground-truth class label r, an encoder maps x to an
embedding z ∈ Rd, typically ℓ2-normalized. The field subsequently converged on noise-contrastive
formulations like InfoNCE [46]:

LInfoNCE = − log
exp(z⊤

i z+
j /τ)∑N

k=1 1[k ̸=i] exp(z
⊤
i zk/τ)

where zi and z+j are positive pairs and τ is a temperature parameter. InfoNCE drives self-supervised
systems like SimCLR [10] and MoCo [11, 31], and scales to cross-modal setups in CLIP [48]. For
supervised learning, SupCon [37] extends this by treating same-class samples as positives:

LSupCon =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(z⊤

i zp/τ)∑
a∈A(i) exp(z

⊤
i za/τ)

where P (i) contains samples of the same class as i, and A(i) includes all samples except i. Recent
theoretical advances [68, 34] and methods like X-CLR [55] further improve these frameworks by
analyzing optimization dynamics and introducing graded similarities. Our approach builds on these
foundations by reformulating supervised contrastive learning through variational inference while
preserving semantic linkages across classes. Additional related work is provided in Appendix E.

Variational Inference. Variational methods provide principled probabilistic frameworks for learning
latent representations by maximizing an evidence lower bound (ELBO). Variational Autoencoders
(VAEs) [38, 50] pioneered this approach with amortized encoder-decoder architectures learning
continuous latent spaces. Later advances improved flexibility through normalizing flows [39, 49] and
learned priors, while Bayesian approaches like Bayes-by-Backprop [7] and Monte-Carlo dropout [23]
incorporated parameter uncertainty. Recent work has integrated contrastive learning with variational
objectives: Noise-Contrastive Prior [2] separates between posteriors and priors to tighten latent fit;
variational information-bottleneck augments SimCLR [59]; and Recognition-Parameterised Models
reformulate the ELBO to yield InfoNCE-style objectives [1]. These integrations create latent spaces
that are simultaneously generative, predictive, and uncertainty-aware. Our approach builds on these
foundations by maximizing a class-conditional data likelihood with label-softened targets, preserving
contrastive learning’s geometric properties while incorporating explicit probabilistic semantics.

Soft Labeling. Soft labeling replaces hard one-hot targets with distribution-based supervision, first
popularized through label-smoothing in Inception-v3 [57] and knowledge distillation [33]. Recent
advances employ soft labels to improve representation learning [21, 20]: for noisy targets, smoothed
distributions enhance calibration across facial expressions [43] and enlarge inter-class margins in
partial-label settings [28]. This concept extends to semi-supervised learning where ESL [44] treats
uncertain pixels as soft pseudo-labels, SoftMatch [9] applies confidence-weighted pseudo-labels,
and ProtoCon [45] refines labels through online clustering. For cross-modal learning, SoftCLIP
[25] strengthens image-text embeddings by weighting related captions. Our approach employs soft
labeling as a confidence-adaptive variational distribution that dynamically adjusts class distributions,
more uniform for confident samples and more peaked for challenging ones, to enhance representation
learning through targeted supervision.

3 Method

Throughout this study, we use the following notation: Let z ∈ Rd denote the ℓ2-normalized
embedding produced by the encoder (e.g., ResNet-50) for an input sample x with ground-truth
class index r ∈ {1, . . . , C}. Each class is represented by a unit-norm reference vector wr ∈ Rd,

3



obtained by normalizing the class mean: wr = z̄r/∥z̄r∥2 where z̄r = |Br|−1
∑

i∈Br
zi and

Br = { i | ri = r, i ∈ B } denotes the index set of samples from class r in mini-batch B. We set τ1
to be the fixed temperature that scales the logits to adjust the sharpness of the class distribution and
τ2(z) the confidence-adaptive temperature that softens each sample’s target distribution to regularize
learning and control intra-class dispersion. With θ being the set of learnable weights of the encoder,
pθ(r | z) denotes probability the model assigns to the correct class r for embedding z, pθ(z | r) the
class-conditional likelihood of observing z, and pθ(z) =

∑
r′ pθ(z | r′)p(r′), with r′ the dummy

class index, gives the marginal embedding density used in the variational derivation. We introduce
qϕ(r | z) as a confidence-adaptive label distribution parameterized by ϕ, which plays the role of
an adaptive temperature for accentuating the probability assigned to the ground-truth class while
allocating the remaining mass uniformly across the other C − 1 classes.

3.1 The Variational Bound of Class-Conditional Likelihood

To formulate our variational approach, we need to establish an evidence lower bound (ELBO) for the
class-conditional likelihood of embeddings. We begin with Bayes’ rule [26, 6], which allows us to
express the class-conditional likelihood in terms of the posterior probability and marginal densities:

pθ(z | r) =
pθ(r | z) pθ(z)

p(r)
. (1)

Taking logarithms on both sides gives us:

log pθ(z | r) = log pθ(r | z) + log pθ(z) − log p(r). (2)

The marginal embedding density pθ(z) integrates over all possible class assignments. By introducing
our auxiliary distribution qϕ(r

′ | z) that sums to 1, and applying the identity pθ(z) =
∑

r′ pθ(z |
r′)p(r′), we can rewrite the marginal density as:

pθ(z) =

C∑
r′=1

[
pθ(z | r′) p(r′) qϕ(r

′ | z)
qϕ(r′ | z)

]
. (3)

Substituting Eq. (3) into Eq. (2), we obtain:

log pθ(z | r) = log pθ(r | z) + log pθ(z) − log p(r)

= log pθ(r | z) + log

C∑
r′=1

[
pθ(z | r′) p(r′) qϕ(r

′ | z)
qϕ(r′ | z)

]
− log p(r)

= log pθ(r | z) + log

C∑
r′=1

[
qϕ(r

′ | z) pθ(z | r′) p(r′)
qϕ(r′ | z)

]
− log p(r).

(4)

From Eq. (1), we know that pθ(z | r) p(r) = pθ(r | z) pθ(z). Using this relation to substitute for
pθ(z | r′) p(r′) in Eq. (4), and applying Jensen’s inequality to the logarithm of a sum (since log is a
concave function), we derive the ELBO for log pθ(z | r):
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log pθ(z | r) = log pθ(r | z) + log

C∑
r′=1

[
qϕ(r

′ | z)pθ(z | r′) p(r′)
qϕ(r′ | z)

]
− log p(r)

= log pθ(r | z) + log

C∑
r′=1

[
qϕ(r

′ | z)pθ(r
′ | z) pθ(z)

qϕ(r′ | z)

]
− log p(r)

≥ log pθ(r | z) +
C∑

r′=1

qϕ(r
′ | z) log

[
pθ(r

′ | z) pθ(z)
qϕ(r′ | z)

]
− log p(r)

= log pθ(r | z) +
C∑

r′=1

qϕ(r
′ | z) [log pθ(r′ | z) + log pθ(z)− log qϕ(r

′ | z)]− log p(r)

= log pθ(r | z) +
C∑

r′=1

qϕ(r
′ | z) log pθ(z)

+

C∑
r′=1

qϕ(r
′ | z) [log pθ(r′ | z)− log qϕ(r

′ | z)]− log p(r)

= log pθ(r | z) + log pθ(z)

C∑
r′=1

qϕ(r
′ | z)−DKL

(
qϕ(r

′ | z) || pθ(r′ | z)
)
− log p(r)

= log pθ(r | z) + log pθ(z)−DKL
(
qϕ(r

′ | z) || pθ(r′ | z)
)
− log p(r).

(5)

This derived bound consists of several interpretable components: (1) a term encouraging the model to
correctly classify the input embedding, (2) the log marginal probability of the embedding, (3) a KL
divergence that aligns our auxiliary distribution with the model’s class posterior, and (4) a constant
class prior. This ELBO serves as the foundation for our variational contrastive learning objective.

3.2 Variational Contrastive Learning

Having derived the ELBO for log pθ(z | r) in Eq. (5), we observe that under contrastive learning
settings, certain terms are either intractable or uninformative: log pθ(z) would encourage high
likelihood throughout the embedding space without class distinction, while log p(r) is a fixed
constant based on the dataset’s class distribution. Therefore, instead of directly maximizing the full
ELBO:

LELBO = DKL(qϕ(r
′ | z) || pθ(r′ | z)) + log p(r)− log pθ(r | z)− log pθ(z), (6)

we focus on minimizing the contrastive-relevant components:
LVarCon = DKL(qϕ(r

′ | z) || pθ(r′ | z))− log pθ(r | z). (7)
This formulation balances two complementary objectives: the KL divergence term aligns our auxiliary
distribution with the model’s predictive distribution, while the log-posterior term encourages correct
class assignments. To compute class probabilities efficiently, we leverage class centroids rather than
pairwise comparisons. For each class r, we calculate a reference vector wr = |Br|−1

∑
i∈Br

zi,
where Br = { i | ri = r, i ∈ B } contains indices of samples with class r in batch B. The posterior
probability is then:

pθ(r | z) = exp(z⊤wr/τ1)∑
r′ exp(z

⊤wr′/τ1)
, (8)

with logarithm:

log pθ(r | z) = log

[
exp(z⊤wr/τ1)∑
r′ exp(z

⊤wr′/τ1)

]
=

z⊤wr

τ1
− log

∑
r′

exp

(
z⊤wr′

τ1

)
, (9)

where τ1 is a fixed temperature parameter. For the target distribution qϕ, we start with a one-hot
distribution:

qone-hot(r
′ | z) =

{
1, if r′ = r,

0, otherwise.
(10)
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We then apply adaptive softening using temperature τ2:

qexp(r | z) = 1 + [exp(1/τ2)− 1] qone-hot(r | z), (11)

and normalize to obtain the final distribution:

qϕ(r | z) = qexp(r | z)∑
r′ qexp(r

′ | z)
(12)

A key innovation in our approach is using a confidence-adaptive temperature τ2 that varies between
bounds τ1 − ϵ and τ1 + ϵ:

τ2 = (τ1 − ϵ) + 2 ϵ pθ(r | z), (13)
where ϵ is a learnable parameter. When pθ(r | z) is high (confident prediction), τ2 approaches τ1 + ϵ,
making qϕ(r | z) more uniform. Conversely, for difficult samples with low pθ(r | z), τ2 approaches
τ1 − ϵ, creating a sharper distribution. This adaptive mechanism dynamically adjusts supervision
intensity—relaxing constraints on well-classified samples while focusing learning on challenging
ones (see gradient derivation in C.1). By minimizing LVarCon, we simultaneously control intra-class
dispersion through the KL term and enhance the distinguishing power of embeddings through the
posterior term, creating a representation space with clear semantic structure and decision boundaries.

4 Experiments

We evaluate our VarCon loss on four standard benchmarks: CIFAR-10, CIFAR-100 [40], ImageNet-
100, and ImageNet [52, 18], using the official test splits. Our experiments demonstrate rapid
convergence under various training configurations, including different batch sizes, epochs, and
hyperparameter settings. For downstream classification, we freeze the pretrained encoder and
train only a linear classification layer, and additionally apply KNN-classifier to the embeddings
to investigate the learned semantic structure. To isolate the contribution of our learning objective,
we employ the same data augmentation techniques and encoder architectures used in previous
contrastive learning models [37]: augmentation strategies including SimAugment, AutoAugment
[14], and StackedRandAugment [15] with ResNet-50 [30], ResNet-101, ResNet-200, and ViT-Base
[19] architectures. We set the learning rate according to the linear-scaling rule lr ∝ B/256 with
cosine decay. Our best results are achieved with batch sizes of 512 for CIFAR-10/100 (200 epochs),
1,024 for ImageNet-100 (200 epochs), and 4,096 for ImageNet (350 epochs). Throughout, we
use SGD with momentum 0.9 and weight decay 10−4 for smaller datasets including CIFAR-10,
CIFAR-100, and ImageNet-100 and LARS [63] optimizer for ImageNet training to ensure stability.
Full hyperparameter settings and optimization details are available in Appendix B.1. Analyses of the
training dynamics, such as loss convergence and memory efficiency, are provided in Appendix D.

4.1 Classification Performance

To evaluate our proposed VarCon, we conducted extensive experiments on multiple benchmark
datasets for image classification. Table 1 presents performance comparisons against state-of-the-art
self-supervised methods (SimCLR [10], MoCo V2 [31, 11], BYOL [29], SwAV [8], VicReg [5],
and Barlow Twins [66]) and supervised approaches (standard Cross-Entropy and SupCon [37]).
VarCon consistently outperforms all competing methods across all datasets. Compared to SupCon,
VarCon achieves 0.43% higher Top-1 accuracy on CIFAR-10 (95.94% vs. 95.51%), 1.72% higher on
CIFAR-100 (78.29% vs. 76.57%), 1.28% higher on ImageNet-100 (86.34% vs. 85.06%), and 0.64%
higher on ImageNet (79.36% vs. 78.72%). The advantage is more pronounced when compared to self-
supervised methods. On ImageNet-100, VarCon surpasses the best self-supervised method (Barlow
Twins at 80.83%) by 5.51%, and on ImageNet, it outperforms all self-supervised methods by at least
4.07% in Top-1 accuracy. VarCon also demonstrates superior performance on ImageNet-ReaL (see
B.2), a re-annotation with more accurate multi-label ground truth, achieving 84.12% Top-1 accuracy
compared to SupCon’s 83.87%. They validate that by explicitly modeling feature uncertainty through
our ELBO-derived loss function, VarCon learns more well-defined, generalizable representations.

4.2 Few-Shot Learning Performance

Given the practical importance of learning from limited labeled data, we evaluate VarCon in few-shot
learning scenarios by comparing it with SupCon across different per-class sample sizes. Table 2
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Table 1: Classification performance comparison across benchmark datasets. We report Top-1 and
Top-5 accuracy (%) (mean ± standard error) for VarCon versus state-of-the-art self-supervised and
supervised methods. All models utilize the ResNet-50 architecture for a fair comparison. Best scores
are highlighted in blue , second-best in green .

Category Method
Dataset

CIFAR10 CIFAR100 ImageNet-100 ImageNet

Top-1 ↑ Top-5 ↑ Top-1 ↑ Top-5 ↑ Top-1 ↑ Top-5 ↑ Top-1 ↑ Top-5 ↑

Se
lf-

su
pe

rv
is

ed

SimCLR 91.52±0.07 99.78±0.01 70.67±0.12 92.01±0.06 71.54±0.10 91.56±0.05 70.31±0.08 90.37±0.05

MoCo V2 92.93±0.09 99.79±0.02 70.01±0.09 91.68±0.07 78.98±0.11 95.20±0.03 71.06±0.06 90.40±0.03

BYOL 92.57±0.06 99.71±0.03 70.50±0.11 91.95±0.04 80.18±0.07 94.86±0.05 74.28±0.09 91.56±0.04

SwAV 89.14±0.08 99.69±0.02 64.87±0.10 88.81±0.05 74.07±0.12 92.77±0.04 75.29±0.07 91.83±0.06

VicReg 92.09±0.10 99.73±0.01 68.51±0.08 90.91±0.07 79.26±0.09 95.06±0.04 73.25±0.08 91.06±0.03

Barlow Twins 92.70±0.07 99.80±0.03 71.02±0.11 91.95±0.04 80.83±0.06 95.24±0.05 73.26±0.06 91.10±0.05

Su
pe

rv
is

ed Cross-Entropy 95.07±0.08 99.82±0.02 74.01±0.09 91.89±0.06 83.17±0.08 95.78±0.03 78.20±0.07 93.71±0.04

SupCon 95.51±0.06 99.85±0.02 76.57±0.10 93.50±0.05 85.06±0.07 96.84±0.04 78.72±0.06 94.31±0.03

VarCon (Ours) 95.94±0.07 99.87±0.02 78.29±0.08 93.59±0.05 86.34±0.09 96.96±0.03 79.36±0.05 94.37±0.04

Table 2: Few-shot learning performance on ImageNet with varying training data availability. We
report Top-1 accuracy (mean ± standard error) on ImageNet using ResNet-50 for both SupCon and
our proposed VarCon method across different per-class sample sizes (N ). Best highlighted in blue.

Method N = 50 N = 100 N = 200 N = 500 N = 700 N = 1000

SupCon 2.47±0.24 36.57±0.22 50.25±0.19 64.91±0.17 70.12±0.16 73.04±0.15

VarCon (Ours) 2.53±0.25 37.81±0.20 51.10±0.17 65.83±0.18 70.61±0.14 73.21±0.16

presents this comparison on ImageNet using ResNet-50, with sample sizes ranging from extremely
limited (N = 50) to moderate (N = 1000). Results are averaged across five random subsets per
configuration to account for sampling variability. VarCon consistently outperforms SupCon across all
sample sizes, with advantages more pronounced in data-scarce settings: With 100 samples per class,
VarCon achieves 37.81% Top-1 accuracy, surpassing SupCon (36.57%) by 1.24%. This advantage
persists at N = 200 (51.10% vs. 50.25%) and N = 500 (65.83% vs. 64.91%). As training data
increases, VarCon maintains superior performance, though the gap narrows slightly (73.21% vs.
73.04% at N = 1000). These results suggest our variational framework provides greatest benefit
when training data is scarce, where robust representation learning is most challenging. By modeling
feature uncertainty explicitly, VarCon learns more effective representations from limited data, making
it well-suited for real-world applications where large labeled datasets are often unavailable.

4.3 Effect of Data Augmentation and Encoder Architecture

To investigate the robustness of VarCon across different neural architectures and data augmentation
strategies, we conducted experiments on ImageNet using various combinations, as shown in Table 3.
VarCon consistently outperforms SupCon across all tested architectures. With ResNet-50 and
AutoAugment, VarCon achieves 79.36% Top-1 accuracy, surpassing SupCon (78.72%) by 0.64%.
This advantage persists with ResNet-101 (80.58% vs. 80.24%), ResNet-200 (81.87% vs. 81.43%),
and extends to the fundamentally different architecture of ViT-Base (78.56% vs. 78.21%). Importantly,
VarCon demonstrates strong performance even with simpler augmentation strategies. Using only
SimAugment with ResNet-101, VarCon achieves 79.98% Top-1 accuracy, which is competitive with
SupCon using the more complex StackedRandAugment (80.24%). This reduced dependency on
sophisticated, task-specific augmentations represents a significant practical advantage, as identifying
optimal augmentation strategies often requires extensive tuning and domain expertise.

4.4 Transfer Learning Performance

A critical measure of representation quality is how well features transfer to new tasks and domains.
Table 4 presents transfer learning results across 12 diverse datasets spanning fine-grained recognition,
scene classification, and general object recognition tasks. While supervised contrastive learning
typically faces challenges in transfer learning due to supervised signals potentially limiting rep-
resentation generality, VarCon demonstrates improved transferability compared to SupCon. With
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Table 3: Adaptability analysis across architectures and augmentation strategies on ImageNet. We
evaluate VarCon against SupCon using multiple encoder backbones (ResNet-50/101/200 and ViT-
Base) and augmentation techniques (SimAugment, AutoAugment, and StackedRandAugment). The
highest performance values for each encoder architecture are highlighted in boldface.

Loss Architecture Feat. Dim Params Augmentation Top-1 Top-5

SupCon ResNet-50 2048 25.6 M SimAugment 77.82 93.61
SupCon ResNet-50 2048 25.6 M AutoAugment 78.72 94.27
VarCon (Ours) ResNet-50 2048 25.6 M SimAugment 78.23 93.67
VarCon (Ours) ResNet-50 2048 25.6 M AutoAugment 79.36 94.33

SupCon ResNet-101 2048 44.5 M SimAugment 79.64 94.85
SupCon ResNet-101 2048 44.5 M StackedRandAugment 80.24 94.82
VarCon (Ours) ResNet-101 2048 44.5 M SimAugment 79.98 94.89
VarCon (Ours) ResNet-101 2048 44.5 M StackedRandAugment 80.58 94.87

SupCon ResNet-200 2048 65 M StackedRandAugment 81.43 95.93
VarCon (Ours) ResNet-200 2048 65 M StackedRandAugment 81.87 95.95

SupCon ViT-Base 768 86 M SimAugment 78.21 94.13
VarCon (Ours) ViT-Base 768 86 M SimAugment 78.56 94.17

Table 4: Cross-domain generalization evaluation across 12 diverse visual recognition benchmarks.
We compare the transferability of representations learned by VarCon against SimCLR and SupCon.
Metrics reported are mAP for VOC2007, mean-per-class accuracy for Aircraft, Pets, Caltech-101,
and Flowers, and top-1 accuracy for remaining datasets.
Method Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers Mean

SimCLR-50 88.21 97.62 85.86 75.91 63.52 91.33 87.40 83.98 73.23 89.22 92.11 97.02 85.45
SupCon-50 87.28 97.43 84.26 75.20 58.03 91.71 84.08 85.18 74.82 93.45 91.07 96.08 84.88
VarCon-50 87.31 97.65 84.39 75.27 57.96 91.79 84.25 85.07 74.79 93.52 91.19 96.14 84.94
SupCon-200 88.65 98.32 87.25 76.27 60.44 91.83 88.53 85.12 74.62 93.09 94.87 96.94 86.33
VarCon-200 88.68 98.34 87.30 76.29 60.39 91.85 88.61 85.02 74.47 93.26 94.95 96.96 86.34

ResNet-50, VarCon achieves a mean accuracy of 84.94% across all datasets, outperforming SupCon
(84.88%) and approaching the self-supervised SimCLR (85.45%). VarCon-50 surpasses SupCon-50
on several datasets, including CIFAR-10 (97.65% vs. 97.43%), Cars (91.79% vs. 91.71%), and
Pets (93.52% vs. 93.45%). With ResNet-200, VarCon achieves a mean accuracy of 86.34% and
outperforms SupCon-200 on 9 out of 12 datasets. These results validate that VarCon learns a more
adaptable embedding space that generalizes better across diverse visual domains. Our variational
ELBO mechanism effectively mitigates potential overfitting to source domain labels, leading to more
transferable representations while maintaining strong performance on the source task.

4.5 Ablation Studies

Effect of Temperature. The temperature parameter in contrastive learning significantly impacts
model performance by controlling the concentration of the distribution in the embedding space.
Figure 2a shows Top-1 accuracy on ImageNet for both VarCon and SupCon across temperatures
from 0.02 to 0.14. Both methods achieve optimal performance at τ = 0.10, with VarCon reaching
79.38% accuracy compared to SupCon’s 78.8%. However, VarCon exhibits much greater robustness
to temperature variations, particularly in higher temperature regimes. While SupCon’s accuracy drops
sharply after τ = 0.10 (Top-1 Accuracy declining by 2% at τ = 0.14), VarCon maintains stable
performance up to τ = 0.12 before showing a comparable decrease. This enhanced stability can
be attributed to VarCon’s adaptive temperature mechanism (τ2), which dynamically adjusts based
on sample confidence, providing an additional layer of robustness against suboptimal temperature
settings.

Number of Training Epochs. Figure 2b shows the Top-1 accuracy on ImageNet for VarCon and
SupCon across different training durations. VarCon demonstrates consistently superior performance
and faster convergence throughout training. At just 50 epochs, VarCon achieves 75.3% accuracy (vs.
SupCon’s 74.5%), reaching 77.85% by 100 epochs and 79.15% by 200 epochs—already approaching
its peak performance. VarCon achieves optimal accuracy of 79.36% at 350 epochs and maintains
better stability during extended training, with less performance degradation after 700 epochs (78.80%
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(a) (b) (c)

Figure 2: (a) Top-1 accuracy on ImageNet versus temperature parameter; (b) Top-1 accuracy on
ImageNet versus training epochs; (c) Top-1 accuracy on ImageNet versus batch size.

(a) (b) (c)

Figure 3: (a) KNN classifier accuracy on ImageNet embeddings; (b) Effect of adaptive temperature
parameter ϵ on ImageNet Top-1 accuracy; (c) Robustness evaluation on ImageNet-C across different
corruption severity levels.

vs. 78.23% for SupCon). These results show that our variational approach both converges faster and
provides enhanced robustness against overfitting.

Batch Size Sensitivity Analysis. Figure 2c illustrates the effect of batch size on ImageNet Top-1
accuracy. While large batches are typically crucial for contrastive learning, they significantly increase
computational requirements and can lead to training instability. VarCon demonstrates reduced
dependency on large batch sizes—with just 2048 samples, it achieves 79.26% accuracy, already
outperforming SupCon at 4096 (78.7%). VarCon’s performance plateaus earlier, showing minimal
improvement (0.01%) when increasing from 4096 to 6144, while SupCon continues to benefit from
larger batches. This indicates that VarCon learns a more effective embedding space with fewer
negative examples, enabling efficient training with more limited computational resources.

Analysis of Embedding Space Organization. To directly evaluate embedding quality without
additional parameterized classifiers, we employed K-nearest neighbor classification, which better
reflects the intrinsic structure of the feature space. Figure 3a shows that VarCon consistently
outperforms SupCon across all K values on ImageNet. For Top-1 accuracy, VarCon’s advantage
increases with larger K values (from 77.4% vs. 77.32% at K=5 to 78.07% vs. 77.86% at K = 80).
For Top-5 accuracy, VarCon maintains a consistent 0.27% advantage (83.88% vs. 83.61%) across all
K values. This superiority confirms that VarCon produces embedding spaces with clearer decision
boundaries and better structured class relationships. This improved embedding organization is
further confirmed by t-SNE visualizations of the embedding space evolution in Appendix B.3 and by
quantitative hierarchical clustering metrics in Appendix B.4.

Effect of Epsilon Parameter. In VarCon, we introduce an adaptive temperature mechanism where
τ2 varies within bounds determined by τ1 ± ϵ. Figure 3b shows the effect of different ϵ values
on ImageNet Top-1 accuracy when τ1 = 0.1. At ϵ = 0 (equivalent to fixed temperature), the
model achieves 78.87% accuracy. Performance improves as ϵ increases, peaking at 79.36% with
ϵ = 0.02, before declining to 78.42% at ϵ = 0.08. This indicates that while some temperature
adaptability benefits learning, excessive deviation becomes detrimental, with ϵ = 0.02 providing
optimal flexibility to adjust confidence levels based on sample difficulty.

4.6 Robustness to Image Corruption

To evaluate robustness to real-world image degradation, we tested VarCon on ImageNet-C, which
applies 15 different corruption types at 5 increasing severity levels. Figure 3c shows Top-1 accuracy
on clean ImageNet (“test”) and across all corruption severity levels. VarCon consistently outperforms
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(a) Mean τ2 evolution (b) τ2 density distributions

Figure 4: Evolution of adaptive temperature τ2 during a full 50-epoch ImageNet training with ResNet-
50 (ϵ = 0.02, τ1 = 0.1, batch size 4096). (a) Mean τ2 increases from 0.09378 to 0.10656 over the
complete training, indicating systematic confidence growth. (b) Density distributions (epochs 10-50)
show rightward shift with initial broadening (std: 0.00961 → 0.01092) then stabilization, reflecting
heterogeneous confidence development as the model distinguishes easy from hard samples.

SupCon with both ResNet-50 and ResNet-200 architectures. With ResNet-50, VarCon maintains
a performance advantage ranging from 0.3% to 1.2% as corruption severity increases from level
1 to 5. This graceful degradation pattern can be attributed to our probabilistic framework, which
explicitly models feature uncertainty. By representing features as distributions rather than points,
VarCon better accommodates input variations caused by corruptions. These results highlight that our
variational approach not only performs well on clean data but also demonstrates enhanced robustness
to low-quality inputs, which is a valuable property for real-world applications.

4.7 Adaptive Temperature Analysis

To investigate our confidence-adaptive temperature mechanism, we analyze τ2 distribution across
ImageNet samples during ResNet-50 training (batch size 4096, τ2 ∈ [0.08, 0.12]). We fix ϵ = 0.02
and τ1 = 0.1 to ensure comparable temperature spans across epochs, though ϵ is learnable in our
best configuration. Figure 4 shows systematic evolution: initially (epoch 10), over 25% of samples
receive near-maximal gradients with τ2 near lower bound, indicating widespread uncertainty. Mean
τ2 increases 13.6% during training while maintaining persistent challenging samples near minimum.
This heterogeneous evolution demonstrates differential treatment, strong gradients for difficult
samples and relaxed constraints for well-learned ones, emerging naturally from KL divergence
and confidence-based temperature interaction. This demonstrates our self-adaptive temperature
simultaneously adjusts both target sharpness and gradient magnitude based on per-sample confidence
(see Appendix D.4 for comparisons with other regularization methods [57, 67, 27, 58, 4, 36]).
Detailed τ2 evolution statistics for fixed ϵ (Table 7) and learnable ϵ (Table 8) are in Appendix D.2.

5 Conclusion

In this work, we introduced Variational Supervised Contrastive Learning (VarCon), a probabilistically
grounded framework that reformulates supervised contrastive learning through variational inference
over latent class variables. By deriving and maximizing a posterior-weighted evidence lower bound,
VarCon overcomes key limitations of conventional contrastive approaches: it explicitly regulates
embedding distributions through principled KL divergence, replaces exhaustive pairwise comparisons
with efficient class-level interactions, and employs confidence-adaptive temperature scaling to control
intra-class dispersion. Our extensive evaluation demonstrates VarCon consistently outperforms
leading contrastive methods across diverse benchmarks, achieving superior classification accuracy
on CIFAR-10/100 and ImageNet while requiring fewer training epochs. Moreover, VarCon exhibits
enhanced robustness to hyperparameters, reduced dependency on large batches, stronger low-data
performance, and improved corruption resilience, all while maintaining better cross-domain transfer-
ability. Beyond empirical advantages, VarCon bridges the theoretical gap between distinguishing and
generative paradigms by endowing contrastive objectives with explicit likelihood semantics.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline our paper’s main contributions:
(1) a variational reformulation of supervised contrastive learning as inference over latent
class variables (3); (2) a confidence-adaptive temperature scaling strategy (3, paragraph 5);
and (3) empirical validation across multiple benchmarks showing improved performance
and semantic organization (4). The claims are aligned with the actual results presented
throughout the paper, particularly in Tables 1 and 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our paper discusses limitations in Section A.1 of the appendix, where we
address computational complexity considerations, batch size dependency, and potential
challenges in cross-domain applications. Throughout the experimental section (4), we also
analyze performance boundaries under various conditions, such as reduced data availability
(Table 2) and different augmentation strategies (Table 3), providing a clear understanding of
our method’s limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Our paper provides full mathematical derivations for the variational bound in
Section 3. We clearly state our assumptions and provide step-by-step proofs from Bayes’
rule (Eq. 1) through the ELBO derivation (Eq. 5), to our final VarCon loss formulation
(Eq. 7). All equations are properly numbered and cross-referenced, with intermediate steps
clearly shown. We also define the mathematical notations and variables at the beginning of
Section 3 to establish our theoretical framework.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4 provides comprehensive details on datasets (CIFAR-10/100,
ImageNet-100, ImageNet), data preprocessing, network architectures (ResNet-50/101/200,
ViT-Base), and optimization parameters. We specify batch sizes (512 for CIFAR-10/100,
1,024 for ImageNet-100, 4,096 for ImageNet), learning rate scheduling (linear scaling with
cosine decay), optimizers (SGD with momentum 0.9 and weight decay 10−4, LARS for
ImageNet), and data augmentation strategies. Our ablation studies in Section 4 (subsections
"Effect of Temperature," "Batch Size Sensitivity Analysis," etc.) further detail parameter
choices and their effects.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have detailed our core code in Fig. 1. And we plan to release our full code
and trained models upon publication, including implementation details for VarCon loss,
training scripts, and evaluation pipelines. Our code will cover all experiments presented
in the paper, utilizing standard publicly available datasets (CIFAR-10/100, ImageNet) and
common network architectures (ResNet, ViT).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: We provide detailed experimental settings in Section 4, including dataset
splits (using official test splits), architectures, data augmentation techniques (SimAugment,
AutoAugment, StackedRandAugment), optimizer configurations (SGD with momentum
0.9, weight decay 10−4), learning rate schedules (linear scaling with batch size), and
training durations (200 epochs for CIFAR-10/100 and ImageNet-100, 350 epochs for
ImageNet). Key hyperparameters like the temperature parameter τ1 and adaptive range ϵ are
specified in our ablation studies, where we show the effect of various values (e.g., optimal
τ1 = 0.1, ϵ = 0.02).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experimental results include appropriate statistical information. Tables
1 and 2 report accuracy measures with standard error (e.g., 95.94±0.07% for VarCon on
CIFAR-10), calculated across multiple runs with different random initializations. For the
few-shot learning experiments in Table 2, we explicitly state that results are averaged across
five random data subsets for each sample size to account for sampling variability. The
error bars represent standard error of the mean, providing a clear measure of the statistical
reliability of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information about computational resources in Section
B and B.1 of the appendix. Our experiments were conducted on NVIDIA GPUs, with
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larger experiments (ImageNet) utilizing multi-GPU setups. We specify in Section 4 that
we employed different batch sizes for different datasets (512 for CIFAR-10/100, 1024
for ImageNet-100, and 4096 for ImageNet), which implicitly indicates the computational
requirements. The reduced batch size dependency of our method, as shown in Figure 2c,
also demonstrates our attention to computational efficiency.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research fully complies with the NeurIPS Code of Ethics. We use standard,
publicly available benchmark datasets (CIFAR-10/100, ImageNet) that are widely accepted
in the machine learning community. Our VarCon method focuses on improving represen-
tation learning without raising specific ethical concerns. We report results transparently
with appropriate error statistics, avoid misleading claims, and compare fairly with baseline
methods. All experimental comparisons were conducted under equitable conditions using
the same computational resources for both our method and baselines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of our work in Section A.2 of the appendix,
where we address both potential positive impacts (improved performance for visual recogni-
tion systems in healthcare, autonomous vehicles, etc.) and possible negative implications
(such as potential use in surveillance systems). We also discuss how our method’s improved
efficiency with smaller batch sizes contributes to reducing computational resources, which
has positive environmental implications through reduced energy consumption.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve models or datasets with high risk for misuse. VarCon
is a representation learning method that improves embedding spaces for classification tasks,
not a generative model capable of producing deceptive content. We work with standard
benchmark datasets (CIFAR-10/100, ImageNet) rather than scraped web data. Our method
does not enable capabilities that would require specific safeguards beyond standard practices
in machine learning research.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and baseline methods used in our research are properly cited. We
reference the original papers for CIFAR-10/100 [40], ImageNet [52, 18], and the comparison
methods (SimCLR, SupCon, MoCo, etc.) in Section 4. We use these standard benchmark
datasets according to their intended research purposes. For the encoder architectures, we
cite and use the standard implementations of ResNet and ViT models following the settings
in previous works [37]. We do not modify or repackage any existing datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not introduce new datasets, tools, or models as standalone
assets that would require specific documentation. We present a new methodology (VarCon)
that builds upon existing frameworks and benchmark datasets, but this is fully described
within the paper itself. While we plan to release our implementation code in the future, we
are not introducing new assets as part of this paper submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing, human subjects, or human
evaluations. All experiments are computational, using established benchmark datasets
(CIFAR-10/100, ImageNet) and algorithmic evaluations. No human participants were
involved in the research process beyond the authors themselves.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

22

paperswithcode.com/datasets


Justification: Our research does not involve human subjects, participants, or human data
collection of any kind. All experiments use standard machine learning benchmark datasets
(CIFAR-10/100, ImageNet) and computational evaluations. Therefore, no IRB approval or
equivalent was required for this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our research on Variational Supervised Contrastive Learning (VarCon) does
not involve Large Language Models (LLMs) in any capacity as part of our methodology, ex-
periments, or analysis. Our work focuses on representation learning for image classification
through a variational approach to contrastive learning, without any LLM components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

A Discussion

A.1 Limitation

While Variational Supervised Contrastive Learning (VarCon) demonstrates significant improvements
over existing methods, we acknowledge several limitations. First, our approach relies on supervised
learning, which limits its applicability where labeled data is scarce or expensive to obtain. Second,
although VarCon reduces comparison complexity from quadratic to nearly linear through class-level
centroids, computing these centroids still introduces overhead for datasets with numerous classes.
Third, cross-domain adaptation may require recalibration of our confidence-adaptive temperature
mechanism when facing substantial distribution shifts between source and target domains.

Future work could address these limitations by: 1) extending VarCon to self-supervised settings by
leveraging augmentation-based positive pairs with a variational formulation of latent pseudo-labels,
which would maintain our probabilistic framework while removing the need for explicit supervision;
2) exploring amortized computation of class centroids through memory banks or representative
embedding techniques to reduce computational overhead for large-scale applications; and 3) incor-
porating domain adaptation techniques such as distribution alignment constraints in the variational
objective to improve cross-domain robustness. The core variational formulation of VarCon is flexible
enough to accommodate these extensions with relatively modest modifications to the underlying
framework.

Despite these limitations, VarCon successfully addresses a fundamental challenge in representation
learning by providing a principled probabilistic interpretation of contrastive objectives while simulta-
neously improving empirical performance across diverse benchmarks. Our approach offers a new
theoretical perspective that bridges the gap between generative and distinguishing paradigms, opening
promising directions for developing more robust, interpretable, and efficient representation learning
methods.

A.2 Broader Impact

VarCon offers significant potential for broader impact across multiple domains of deep learning
research and applications. By establishing a principled probabilistic foundation for contrastive
learning and demonstrating substantial empirical improvements, our work contributes to several
important areas:

From a scientific perspective, VarCon bridges the theoretical gap between generative and contrastive
approaches to representation learning. This unification provides researchers with a more coherent
understanding of how different learning paradigms relate to one another, potentially accelerating the
development of hybrid approaches that leverage the strengths of multiple frameworks. The explicit
modeling of uncertainty through our confidence-adaptive temperature mechanism also contributes to
the growing body of work on uncertainty quantification in deep learning, which remains a critical
challenge for reliable AI systems.

From an applications standpoint, VarCon’s improved performance and robustness make it particularly
valuable for domains where high-quality representations are essential. In medical imaging, more
distinctive features could enhance diagnostic accuracy and treatment planning. In computer vision for
autonomous vehicles, better representations may improve object detection and scene understanding
under varying conditions. For scientific applications like protein structure prediction or molecular
property estimation, our approach’s ability to capture fine-grained semantic relationships could lead
to meaningful discoveries.

The environmental impact of our approach is noteworthy. VarCon’s reduced dependence on large batch
sizes and faster convergence translate to lower computational requirements and energy consumption
compared to existing contrastive methods. As the carbon footprint of machine learning research
grows increasingly concerning, techniques that maintain or improve performance while requiring
fewer computational resources represent an important direction for sustainability.

Our method’s enhanced interpretability through uncertainty modeling provides a foundation for more
transparent embedding learning. By explicitly quantifying confidence in learned representations,
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VarCon could help identify potential failure modes or biases in downstream applications, particularly
important as deep learning systems increasingly influence high-stakes decisions.

In summary, VarCon represents not only a technical advancement in representation learning but
also a step toward more principled, efficient, and transparent deep learning systems, which can be
responsibly deployed across a wide range of applications.

B Experimental Analysis and Additional Results

B.1 Hyperparameter Settings

In this section, we provide additional hyperparameter settings used in our VarCon implementation.

Optimization Details For all experiments, we used SGD with momentum 0.9 and weight decay
1 × 10−4. We employed a cosine learning rate schedule with initial learning rate 0.05, and for
experiments with batch sizes greater than 256, we incorporated a 10-epoch warm-up phase. For
ImageNet experiments, we used the LARS optimizer to maintain training stability at large batch
sizes. We utilized mixed-precision training (AMP) with gradient scaling to improve computational
efficiency while maintaining numerical stability. All experiments were conducted on 8 NVIDIA
A100 GPUs. Training for 350 epochs on ImageNet required approximately 54 hours.

Data Augmentation Strategies Data augmentation plays a crucial role in contrastive learning,
as it defines the invariances that the representation should capture. We experimented with three
augmentation strategies: SimAugment (random cropping, flipping, color jitter, and grayscale conver-
sion), AutoAugment (which uses reinforcement learning to discover optimal transformation policies),
and StackedRandAugment (which applies multiple random transformations sequentially). While
previous contrastive learning methods often require strong augmentations to achieve competitive
performance, VarCon demonstrates superior results even with simpler augmentation strategies. This is
particularly significant because finding appropriate augmentation policies is typically domain-specific
and time-consuming: augmentations that work well for images may not transfer to other modalities
such as text or audio. VarCon’s reduced dependency on aggressive augmentation makes it more
adaptable across different domains and reduces the need for extensive hyperparameter tuning.

Positive and Negative Sample Definition Different contrastive learning frameworks define positive
and negative samples distinctively, which significantly impacts their learning dynamics. In SimCLR,
positive pairs consist solely of different augmented views of the same instance, while all other
instances in the batch serve as negatives, regardless of their semantic similarity. SupCon extends this
definition by considering samples from the same class as positives, leveraging label information to
create semantically meaningful groupings. Our VarCon framework further refines this approach by
encoding these relationships through a probabilistic lens. Rather than relying on explicit pairwise
comparisons, VarCon infers class-conditional likelihoods and minimizes the KL divergence between
the model’s posterior and an adaptive target distribution. This formulation naturally handles both
same-instance positives (through augmented views) and same-class positives (through class centroids)
while maintaining appropriate separation from samples of different classes. The key distinction is
that VarCon’s confidence-adaptive temperature mechanism dynamically adjusts the “strength” of
these positive relationships based on classification difficulty, providing fine-grained control over
the embedding space organization. This probabilistic treatment of sample relationships contributes
significantly to VarCon’s superior performance and robustness across various experimental settings.

These implementation details contribute significantly to VarCon’s performance and stability across
different datasets and architectures, highlighting the importance of careful hyperparameter selection
in representation learning systems.

B.2 Extended Evaluations

To further validate the robustness of our proposed approach, we evaluated VarCon against leading self-
supervised and supervised methods on the ImageNet-ReaL, which addresses the inherent limitations
of the original ImageNet validation set by providing higher-quality multi-label annotations. Table 5
presents these results.
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Table 5: Classification performance comparison on ImageNet-ReaL. We report Top-1 accuracy (%)
(mean ± standard error) for VarCon versus state-of-the-art self-supervised and supervised methods.
All models utilize the ResNet-50 architecture for a fair comparison. Best scores are highlighted in
blue , second-best in green .

Category Method
Dataset

ImageNet-ReaL

Top-1 ↑

Se
lf-

su
pe

rv
is

ed

SimCLR 75.30±0.05

MoCo V2 78.22±0.04

BYOL 81.10±0.07

SwAV 81.56±0.04

VicReg 79.45±0.07

Barlow Twins 80.09±0.03

Su
pe

rv
is

ed Cross-Entropy 83.47±0.06

SupCon 83.87±0.04

VarCon (Ours) 84.12±0.04

On this more rigorous dataset, VarCon achieves 84.12% Top-1 accuracy, outperforming all baseline
methods by a statistically significant margin. The performance gap between VarCon and the strongest
self-supervised method (SwAV at 81.56%) is significant, showing a solid 2.56% improvement,
suggesting that our probabilistic formulation effectively leverages label information to learn more
distinctive representations that better align with human perception of image content.

Even within the supervised category, VarCon demonstrates clear advantages over conventional cross-
entropy (83.47%) and the previous state-of-the-art SupCon approach (83.87%). This improvement is
especially meaningful on ImageNet-ReaL, where evaluation more accurately reflects model perfor-
mance on actual visual content rather than potentially noisy single-label annotations. The consistent
performance gains across both traditional ImageNet and ImageNet-ReaL datasets demonstrate that
VarCon’s improvements are not merely artifacts of label noise but represent genuine advances in
representation quality. In addition, the reduced standard errors (±0.04) compared to other methods
indicate that VarCon’s probabilistic approach not only improves accuracy but also yields more stable
predictions across evaluation runs. This enhanced stability, combined with superior accuracy, high-
lights the effectiveness of our variational formulation in capturing the underlying structure of visual
data while maintaining robust decision boundaries.

B.3 Embedding Space Evolution Analysis

To investigate how VarCon shapes the embedding space during training, the progressive evolution of
learned representations is visualized using t-SNE (perplexity 50) on ImageNet validation set. Models
are trained for 200 epochs with checkpoints saved at epochs 50, 100, 150, 200. Figure 5 reveals
systematic refinement of semantic organization throughout training.

The visualization demonstrates clear progression from loosely organized clusters at epoch 50 (KNN
classifier: 52.74%) to highly structured, well-separated semantic groups by epoch 200 (79.11%). The
most significant improvement occurs between epochs 100-150, where the KNN classifier performance
jumps from 59.57% to 71.12%, corresponding to the convergence of our ELBO-derived loss function.
During this phase, the KL divergence term effectively aligns the auxiliary posterior with the model’s
class posterior while ensuring correct class assignments. By epoch 200, VarCon achieves optimal
embedding organization with distinct, compact clusters and clear decision boundaries. We employ
KNN classification to directly evaluate the quality of pretrained representations without introducing
additional trainable parameters that could mask the intrinsic separability of the learned embeddings.
The high KNN classifier performance (79.11%) demonstrates that our confidence-adaptive temper-
ature mechanism successfully provides fine-grained control over intra-class dispersion, creating
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(a) Epoch 50: KNN-classifier Top-1 52.74%. (b) Epoch 100: KNN-classifier Top-1 59.57%.

(c) Epoch 150: KNN-classifier Top-1 71.12%. (d) Epoch 200: KNN-classifier Top-1 79.11%.

Figure 5: Progressive evolution of VarCon embedding space visualization through t-SNE [10] during
training on ImageNet validation set. Our variational formulation demonstrates systematic improve-
ment in semantic organization, with KNN-classifier accuracy increasing from 52.74% at epoch 50 to
79.11% at epoch 200 as clusters become increasingly well-separated and semantically coherent. The
confidence-adaptive temperature mechanism enables fine-grained control over intra-class dispersion,
resulting in embedding spaces with clear decision boundaries and hierarchical semantic structure that
facilitate effective nearest-neighbor classification without additional parameterized classifiers.

embedding spaces where semantic similarity corresponds to geometric proximity and enabling
effective classification through nearest-neighbor search.

The superior embedding quality achieved by VarCon stems from three synergistic mechanisms that
fundamentally improve upon conventional contrastive learning. As demonstrated in Figure 6, VarCon
achieves 79.11% KNN classifier performance in just 200 epochs, outperforming SupCon’s 78.53%
accuracy obtained after 350 epochs of training. First, by replacing exhaustive pairwise comparisons
with class-level centroids, each sample directly learns to align with its corresponding class center,
enabling more efficient identification of cluster centroids and reducing the quadratic computational
complexity inherent in traditional contrastive methods. Second, our variational inference formulation
preserves the possibility of inter-class linkages during the learning process, allowing the model
to maintain nuanced relationships between semantically related classes rather than forcing rigid
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(a) SupCon (350 epochs): KNN-classifier Top-1
78.53%.

(b) VarCon (200 epochs): KNN-classifier Top-1
79.11%.

Figure 6: Embedding space comparison between SupCon and VarCon through t-SNE visualization
on ImageNet validation set. Despite training for significantly fewer epochs (200 vs. 350), VarCon
achieves superior KNN classifier performance (79.11% vs. 78.53%) and demonstrates clearer cluster
separation. This comparison validates our findings in Figure 2b that VarCon converges faster than
SupCon while simultaneously learning higher-quality representations with better-defined decision
boundaries. The variational formulation enables more efficient optimization dynamics, achieving
better semantic organization in substantially reduced training time.

Table 6: Hierarchical clustering evaluation on ImageNet embeddings. We perform Ward linkage
clustering on the ImageNet validation set. All metrics: higher is better (↑).

Method ARI NMI Homogeneity Completeness V-measure Purity

SupCon 0.613 0.888 0.886 0.890 0.888 0.755
VarCon (ϵ = 0) 0.627 0.892 0.890 0.892 0.891 0.766
VarCon 0.634 0.895 0.893 0.896 0.895 0.774

separations. This probabilistic treatment enables the embedding space to capture gradual transitions
and hierarchical relationships that are often lost in hard contrastive objectives. Third, the confidence-
adaptive temperature mechanism provides dynamic regulation of learning intensity: for well-classified
samples, it prevents overfitting by relaxing constraints, while simultaneously promoting continued
learning on challenging examples by tightening supervision. This adaptive strategy ensures that
computational resources are allocated efficiently, focusing learning capacity on samples that require
additional refinement while maintaining stability for already well-separated instances.

B.4 Hierarchical Clustering Results

To further investigate the semantic organization of learned representations, we perform hierarchical
clustering analysis on the embedding space. We extract features from the entire ImageNet validation
set and apply Ward linkage clustering, which iteratively merges clusters based on minimum variance
criteria. This approach reveals the natural hierarchical structure present in the learned representations
without imposing predefined category boundaries.

Table 6 presents comprehensive clustering quality metrics. VarCon consistently outperforms SupCon
across all evaluation criteria, with progressive improvements observed through our ablation. The
Adjusted Rand Index (ARI), which measures the similarity between cluster assignments and ground-
truth labels while correcting for chance, increases from 0.613 (SupCon) to 0.627 (VarCon with ϵ = 0)
to 0.634 (VarCon). This progression suggests that the discovered clusters align increasingly closer
with true semantic categories. Similarly, the purity metric, which quantifies the fraction of samples in
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each cluster belonging to the most common class, improves from 0.755 to 0.766 to 0.774, indicating
that individual clusters contain progressively fewer mixed-class samples.

The Normalized Mutual Information (NMI) score, measuring the mutual dependence between cluster
assignments and true labels, increases from 0.888 to 0.892 to 0.895. This gain reflects a stronger
statistical relationship between the discovered structure and semantic categories. The V-measure,
which provides the harmonic mean of homogeneity and completeness, shows balanced improvements
(0.888 to 0.891 to 0.895). Specifically, homogeneity, measuring whether each cluster contains only
members of a single class, improves from 0.886 to 0.890 to 0.893, while completeness, measuring
whether all members of a class are assigned to the same cluster, increases from 0.890 to 0.892
to 0.896. These metric improvements align with our theoretical framework. Notably, VarCon
with fixed temperature (ϵ) already outperforms SupCon, demonstrating that the ELBO-derived
loss itself enhances representation quality. The full VarCon with confidence-adaptive temperature
mechanism further improves performance by applying stronger supervision on difficult samples
while relaxing constraints on well-classified examples. This adaptive behavior, combined with
the KL divergence term that prevents distributional collapse, appears to preserve more nuanced
semantic relationships during training. The clustering analysis thus provides empirical support for
our variational formulation’s ability to maintain meaningful structure in the representation space,
with both components contributing to the superior performance.

C Theoretical Analysis

C.1 Gradient Derivation w.r.t. Embedding z

To understand the training dynamics of VarCon, we derive the gradient of the VarCon loss with
respect to the ℓ2-normalized embedding z ∈ Rd. Our analysis reveals how the confidence-adaptive
temperature mechanism influences learning through gradient modulation.

Recall that our VarCon loss is:

LVarCon = DKL
(
qϕ(r

′ | z) ∥ pθ(r′ | z)
)
− log pθ(r | z), (14)

where r is the ground-truth class, qϕ is the confidence-adaptive target distribution, and pθ is the
model’s posterior distribution.

The gradient decomposes into two terms:

∂LVarCon

∂z
=

∂DKL

∂z︸ ︷︷ ︸
KL divergence term

− ∂ log pθ(r | z)
∂z︸ ︷︷ ︸

Log-posterior term

. (15)

1. Gradient of the KL Divergence. The KL divergence between qϕ and pθ is:

DKL
(
qϕ ∥ pθ

)
=

C∑
r′=1

qϕ(r
′ | z) log qϕ(r

′ | z)
pθ(r′ | z)

. (16)

To compute its gradient in Eq. (16), we apply the product rule to each term:

∂

∂z

[
qϕ(r

′ | z) log qϕ(r
′ | z)

pθ(r′ | z)

]
=

∂qϕ(r
′ | z)

∂z
log

qϕ(r
′ | z)

pθ(r′ | z)

+ qϕ(r
′ | z) ∂

∂z
log

qϕ(r
′ | z)

pθ(r′ | z)
. (17)

For the second term in Eq. (17), we have:

qϕ(r
′ | z) ∂

∂z
log

qϕ(r
′ | z)

pθ(r′ | z)
= qϕ(r

′ | z)
[

1

qϕ(r′ | z)
∂qϕ(r

′ | z)
∂z

− 1

pθ(r′ | z)
∂pθ(r

′ | z)
∂z

]
=

∂qϕ(r
′ | z)

∂z
− qϕ(r

′ | z)
pθ(r′ | z)

∂pθ(r
′ | z)

∂z
. (18)
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Therefore, the complete gradient of each term in Eq. (16) is:

∂

∂z

[
qϕ(r

′ | z) log qϕ(r
′ | z)

pθ(r′ | z)

]
=

∂qϕ(r
′ | z)

∂z

[
log

qϕ(r
′ | z)

pθ(r′ | z)
+ 1

]
− qϕ(r

′ | z)
pθ(r′ | z)

∂pθ(r
′ | z)

∂z
. (19)

Since
∑

r′ qϕ(r
′ | z) = 1, we have the constraint

∑
r′

∂qϕ(r
′|z)

∂z = 0. Thus, when summing over all
classes:

∂DKL

∂z
=

C∑
r′=1

∂qϕ(r
′ | z)

∂z

[
log

qϕ(r
′ | z)

pθ(r′ | z)
+ 1

]
−

C∑
r′=1

qϕ(r
′ | z)

pθ(r′ | z)
∂pθ(r

′ | z)
∂z

=

C∑
r′=1

∂qϕ(r
′ | z)

∂z
log

qϕ(r
′ | z)

pθ(r′ | z)
+

C∑
r′=1

∂qϕ(r
′ | z)

∂z︸ ︷︷ ︸
=0

−
C∑

r′=1

qϕ(r
′ | z)

pθ(r′ | z)
∂pθ(r

′ | z)
∂z

=
C∑

r′=1

[
∂qϕ(r

′ | z)
∂z

log
qϕ(r

′ | z)
pθ(r′ | z)

− qϕ(r
′ | z)

pθ(r′ | z)
∂pθ(r

′ | z)
∂z

]
. (20)

Computing ∂qϕ(r
′ | z)/∂z. The target distribution qϕ depends on z through the confidence-

adaptive temperature:
τ2(z) = (τ1 − ϵ) + 2ϵpθ(r | z), (21)

where ϵ is a learnable parameter controlling adaptation strength.

From our formulation, qϕ has the closed form:

qϕ(r
′ | z) =


exp(1/τ2)

C−1+exp(1/τ2)
, if r′ = r

1
C−1+exp(1/τ2)

, if r′ ̸= r
(22)

For the ground-truth class r′ = r:

∂qϕ(r | z)
∂τ2

= − (C − 1) exp(1/τ2)

τ22 [C − 1 + exp(1/τ2)]2
. (23)

For other classes r′ ̸= r:

∂qϕ(r
′ | z)

∂τ2
=

exp(1/τ2)

τ22 [C − 1 + exp(1/τ2)]2
. (24)

By the chain rule:

∂qϕ(r
′ | z)

∂z
=

∂qϕ(r
′ | z)

∂τ2
· ∂τ2
∂z

=
∂qϕ(r

′ | z)
∂τ2

· 2ϵ∂pθ(r | z)
∂z

. (25)

Computing ∂pθ(r
′ | z)/∂z. The model’s posterior follows a softmax distribution:

pθ(r
′ | z) = exp(z⊤wr′/τ1)∑C

k=1 exp(z
⊤wk/τ1)

. (26)

Remark on Class Centroid Computation. In our implementation, we compute class centroids as
the normalized average of embeddings:

wr =
z̄r

∥z̄r∥2
, where z̄r =

1

|Br|
∑
i∈Br

zi, (27)

and Br = {i : ri = r, i ∈ B} denotes the set of samples with class r in the mini-batch. We treat
these centroids as constants during backpropagation (i.e., we detach them from the computational
graph). This design choice:
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• Simplifies gradient computation and improves training efficiency

• Avoids cyclic dependencies that could lead to training instabilities

• Aligns with the interpretation of centroids as fixed reference points representing the current
state of each class

Therefore, when computing ∂LVarCon/∂z, we do not propagate gradients through wr, treating them
as constants in the following derivations.

Its gradient is:
∂pθ(r

′ | z)
∂z

=
pθ(r

′ | z)
τ1

[wr′ − Epθ
[w]] , (28)

where Epθ
[w] =

∑C
k=1 pθ(k | z)wk is the expected class centroid under the current model distribu-

tion.

2. Gradient of the Log-Posterior. From the log-posterior definition:

log pθ(r | z) = z⊤wr

τ1
− log

C∑
r′=1

exp

(
z⊤wr′

τ1

)
. (29)

Taking the gradient of Eq. (29):

∂ log pθ(r | z)
∂z

=
1

τ1
[wr − Epθ

[w]] . (30)

Complete Gradient and Interpretation. Combining both Eqs. (20) and (30), the complete gradient
is:

∂LVarCon

∂z
=

C∑
r′=1

[
∂qϕ(r

′ | z)
∂z

log
qϕ(r

′ | z)
pθ(r′ | z)︸ ︷︷ ︸

Distribution alignment

− qϕ(r
′ | z)

pθ(r′ | z)
∂pθ(r

′ | z)
∂z︸ ︷︷ ︸

Weighted gradient

]

− 1

τ1
[wr − Epθ

[w]]︸ ︷︷ ︸
Centroid attraction

. (31)

Since embeddings are ℓ2-normalized (∥z∥2 = 1), the effective gradient must be projected onto the
tangent space of the unit sphere:

∂LVarCon

∂z

∣∣∣∣
effective

=
(
I− zz⊤) ∂LVarCon

∂z
, (32)

where I− zz⊤ is the projection operator.

This gradient analysis reveals the dual mechanism of VarCon:

• The KL divergence term aligns the auxiliary distribution qϕ with the model posterior pθ
through confidence-adaptive weighting.

• The log-posterior term creates an attractive force toward the true class centroid wr and a
repulsive force from the expected centroid Epθ

[w].

• The confidence-adaptive temperature τ2(z) modulates the alignment strength based on
classification confidence, providing sharper supervision for difficult samples.

C.2 Gradient Derivation w.r.t. Adaptation Strength Parameter ϵ

To understand how the adaptation strength parameter ϵ influences the training dynamics, we derive
the gradient of the VarCon loss with respect to ϵ. This analysis reveals how the confidence-adaptive
mechanism automatically adjusts the strength of supervision based on sample difficulty.

31



Recall that ϵ appears in the confidence-adaptive temperature:

τ2(z) = (τ1 − ϵ) + 2ϵpθ(r | z),

which in turn affects the target distribution qϕ. The gradient of the VarCon loss with respect to ϵ is:

∂LVarCon

∂ϵ
=

∂DKL

∂ϵ
− ∂ log pθ(r | z)

∂ϵ
. (33)

We compute the instantaneous gradient with respect to ϵ while treating the encoder parameters θ as
fixed during this computation. This is consistent with how gradients are computed in backpropagation,
where each parameter’s gradient is calculated independently. Under this assumption, pθ(r | z) is
treated as a constant with respect to ϵ, yielding:

∂ log pθ(r | z)
∂ϵ

∣∣∣∣
θ fixed

= 0. (34)

Therefore, the gradient in Eq. (33) simplifies to:

∂LVarCon

∂ϵ
=

∂DKL

∂ϵ
. (35)

Computing the KL Divergence Gradient. From the KL divergence definition in Eq. (16):

DKL =

C∑
r′=1

qϕ(r
′ | z) log qϕ(r

′ | z)
pθ(r′ | z)

,

we apply the product rule to compute its derivative with respect to ϵ:

∂DKL

∂ϵ
=

C∑
r′=1

[
∂qϕ(r

′ | z)
∂ϵ

log
qϕ(r

′ | z)
pθ(r′ | z)

+ qϕ(r
′ | z) ∂

∂ϵ
log

qϕ(r
′ | z)

pθ(r′ | z)

]
. (36)

For the second term in Eq. (36), since pθ(r
′ | z) is treated as constant with respect to ϵ:

∂

∂ϵ
log

qϕ(r
′ | z)

pθ(r′ | z)
=

1

qϕ(r′ | z)
∂qϕ(r

′ | z)
∂ϵ

. (37)

Substituting back in Eq. (36):

∂DKL

∂ϵ
=

C∑
r′=1

[
∂qϕ(r

′ | z)
∂ϵ

log
qϕ(r

′ | z)
pθ(r′ | z)

+ qϕ(r
′ | z) · 1

qϕ(r′ | z)
∂qϕ(r

′ | z)
∂ϵ

]

=

C∑
r′=1

∂qϕ(r
′ | z)

∂ϵ

[
log

qϕ(r
′ | z)

pθ(r′ | z)
+ 1

]
. (38)

Since
∑

r′ qϕ(r
′ | z) = 1, we have the constraint

∑
r′

∂qϕ(r
′|z)

∂ϵ = 0. Thus:

∂DKL

∂ϵ
=

C∑
r′=1

∂qϕ(r
′ | z)

∂ϵ

[
log

qϕ(r
′ | z)

pθ(r′ | z)
+ 1

]

=

C∑
r′=1

∂qϕ(r
′ | z)

∂ϵ
log

qϕ(r
′ | z)

pθ(r′ | z)
+

C∑
r′=1

∂qϕ(r
′ | z)

∂ϵ︸ ︷︷ ︸
=0

=

C∑
r′=1

∂qϕ(r
′ | z)

∂ϵ
log

qϕ(r
′ | z)

pθ(r′ | z)
. (39)
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Computing ∂qϕ(r
′ | z)/∂ϵ. Using the chain rule:

∂qϕ(r
′ | z)

∂ϵ
=

∂qϕ(r
′ | z)

∂τ2
· ∂τ2
∂ϵ

. (40)

First, we compute ∂τ2/∂ϵ:

∂τ2
∂ϵ

=
∂

∂ϵ
[(τ1 − ϵ) + 2ϵpθ(r | z)]

= −1 + 2pθ(r | z)
= 2pθ(r | z)− 1. (41)

Note that pθ(r | z) is treated as a constant with respect to ϵ under our instantaneous gradient
assumption.

This derivative reveals a key insight:

• When pθ(r | z) > 0.5 (confident predictions): ∂τ2/∂ϵ > 0

• When pθ(r | z) < 0.5 (difficult samples): ∂τ2/∂ϵ < 0

The derivatives ∂qϕ(r′ | z)/∂τ2 were computed in Section C.1. For the ground-truth class r′ = r:

∂qϕ(r | z)
∂τ2

= − (C − 1) exp(1/τ2)

τ22 [C − 1 + exp(1/τ2)]2
, (42)

and for other classes r′ ̸= r:

∂qϕ(r
′ | z)

∂τ2
=

exp(1/τ2)

τ22 [C − 1 + exp(1/τ2)]2
. (43)

Complete Gradient Expression. Combining all terms in Eqs. (39) and (41):

∂LVarCon

∂ϵ
=

C∑
r′=1

∂qϕ(r
′ | z)

∂τ2
· ∂τ2
∂ϵ

· log qϕ(r
′ | z)

pθ(r′ | z)

= [2pθ(r | z)− 1]

C∑
r′=1

∂qϕ(r
′ | z)

∂τ2
log

qϕ(r
′ | z)

pθ(r′ | z)
. (44)

Substituting the specific derivatives in Eqs. (42) and (43):

∂LVarCon

∂ϵ
= [2pθ(r | z)− 1]×

{
∑
r′ ̸=r

exp(1/τ2)

τ22 [C − 1 + exp(1/τ2)]2
log

qϕ(r
′ | z)

pθ(r′ | z)

− (C − 1) exp(1/τ2)

τ22 [C − 1 + exp(1/τ2)]2
log

qϕ(r | z)
pθ(r | z)

}
. (45)

Factoring out common terms:

∂LVarCon

∂ϵ
=

[2pθ(r | z)− 1] exp(1/τ2)

τ22 [C − 1 + exp(1/τ2)]2

×

∑
r′ ̸=r

log
qϕ(r

′ | z)
pθ(r′ | z)

− (C − 1) log
qϕ(r | z)
pθ(r | z)

 . (46)
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Interpretation and Learning Dynamics. This gradient reveals the self-regulating nature of the
confidence-adaptive mechanism:

• For confident samples (pθ(r | z) > 0.5): The factor [2pθ(r | z) − 1] > 0. When
pθ(r | z) is high (confident prediction), τ2 approaches τ1 + ϵ, making qϕ more uniform.
The gradient direction is determined by the aggregate log-ratio term

∑
r′ ̸=r log

qϕ(r
′|z)

pθ(r′|z) −
(C − 1) log

qϕ(r|z)
pθ(r|z) . This uniform qϕ typically satisfies qϕ(r | z) < pθ(r | z) for the

ground-truth class and qϕ(r
′ | z) > pθ(r

′ | z) for other classes, making the aggregate
term positive. Consequently, the gradient pushes ϵ to increase, which in turn increases τ2,
making qϕ even more uniform and effectively reducing supervision strength for already well-
classified samples. This self-reinforcing mechanism prevents overfitting on easy samples
while maintaining stable learning dynamics.

• For difficult samples (pθ(r | z) < 0.5): The factor [2pθ(r | z)− 1] < 0. When the model
is uncertain, τ2 approaches τ1 − ϵ, creating a sharper distribution. The gradient behavior
reverses, causing ϵ to adjust such that τ2 decreases. This reduction in ϵ leads to a smaller
τ2, creating a sharper qϕ distribution that provides stronger supervision precisely where
the model needs it most. The same aggregate log-ratio term that increases ϵ for confident
samples now decreases it due to the negative sign factor. The magnitude of this effect scales
with the degree of distributional mismatch, ensuring proportional adaptation to the model’s
uncertainty.

• Dynamic equilibrium: During training, ϵ and θ are updated jointly through gradient descent.
While our analysis considers their instantaneous gradients separately, their co-evolution
creates a dynamic equilibrium where ϵ continuously adapts to the current state of the
model, automatically balancing exploration and exploitation throughout the learning process.
As training progresses and the model’s predictions align better with ground truth, the
distributional differences driving the gradient naturally diminish, stabilizing ϵ. Although ϵ is
learnable and updated via gradient descent according to the derived gradients, we enforce
hard bounds during optimization to ensure numerical stability. Specifically, after each
gradient update, ϵ is clamped to a predefined range (e.g., [0, 0.08] as illustrated in Figure 3b).
This constraint ensures that the confidence-adaptive temperature τ2(z) = (τ1−ϵ)+2ϵpθ(r |
z) remains within valid bounds throughout training, preventing degenerate solutions while
still allowing sufficient flexibility for adaptation.

This analysis confirms that the learnable parameter ϵ provides an elegant mechanism for adaptive
supervision strength, contributing to VarCon’s superior performance and faster convergence compared
to fixed-temperature approaches.

D Training Details

D.1 Loss Convergence Analysis

To empirically validate VarCon’s training efficiency, we analyze the loss trajectories in a controlled 50-
epoch training experiment on ImageNet with ResNet-50 and an overall batch size of 4096 distributed
across 8 A100 GPUs, as demonstrated in Figure 7. VarCon demonstrates dramatically faster loss
convergence compared to SupCon: starting from comparable initial losses (VarCon: 9.997, SupCon:
11.142), VarCon’s loss drops to 2.836 by epoch 10, which is a 71.6% reduction versus SupCon’s 34.3%
reduction to 7.311. This convergence advantage persists throughout training, with VarCon achieving
a final loss of 1.138 at epoch 50, 75.1% lower than SupCon’s 4.578. Crucially, both components
of VarCon’s objective decrease synergistically: the KL divergence term reduces from 4.978 to
0.538 (89.2% decrease) while the negative log-posterior term decreases from 5.019 to 0.599 (88.1%
reduction), confirming that our variational formulation successfully balances distributional alignment
with classification performance. Even with this abbreviated 50-epoch training schedule, significantly
shorter than the standard 200-350 epochs, both methods achieve reasonable downstream classification
accuracy (VarCon: 75.3%, SupCon: 74.5%), but VarCon’s substantially lower final loss and steeper
descent trajectory demonstrate more efficient optimization. This empirical evidence validates our
theoretical framework: the ELBO-derived objective provides better gradient signals, while the
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(a) SupCon training loss (b) VarCon training loss

Figure 7: Training loss trajectories on ImageNet with ResNet-50 and batch size 4096 under a full
50-epoch training regime. (a) SupCon exhibits slow convergence, decreasing from 11.142 (epoch 1) to
4.578 (epoch 50). (b) VarCon demonstrates rapid convergence with the total loss dropping from 9.997
(epoch 1) to 1.138 (epoch 50), while both components decrease synergistically: the KL divergence
term reduces from 4.978 (epoch 1) to 0.538 (epoch 50) and the negative log-posterior term from
5.019 (epoch 1) to 0.599 (epoch 50). This balanced reduction validates our variational formulation’s
effectiveness in jointly optimizing distributional alignment and class-specific representation learning.

Table 7: Distribution of adaptive temperature τ2 across ImageNet samples at key epochs during a
full 50-epoch training with ResNet-50, ϵ = 0.02, τ1 = 0.1, and batch size 4096. The temperature
τ2 ∈ [0.08, 0.12] modulates gradient strength, with lower values indicating stronger gradients for
difficult samples. “25th Pct” and “75th Pct” represent the first quartile (25th percentile) and third
quartile (75th percentile), respectively.

Epoch Mean Std Dev Min 25th Pct Median 75th Pct Max ϵ

10 0.09378 0.00961 0.08001 0.08550 0.09213 0.10110 0.11878 0.02
20 0.09714 0.01037 0.08000 0.08806 0.09685 0.10610 0.11873 0.02
30 0.09979 0.01078 0.08000 0.09063 0.10076 0.10935 0.11889 0.02
40 0.10326 0.01092 0.08001 0.09505 0.10589 0.11278 0.11916 0.02
50 0.10656 0.01059 0.08001 0.10040 0.11042 0.11520 0.11910 0.02

confidence-adaptive temperature mechanism accelerates learning without sacrificing representation
quality.

D.2 Quantitative Analysis of Adaptive Temperature Dynamics

To investigate the effectiveness of our confidence-adaptive temperature mechanism, we analyze the
distribution of τ2 across all ImageNet samples during a 50-epoch training run with ResNet-50, fixed
hyperparameters (ϵ = 0.02, τ1 = 0.1) and batch size 4096, constraining τ2 ∈ [0.08, 0.12]. Table 7 and
Figure 4 reveal systematic evolution of the temperature distribution as training progresses. At epoch
10, the mean τ2 = 0.09378 with the 25th percentile at 0.08550 indicates that over 25% of samples
receive near-maximal gradient strength, while the relatively low 75th percentile of 0.10110 shows
that even easier, more confident samples remain below the midpoint of the temperature range. The
distribution shifts consistently across epochs, as visualized in Figure 4a: the mean increases by 13.6%
(from 0.09378 to 0.10656), while more dramatic shifts occur in the quartiles—the 25th percentile
rises by 17.4% (from 0.08550 to 0.10040) and the median increases by 19.9% (from 0.09213 to
0.11042), indicating accelerating confidence gains on the majority of samples. The minimum and
maximum values follow divergent trajectories: while the minimum remains fixed at around 0.08001
throughout training (suggesting a persistent subset of challenging samples), Figure 4b reveals that
the density of low-τ2 samples progressively decreases from epoch 10 to 50, demonstrating that
hard samples are gradually pushed closer to their corresponding class centroids through embedding
refinement. Meanwhile, the maximum stabilizes around 0.119, and the 75th percentile increases
from 0.10110 to 0.11520 (14.0% growth), demonstrating that high-confidence samples progressively
receive more relaxed gradients. The standard deviation exhibits a subtle but meaningful pattern,
initially increasing from 0.00961 to 0.01092 (epochs 10-40) before slightly decreasing to 0.01059
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Table 8: Distribution of adaptive temperature τ2 across ImageNet samples with learnable ϵ during a
full 200-epoch training with ResNet-50, τ1 = 0.1, and batch size 4096. The temperature τ2 modulates
gradient strength, with lower values indicating stronger gradients for difficult samples. The learnable
ϵ parameter evolves dynamically during training.

Epoch Mean Std Dev Min 25th Pct Median 75th Pct Max ϵ

40 0.09365 0.00958 0.08151 0.08542 0.09205 0.10098 0.11845 0.0185
80 0.09728 0.01042 0.07950 0.08815 0.09698 0.10625 0.11885 0.0205
120 0.09995 0.01085 0.07850 0.09075 0.10090 0.10950 0.11902 0.0215
160 0.10310 0.01088 0.07921 0.09492 0.10575 0.11265 0.11895 0.0208
200 0.10642 0.01056 0.07981 0.10028 0.11030 0.11508 0.11887 0.0202

at epoch 50, suggesting initial divergence as samples differentiate followed by stabilization. This
nuanced evolution, with faster increases in upper quantiles compared to lower ones, illustrates that our
confidence-weighted formulation successfully implements differential treatment: maintaining strong
gradients for persistently difficult samples while progressively relaxing constraints on well-learned
examples, all emerging naturally without manual scheduling. This emergent behavior represents a
fundamental advance over existing approaches that either apply uniform treatment to all samples
or rely on handcrafted scheduling rules. The emergence of this heterogeneous learning dynamic,
where gradient strength naturally adapts to each sample’s learning progress, demonstrates how our
variational framework translates theoretical principles into practical benefits. Rather than requiring
explicit sample weighting or curriculum strategies, the adaptive behavior arises from the interaction
between the KL divergence term and the confidence-based temperature mechanism, providing a
principled solution rather than manual scheduling approaches.

To examine the adaptive capacity of our framework with learnable parameters, we extend our analysis
to a full 200-epoch training schedule. Table 8 demonstrates the co-evolution of τ2 distribution and the
learnable ϵ parameter. The ϵ parameter exhibits non-monotonic dynamics: starting at 0.0185 (epoch
40), increasing to a peak of 0.0215 (epoch 120), then gradually decreasing to 0.0202 (epoch 200). This
trajectory reflects the model’s evolving calibration requirements across different training phases. The
τ2 distribution under learnable ϵ shows similar overall trends to the fixed-ϵ setting but with notable
distinctions. The mean τ2 increases from 0.09365 (epoch 40) to 0.10642 (epoch 200), representing
13.6% growth comparable to the fixed case. However, the distribution exhibits greater dynamic range:
minimum values decrease from 0.08151 (epoch 40) to 0.07981 (epoch 200), enabling more aggressive
gradient modulation for the hardest samples. The 25th percentile increases by 17.3% (0.08542
to 0.10028) and the median by 19.9% (0.09205 to 0.11030), demonstrating consistent confidence
development across the sample population. The interplay between ϵ and τ2 reveals sophisticated
adaptation patterns. During epochs 40-120, ϵ increases from 0.0185 to 0.0215, expanding the
temperature range to facilitate stronger differentiation between easy and hard samples. As training
progresses (epochs 120-200), ϵ decreases to 0.0202 while maintaining high mean τ2, indicating the
model has established robust class boundaries and requires less aggressive temperature modulation.
The standard deviation remains stable (0.00958 to 0.01056) despite evolving ϵ, demonstrating that
the learnable mechanism maintains consistent relative differentiation across samples while adjusting
absolute scale. This self-regulated behavior emerges without explicit scheduling, validating our
variational framework’s capacity for autonomous adaptation to training dynamics.

D.3 Memory Efficiency Analysis

Beyond training efficiency, we analyze the memory footprint of VarCon compared to SupCon during
training. Figure 8 presents peak GPU memory consumption per-device (specifically Rank 0) over 50
training epochs on ImageNet with ResNet-50 and per-device batch size 512. VarCon demonstrates
consistent memory efficiency advantages: after the initial epoch, VarCon maintains a steady peak
memory usage of 43.09 GB per GPU compared to SupCon’s 43.25 GB, representing a 0.16 GB
(0.37%) reduction per device. While this difference appears modest, it becomes significant in multi-
GPU training scenarios where even small per-device savings enable larger effective batch sizes or
accommodate additional model capacity within fixed memory constraints.
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Figure 8: Per-GPU peak memory usage comparison between VarCon and SupCon during a full
50-epoch ImageNet training with ResNet-50. Experiments conducted with total batch size 4096
distributed across 8 A100 GPUs (per-GPU batch size 512), with VarCon using ϵ = 0.02 and τ1 = 0.1.
VarCon consistently requires 0.16 GB less memory per device after the first epoch, maintaining 43.09
GB versus SupCon’s 43.25 GB throughout training.

Table 9: Comparison of adaptive regularization methods across four key dimensions. Dynamic
Target: modifies target distribution based on sample or model state; Dynamic Gradient: adjusts
gradient magnitude during training; Sample-Specific: per-sample adaptive treatment; Self-Adaptive:
automatic confidence-based updates without manual scheduling.

Method Dynamic Target Dynamic Gradient Sample-Specific Self-Adaptive

Label Smoothing [57] ✗ ✗ ✗ ✗
Mixup [67] ✗ ✗ ✗ ✗
AdaFocal [27] ✗ ✓ ✓ ✓
Dual Focal Loss [58] ✗ ✓ ✓ ✗
Local Adaptive LS [4] ✓ ✗ ✓ ✗
LoT Regularization [36] ✓ ✓ ✓ ✗
VarCon (Ours) ✓ ✓ ✓ ✓

The memory savings arise from VarCon’s computational structure: by computing class centroids
dynamically rather than exhaustive pairwise comparisons, VarCon reduces the memory required for
intermediate similarity matrices from O(B2) to O(B ·Cd), where B denotes the per-device batch size
and Cd represents the number of unique classes per device. Importantly, Cd is bounded by B (i.e.,
Cd ≤ B), as each sample belongs to exactly one class. This bound ensures that VarCon’s memory
complexity remains strictly lower than SupCon’s quadratic requirement. Furthermore, the stable
memory consumption across epochs indicates that the confidence-adaptive mechanism introduces
negligible overhead despite its dynamic nature. These efficiency gains, combined with VarCon’s faster
convergence and superior accuracy, establish it as a more resource-efficient approach for contrastive
learning at scale.

D.4 Adaptive Temperature versus Existing Regularization Methods

Traditional methods like label smoothing [57] and mixup [67] apply uniform regularization to all
samples, while focal loss variants such as AdaFocal [27] and Dual Focal Loss [58] adjust gradient
magnitudes based on sample difficulty. Recent approaches achieve sample-specific adaptation: Local
Adaptive Label Smoothing [4] modifies smoothing based on neighborhood structure, while Learning
from Teaching regularization [36] combines target and gradient modifications through teacher-student
dynamics. As summarized in Table 9, these methods primarily optimize either target smoothing or
gradient scaling, with few achieving both through self-adaptive mechanisms.

VarCon’s adaptive temperature mechanism provides bidirectional adaptation through the interaction
between KL divergence and confidence-based temperature scaling. For samples with low confidence,
the mechanism produces sharper target distributions (lower τ2) and stronger gradients, while confident
samples receive smoother targets (higher τ2) and gentler gradients. This emerges naturally from our
variational formulation without requiring manual scheduling or validation set monitoring.
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Figure 9: Learned cosine similarity matrix between class embeddings on ImageNet using VarCon
with ResNet-50. The matrix visualizes pairwise similarities among 12 representative classes from
four semantic groups: felines (cougar, lynx, tabby), dogs (Maltese, German shepherd, Doberman),
balls (basketball, volleyball, tennis ball), and musical instruments (acoustic guitar, grand piano,
saxophone). Higher values indicate stronger learned semantic relationships between classes based
solely on visual features.

The scarcity of bidirectional self-adaptive methods in the literature reflects inherent optimization chal-
lenges: simultaneous target and gradient modifications can create conflicting optimization objectives
or redundant regularization effects. Our approach addresses these challenges through the principled
integration of temperature adaptation within the ELBO framework, where both modifications arise
from a unified objective rather than separate mechanisms. This integration eliminates the need for
balancing multiple hyperparameters while maintaining theoretical consistency with the variational
objective.

E Additional Related Work

E.1 Multi-Modal and Single-Modal Approaches

X-CLR [55] represents a recent advancement that leverages multi-modal information for contrastive
learning. Table 10 summarizes the key methodological differences between SupCon, X-CLR, and
VarCon.

These methodological differences highlight distinct design philosophies. SupCon extends self-
supervised contrastive learning to the supervised setting by treating all same-class samples as positive
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Table 10: Methodological comparison of supervised contrastive learning approaches.
Aspect SupCon X-CLR VarCon
Data Requirements Single modality (images) Dual modality (images + text) Single modality (images)

Label Usage Class labels for defining Class names converted to text Class labels for computing centroids
positive/negative pairs descriptions for similarity and defining target distributions

Similarity Construction Binary (same class = 1, Pre-computed similarity matrix Dynamic distribution qϕ(r
′|z)

different class = 0) from text encoder cosine similarities adjusted by confidence pθ(r|z)
Theoretical Foundation Heuristic extension of Heuristic soft labeling Variational inference with ELBO

self-supervised learning replacing binary similarities maximization over latent variables

Objective Function InfoNCE with multiple Modified InfoNCE with soft KL divergence + log-posterior
positives per class similarity targets from text terms derived from ELBO

Computational Requirements Single encoder + Dual encoder (vision + text) + Single encoder +
pairwise comparisons similarity matrix computation class centroid computation

Applicability Any labeled visual dataset Requires meaningful text Any labeled visual dataset
descriptions for classes

Table 11: Core innovations and target settings of contrastive methods.
Method Core Innovation Target Setting
SupCon Supervised contrastive loss Balanced datasets
VarCon Variational inference, ELBO objective Balanced datasets
PaCo Parametric centers + momentum encoder Long-tailed datasets
GPaCo Simplified parametric centers Balanced and long-tailed datasets

pairs, maintaining binary similarity relationships. X-CLR introduces graded similarities by leveraging
semantic relationships encoded in class names through text encoders, enabling the model to learn
that certain classes are more similar than others. VarCon takes a fundamentally different approach by
reformulating the problem through variational inference, where the similarity construction emerges
dynamically from the model’s evolving confidence rather than being predetermined. This allows
VarCon to adapt its supervision intensity per sample throughout training, providing stronger gradients
for uncertain samples while relaxing constraints on well-learned examples. Notably, as shown
in Figure 9, VarCon successfully learns semantically meaningful inter-class relationships purely
from visual features, with related categories (e.g., different feline species or musical instruments)
exhibiting higher similarities. While X-CLR requires auxiliary text modality to extract such semantic
relationships, VarCon achieves adaptive learning using only visual data, making it applicable to any
labeled dataset without requiring meaningful text descriptions. Although our variational framework
could naturally extend to multi-modal settings, we first establish its effectiveness in single-modality
scenarios to validate the theoretical contributions before exploring cross-modal applications.

E.2 Synergy with Class-Imbalanced Methods

VarCon is designed as a general framework for supervised contrastive learning, focusing on improving
representation quality through variational inference rather than addressing specific data distribution
challenges. However, its theoretical foundation enables effective combination with specialized
methods designed for class imbalance. PaCo [16] introduces parametric class centers maintained
through exponential moving averages, specifically designed to handle long-tailed distributions where
some classes have significantly fewer samples. GPaCo [17] simplifies this approach by removing the
momentum encoder requirement while maintaining effectiveness on both balanced and imbalanced
datasets. Table 11 illustrates how these methods address different aspects of the learning problem.

While VarCon focuses on general representation learning improvements, PaCo and GPaCo provide
complementary mechanisms for handling class imbalance. Tables 12 and 13 demonstrate that when
combined, VarCon’s improved representation quality and PaCo/GPaCo’s rebalancing strategies
achieve superior results, suggesting that variational objectives and imbalance-handling are orthogonal
dimensions of improvement. The performance gains from combining VarCon with PaCo/GPaCo
validate that our variational framework provides a strong foundation that can be further enhanced
with specialized techniques when dealing with imbalanced data distributions.
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Table 12: Top-1 accuracy on ImageNet with ResNet-50.
Method Augmentation Top-1 Acc
SupCon SimAugment 77.82
VarCon SimAugment 78.23
PaCo SimAugment 78.70
PaCo RandAugment 79.30
GPaCo RandAugment 79.50

VarCon+PaCo SimAugment 79.19
VarCon+PaCo RandAugment 79.86
VarCon+GPaCo RandAugment 79.94

Table 13: Top-1 accuracy on CIFAR-100 with ResNet-50.
Method Top-1 Acc
SupCon 76.57
VarCon 78.29
PaCo 79.10
GPaCo 80.30

VarCon+PaCo 80.57
VarCon+GPaCo 81.29
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