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Abstract

Self-supervised learning (SSL) methods have shown promise in improving represen-
tation learning for reinforcement learning (RL), yet their effectiveness across diverse
environments remains unclear. In this paper, we systematically evaluate various SSL
methods on a broad set of Atari games, categorized according to the Behavioral Suite
(bsuite) framework (Osband et al., 2020). By analyzing performance across these dis-
tinct categories, we identify which SSL approaches yield the most significant improve-
ments in different types of Atari environments. Our empirical results, supported by
comprehensive performance plots, provide insights into the strengths and limitations of
SSL methods in deep RL, guiding future research directions in representation learning
for reinforcement learning.

1 Introduction

Deep reinforcement learning (RL) has achieved remarkable success in various domains, particu-
larly in environments with well-defined state spaces or pixel-based representations (Mnih et al.,
2013; Schulman et al., 2017). However, in more complex scenarios—such as environments with
distractors (Stone et al., 2021), partial observability, or real-world settings—learning effective state
representations becomes crucial for efficient policy learning. While standard deep RL algorithms
implicitly learn representations through their primary RL objectives, these representations may not
generalize well to challenging environments, limiting their effectiveness.

Self-supervised learning (SSL) methods have emerged as a promising approach to address this chal-
lenge by leveraging auxiliary objectives to learn informative representations without explicit su-
pervision. Several SSL approaches have been proposed, including reconstruction-based methods
(Mattner et al., 2012; van Hoof et al., 2016; Watter et al., 2015), forward models predicting future
states in latent spaces (Gelada et al., 2019; Schwarzer et al., 2021), intrinsically motivated SSL (Zhao
et al., 2022), and contrastive learning techniques (van den Oord et al., 2018; Srinivas et al., 2020).
Despite these advances, recent studies suggest that SSL methods may not consistently improve RL
performance across all tasks (Li et al., 2022). Thus, a systematic evaluation of SSL methods across
diverse environments is necessary to better understand their strengths and limitations.

In this paper, we address this gap by conducting a comprehensive empirical evaluation of various
SSL methods across a wide range of Atari games. Inspired by the Behavioral Suite (bsuite) frame-
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work (Osband et al., 2020), we categorize Atari games based on their behavioral characteristics and
systematically analyze the performance of different SSL approaches within these categories. Our
results, supported by detailed performance plots, provide insights into which SSL methods are most
effective in specific types of environments, highlighting their strengths and limitations. This analysis
aims to guide future research in representation learning for reinforcement learning, emphasizing the
importance of environment-specific SSL method selection.

2 Related Work

Deep reinforcement learning (RL) has shown strong performance in environments with well-defined
state spaces, such as Atari games, where algorithms like Deep Q-Network (DQN) and Proximal
Policy Optimization (PPO) learn policies directly from raw pixel observations (Mnih et al., 2013;
Schulman et al., 2017; Hessel et al., 2017b; Haarnoja et al., 2018). These methods implicitly learn
representations through end-to-end optimization of the RL objective. However, in environments
with distractors (Stone et al., 2021), partial observability, or ambiguous high-dimensional inputs,
implicit representations often fail to capture task-relevant information.

To address these limitations, self-supervised learning (SSL) introduces auxiliary objectives (see Fig-
ure 1) to learn representations from high-dimensional observations. Broadly, SSL methods in RL
can be classified into three categories: predictive models, contrastive learning, and data augmenta-
tion techniques. Each category employs a different mechanism to guide representation learning and
improve sample efficiency, robustness, and generalization.

Predictive models include reconstruction-based approaches, where autoencoders or variational au-
toencoders reconstruct the current observation from a latent representation (Mattner et al., 2012; van
Hoof et al., 2016; Watter et al., 2015), and forward dynamics models that predict future observa-
tions or latent states from the current state and action (Gelada et al., 2019; Schwarzer et al., 2021).
These approaches, used in model-based RL methods like World Models, PlaNet, and Dreamer (Ha
& Schmidhuber, 2018; Hafner et al., 2018; 2019; 2020), capture temporal dynamics for planning
and control. Reward prediction models focus on forecasting immediate rewards from state-action
pairs, aligning representations with task-relevant features.

Contrastive learning methods enforce similarity between augmented versions of the same observa-
tion and dissimilarity with other observations (van den Oord et al., 2018; Chen et al., 2020; Srinivas
et al., 2020). CURL applies this principle in RL by combining contrastive objectives with data
augmentation to enhance representation robustness (Srinivas et al., 2020). However, contrastive ap-
proaches depend on the availability of diverse negative samples, which can be limited in RL settings,
particularly with small datasets (Li et al., 2022).

Data augmentation applies transformations such as cropping, rotation, and jitter to pixel observa-
tions, promoting invariance to superficial variations and improving stability (Laskin et al., 2020;
Yarats et al., 2021). DrQ integrates augmentations directly into the RL pipeline without requir-
ing auxiliary losses (Laskin et al., 2020), though its effectiveness diminishes in environments with
distractors or partial observability (Stone et al., 2021). Despite these approaches, auxiliary SSL
objectives do not always improve RL performance, particularly when representation learning and
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policy optimization are decoupled (Li et al., 2022). The effectiveness of SSL varies depending on
exploration complexity, reward sparsity, and robustness to noise. This paper systematically evaluates
SSL methods across Atari environments to clarify their strengths and limitations.

3 Behavioral Suite for Atari

3.1 Behavioral Suite (bsuite)

The Behavioral Suite (bsuite) (Osband et al., 2020) is a collection of carefully designed reinforce-
ment learning tasks intended to evaluate and analyze the capabilities of RL agents across various
dimensions. It categorizes tasks into distinct behavioral challenges, such as exploration, credit as-
signment, generalization, and robustness, allowing researchers to systematically assess the strengths
and weaknesses of RL algorithms.

Inspired by bsuite, we categorize a set of 56 Atari games into distinct behavioral classes to system-
atically evaluate the effectiveness of self-supervised learning (SSL) methods. This categorization
allows us to analyze SSL performance across different types of challenges commonly encountered
in RL.

3.2 Categorization of Atari Games

We classify each Atari game into one of five categories based on the following logic:

Basic: Games where standard Deep Q-Network (DQN) (Mnih et al., 2013) performs better than
human-level performance without modifications.
Credit Assignment: Games characterized by sparse rewards, requiring effective credit assignment
over long time horizons.
Exploration: Games with multiple levels or stages that require active exploration to progress.
Generalization: Games containing multiple levels with significantly different visual appearances or
object configurations, requiring generalization across diverse scenarios.
Robustness: All the games are evaluated under varying degrees of reward perturbations, including
Gaussian noise (standard deviations: 0.1, 0.3, 1.0, 3.0, 10.0) and reward scaling factors (0.001, 0.03,
1, 30, 1000), to measure robustness to reward signal variations.

Table 1: Categorization of Atari Games based on Behavioral Characteristics

Category Atari Games

Basic Assault, Asterix, Atlantis, Boxing, Beam Rider, Breakout, Crazy Climber, Defender,
Demon Attack, Enduro, Fishing Derby, Freeway, Gopher, Hero, Ice Hockey, Kanga-
roo, Krull, Kung Fu Master, Ms. Pacman, Name This Game, Phoenix, Pitfall, Pong,
Qbert, Road Runner, Robotank, Space Invaders, Star Gunner, Tennis, Time Pilot, Tu-
tankham, Up N Down, Venture, Video Pinball, Yars’ Revenge

Credit Assignment Gravitar, Hero, Krull, Montezuma’s Revenge, Pitfall, Private Eye, Tutankham, Ven-
ture

Exploration Amidar, Gravitar, Hero, Krull, Montezuma’s Revenge, Pitfall, Private Eye, Tu-
tankham, Venture, Zaxxon

Generalization Alien, Amidar, Asteroids, Bank Heist, Battle Zone, Centipede, Chopper Command,
Double Dunk, Frostbite, Phoenix, Qbert, River Raid, Seaquest, Solaris, Wizard of Wor

Table 1 summarizes the categorization of the 56 Atari games used in our experiments. This catego-
rization enables us to systematically evaluate and compare SSL methods across distinct behavioral
challenges, providing insights into their relative strengths and limitations.



Reinforcement Learning and Video Games Workshop 2025

3.3 Baseline Methods

We compare the following baselines, each representing a distinct approach to self-supervised learn-
ing (SSL) or data augmentation in reinforcement learning:

1. Rainbow: Rainbow (Hessel et al., 2017a) serves as our primary baseline and base algorithm upon
which improvements are made. Rainbow is a variant of DQN learns value functions directly from
raw observations using only the RL loss, without any explicit auxiliary or SSL objectives.

2. State Reconstruction: This method augments the Rainbow architecture with an autoencoder.
The agent is trained to reconstruct its input observation from a learned latent representation.
The reconstruction loss encourages the encoder to capture all information necessary to recreate
the input, potentially leading to richer and more informative representations for downstream RL
tasks.

3. Predicting Next State: Here, the agent is trained with an auxiliary forward dynamics model that
predicts the next observation given the current state and action. The prediction loss encourages
the learned representation to encode features relevant for modeling environment dynamics, which
can be beneficial for planning and generalization.

4. Predicting Reward: In this approach, the agent is tasked with predicting the immediate reward
from the current state and action as an auxiliary task. This encourages the representation to
focus on features that are predictive of reward, potentially improving sample efficiency and credit
assignment.

5. CURL: Contrastive Unsupervised Representation Learning (CURL) (Srinivas et al., 2020) em-
ploys a contrastive loss to learn representations that are invariant to data augmentations. By
maximizing agreement between differently augmented views of the same observation and mini-
mizing agreement with other observations, CURL encourages the encoder to capture robust and
discriminative features.

6. SPR: Self-Predictive Representations (SPR) (Schwarzer et al., 2021) trains the agent to predict its
own future latent representations over multiple steps into the future. This temporal consistency
objective encourages the representation to capture features that are stable and predictive over
time, which can improve both sample efficiency and generalization.

7. SPR (No Aug): This variant of SPR removes data augmentation from the training pipeline, iso-
lating the effect of the self-predictive objective itself. Comparing this to standard SPR highlights
the importance of data augmentation in conjunction with temporal consistency objectives.

8. DrQ: Data-regularized Q-learning (DrQ) (Kostrikov et al., 2021) improves sample efficiency and
robustness by applying strong data augmentations (such as random shifts) to the input images.
Unlike other SSL methods, DrQ does not use an explicit auxiliary loss; instead, it relies solely on
the RL objective, but with augmented data to encourage invariance and robustness in the learned
representations.

4 Experiments

To comprehensively evaluate the effectiveness of self-supervised learning (SSL) methods in rein-
forcement learning, we conduct experiments on a suite of 56 Atari games. Our experimental proto-
col is designed to assess algorithm performance in both low-data and high-data regimes, as well as
to provide robust and statistically meaningful comparisons across diverse game categories.

4.1 Experimental Setup

We evaluate each baseline algorithm at two different training durations: 100,000 environment steps
(100k) to represent a low-data regime, and 3.5 million environment steps (3.5M) to represent a
moderate-data regime. This dual setting allows us to analyze how SSL methods impact learning
efficiency and performance under varying amounts of available experience.
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During training, we periodically evaluate each agent every 10,000 steps. For each evaluation, the
agent plays 10 episodes without exploration noise, and we record the average return. This process is
repeated throughout the training run, resulting in a sequence of evaluation scores for each algorithm
and game.

4.2 Score Normalization and Aggregation

To enable fair comparison across games with different reward scales and dynamics, we normalize
the performance of each algorithm on each game. Specifically, for each game, we compute the
mean evaluation score for each algorithm over the entire training run. We then normalize these
scores using min-max normalization:

Normalized Scorei,g =
Scorei,g −minj Scorej,g

maxj Scorej,g −minj Scorej,g

where Scorei,g is the mean evaluation score of algorithm i on game g, and the minimum and max-
imum are taken over all algorithms for that game. This normalization ensures that, for each game,
the best-performing algorithm receives a score of 1 and the worst receives a score of 0.

4.3 Category-wise Analysis

After normalization, we aggregate the scores for each algorithm within each behavioral category as
defined in Section 3 (Basic, Credit Assignment, Exploration, Generalization). For each category, we
compute the mean and standard deviation of the normalized scores across all games belonging to
that category. This allows us to analyze the relative strengths and weaknesses of each SSL method
in different types of RL challenges.

For the Scale and Noise robustness analyses, all 56 games are included, as these criteria are designed
to assess the algorithms’ robustness to reward perturbations across the entire suite.

5 Visualization and Discussion

Figure 2 illustrates the normalized performance of each algorithm across various behavioral cate-
gories on 56 Atari games, evaluated at both 100k and 3.5M environment steps. Each experiment
was repeated with five independent random seeds to ensure robustness. The per-game rewards, nor-
malized against the Rainbow baseline, are shown in Figure 3. Additionally, aggregate performance
metrics based on human-normalized scores, as introduced in Agarwal et al. (2022), are presented in
Figure 4.

The results in Figure 2 reveal several important trends regarding the effectiveness of self-supervised
learning (SSL) methods:

Overall Performance Most SSL-based methods consistently outperform the standard Rainbow
baseline across several behavioral categories at 100k environment steps, highlighting the effective-
ness of auxiliary objectives and data augmentation in low-data regimes. However, this advantage
becomes much less pronounced at 3.5M steps, where the performance gap between SSL methods
and Rainbow narrows considerably.

Category-wise Trends

• Basic: In the Basic category, SPR (both with and without data augmentation) achieves the highest
normalized scores, indicating that temporal consistency and augmentation are especially benefi-
cial in games where Rainbow already performs well. At 3.5M environment steps, however, all
algorithms tend to converge in performance, further emphasizing the diminishing advantage of
SSL methods as more data becomes available.

• Credit Assignment: In the Credit Assignment category, SSL methods that incorporate predic-
tive objectives—such as State Reconstruction, Next State Prediction, and SPR demonstrate clear
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Figure 2: Comparison of algorithm performance across 100k and 3.5M environment steps.

improvements over Rainbow. This suggests that their ability to extract meaningful features from
limited experience is particularly beneficial for tasks requiring long-term credit assignment. In
contrast, CURL’s one-step contrastive loss fails to capture temporal dependencies, limiting its ef-
fectiveness in this category. This trend is evident at both 100k and 3.5M environment steps, as
shown in Figure 2.

• Exploration: In the Exploration category, SPR stands out by leveraging future latent state predic-
tion, enabling the agent to anticipate and seek out novel, informative states. This temporal fore-
sight facilitates more effective exploration compared to methods like CURL, which rely solely on
static visual similarity and lack a predictive component. At 3.5M environment steps, we observe
that predictive algorithms—similar in nature to SPR—tend to perform particularly well, further
underscoring the value of temporal modeling in long-horizon exploration.

• Generalization: SPR demonstrates the strongest performance by combining multi-step latent
prediction with robust data augmentation, which together enhance the model’s ability to general-
ize across distribution shifts. The variant of SPR without augmentation performs slightly worse,
underscoring the critical role of augmentation in achieving robustness. Other predictive meth-
ods, such as State Reconstruction and Next State Prediction, also contribute to generalization by
explicitly modeling environment dynamics, though they fall short of the consistency achieved by
SPR. In contrast, CURL’s reliance on one-step contrastive loss limits it to capturing shallow visual
invariances without temporal context, resulting in the weakest generalization performance.

Robustness to Scale and Noise Across all games, under both Scale and Noise criteria, all algo-
rithms consistently maintain robust performance. However, at higher environment steps, reward
prediction methods appear to struggle, potentially due to overfitting to noise or attempting to model
abnormally scaled reward signals, which may hinder their generalization and stability.

Effect of Data Augmentation Comparing SPR with and without data augmentation demonstrates
a consistent advantage for the augmented variant, underscoring the importance of augmentation
in low-data settings. Additionally, in low-data regimes, DrQ demonstrates strong robustness in
both noise resistance and reward scale sensitivity, highlighting its stability in reinforcement learning
environments.

Poor performance of CURL Interestingly, CURL consistently underperforms relative to other
SSL methods across most categories. Contrastive learning typically requires a large and diverse set
of negative samples to learn effective representations—something that is difficult to achieve with



Behavioral Suite Analysis of Self-Supervised Learning in Atari

2

0

2

Re
wa

rd
 P

re
di

ct
io

n

2

0

2

Ne
xt

 S
ta

te
 P

re
di

ct
io

n

2

0

2

St
at

e 
Re

co
ns

tru
ct

io
n

2

0

2

CU
RL

2

0

2

Dr
Q

2

0

2

SP
R

al
ie

n
am

id
ar

as
sa

ul
t

as
te

rix
as

te
ro

id
s

at
la

nt
is

ba
nk

_h
ei

st
ba

ttl
e_

zo
ne

be
am

_r
id

er
be

rz
er

k
bo

wl
in

g
bo

xi
ng

br
ea

ko
ut

ce
nt

ip
ed

e
ch

op
pe

r_
co

m
m

an
d

cr
az

y_
cli

m
be

r
de

fe
nd

er
de

m
on

_a
tta

ck
do

ub
le

_d
un

k
en

du
ro

fis
hi

ng
_d

er
by

fre
ew

ay
fro

st
bi

te
go

ph
er

gr
av

ita
r

he
ro

ice
_h

oc
ke

y
ja

m
es

bo
nd

ka
ng

ar
oo

kr
ul

l
ku

ng
_f

u_
m

as
te

r
m

on
te

zu
m

a_
re

ve
ng

e
m

s_
pa

cm
an

na
m

e_
th

is_
ga

m
e

ph
oe

ni
x

pi
tfa

ll
po

ng
pr

iv
at

e_
ey

e
qb

er
t

riv
er

ra
id

ro
ad

_r
un

ne
r

ro
bo

ta
nk

se
aq

ue
st

sk
iin

g
so

la
ris

sp
ac

e_
in

va
de

rs
st

ar
_g

un
ne

r
te

nn
is

tim
e_

pi
lo

t
tu

ta
nk

ha
m

up
_n

_d
ow

n
ve

nt
ur

e
vi

de
o_

pi
nb

al
l

wi
za

rd
_o

f_
wo

r
ya

rs
_r

ev
en

ge
za

xx
on

Games

2

0

2

SP
R 

(N
o 

Au
g)

2

0

2

Re
wa

rd
 P

re
di

ct
io

n

2

0

2

Ne
xt

 S
ta

te
 P

re
di

ct
io

n

2

0

2

St
at

e 
Re

co
ns

tru
ct

io
n

al
ie

n
am

id
ar

as
sa

ul
t

as
te

rix
as

te
ro

id
s

at
la

nt
is

ba
nk

_h
ei

st
ba

ttl
e_

zo
ne

be
am

_r
id

er
be

rz
er

k
bo

wl
in

g
bo

xi
ng

br
ea

ko
ut

ce
nt

ip
ed

e
ch

op
pe

r_
co

m
m

an
d

cr
az

y_
cli

m
be

r
de

fe
nd

er
de

m
on

_a
tta

ck
do

ub
le

_d
un

k
en

du
ro

fis
hi

ng
_d

er
by

fre
ew

ay
fro

st
bi

te
go

ph
er

gr
av

ita
r

he
ro

ice
_h

oc
ke

y
ja

m
es

bo
nd

ka
ng

ar
oo

kr
ul

l
ku

ng
_f

u_
m

as
te

r
m

on
te

zu
m

a_
re

ve
ng

e
m

s_
pa

cm
an

na
m

e_
th

is_
ga

m
e

ph
oe

ni
x

pi
tfa

ll
po

ng
pr

iv
at

e_
ey

e
qb

er
t

riv
er

ra
id

ro
ad

_r
un

ne
r

ro
bo

ta
nk

se
aq

ue
st

sk
iin

g
so

la
ris

sp
ac

e_
in

va
de

rs
st

ar
_g

un
ne

r
te

nn
is

tim
e_

pi
lo

t
tu

ta
nk

ha
m

up
_n

_d
ow

n
ve

nt
ur

e
vi

de
o_

pi
nb

al
l

wi
za

rd
_o

f_
wo

r
ya

rs
_r

ev
en

ge
za

xx
on

Games

2

0

2

CU
RL

Figure 3: Comparison of algorithm performance per game at 100k and 3.5M steps.
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Figure 4: Atari 100k aggregate metrics for all algorithms across 56 Atari games.

limited data. Although, even at higher data scales, CURL continues to lag behind, suggesting that
its reliance on shallow visual invariances and lack of temporal modeling may fundamentally limit
its effectiveness in more complex reinforcement learning settings.

Compute Analysis While SPR delivers strong performance across categories, it is also the most
computationally expensive algorithm, requiring significantly more FLOPs per step than others. As
shown in Table 2, SPR demands up to 8× more compute than Rainbow. This highlights a key
trade-off between performance gains and computational efficiency in SSL-based methods.

Algorithm FLOPS per step (GFLOPs)
Rainbow 15
CURL 25
SPR 120
SPR No Aug 90
Reward Prediction 18
State Reconstruction 20
Next State Prediction 21

Table 2: FLOPS per step (in GFLOPs) for all algorithms.

In summary, SSL methods, particularly SPR, consistently outperform Rainbow in low-data regimes
due to their use of predictive objectives and data augmentation. CURL underperforms across the
board, likely due to its lack of temporal modeling and reliance on shallow visual features. Predictive
SSL methods are especially effective in settings where temporal structure and long-term dependen-
cies are crucial for learning robust representations.

Note: Due to the substantial computational demands, particularly for resource-intensive algorithms
like SPR, we have omitted it from our analysis at 3.5M. Additionally, both SPR and DrQ (Kostrikov
et al., 2021) were originally designed for the sample efficiency tests on Atari 100k.

6 Conclusion

In this work, we conducted a systematic evaluation of self-supervised learning (SSL) methods for
representation learning in reinforcement learning, focusing on a diverse set of 56 Atari games cat-
egorized according to behavioral criteria inspired by the Behavioral Suite (bsuite). By analyzing
performance in both low-data (100k steps) and high-data (3.5M steps) regimes, we provided a com-
prehensive comparison of several SSL approaches, including predictive, reconstruction, contrastive,
and data augmentation-based methods.

Overall, our findings, supported by a detailed bsuite analysis, highlight the importance of selecting
appropriate SSL strategies based on the environment and data regime. We hope this study, provides
valuable insights for advancing self-supervised representation learning in reinforcement learning
research.
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