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Abstract

Given an input image, and nothing else, our method returns the bounding boxes
of objects in the image and phrases that describe the objects. This is achieved
within an open world paradigm, in which the objects in the input image may
not have been encountered during the training of the localization mechanism.
Moreover, training takes place in a weakly supervised setting, where no bound-
ing boxes are provided. To achieve this, our method combines two pre-trained
networks: the CLIP image-to-text matching score and the BLIP image captioning
tool. Training takes place on COCO images and their captions and is based on
CLIP. Then, during inference, BLIP is used to generate a hypothesis regarding
various regions of the current image. Our work generalizes weakly supervised
segmentation and phrase grounding and is shown empirically to outperform the
state of the art in both domains. It also shows very convincing results in the
novel task of weakly-supervised open-world purely visual phrase-grounding pre-
sented in our work. For example, on the datasets used for benchmarking phrase-
grounding, our method results in a very modest degradation in comparison to meth-
ods that employ human captions as an additional input. Our code is available at
https://github.com/talshaharabany/what-is-where-by-looking and
a live demo can be found at https://replicate.com/talshaharabany/
what-is-where-by-looking.

1 Introduction

What does it mean, to see? The plain man’s answer (and Aristotle’s too) would be, to know what is
where by looking. In other words, vision is the process of discovering from images what is present in
the world, and where it is.

Marr [50]
We address the task of detecting the objects that exist in a given image, without limiting ourselves to
a predefined list of objects, of the type that detection algorithms employ. This property is sometimes
referred to as open-world vision. Our method assigns a text phrase to each detected object. The
similar task that employs an additional text input describing the image is called phrase-grounding.
We describe our approach as “purely visual” to denote that there is no text input. Since the task
is performed without the use of bounding boxes in any phase of training, the level of supervision
employed corresponds to weakly supervised. As far as we can ascertain, the task of weakly-supervised
open-world purely visual phrase-grounding is entirely novel. For short, we refer to this task, which is
illustrated in Fig[I] as “what is where by looking” (WWDbL).

In order to tackle this task we rely on two recent pretrained vision-language models: CLIP [60] and
BLIP [41]. These models are trained on large corpora of matching images and captions and can
produce a matching score between an input image and an input text. Trained on millions of such pairs,
CLIP has been extensively used in zero-shot recognition [94]], image generation [21} 25} 45]], image
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Figure 1: Given the image on the left, our method extracts multiple sentences that describe objects in the image,
and generates a foreground mask that localizes the object

Table 1: Comparison to different lines of previous work on image localization.

Name References Open-world Weakly supervised Purely visual
Object detection X X v
Phrase-Grounding [85] v X X
Weakly supervised localization [66] X v v
Weakly supervised Phrase-Grounding  [2] v v X
What is where by looking (WWbL) This work 4 v v

editing and manipulation [57, [11} 24} 95], image and video captioning [53}[72} [73]] and other tasks
[52]. BLIP, a more recent addition, also incorporates into its training phase the ability to generate
image captions. It also relies on a bootstrapped captioning model to generate matching sentences and
on a bootstrapped filtering model to eliminate false matches from its training set.

While BLIP can produce a matching score, we choose to use CLIP for producing such a score and
BLIP for generating plausible captions. This modular choice allows us to study the matching-based
components (such as generalizing weakly supervised localization methods) separately from the
WWHbL. It also emphasizes the modular nature of our method. Given time and resources, we would
be able to evaluate the method using only BLIP or replacing BLIP with CLIP-based image captioning
methods, which are considerably slower than BLIP [73]].

Our WWbL method comprises two phases. During training, an encoder-decoder g is applied to
extract a foreground mask for an input image, given an image caption. This is the same level of
supervision that is required to train CLIP or BLIP, albeit performed on a much smaller dataset. Since
no segmentation mask (or bounding box) is used, this is considered weakly supervised.

Four loss terms are used. The first one requires that the CLIP matching score of the foreground region
and the matching text be maximal. The second helps ensure that the background region is unrelated
to the text. The third term considers the explainability map of CLIP, given the input image and the
caption as a guide for the foreground mask. Lastly, in order to encourage compact foreground
masks, a regularization term is added.

A two-stage inference procedure employs the learned foreground segmentation network g and a
pretrained-BLIP model. The first stage extracts object proposals using a Selective Search algo-
rithm [[74]. The second stage uses BLIP to generate captions for each proposal and find text clusters
in CLIP’s embedding space, in order to avoid repetitive descriptions. Network g is then used to find
the foreground mask for each sentence, given the entire image as input and the sentence.

Our results show that network g, as a weakly supervised localization network, outperforms the
state-of-the-art. The same model also outperforms the state-of-the-art in phrase grounding. When the
entire method is applied, with the two stages described above, the results obtained for WWbL are on
par with the results obtained using human captions for the task of phrase grounding. These results are
considerably better than those obtained by the baselines.

Our main contributions are: (i) A new state-of-the-art solution for weakly-supervised localization
tasks with text and image as input, and (ii) Tackling, for the first time, as far as we can ascertain, the
fundamental WWDL task, which is an open-world detection task that does not rely on any localization
information during training.



2 Related Work

Open-world computer vision is an emerging paradigm that stands in contrast to recognition systems
that can only address the limited number of classes and types of examples that were observed during
training. Specifically, open-set classification [7} 186} 38] requires the ability to understand when a new
sample is not from the observed classes.

Since large visual-language models are trained on hundreds of millions of samples [60], many classes
of objects are observed during training. It is impractical to enumerate all object classes. Moreover,
these models can recognize phrases that were unseen during training, e.g., “a green dove”. Therefore,
the use of the term "open-world" for such models is not based on learned vs. unseen classes, but
rather on testing the method without limiting the type of objects observed during the inference.

Open-world localization methods generalize more restricted methods, which rely on a relatively
short list of detectable objects. Similarly, weakly supervised methods, which employ labeling at the
image level, generalize fully supervised methods that require bounding boxes during training. Finally,
methods that do not receive as input guiding information regarding the content of the image (we call
these “purely visual”) generalize methods that receive as input a list of objects to detect or text that
describes the contents of the image.

Tab. E] compares the task we tackle to other localization tasks. As can be seen, the task we tackle
-“what is where by looking” (WWbL) - generalizes all other localization tasks. Unlike supervised
object detection, it is open-set and weakly supervised. Weakly supervised localization methods are
not open-set. Lastly, phrase grounding methods employ a textual input, while WWbL does not.

Object Detection  One of the fundamental tasks of computer vision is object detection, where a
closed set of object categories is localized based on training sets that contain costly bounding-box
annotation [43} 20]. Since the advent of deep learning, many fully supervised algorithms have been
proposed for this task [61} 26} 44]. In contrast to these methods, our approach employs image-level
annotation (global text description) and an open dictionary to describe the detected object.

Phrase Grounding is a weakly supervised phrase localization task, in which text phrases are
associated with local image annotations and local human-annotation signal [2| |89, 133]. Many
methods extract text embedding from a pretrained language model [[16, 63} 35]], together with image
representations, to obtain a common semantic space for image-text pairs. Our model is based on
CLIP [60] as a text-image relation space to extract the localization of objects. Li et al. [42]] collected
27M image-text data points, of which 3M have local human annotation, and used a semi-supervised
training method for phrase-grounding, which employs CLIP. It cannot be compared directly with
our work, since it uses additional supervision. Arbelle et al. [3] proposed a self-supervision method
scheme for generating a localization map.

Weakly Supervised Localization (WSOL) Class Activation Map (CAM) explainability methods
have been offered in recent years for solving WSOL tasks [92] 93] 159, 46]. Most of these algorithms
train a classifier to distinguish between sub-categories of the main object (Birds, Cars, Dog etc),
employing a localization loss term for the explainability map [80 182} 51} 128 155].

Similarly to us, Shaharabany et al. [66] employ an external localization network in addition to the
classifier. During training, the classifier supplies gradients to the localization network. In contrast to
our work: (1) they compare the classifier outputs with and without the foreground mask, while our
algorithm compares the masked image with the text in the CLIP space, (2) there is no background
loss term, and (3) explainability is not used as a signal.

Image Captioning Captioning is a fundamental vision-language task. Early methods applied
RNNs [49,[37]. Attention was added to identify relevant salient objects [[83, [64]. Subsequently,
Transformers modeled interactions among all image elements with self-attention [[75 156, 22]. Recent
works have shown significant improvements in robustness and generalization by using large-scale
vision-language data sets [[73, 53| 41} 34, [77]. Our method employs BLIP [41]], which is a vision-
language pre-training framework that is trained on images and their caption, employing a method
to filter out noisy data. The framework also provides an image captioning model and shows good
performances in diverse image domains and for a large variety of real-world objects.

Explainability Many methods generate a heatmap that indicates relevancy for CNNss, e.g., [65] 18]
4'7,167]]. Most relevant to our work is the use of GradCAM [65] relevancy maps as a cue for weakly
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Figure 2: The architecture of our model and the optimization loss terms. The input image [ is encoded with
the VGG16 encoder part of g, and the test description ¢ is encoded with CLIP’s text encoder. The resulting text
embedding multiplies the spatial dimension of the image embedding to find a similarity between regions in the
image. The similarity map Zs weights the image embedding. The results are passed to the decoder part of g to
generate the output map. The loss term Lmqp compares the output map to the CLIP explainability map with
L2 loss. Lyor. forces the output map to focus on the text-relevant pixels by increasing the similarity between
I ® g(I) and the text. Lpqck aims to guide the 1-g(I) to focus on the background by decreasing the cosine
similarity between I ® 1 — g(I) and the text. L,.4 adds a sparsity constraint on g([)

supervised segmentation methods [54} [79], including recent contributions that employ GradCAM
heatmaps as pseudo labels for weakly supervised localization and segmentation algorithms|[/78, [28].
The literature on transformer explainability is sparse and is mostly limited to pure self-attention
architectures [, [12]. A recent work by Chefer et al. [12] fully addresses bi-modal transformer
networks, and is the method employed to obtain relevancy maps. The solution is based on Layer-wise
Relevance Propagation [5]], with gradient integration for the self-attention and co-attention layers.

3 Method

In this section, we describe our method for generating a localization map based on image and
text input signals without local annotation. We use our method on three different tasks (i) Weakly
supervised object localization (WSOL) (ii) Weakly supervised phrase-grounding (WSG) (iii) What is
where by looking (WWDbL).

At the core of our method lies a segmentation network g, which is trained in a weakly supervised
manner. The network g has two inputs: an input image I € R**" *# and an embedding of the input
text ZT'. For the simpler task of WSOL, network g receives only the first input I as input signal. The
loss terms used in both cases are the same, and, for the sake of generality we write the equations with
g that has two inputs.

The training of g does not involve any ground truth localization information. Instead, it relies on two
types of signals: (1) comparing the CLIP score of the extracted segment to that of the entire image,
and (2) including the heatmap of the CLIP network, as obtained with the relevancy method of Chefer
et al. [14]], in the segmented region.

Four-loss terms are used, using the input image I, the text ¢, and the relevancy heat-map of CLIP given
I and t, which we denote as H. The terms are (1) a foreground loss L, ([,t) (2) a background
loss Lygck(1,t), (3) a relevancy heatmap 1oss L4, (I, H), and (4) a regularization loss Ly¢4(1, g).

The foreground loss encourages the segmentation network g to output a map that increases the
similarity between the text and the masked image g(I,t) ® I, ® being the Hadamard product.

Lyore(I,t) = —CLIP(9(1,Z") ® I,t), (1)

where CLIP(J, s) denotes the CLIP matching score between an image .J and the text s.

The background loss helps ensure that the complementary part to that returned by g(I, ZT) is
irrelevant, in the sense that its CLIP matching score with the text is low.

Lback(lat):CLIP((1_9(17ZT))®Ivt)7 (2)



The relevancy map H obtained by the method of Chefer et al. [14] on CLIP(I,t) provides us with
another important cue. While it is not entirely reliable in the sense that irrelevant regions are often
marked and those regions often do not include the entire relevant part, we find that it often highlights
some of the relevant parts. Since both H and ¢g(I, Z T) have the same range of values ([0,1]), we
employ the squared Euclidean norm of the difference.

erap(la H) = ||H - g(Ia ZT)”2 (3)

The background loss may encourage g(I, ZT') to be as inclusive as possible, so that the complement
is minimal. Additionally, the relevancy map loss L,.,,4, may encourage the obtained foreground
mask to be overly inclusive. To encourage g to be more spatially limited, we add a regularization loss

Lyeg(1,9)) = llg(I, Z")|| 4)

The combined loss is defined as L = Ay * Lyore (1, 1) + A2 % Lpger (L, €) + A3 % Lyap (I, H) + Mg *
Lycy(I), where Aq, ..., Ay are fixed weighting parameters for all datasets, which were determined
after a limited hyperparameters search on the CUB [76]] validation set to be 1, 1, 4, 1 respectively.

3.1 Inference Tasks

Weakly supervised object localization (WSOL) The goal of the WSOL task is to localize a single
object in the image I without local annotation. For each fine-grained dataset, there is a single type
of object (birds, cars, dogs, etc), and we do not guide the segmentation process with any type of
conditioning. The text is used only in the training time for the loss functions, and is simply the name
of the object (“birds”, “cars”, “dogs”).

For converting the obtained continuous segmentation map g(I), which is a sigmoid output between 0
to 1, to a binary mask, we follow the binarization used, e.g., by Qin et al. [59, (18, [17, 166], which is
the standard in the benchmark. Namely, low-value pixels, below the threshold of 0.1, are zeroed out.
Then, the method of Suzuki et al. [7Q] is used to extract contours. From the largest contour found, the
algorithm selects the bounding box of the object.

Weakly supervised phrase-grounding (WSG) The aim of weakly supervised phrase-grounding is
to generate a localization map, given an image [ and a textual phrase ¢ for a specific object in the
image. To extract the objects from the output map of M = g(I, ZT'), we first zero low-value pixels,
using a threshold of 0.5. Next, we find contours with the method of Suzuki et al. [70]. For each
contour, we extract the proper bounding box. The score for each box is calculated from the output
map in the positions of the detected box. In the final stage, we apply non-maximal suppression over
the boxes with 0.3 IoU, and filtering boxes with a low score (50% less) compared to the maximum
score. See Appendix [D]for the visualization of these steps.

WWbL Inference The WWbL task is an open-world localization task, in which the only input is a
given image. The task consists of localizing and describing all the elements composing the scene.
To solve this task, we propose a two-stage algorithm based on a selective search [[74] algorithm to
extract object proposals to describe local regions in the image and incorporate the learned network g,
the image captioning network BLIP, and the CLIP model.

Captioning models usually tend to describe the main element of the scene, neglecting other objects or
the background. To address this issue, our proposed algorithm extracts local regions from the image
with the Selective Search [[74] procedure, which first over-segments the image into super-pixels, and
then groups those in a bottom-up manner to propose candidate bounding boxes, see line 2 of Alg.
Each region is passed through BLIP to generate a local caption (line 3).

To avoid duplicate captions, the algorithm projects the captions to CLIP space (line 4) and applies the
Community Detection (Cd) algorithm [9] to find caption clusters (line 5). The clustering algorithm
uses cosine similarity in CLIP space between each caption such that a matrix of size M x M is
obtained, where M is the number of captions. The algorithm employs two hyperparameters: (i) cosine
similarity threshold for items in the same cluster and (ii) minimum size of a cluster such that, for each
caption (row in the matrix), we find the number of captions above the threshold and check whether it
is above the minimum size for a cluster. The final stage of Cd filters out overlapping clusters, giving
priority to larger clusters. We set the cosine similarity threshold to be 0.85, and the minimum size to



Algorithm 1: WWbL inference method a woman skating on

the ice

Require: Inputimage / &
1: Load trained networks g, BLIP and E}
2: {P;}, = SelectiveSearch(I) O
3 (T}, = BLIP({P}) L4
4 {ZZT}?zl = Et({Tl}?=l) a person riding h the sky with clouds
5: {1”“ Z;T}:il — C'd({ZZT}ZL:17 2’ 085) a tractor in the background
6: D+ ¢ . .
7: fori=1...mdo "\ '
8: M; =g(I,Z;) > Generate map
9: B; + BE(M;) © Extract bounding box

10: D=DU(B;,T;) > Add object

11: return D Figure 3: Sample WWbL results for Filckr30K

be 2. This algorithm returns a caption for each cluster and its embedding in CLIP space. For each
cluster, g generates a localization map. Next, the bounding boxes are extracted like in Sec[3.1]

3.2 Architecture

Our network g is used in two types of tasks where (1) image captioning is used only for the loss
function (WSOL) and g receives only the image (2) image captioning is used as input to g and in the
loss function (WSG and WWbL). In this section, we describe each mode.

WSOL Architecture For WSOL, Network g is based on a U-Net [62]] architecture, with skip
connections between the encoder and the decoder for signals with the same spatial resolution. The
decoder of g employs five upsampling layers, with each block containing two convolutional layers
with batch normalization after the last convolutional layer before the activation function. The last
activation function is Sigmoid, while the others are Relu.

Multi-Model Architecture For WSG and WWbL, Network g is based on an encoder-decoder
architecture adapted to support text-based conditioning. This is illustrated in Fig. 2}

The encoding Z; for the input text ¢ is produced by the CLIP text encoder, where the size of the
vector Z; is 512. The image encoder of g is a VGG network [68]], in which the receptive field is of
size 16 x 16, i.e., the image is downscaled four times. The number of channels of the obtained map
Zg is also 512. The VGG network is initialized using an ImageNet pre-trained model.

We then consider the vector in R?!2 associated with each spatial location of the tensor Z;. It is
normalized to have a norm of one. The dot product with the vector Z; (which in CLIP is also
normalized) is computed. Performing this over all spatial locations, we obtain a map Z, with values
between -1 and 1. Z, has a single channel and the same spatial dimensions as Z;.

Z can be viewed as a text-conditioned importance map. All channels of Z; are multiplied by Z,
and the result is passed to the decoder part of g. This decoder consists of three upsampling blocks,
each with a sampling factor of two. Each block contains two convolutional layers with a kernel size
equal to 3 and zero padding equal to one. Batch normalization is used after the last convolution layer,
before the activation function. The first layer’s activation function is a ReLU, while the last layer’s
activation function is a Sigmoid.

4 Experiments

We present our results for the three tasks: (i) weakly supervised object localization (WSOL) , (ii)
weakly supervised phrase grounding (WSG), with training on either MSCOCO 2014 [43] or the
Visual Genome (VG) dataset [40], and (iii) the new task we present (WWbL). For the first task,
we employ three fine-grained localization datasets, and for the other two, we use the three datasets
commonly used in WSG.

Datasets For the task of WSOL we evaluate our model on fine-grained datasets often used for this
task. CUB-200-2011 [[76] contains 200 birds species, with 11,788 images divided into 5994 training
images and 5794 test images. Stanford Car [39]] contains 196 categories of cars, with 8144 samples



Table 2: WSOL results for the CUB dataset. Table 3: Localization accuracy (percentage)

Method Backbone Accuracy[%] WSOL on the cars and dogs datasets.
GAE [12] CLIP 63.01 Method Stanford-Cars ~ Stanford-Dogs
Mg vaals 510 Pl 2 647
ACoL [90] VGGI16 62.96 Ha$ [92] 87.4 77'5
ADL [19] VGGI16 75.41 ADL [I9] 82'8 73’5
DANet [84] VGG16 67.70 RDAP [17] 92'9 77'7
MEIL [48] VGGI16 73.84 FG [66] 96'2 79’2
GCNet [46] VGG16 81.10 Ours 98.9 86.4
POSL [87] VGG16 89.11 . .
g%? [[ggJJ ng}g gég Table 4: Backbones comparison for weakly super-
FAM [51] VGG16 89.26 vised segmentation, as evaluated on CUB
ORNet [82] VGG16 86.20 Backbone Params[#] Accuracy[%]
BASEOl  VGGlo 9107 Rometls LM 9485
Resnet34 21.3M 95.31
CAM [92] MobileNetV1 63.30 Resnet50 23.5M 96.54
HasS [69] MobileNetV1 67.31 Resnet101 42.5M 96.64
FAM [51] MobileNetV1 85.71
RCAM [6] MobileNetV1 78.60 Hardnet39DS 3.5M 93.77
BAS [80] MobileNetV1 92.35 Hardnet68DS 4.2M 93.85
Ours MobileNetV1 94.40 Hardnet68 17.6M 94.99
POSL [87] Resnet50 90.00 . .
WTL [4] Resnet50 77.35 Tablg 5:. Ablation results for weakly supervised
FAM [51J Resnet50 85.73 localization on CUB [76]
SPOL [78J Resnet50 96.46 R(g(l)) erap Lfm'e Lback ACCUTaC)’[%]
BAS [80] Resnet50 95.13 B j R v 48.36
Ours Resnet50 96.54 _ Vv _ 47.58
CAM[92]  InceptionV3 55.10 y vy Pt
DANet [84] InceptionV3 67.03 v v Y 8472
12C [91] InceptionV3 72.60 Vi v v 90.02
GCNet [46]  InceptionV3 75.30
SPA[55]  InceptionV3 72.14 - y Ly 802
SLT [28] InceptionV3 86.50 ] Vi N Y 90.09
FAM [31] InceptionV3 87.25 } v v v 91.08
BAS [80] InceptionV3 92.24 i Vv - - 84.24
Ours InceptionV3 94.30 Vv Vv - Vv 92.67
PSOL [88] DenseNet161 93.01 \\; y y \/ 32;431
Ours DenseNet161 93.71

in the training set and 8041 samples in the test set. Stanford dogs [36] consists of 20,580 images,
with a split of 12,000 for training and 8580 for testing, where the data has 120 classes of dogs.

For the task of WSG and WWbL, our model trains on the split of MSCOCO and VG, and we evaluate
it on the test splits of Flickr30k, ReferIt, and VG. MSCOCO 2014 [43]], using the splits of Akbari et
al. [2], consists of 82,783 training images and 40,504 validation images. Each image has five captions
describing it. VG [40] contains 77,398 training, 5000 validation, and 5000 test images. Each image
comes with a set of free-form text annotated bounding boxes.

Flickr30k [358]] Entities, which is based on Flickr30k, contains 224K phrases describing objects in
over 31K images, each described by 5 captions. For evaluation, we use the same 1k images from the
test split of Akbari et al. [2]. Referlt [27} [15]] contains 20K images and 99,535 segmented images that
also contain a description for the entire image. These image regions were collected in a two-player
game with approximately 130K isolated entity descriptions. We use the split of Akbari et al. [2].

Implementation details In WSOL, our Algorithm receives an input image of size 224x224.
During training, the image is first resized to 256 X256 and then a random crop of size 224 x224 is
extracted. During the evaluation, the image is resized to 224 x224.

Network g for WSOL is based on an Imagenet pretrained visual encoder. We compare the per-
formance obtained using VGG16 [68]], MobileNetV1 [30]], Resnet50 [29], InceptionV3 [71] and



Table 6: WSG results: “pointing game" on VG, Table 7: WWbL and WSG results: “pointing game" and

FlleI3OK, and Referlt. bounding box accuracy.
Method ~ Backbone VG trained MS-COCO trained e Model Training Test Point Accuracy  Test Bbox Accuracy
VG Flicker Referlt VG Flicker Referlt E € VG Flickr Referlt VG Flickr Referlt
Baseline  Random 1115 2724 2430 11.15 27.24 2430 MGIZ  COCO 32915012 3634 11482375 1331
Baseline  Center 20.55 47.40 30.30 20.55 47.40 3030 MGl VG 32154948 3806 12232479 1643
GAE [12] CLIP 5472 7247 5676 5472 7247 5676 2 S : s -
= GAE[1Z] - 38155625 41.64 969 17.14 1231
FCVC [23] VGG - - 1403 2903 3352 2 ours COCO 44.20 61.38 4377 17.76 3244 2176
VGLS [81] VGG - 24.40 - ours VG 43915859 44.89 17.7731.46 18.89
g?s'f; {;’éec';mo"'z ;3;3; 35;‘1‘8 §;3§ : : MG [2] COCO 47.9461.66 47.52 15772706 15.15
MG [2]  BiLSTM+VGG 50.18 57.91 62.76 46.99 5329 47.89 9 MG[2] VG 487660.08 60.01 14.4527.78 18.85
MG 2] ELMo+VGG 4876 60.08 60.01 47.94 61.66 47.52 g GAE[I2] - 54727247 5676 16702556 19.10
GbS [3 VGG 53.40 70.48 59.44 52.00 72.60 56.10 ours COCO 59.09 75.43 61.03 27.2235.75 30.08
ours CLIP+VGG  62.31 75.63 65.95 59.09 75.43 61.03 ours VG 62.3175.63 6595 27.2636.35 3225

DenseNet161 [31] is applied for CUB dataset to compare performances with the state-of-the-art
baselines, while for the other datasets we used Resnet50, since that is what the literature baselines
have published. A SGD optimizer with a batch size of 48 and an initial learning rate of 0.0003 for 100
epochs is used. The optimizer momentum of 0.9 and weight decay of 0.0001 are also used. During
the training, a random horizontal flip with 0.5 probability is applied. All models are trained on a
single GeForce RTX 2080Ti Nvidia GPU. In WSG training (the same network is used for inference
in both WSG and WWbL), following Akbari et al. [2], network g receives an input image of size
299299 and generates a localization map of the same size. During training, the image is also resized
to 224 x 224, which is the input size of CLIP. The relevancy map H is generated at this resolution and
is resized to 299x299. Network g for WSG and WWbL is VGG16 [68], to ensure a fair comparison
with the baselines. An SGD optimizer (batch size of 32 and an initial learning rate of 0.0003) is used
for 100 epochs. The optimizer momentum of 0.9 and weight decay of 0.0001 are also used. During
training, a random horizontal flip is applied, with 0.5 probability. All models are trained on a double
2080Ti Nvidia GPU, while all experiments of Arbelle et al. [3] were conducted on four V100 GPUs.

Results For the WSOL task, the main accuracy metric measures whether the intersection over
union (IoU) of the ground-truth bounding box and the detector’s output are above 0.5. As can be
seen in Tab. El, our method obtains state-of-the-art performance for the CUB [76] dataset, for all five
different backbones. The method also outperforms GAE [12] with CLIP as a backbone. Our method
improves the GAE map, which it uses during training, by more than 25% in the accuracy metric.
The results listed in Tab. [3|show that our method also achieves state-of-the-art performance for the
fine-grained localization datasets. Following previous work, a Resnet-50 is used for these methods,
except for GAE, which is applied with a CLIP backbone. Appendix [E] presents sample results.

For the WSG task, the algorithm is evaluated with respect to the accuracy of the pointing game [89],
which is calculated from the output map by finding the maximum-value location for the given query
and checking whether this point is located in the region of the object. Another metric we report
(B-Box accuracy) compares the extracted bounding-boxes with the bounding-box annotations in the
same manner as the WSOL task above. For a fair comparison, we use the same training/validation/test
splits as Akbari et al. [2]. For Referlt, Visual Genome and Flickr30K, we treat each query as a single
sentence. Tab. [6] summarises the results for the Flickr30k, ReferIt and Visual Genome datasets for
the WSG task. Evidently, our method is superior to all baselines, whether training takes place over
VG or MS-COCO. Tab. [7]presents bounding box accuracy results for the WSG task. Here, too, our
method outperforms the baseline methods. In appendix [B] we present sample output maps.

For the WWbL task, we use the same metrics (pointing game and bounding-box accuracy). For each
ground-truth pair of bounding box and caption, we select the closest caption in CLIP space from
the output predictions and compare the output map to the bounding box using the pointing accuracy
metric. In addition, bounding boxes are extracted for the heat-map, as described at Sec. and
compared to the selected ground-truth bounding boxes with the same accuracy metric as above.

Tab[7] presents the results for the WWbL task. In addition to our method (Alg.[I) that utilizes network
g to generate a heat-map, given an image and a text (line 8), we also test two alternative heatmap
generation methods. The first one is the MG method of Akbari et al. [2] for the WSG task, and the
second is the GAE explainability method [[12]. As can be seen in the results listed in Tab. /| our
proposed method obtains the best results among the three. For comparison, we also provide WSG
results using Alg. [I|and the ground truth text for the same three heatmap methods. Interestingly,
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Figure 5: WWbL on images from Week in pictures by BBC (April-May 2022).

the g that is trained on the VG dataset shows better performance for WSG, while in WWbL the
results are mixed. Fig[3] Fig. ] show results for our method from Flickr30K and web images samples

respectively. Fig. [5|shows results for our method from BBC - Week in pictures from the recent weeks
(April-May 2022).

Ablation Study In this section, we compare the accuracy of g with different modes of the loss
function and present the experiment used to determine the values of A 3 3 4. In addition, we also



compare the performance of two backbone families, Resnet [29]] and HarDnet [[10]. All experiments
were conducted in the WSOL settings for the CUB[76]] dataset. Tab. [5| presents the sensitivity of
our network g to each loss term, as evaluated on the test set, using the Resnet50 backbone. The
first part of the table compares the performance without L, map, using different combinations of
the other loss terms. As can be seen, the best performance is achieved when we use the three terms
Ltore, Lvack, Lreg together. Each term improves the performance: L ... improves it by 21%, Lyqcx
by 5% and L., by 48%. The second part compares the performance with L., 4, which improved by
more than 6%. As can be seen, each of the other terms improves the performance: L. improves it
by 4%, Lygcr, by 2%, and L4 by 5.5%. Also, training only with L,.,,,;, decreases the performance by
more than 9% compared to performance using all loss terms. The backbone ablation was conducted
with two backbone families and is summarised in Tab.[d} For both families, performance improves as
the number of parameters is increased.

Appendix |C| presents the sensitivity of the network g to the A3 coefficient, which is the weight of
Lmap and the only coefficient that is not set to 1 in our experiments. The method seems to be largely
insensitive to this parameter and it is stable for a wide range of values. The ability of g to generalize
well under different pre-trained CLIP models is examined in App.|Gl Evidently, the variance in the
performance of g is much lower than the variance in the zero-shot classification performance of the
CLIP models used to train g.

5 Discussion and limitations

When biological systems see, the input is seldom limited to single images. Although our WWbL
method was developed in the context of stills, it can be naturally extended to perform online
localization of objects in video. For this, the detected regions and their matching concepts need to
be tracked and must evolve over time, with the ability to correct previous hypotheses. We leave this
effort for future research, since benchmarking this ability with the current datasets is challenging.

The common computer vision terminology makes the distinction between object localization and
object detection. The former aims to locate the main object of a certain type in the input image, while
the latter aims to find all the relevant objects and their individual boundaries. Our WWbL method
aims to extract every existing object and can, therefore, detect all image objects.

The method employs the selective search method [[74]]. This can be avoided by identifying one region
at a time and iterating the process. Such a method is presented in Appendix [A] It uses g to recover the
object map at each stage. The results reported in this Appendix are somewhat lower than the method
based on a selective search. Since the image datasets and pre-trained models our method employs
may be biased towards western media concepts, it is culturally biased. For similar reasons, it may
display discriminatory behavior.

Another limitation is that our weakly supervised learning scheme does not distinguish between
multiple instances of the same object. While Algorithm 1 can be improved to somewhat mitigate this,
by separating multiple objects that have the same caption, building such a solution robustly may be
challenging without additional supervision. AppJF present visualization for this scenario.

6 Conclusions

Through the power of large pre-trained transformers and by integrating explainability cues, we build
an effective weakly supervised phrase-grounding network g. By combining an off-the-shelf image
captioning engine, we are able to identify and localize the objects within an input image. The task
we solve is an open-world one and the setting generalizes multiple existing tasks. It is convincingly
demonstrated that our weakly supervised solution is on par with the fully supervised alternatives that
exist for the phrase-grounding task.
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