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ABSTRACT

Inference-time control of diffusion models aims to steer model outputs to satisfy
new constraints without retraining. Previous approaches have mostly relied on
heuristic guidance or have been coupled with Sequential Monte Carlo (SMC) for
bias correction. In this paper, we propose a flexible alternative based on replica
exchange, an algorithm designed initially for sampling problems. We refer to this
method as the CREPE (Controlling with REPlica Exchange). Unlike SMC, CREPE:
(i) generates particles sequentially, (ii) maintains high diversity in the generated
samples after a burn-in period, and (iii) enables online refinement or early termi-
nation. We demonstrate its versatility across various tasks, including temperature
annealing, reward tilting, model composition and classifier-free guidance debiasing,
with competitive performance compared to prior SMC methods.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021b;a) have revolutionised generative modelling with
their ability to produce high-quality samples across diverse modalities, including images (Rombach
et al., 2022; Karras et al., 2022), videos (Ho et al., 2022), text (Austin et al., 2021), among others
(Watson et al., 2023; Duan et al., 2023). It is typically formalised as a stochastic process initialised at
a tractable distribution (e.g., a Gaussian distribution or a fully masked distribution) and evolves to
recover the data distribution. This progressive nature not only enables diffusion models to excel at
modelling complex distributions but also provides flexible approaches for steering the generation.

Inference-time control leverages this flexibility to steer the generation of diffusion models, enabling
tasks such as posterior sampling (Dou & Song, 2024), reward-tilting (Wu et al., 2023; Singhal et al.,
2025), tempering (Akhound-Sadegh et al., 2025), or model composition (Du et al., 2023). This
was first explored through classifier (and classifier-free) guidance (Dhariwal & Nichol, 2021; Ho
& Salimans, 2022), and has since been extended with a variety of approximation or fine-tuning
approaches (Song et al., 2023a; Chung et al., 2023; Song et al., 2023b; Schneuing et al., 2024; Ye
et al., 2024; Kong et al., 2025; Denker et al., 2024; Liu et al., 2024; Domingo-Enrich et al., 2024;
Zhang et al., 2024). However, these methods often rely on heuristic approximations and typically
suffer from inaccuracies, while fine-tuning approaches require additional training on data and may

class condition: cab; prompt: a yellow cab with dark background

CREPE iteration

class condition: Christmas stocking; prompt: a green Christmas stocking

class condition: pinwheel; prompt: a colorful pinwheel

class condition: balloon; prompt: a blue balloon

Figure 1: Trajectory of images generated using CREPE for prompted reward-tilting on ImageNet-512,
thinned every 8 iterations. After burn-in, the samples align closely with the prompt.
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Figure 2: Comparison between diffusion inference-time control with SMC and CREPE. We visualise
the diffusion process using colour shading: darker colours correspond to higher noise/mask levels
(large t), while brighter colours indicate states closer to the data distribution (small t). SMC
(Left): particles are initialised at t = 1 and progressively denoised towards lower noise levels.
During denoising, importance resampling is applied to select particles that better satisfy the imposed
constraints. CREPE (Right): particles are initialised at several different diffusion steps, and they
undergo local exploration and communication in parallel, evolving them towards desired constraints.
The example shows using SMC and CREPE to debias classifier-free guidance.

still suffer from imperfect optimisation. This has motivated studies to debias the errors (Wu et al.,
2023; Skreta et al., 2025; Lee et al., 2025; Singhal et al., 2025; Thornton et al., 2025).

A commonly used framework to debias is Sequential Monte Carlo (SMC, Del Moral et al., 2006),
where one jointly evolves a set of weighted interacting particles along the generation path towards the
desired distribution. SMC debiases the trajectories by importance sampling with potential resampling
moves. However, SMC-based debiasing methods typically suffer from several limitations: (1) it
requires maintaining a large number of particles throughout the denoising trajectory, which can be
memory-intensive; (2) SMC tends to suffer from poor sample diversity, as observed in several recent
works (Li et al., 2024; Young & Akyildiz, 2024; Lee et al., 2025), a problem that is especially severe
when the number of particles is small; (3) once the sampling process is complete, SMC cannot refine
the generated samples. If the outcome is unsatisfactory or new constraints are added, one needs to
regenerate new samples rather than iterate on the existing ones.

On the other hand, replica exchange, also known as Parallel Tempering (PT, Swendsen & Wang, 1986;
Geyer, 1991; Hukushima & Nemoto, 1996), is a Markov Chain Monte Carlo (MCMC) algorithm
providing a computationally dual framework to SMC. PT reverses the roles of parallelism and time in
SMC samplers (Syed et al., 2024): instead of propagating a batch of particles in parallel along the
denoising direction sequentially, PT runs a chain at different denoising steps in parallel and generates
particles sequentially. This reduces the burden of parallelism over a large number of particles and
enables the continual refinement of the generated samples. However, standard PT and its extensions
(Ballard & Jarzynski, 2009; Zhang et al., 2025) were designed for sampling from unnormalised
densities, where the target distribution is explicitly known. This highlights a key challenge: in
inference-time control, we only have access to a pretrained diffusion model. Can PT still be adapted
to this setting to harness its desirable properties?

In the following, we answer this question affirmatively. In summary, our contributions include:

• We formulate inference-time control with parallel tempering (PT) for diffusion models. Dubbed as
Control with REPlica Exchange (CREPE), it shows how PT can be applied directly from pretrained
diffusion models without explicit target densities.

• We derive PT swap rates for several inference-time control applications, including tempering,
reward tilting, debiasing classifier-free guidance, and model composition, for both the Gaussian
diffusion model and discrete mask diffusions (Lou et al., 2023).

• We validate our approach across various tasks and modalities, demonstrating improved performance
and better inference-time scaling property compared to SMC-based approaches.

2 BACKGROUND

This section introduces backgrounds. We begin with a discussion of path measures for continuous-
time Markov processes, followed by an introduction to diffusion models and their discrete counterparts
(Song et al., 2021b; Lou et al., 2023; Shi et al., 2023). Finally, we review replica exchange, aka
parallel tempering (PT), particularly focusing on its accelerated variants (APT, Zhang et al., 2025).
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2.1 PATH RADON-NIKODYM DERIVATIVE AND RADON-NIKODYM ESTIMATOR

Let
−→
Xs and

←−
X ′s be continuous-time Markov process on state space X within the time interval s ∈ [t, t′].

In later sections, we will instantiate these processes as either diffusion or jump processes; for now,
we keep the discussion general. Let

−→
Ft,t′ denote the path measures defined as the law of the forward

process
−→
X [t,t′] = (

−→
Xs)s∈[t,t′] obtained by evolving

−→
Xt ∼ µ forward from time t to t′. Similarly let

←−
Bt,t′ denote the path measure for the backward process

←−
X ′[t,t′] = (

←−
X ′s)s∈[t,t′] obtained by evolving

←−
Xt′ ∼ µ′ backward from time t′ to time t. For a more intuitive introduction, let’s first consider the
forward and backward processes at a given collection of time points t = t0 < t1 < · · · < tK = t′.
The laws can be factored in terms of the forward transition kernels

−→
F tk|tk−1

of the forward process
and the backward transition kernels

←−
Btk−1|tk of the backward process, i.e.,

−→
Ft,t′(xt0:K ) = µ(xt0)

K∏
k=1

−→
F tk|tk−1

(xtk |xtk−1
),
←−
Bt,t′(x

′
t0:K ) = µ′(x′tK )

K∏
k=1

←−
Btk−1|tk(x

′
tk−1
|x′tk). (1)

By taking ratios and a formal limit as maxk |tk − tk−1| → 0 (Berner et al., 2025, Proposition B.7.),
we obtain the Radon-Nikodym derivative between

−→
Ft,t′ and

←−
Bt,t′ in the form of the density ratio

between the marginals µ and µ′, and a term Rt,t′ (Vargas et al., 2024; Berner et al., 2025).

d
←−
Bt,t′

d
−→
Ft,t′

(x[t,t′]) =
µ′t′(xt′)

µt(xt)
Rt,t′(x[t,t′]). (2)

Formally, Rt,t′(x[t,t′]) is defined as the ratio of the backward transition dynamics initialised terminat-
ing at xt′ and the forward transition dynamics initialised at xt in the limit as maxk |tk − tk−1| → 0,

Rt,t′(x[t,t′]) = lim
maxk |tk+1−tk|→0

∏K
k=1

←−
Btk−1|tk(xtk−1

|xtk)∏K
k=1

−→
F tk|tk−1

(xtk |xtk−1
)
. (3)

We note that Rt,t′ depends only on the transition dynamics of forward and backward processes,
independent of the marginals µ and µ′. When Xt and X ′t are constructed via a stochastic differential
equation (SDE) or continuous-time Markov chain (CTMC), we can express Rt,t′(x[t,t′]) analytically
in terms of a path integral of the drift and rate matrices respectively over x[t,t], which we describe
in Appendix A.1. Going forward we will refer to Rt,t′ as the Radon-Nikodym Estimator (RNE)
between the forward and backward process over the interval [t, t′] following He et al. (2025c).

2.2 DIFFUSION MODELS

Diffusion models (Ho et al., 2020; Song et al., 2021a;b) construct a continuous time Markov process
Xt over a state space X with marginal distribution pt at time t interpolating between a given target
data distribution p0 at time t = 0 and a reference noise distribution p1 at time t = 1.

Let Pt,t′ be the path-measure defining the law of paths X[t,t′] = (Xs)s∈[t,t] on the time interval [t, t′].
We can equivalently express X[t,t′] as a forward process

−→
Xs evolving pt forward in time from t to

t′, or as a backward process
←−
Xs evolving pt′ backward in time from t′ to t. Since

−→
Xs and

←−
X ′s are

constructed to be time-reversals of each other, we have forward and backward path measures coincide
with Pt,t′ and hence the Radon-Nikodym derivative between them equals 1 for any path x[t,t′]. It
follows from Equation (2), the marginal densities ratio between pt(xt) and pt′(xt′) can be expressed
in terms of RP

t,t′ , the RNE for the diffusion model over [t, t′],

pt′(xt′)/pt(xt) = RP
t,t′(x[t,t′])

−1. (4)

We describe two classes of diffusion models used in the literature when X = Rd and when X is finite.

Gaussian diffusions Gaussian diffusion models (Song et al., 2021b; Albergo et al., 2023) construct
Markov processes over X = Rd. We define the forward process

−→
Xt obtained by integrating the

forward SDE with drift ft and diffusion coefficient σt initialised at the data distribution p0 running
forward in time, terminating at Gaussian noise X1 ∼ p1,

−→
X0 ∼ p0,

−→
Xt ∼ pt, d

−→
Xt = ft(

−→
Xt) dt+ σt d

−→
W t. (5)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Similarly, the backward process
←−
Xt is obtained by integrating the backward SDE terminating at

Gaussian noise X1 ∼ p1 backward in time:
←−
X1 ∼ p1,

←−
Xt ∼ pt, d

←−
Xt = gt(

←−
Xt) dt+ σt d

←−
W t, (6)

where gt = ft − σ2
t∇ log pt, and ∇ log pt is the score function learned by a neural network.

Discrete diffusions When X is finite, discrete diffusion models (Campbell et al., 2022; Lou et al.,
2023; Shi et al., 2024) define pt as a probability vector of size |X| representing the law of Xt. The
process is defined by integrating the forward CTMC initialised at the data distribution p0 with rate
matrix Λt ∈ R|X|×|X|, terminating at a fully masked distribution p1:

−→
X0 ∼ p0,

−→
Xt ∼ pt, ∂tpt = Λ⊤t pt. (7)

The reverse process is encoded by the backward equation terminating at the fully masked distribution:
←−
X1 ∼ p1,

←−
Xt ∼ pt, ∂tpt = −Λ′t

⊤
pt. (8)

Here, Λ′t is the backward rate matrix defined as Λ′t(x, y) = Λt(y, x)
pt(y)
pt(x)

for y ̸= x and Λ′t(x, x) =

−
∑

y ̸=x Λ
′
t(x, y), where pt(y)

pt(x)
is known as the concrete score and is learned using a neural network.

2.3 REPLICA EXCHANGE AND ACCELERATED PT (APT)

Replica exchange, also known as parallel tempering (PT), was originally developed for sampling from
multimodal distributions π0 over X. To do this, we first introduce an annealing path of distributions
(πt)t∈[0,1] over X, interpolating between the target π0 and reference π1 chosen to be easy to sample
from. PT construct a Markov chain Xn = (X0

n, · · · , XM
n ) over XM+1 invariant with respect to

the product πt0 × · · · × πtM where 0 = t0 < · · · < tM = 1 is an annealing schedule discretising
the annealing path. Given Xn at time n we generate Xn+1 using a communication step and a local
exploration step. The communication step performs sequence of Metropolised swaps moves between
adjacent component of Xn. It is advantageous to apply a non-reversible communication (Okabe et al.,
2001; Syed et al., 2022): the swap between components m − 1 and m of Xn is proposed only at
iterations n with matching parity, m ≡ n mod 2. Then, the local exploration step updates each
m-th component with a MCMC move targeting πtm . Both local exploration and communication can
be carried out in parallel for each m.

The standard formulation of PT proposes swapping neighbouring samples directly. This becomes
inefficient when the neighbouring distributions of the annealing sequence have little overlap. To
address this issue, Ballard & Jarzynski (2009; 2012); Zhang et al. (2025) proposed APT, extending
the communication step to the path space of stochastic processes. Concretely, an accelerated PT
(APT) swap move between states (x, x′) targetting πt and πt′ respectively simulates (1) a forward
proposal Markov process

−→
Xs, and (2) a backward proposal Markov process

−→
X ′s over some time

interval s ∈ [t, t′]. The forward proposal
−→
Xs propagates

−→
Xt = x forward in time from t to t′, and the

backward proposal propagates
←−
X ′t′ = x′ backward in time from t′ to t. We then replace (x, x′) with

the terminate states (X ′t, Xt′) with probability αt,t′(
−→
X [t,t′],

←−
X ′[t,t′]) equal to,

αt,t′(x[t,t′], x
′
[t,t′]) = min

{
1,

d
←−
Q′t,t′

d
−→
Qt,t′

(x[t,t′])
d
−→
Qt,t′

d
←−
Q′t,t′

(x′[t,t′])

}
. (9)

Here
−→
Qt,t′ denotes the law of the forward paths

−→
X [t,t′] = (

−→
Xs)s∈[t,t′] initialised at

−→
Xt ∼ πt and

←−
Q′t,t′ denotes the law of the backward paths

←−
X ′[t,t′] = (

←−
X ′s)s∈[t,t′] terminating at

←−
X ′t′ ∼ πt′ . The

swap move remains valid when the paths are discretised as long as the simulation of the proposal and
the calculation of the Radon-Nikodym derivative follow the same discretisation.

3 METHODS

Given diffusion models pjt for the data distributions pj0 for j = 1, . . . , J , we aim to generate samples
from a new distribution π0 related to pj0 without retraining the model. Some common examples of
such tasks include tempering, reward-tilting/posterior sampling, and model composition.
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Algorithm 1 CREPE: Control with REPlica Exchange
Inputs: J pretrained diffusions; annealing path (πt)t∈[0,1], discretisation schedule (tm)Mm=0; PT iterations N .
Output: target samples {Xn}Nn=1.

Initialise X0 = (X0
0 , . . . , X

M
0 ) by running diffusion model.

for n = 1, . . . , N do ▷ Run PT.
Xn = (X0

n, . . . , X
M
n )← Xn−1

for m ≡ n mod 2 do ▷ Communication (parallelise)
t← tm−1 and t′ ← tm ▷ Diffusion time interval
−→
Xt ← Xm−1

n and
←−
X ′t′ ← Xm

n ▷ Generate proposal paths
Simulate proposal paths

−→
Xs and

←−
X ′s for s ∈ [t, t′] ▷ Equations (10) and (11)

Compute RQ
t,t′ , R

P1

t,t′ , . . . , R
PJ

t,t′ for
−→
X [t,t′] and

←−
X ′[t,t′] ▷ See Appendix A.1

αt,t′ ← αt,t′(
−→
X [t,t′],

←−
X ′[t,t′]) ▷ See Equation (13)

(Xm−1
n , Xm

n )← (
←−
X ′t,

−→
Xt′) with probability αt,t′ . ▷ Swap move

(Optionally) Update Xm
n ,m = 0, . . . ,M with local exploration; ▷ Local Exploration (parallelise).

tempering: π0(x) ∝ pj0(x)
β with inverse-temperature β > 0;

reward-tilting/posterior sampling: π0(x) ∝ pj0(x) exp(r0(x)) with reward/likelihood r0(x);

model composition: π0(x) ∝
∏

j p
j
0(x) composing J diffusions pj0, j = 1, · · · , J.

These are not the only options. In fact, one can also combine these tasks. For example, debiased
classifier-free guidance aiming to sample from π0(x) ∝ p0(x)

1−w p0(x | c)w, can be achieved by
combining tempering with composition . We will also demonstrate other combinations in Section 4.

This section shows how this can be achieved using the accelerated parallel tempering framework
outlined in Section 2.3. We can adapt this to obtain the Control REPlica Exchange (CREPE) algorithm
summarised in Algorithm 1. We will outline the ingredients for CREPE, i.e. (1) an annealing path,
(2) a communication move, and (3) a local exploration move.

3.1 ANNEALING PATH, COMMUNICATION AND LOCAL EXPLORATION

Annealing path We first introduce an annealing path of distributions (πt)t∈[0,1] interpolating
between the target distribution π0 when t = 0 and a reference distribution where inference is tractable
π1 when t = 1. For example, we can assume π1 is a Gaussian in the case of Gaussian diffusion or
a fully masked distribution in the discrete diffusion case. We additionally assume we can express
the marginal density ratio of the annealing path πt as functions of the marginal density ratio for
the pre-trained diffusion model pjt so that one can plug in the RNE relation in Equation (4). Some
common examples of annealing path include for inference time control include:

tempering: πt(x) ∝ pjt (x)
β with inverse-temperature β > 0;

reward-tilting/posterior sampling: πt(x) ∝ pjt (x) exp(rt(x)) with reward/likelihood rt(x);

model composition: πt(x) ∝
∏

j p
j
t (x) composing J diffusions pjt , j = 1, · · · , J.

Communication We now introduce the forward and backward proposal processes in the APT
framework and show how to compute the acceptance probability. Here we focus on our discussion on
the communication between two distributions πt and πt′ , and the same formula applies to any pair.

We first introduce the proposal processes for the communication. Precisely, we introduce Markov
processes

−→
Xs and

←−
X ′s, so that we can simulate the dynamics forward and backward in time, respec-

tively. Concretely, in the case of Gaussian diffusions defined in Equations (5) and (6), we introduce
the forward and backward SDEs driven by the same noise σt but with user-specified drift at, and bt.
In the case of a discrete diffusion, we introduce a forward and backward CTMC with user-specified
rate matrices At and Bt,

Forward proposal: d
−→
Xt = at(

−→
Xt)dt+ σtd

−→
W t, ∂tqt = A⊤t qt (10)

Backward proposal: d
←−
X ′t = bt(

←−
X ′t)dt+ σtd

←−
W t, ∂tq

′
t = −B⊤t q′t (11)

Here we use the arrow to indicate that the forward and backward processes correspond to different
random variables, each with its own marginal density, and they are not necessarily time-reversal of

5
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each other. In fact, there is considerable flexibility in choosing at and bt (or, in the discrete case, At

and Bt). A natural choice for the inference-time control task is to modify the diffusion dynamics so
that

−→
Xt and

←−
Xt approximate πt at time t provided when

−→
X0 ∼ π0 and

←−
X ′1 ∼ π1. However, in many

cases, this choice is intractable or doesn’t exist. We instead apply an approximation as exemplified in
Appendix A.2. The misalignment with πt is corrected through the acceptance probability.

We now focus on the proposal processes within the time interval [t, t′]. We consider we have samples
at πt and πt′ and perform communication steps between them using the APT framework. We define
−→
Qt,t′ as the law of the path

−→
X [t,t′] obtained by evolving samples from πt at time t to time t′ using

the forward proposal process. Similarly we define
←−
Q′t,t′ as the law of the path

←−
X ′[t,t′] obtained by

evolving samples from πt′ at time t′ backward to time t using the backward proposal process. We
highlight again that we do not require

−→
X [t,t′] is a time reversal of

←−
X ′[t,t′]; we also do not assume the

simulated forward and backward trajectories terminate at πt′ or πt respectively.

We can use Equation (2) to express the Radon-Nikodym derivative between
←−
Q′t,t′ and

−→
Qt,t in terms of

the marginal density ratio of πt′(xt′) and πt(xt) and RQ
t,t′(x[t,t′]), the RNE for the proposal processes

over [t, t′], for any path x[t,t′] generated by the proposals,

d
←−
Q′t,t′

d
−→
Qt,t′

(x[t,t′]) =
πt′(xt′)

πt(xt)
RQ

t,t′(x[t,t′]). (12)

We can substitute Equation (12) into Equation (9) to obtain the acceptance probability,

αt,t′(x[t,t′], x
′
[t,t′]) = min

{
1,

πt′(xt′)

πt(xt)
· πt(x

′
t)

πt′(x′t′)
·
RQ

t,t′(x[t,t′])

RQ
t,t′(x

′
[t,t′])

}
. (13)

Provided we can express the marginal density ratio of the π in terms of the marginal density ratio
of the pretrained diffusion models p1, . . . , pj , we can compute Equation (13) in terms of the RNE’s
for the pre-trained diffusion model, RPj

t,t′ , . . . , R
Pj

t,t′ , using the RNE relation Equation (4). For ex-

ample in the case of tempering with πt(x) ∝ pjt (x)
β , we have πt′(xt′)/πt(xt) ∝ RPj

t,t′(x[t,t′])
−β .

See Appendix A.4 for explicit expressions of the acceptance probability for tempering, reward-
tilting/posterior sampling, and model composition. We can tractably compute the RNE terms in
Equation (13) via the transition-kernel product in Equation (3) or via the path-integral in Equa-
tions (15) and (19) in Appendix A.1.

Local exploration Optionally, we can apply local exploration after each communication step1. For
Gaussian diffusion, we adopt the corrector step from the predictor–corrector algorithm of Song et al.
(2021b), using the score function of πt instead of pt.

Additionally, for the highest time step t = 1 in Gaussian diffusions, the target marginal π1 is a
Gaussian distribution. To accelerate mixing, we resample directly from this Gaussian instead of
performing a Langevin step following Syed et al. (2021; 2022); Zhang et al. (2025).

For CTMC, the concrete score defines the density ratio between two states, allowing for the direct
application of the Metropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). We
include a detailed discussion on the local move in Appendix A.5.

3.2 CONTROL WITH REPLICA EXCHANGE (CREPE)

Now, we put the ingredients together as an algorithm in Algorithm 1. Letting the schedule of times
0 = t0 < · · · < tM = 1, we generate a Markov chain Xn = (X0

n, . . . , X
m
n ) in XM+1 targeting

πt0 × · · · × πtM using the accelerated PT algorithm described in Section 2, with the annealing path,
communication step, and local exploration move described above.

1Note that in standard parallel tempering, this local exploration is essential because its communication step
only involves a deterministic proposal. In contrast, accelerated PT, and thus our framework, uses a stochastic
communication proposal, which already introduces randomness. The local move only provides additional
refinement and hence can be omitted when the scores of πt are prohibitively expensive.
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Table 1: Inference-time tempering performance for Alanine Dipeptide, Tetrapeptide and Hexapeptide.

Alanine Dipeptide

Alanine Tetrapeptide

Alanine Hexapeptide

FKC RNE CREPE
(Ours)Anneal Score Anneal Noise

ALA Dipeptide
(800K→ 300K)

Energy TVD 0.345 ± 0.010 0.894 ± 0.002 0.391 ± 0.006 0.224 ± 0.005

Distance TVD 0.023 ± 0.001 0.036 ± 0.001 0.024 ± 0.001 0.019 ± 0.000

Sample W2 0.293 ± 0.001 0.282 ± 0.001 0.282 ± 0.001 0.264 ± 0.001

TICA MMD 0.116 ± 0.003 0.108 ± 0.004 0.168 ± 0.007 0.096 ± 0.014

ALA Tetrapeptide
(800K→ 500K)

Energy TVD 0.122 ± 0.012 0.436 ± 0.007 0.154 ± 0.006 0.122 ± 0.004

Distance TVD 0.014 ± 0.000 0.015 ± 0.000 0.013 ± 0.001 0.013 ± 0.001

Sample W2 0.923 ± 0.008 0.892 ± 0.001 0.893 ± 0.005 0.856 ± 0.004

TICA MMD 0.183 ± 0.020 0.138 ± 0.017 0.155 ± 0.009 0.035 ± 0.002

ALA Hexapeptide
(800K→ 600K)

Energy TVD 0.091 ± 0.006 0.206 ± 0.005 0.087 ± 0.003 0.398 ± 0.001

Distance TVD 0.018 ± 0.000 0.020 ± 0.001 0.010 ± 0.001 0.009 ± 0.001

Sample W2 1.585 ± 0.001 1.652 ± 0.012 1.618 ± 0.001 1.299 ± 0.004

TICA MMD 0.088 ± 0.004 0.068 ± 0.010 0.042 ± 0.004 0.009 ± 0.001

In practice, we can stabilise PT by running it only up to a small time step t0 > 0, instead of across
the entire diffusion process. After t0, we will directly continue sampling until 0 with the diffusion
model using drift at. This is because tiny time steps often introduce numerical instability and yield
low acceptance rates, especially in high-dimensional spaces. By truncating PT early, we avoid these
issues while retaining effectiveness, as the denoising steps after sufficiently small t0 will have no
semantic change to the sample. This strategy was also applied in inference-time control with SMC,
where resampling is restricted to a limited time interval (Skreta et al., 2025).

3.3 RELATED WORKS

SMC has been extensively applied to steer the generation process (Wu et al., 2023; Dou & Song, 2024;
Singhal et al., 2025; Skreta et al., 2025; Lee et al., 2025; Pani et al., 2025; He et al., 2025c; Hasan et al.).
SMC based-methods simulate the discretised annealing path sequentially and generates particles
in parallel. CREPE introduces a related, but computationally dual perspective on inference time
control, by simulating the discretised annealing path in parallel and generating particles sequentially
via MCMC. We illustrate their difference and connection in Figure 2.

Trade-offs between SMC and CREPE SMC typically requires a large batch of particles to run in
parallel, can suffer from low sample diversity or even mode collapse when the batch size is small,
(Li et al., 2024; Young & Akyildiz, 2024; Lee et al., 2025). CREPE, by contrast, only requires
parallelisation across different diffusion times (tm)Mm=0, but generates new samples sequentially. It
tends to produce more diverse samples, as we demonstrate in experiments. Another advantage of
CREPE compared to SMC-based methods is that it supports online refinement: new constraints can
be introduced on the fly, or samples can be further refined if their quality is insufficient. It is also an
anytime inference algorithm: unlike SMC, which returns target samples only after the final iteration,
CREPE can terminate at any iteration. However, a burn-in period is required: the samples from the
first several iterations may not follow the desired target π0 and may be discarded.

We also highlight that when the number of PT iterations equals the number of SMC particles, and
both methods use the same discretisation steps, controlling with PT and SMC incur the same number
of network function evaluations (NFEs). We provide a detailed discussion in Appendix A.6.

4 EXPERIMENTS

TIC1

TI
C2

(a) MD

TIC1

TI
C2

(b) SMC

TIC1

TI
C2

(c) CREPE

Figure 3: TICA of Alanine Hexapeptide
annealed to 600K by SMC and CREPE.
CREPE maintains more diversity.

We evaluate our proposed algorithm through compre-
hensive experiments across various domains, including
molecules, images, trajectories, and discrete data. Please
refer to Appendix B for details.

Inference-time Tempering for Boltzmann Sampling
We first consider the tempering task for sampling from
Boltzmann distributions. Concretely, assuming we have
a pretrained diffusion model trained on samples from
p0(x) ∝ exp(−U(x)/kBThigh), we aim to generate sam-
ples from π0(x) ∝ exp(−U(x)/kBTlow). This setting
was considered in Skreta et al. (2025); Rissanen et al. (2025); Akhound-Sadegh et al. (2025) to
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Table 2: Debias ImageNet-64 CFG. We do
not discard burn-in samples in CREPE to
ensure a fair comparison.

Method #Samples IR (↑) CLIP (↑) FID (↓)

FKC

8 -0.29 24.17 1.85
32 -0.14 23.98 1.84
128 -0.03 24.04 1.89
512 -0.08 24.31 1.96

CREPE

8 -0.30 24.10 1.92
32 -0.21 24.21 1.88
128 -0.09 24.37 1.86
512 0.09 24.28 1.79

0 50 100 150 200
PT Iteration

2.5

0.0

2.5

IR-512

0 50 100 150 200
PT Iteration

20

30

CLIP-512

0 200 400
2.5

0.0
IR-64

0 200 400

20

30

CLIP-64

Figure 4: Prompted reward-tilting on ImageNet-64 (top)
and 512 (bottom). We report mean and std across five
different classes and prompts.

accelerate Boltzmann sampling tasks. In Table 1, we evaluate our proposed algorithm on three
molecules with different sizes: Alanine Dipeptide, Tetrapeptide and Hexapeptide. We report the
total variant distances (TVD) of energy and distance histograms, W2 distance of samples, as well
as the maximum mean discrepancy (MMD) for the sample projected to 2D space with time-lagged
independent component analysis (TICA, Molgedey & Schuster, 1994). We also show the TICA plot
for Hexapeptide samples generated by SMC (w. RNE) and CREPE, along with molecular dynamics
(MD) samples in Figure 3. We can see CREPE achieves superior performance on three of the targets
across most metrics. In particular, Figure 3 shows that CREPE maintains better diversity and avoiding
missed modes. The only exception is the energy of the alanine hexapeptide. A likely explanation
is that the pretrained model incurs higher error on this molecule, which is amplified by PT through
repeated iterations. We also note that the energy histogram alone does not always reflect overall
performance. For instance, it may appear favourable even when mode collapsing, as observed by
Blessing et al. (2024); He et al. (2025a).

Debiasing Classifier-Free Guidance for Image Generation We now consider applying CREPE to
debias classifier-free guidance (CFG, Ho & Salimans, 2022), a setting also explored by Skreta et al.
(2025) with SMC. Concretely, given an unconditional diffusion (pt) and an conditional diffusion
(p0(·|c)), we aim to sample from π0(·) ∝ p0(·)1−wp0(·|c)w. In Table 2, we evaluate the ImageReward
(IR, Xu et al., 2023), CLIP score (Hessel et al., 2021) and FID (Heusel et al., 2017) for images
generated by CREPE. The IR and CLIP are conditioning on the class label. We also report results by
FKC (Skreta et al., 2025), which is based on SMC for debiasing the CFG. We can see that when the
number of samples is small (e.g., 8), the SMC-based FKC outperforms CREPE as expected, since PT
typically requires a burn-in period. However, as the number of generated samples increases, CREPE
empirically outperforms FKC, particularly in terms of FID. Additionally, in the example images
shown in Figures 8 to 11, we can see that FKC tends to produce visually similar samples within a
batch, whereas CREPE maintains higher diversity.

Reward-tilting for Image Generation We now turn to reward-tilting in the context of image
generation. Specifically, we generate class-conditioned images using CFG with debiasing, and further
steer the generation with more detailed instructions provided by ImageReward through a prompt.
This also serves as an example of combining multiple tasks (debiasing CFG and reward-tilting).

We visualise the samples obtained along the PT chains (thinned every 8 iterations) with their class
label and prompt in Figure 1. We also plot IR and CLIP scores along PT iterations across five different
classes and prompts in Figure 4. The IR and CLIP are conditional on the prompt. We can see, after
the first burn-in period, CREPE effectively produce diverse images that closely align with the prompt.

Model Composition with Reward for Maze Navigation We now consider model composition.
Following Luo et al. (2025), we compose diffusion models trained on short trajectories to synthesise
a coherent long-horizon path through the maze. Unlike Luo et al. (2025), who train diffusion models
conditioned on both ends and stitch segments via conditioning, we train an unconditional model
and stitch segments using a reward function. This task can be viewed as a combination of reward-
tilting and model composition, where we aim to generate samples from π0([x

(1), x(2), · · · , x(J)]) =

exp(r)
∏

j p
j
0(x

(j)). This reward-based composition affords flexible constraints on the trajectory.

We use the pointmaze-giant-stitch-v0 dataset from Park et al. (2024), which consists of
short trajectories of length 64 in a large 2D maze. We train an unconditional diffusion model on these

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Example of training 

trajectories.
Trajectory after 1 PT 

iteration.

Trajectory after 50k 

PT iterations.

Trajectory after 100k 

PT iterations.
Trajectory after 101k 

PT iteration.

Trajectory after 150k 

PT iterations.

Trajectory after 10k 

PT iterations.

Figure 5: Stitched trajectory by CREPE with online refinement. We also visualise the training dataset
(leftmost plot). In the first 100k iterations, the trajectories navigate from the initial to the final
target . Starting from 100k iteration, an additional intermediate point is introduced. We observe
that this new constraint is quickly satisfied (only 1k iterations after the new reward is added).

0.0 0.5 1.0 1.5
PT Iterations ×105

0.0

0.5

1.0

Su
cc

es
s R

at
e

CompDiffuser:
       68%

Figure 6: Success rates v.s. PT iterations.
Grey line shows the average success rate
across 5 tasks. Black is the moving average.
We also report values in Table 3.

CFG CFG w. SMC CFG w. CREPE

Figure 7: MNIST samples generated by CFG, and
debiased by SMC and CREPE.

short trajectories. To generate stitched trajectories, we impose the following rewards: (1) the starting
point of the first trajectory is sufficiently close to the initial state, (2) the endpoint of the last trajectory
is sufficiently close to the target state, and (3) consecutive trajectories are connected in a tail-to-head
manner. We include detailed forms of the reward in Appendix B.4. We first evaluate our approach
on the five different initial–goal pairs considered by Luo et al. (2025). We report the success rate
in Table 3 and visualise the corresponding trace plots in Figure 6. We include the results by (Luo
et al., 2025) as a reference. As we can see, combining an unconditional diffusion model with CREPE
achieves comparable or even better performance than directly training a conditional model, at the
cost of more computing resources.

CREPE with Online Refinement An advantage of training an unconditional model and stitching
with CREPE is that it offers greater flexibility in specifying the reward function, and it naturally
extends to online settings where new constraints may be introduced on the fly. To show this, we
first run CREPE to navigate from the initial to the final target, and then add an additional reward
that requires the trajectory to pass through an intermediate point. In Figure 5, we visualise stitched
trajectory samples produced by CREPE at different PT iterations, where the intermediate point is
introduced at 100k iterations. We can see the new constraint is quickly satisfied.

CREPE on CTMC We now consider applying CREPE to discrete diffusion. Specifically, we
consider debiasing classifier-free guidance for mask diffusion, as considered by Lee et al. (2025). In
Figure 7, we visualise samples obtained by SMC (Lee et al., 2025) and CREPE. We can see that both
algorithm achieves more plausible samples, with CREPE presenting slightly more sample diversity.

5 CONCLUSIONS

In this work, we propose CREPE, a new framework for controlling diffusion models using replica
exchange. CREPE offers an alternative to the widely employed SMC-based approaches for a broad
range of inference-time control tasks for diffusion models across different modalities. It demonstrates
comparable efficiency with SMC, while additionally supporting online refinement and maintaining
better sample diversity, opening a new avenue for further exploration. The main limitations of CREPE
are the presence of a burn-in period and approximation errors introduced in the communication
acceptance rate. We provide a more detailed discussion of these aspects in Appendix A.7.
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LLM USAGE DISCLOSURE

LLM was used at the sentence level to correct grammar.
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A SUPPLEMENTARY METHODS AND DISCUSSION

A.1 CONTINUOUS FORM FOR R

We can express the RNE defined in Equation (3) analytically for SDE or CTMC (Berner et al., 2025;
Holderrieth et al., 2025): Consider the following forward and backward SDEs:

d
−→
Xs = µs(

−→
Xs) ds+ σs d

−→
W s, d

←−
X ′s = νt(

←−
X ′s) ds+ σs d

←−
W s (14)

Then for any valid trajectory X[t,t′] within time-interval [t, t′], under mild condition, we have

Rt,t′(x[t,t′]) = exp

(∫ t′

t

1

σ2
t

νs(xs) · d←−xs −
∫ t′

t

1

σ2
t

µs(xs) · d−→xs +
1
2

∫ t′

t

1

σ2
s

(
∥µs(xs)∥2 − ∥νs(xs)∥2

)
ds

)
,

(15)

where the first and second terms on the RHS represent the Itô forward and backward integral. Consider
discretisation with t = t0 < t1 < · · · < tK = t′, they are defined as:∫ t′

t

as(xs) · d−→xs = lim
maxk |tk+1−tk|→0

∑
k

atk(xtk) · (xtk+1
− xtk), (16)

∫ t′

t

as(xs) · d←−xs = lim
maxk |tk+1−tk|→0

∑
k

atk+1
(xtk+1

) · (xtk+1
− xtk). (17)

Note that this is different from the Riemann Integral, where the “direction” of summation does not
matter and needs to converge to the same value.

Similarly, for the following forward and backward CTMCs:

∂tpt = M⊤t pt, ∂tpt = −N⊤t pt (18)

we have

Rt,t′(x[t,t′]) = exp

∫ t′

t

[
Ns(xs, xs)−Ms(xs, xs)

]
ds+

∑
s:X−

s ̸=xs

log
Ns(x

−
s , xs)

Ms(xs, x
−
s )

 . (19)

A.2 CHOICE OF Q PROCESSES

In this section, we exemplify some choices for the proposal process
−→
Q and

←−
Q′. Note that none of

these choices is unique. In fact, one enjoys large flexibility in choosing these dynamics.

Tempering: in the Gaussian diffusion (with forward and backward drifts ft and gt as defined in
Equations (5) and (6)), one may choose the backward drift to be the standard noising kernel bt = ft,
and the forward drift as at = ft − βσ2

t∇ log pt.

Reward-tilting: we can also choose the backward drift to be the standard noising kernel bt = ft,
and the forward drift with a reward-guidance as at = ft − σ2

t (∇ log pt +∇rt). When the reward is
non-differentiable or expensive to compute, we can also set at = ft − σ2

t∇ log pt. In this case, we
will rely entirely on the SMC/PT correction.

Composition: we can choose the backward drift to be the standard noising kernel bt = ft, and the
forward drift using the summation of scores as at = ft − σ2

t (
∑

j ∇ log pjt ).

CFG Debiasing: CFG debiasing is a simple combination of annealing and composition. However,
as it’s commonly adopted in diffusion models, we also discuss it as an individual case. For CFG
debiasing, we can choose the backward drift to be the standard noising kernel bt = ft, and the forward
drift using the standard CFG dynamics as at = ft − σ2

t (w∇ log pjt (·) + (1− w)∇ log pjt (·|c)). We
can also use a different CFG strength w′ for the proposal drift at = ft − σ2

t (w
′∇ log pjt (·) + (1−

w′)∇ log pjt (·|c)), as considered by Lee et al. (2025).

CTMC CFG Debiasing: for CFG debiasing in CTMC, we can also follow the heuristics proposed
by Lee et al. (2025). Where we set At = Λt as the simple masking process; and we set Bt(x, y) =

16
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Λt(y, x)(
pt(y|c)
pt(x|c) )

w( pt(y)
pt(x)

)1−w where the pretrained conditional and unconditional model provide us

the conditional and unconditional concrete score pt(y|c)
pt(x|c) and pt(y)

pt(x)
. Similar to Gaussian diffusion, we

can choose a different strength w′ for the proposal process, as adopted by Lee et al. (2025).

A.3 DISCRETISED FORMULA FOR PT CONTROL

In the main paper, we focus our discussion on the continuous-time formula. In practice, both the
simulation of the processes and the calculation of the acceptance rate need to be discretised in time.
In this section, we will discuss this discrete form.

A.3.1 GAUSSIAN DIFFUSION

Simulation with Euler–Maruyama discretisation For the diffusion models, we will apply EM
discretisation for the forward and backward dynamics. Note that this is not the only choice. We can
also use the DDPM transition kernel (Ho et al., 2020) or the exponential integrator.

Discretised Forward proposal:
−→
Xs+δt =

−→
Xs + as(

−→
Xs)δt+ σs

√
δtϵ, ϵ ∼ N (0, I), (20)

Discretised Backward proposal:
−→
X ′s−δt =

←−
X ′s − bt(

←−
X ′s)δt+ σs

√
δtϵ′, ϵ′ ∼ N (0, I), (21)

Acceptance rate with discrete kernel With the same discretisation, we can calculate the R with
Gaussian densities: concretely, consider the forward and backward processes discretised into K steps:
t = t0 < t1 < · · · < tK = t′.

R̂Q
t,t′(x[t,t′]) =

∏K
k=1

←−
BQ

tk−1|tk(xtk−1
|xtk)∏K

k=1

−→
FQ

tk|tk−1
(xtk |xtk−1

)
. (22)

where
←−
BQ

tk−1|tk(xtk−1
|xtk) = N (xtk−1

;xtk − btk(xtk)|tk − tk−1|, σ2
t |tk − tk−1|) (23)

−→
FQ

tk+1|tk(xtk+1
|xtk) = N (xtk+1

;xtk + atk(xtk)|tk+1 − tk|, σ2
t |tk+1 − tk|) (24)

R̂P
t,t′ follows the same calculation. For the diffusion model in Equations (5) and (6), we have

R̂P
t,t′(x[t,t′]) =

∏K
k=1

←−
BP

tk−1|tk(xtk−1
|xtk)∏K

k=1

−→
F P

tk|tk−1
(xtk |xtk−1

)
. (25)

where
←−
BP

tk−1|tk(xtk−1
|xtk) = N (xtk−1

;xtk − gtk(xtk)|tk − tk−1|, σ2
t |tk − tk−1|) (26)

−→
F P

tk+1|tk(xtk+1
|xtk) = N (xtk+1

;xtk + ftk(xtk)|tk+1 − tk|, σ2
t |tk+1 − tk|) (27)

Reference process to stabilise the calculation (He et al., 2025c) Using the above discretisation
directly can lead to numerical issues. This issue was observed and analysed in He et al. (2025c),
arising from the misalignment of variance between forward and backward kernels. To address this,
He et al. (2025c) introduce an analytical reference to convert forward-backward kernel ratios into
forward-forward and backward-backward kernel ratios.

Concretely, we introduce a reference diffusion process:
−→
Y 0 ∼ γ0,

−→
Y s ∼ γs, d

−→
Y s = fs(

−→
Y s) ds+ σs d

−→
W s. (28)

where γ0 is chosen to be a Gaussian. Therefore, all γt are Gaussian with tractable mean and variance.
We can hence write down its time-reversal easily:

←−
Y 1 ∼ γ1,

←−
Y s ∼ γs, d

←−
Y s = hs(

←−
Y s) ds+ σs d

←−
W s, (29)

where hs = fs − σ2
s∇ log γs. We can also calculate the RNE for this reference process, which we

denote by RΓ
t,t′ , and following Equation (4), we know

γt′(xt′)

γt(xt)
RΓ

t,t′(x[t,t′]) = 1. (30)
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In practice we calculate RΓ
t,t′(x[t,t′]) as:

R̂Γ
t,t′(x[t,t′]) =

∏K
k=1

←−
BΓ

tk−1|tk(xtk−1
|xtk)∏K

k=1

−→
FΓ

tk|tk−1
(xtk |xtk−1

)
. (31)

←−
BΓ

tk−1|tk(xtk−1
|xtk) = N (xtk−1

;xtk − htk(xtk)|tk − tk−1|, σ2
t |tk − tk−1|) (32)

−→
FΓ

tk+1|tk(xtk+1
|xtk) = N (xtk+1

;xtk + ftk(xtk)|tk+1 − tk|, σ2
t |tk+1 − tk|) (33)

We can see both R̂Γ
t,t′ and R̂P

t,t′ (or R̂Q
t,t′ ) have the form of forward-backward kernel ratios; hence, di-

viding them yields a conversion from forward-backward to forward-forward and backward-backward
kernel ratios. More precisely, we calculate R̂P

t,t′ and R̂Q
t,t′ as follows:

R̂Q
t,t′(x[t,t′]) =

∏K
k=1

←−
BQ

tk−1|tk(xtk−1
|xtk)∏K

k=1

←−
BΓ

tk−1|tk(xtk−1
|xtk)

∏K
k=1

−→
FΓ

tk|tk−1
(xtk |xtk−1

)∏K
k=1

−→
FQ

tk|tk−1
(xtk |xtk−1

)

γt(xt)

γt′(xt′)
. (34)

In fact, we emperically observed that CREPE remains robust than SMC even without the use of a
reference. This is because, unlike the SMC weights, the PT acceptance ratio always involves ratios
of the R’s, which naturally mitigate the variance misalignment. Therefore, we only employ the
reference in inference-time tempering experiments, where we found it yields better results.

A.3.2 CTMC

Simulation with Euler discretisation For CTMCs, we will apply Euler discretisation for the
forward and backward dynamics. More precisely, for each token in the sample, we have

Discretised Forward proposal: −→p (xs+δt|xs) = δxs+δt,xs
+As(xs, xs+δt)δt+ o(δt), (35)

Discretised Backward proposal: ←−p (x′s−δt|x′s) = δx′
s−δt,x

′
s
+Bt(x

′
s, x
′
s−δt)δt+ o(δt) (36)

where δxt+δt,xt
denotes the delta function, which equals 1 when xt+δt = xt and 0 otherwise.

This defines a categorical distribution. In practice, we ignore the o(δt) term. After evaluating the
probabilities for all categories, we clip them to be non-negative and then renormalise.

Acceptance rate with discrete kernel We calculate R-s with the same formula as Equations (22)
and (25). The only difference is that the transition kernels are defined by Categorical probability
instead of Gaussian densities. Assuming the codebook size is V , for each token in the mask diffusion
defined in Equations (7) and (8), we have

←−
BP

tk−1|tk(xtk−1
|xtk) = Cat(xtk−1

|[←−p 1,
←−p 2, ...,

←−pV ]
P(xtk)) (37)

−→
F P

tk+1|tk(xtk+1
|xtk) = Cat(xtk+1

|[−→p 1,
−→p 2, ...,

−→pV ]
P(xtk)) (38)

where [−→p 1,
−→p 2, ...,

−→pV ]
P(xtk) represents the probability vector for xtk+1

= [v1, · · · , vV ], with each
element given by

[−→p 1,
−→p 2, ...,

−→pV ]
P(xtk) =


δv1,xtk

+ Λtk(xtk , v1)δt
δv2,xtk

+ Λtk(xtk , v2)δt
· · ·

δvV ,xtk
+ Λtk(xtk , vV )δt

 (39)

and:

[←−p 1,
←−p 2, ...,

←−pV ]
P(xtk) =


δv1,xtk

+ Λ′tk(xtk , v1)δt
δv2,xtk

+ Λ′tk(xtk , v2)δt
· · ·

δvV ,xtk
+ Λ′tk(xtk , vV )δt

 (40)

We also remove nan and inf values, and clip all values to be larger than 1e-8. This makes the
sum of all elements deviate from 1, but we found it to work well in practice, as when δt is small, the
deviation is negligible. This setup was also adopted in previous SMC works (Lee et al., 2025).
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Similarly,

←−
BQ

tk−1|tk(xtk−1
|xtk) = Cat(xtk−1

|[←−p 1,
←−p 2, ...,

←−pV ]
Q(xtk)) (41)

−→
FQ

tk+1|tk(xtk+1
|xtk) = Cat(xtk+1

|[−→p 1,
−→p 2, ...,

−→pV ]
Q(xtk)) (42)

and

[−→p 1,
−→p 2, ...,

−→pV ]
Q(xtk) =


δv1,xtk

+Atk(xtk , v1)δt
δv2,xtk

+Atk(xtk , v2)δt
· · ·

δvV ,xtk
+Atk(xtk , vV )δt

 (43)

and:

[←−p 1,
←−p 2, ...,

←−pV ]
Q(xtk) =


δv1,xtk

+Btk(xtk , v1)δt
δv2,xtk

+Btk(xtk , v2)δt
· · ·

δvV ,xtk
+Btk(xtk , vV )δt

 (44)

Also, we do not use the reference process as we do not observe an instability issue.

A.4 ACCEPTANCE RATE FOR REWARD, CFG AND COMPOSITION

A.4.1 TEMPERING

Suppose π0(x) ∝ pj0(x)
β for some β > 0, with annealing path πt(x) ∝ pjt (x)

β the maringal density
ratio satisfies,

πt′(x
′)

πt(x)
∝

(
pjt′(x

′)

pjt (x)

)β

= RPj

t,t(x[t,t′])
−β , (45)

and acceptance function equals,

αt,t′(x[t,t′], x
′
[t,t′]) = min

{
1,

RPj

t,t′(x
′
[t,t′])

β

RPj

t,t′(x[t,t′])β
·
RQ

t,t′(x[t,t′])

RQ
t,t′(x

′
[t,t′])

}
. (46)

A.4.2 REWARD-TILTING/POSTERIOR SAMPLING

Suppose π0(x) = pj0(x) exp(r0(x)) given a reward/likihood function rj0(x). We can construct an
annealing path πt(x) = pjt (x) exp(rt(x)), where rt is a user specified reward function such that
coincides with r0 at t = 0. A heuristic choice (Wu et al., 2023) is

rt(x) = γtr0

(
EXj

t∼p
j
t
[Xj

0 |X
j
t = x]

)
, (47)

with boundary conditions γ1 = 0 and γ0 = 1, where the expectation is calculated with Tweedie’s
formula (Efron, 2011) with the pretrained diffusion. The marginal density ratio satisfies,

πt′(xt′)

πt(xt)
∝

pjt′(xt′)

pjt (xt)
· exp(rt

′(xt′))

exp(rt(xt))
=

exp(rt′(xt′)− rt(xt))

RPj

t,t′(x[t,t′])
, (48)

and hence the acceptance probability equals,

αt,t′(x[t,t′], x
′
[t,t′]) = min

{
1,

exp(rt′(xt′)− rt(xt))

exp(rt′(x′t′)− rt(x′t))

RPj

t,t′(x
′
[t,t′])

RPj

t,t′(x[t,t′])
·
RQ

t,t′(x[t,t′])

RQ
t,t′(x

′
[t,t′])

}
. (49)
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A.4.3 MODEL COMPOSITION

When π0(x) =
∏J

j=1 p
j
0(x) with annealing path π0(x) =

∏J
j=1 p

j
t (x), the marginal density ratio

satisfies,

πt′(xt′)

πt(xt)
∝

J∏
j=1

pjt′(xt′)

pjt (xt)
=

J∏
j=1

RPj

t,t′(x[t,t′])
−1, (50)

and the acceptance probability equals,

αt,t′(x[t,t′], x
′
[t,t′]) = min

1,

J∏
j=1

RPj

t,t′(x
′
[t,t′])

RPj

t,t′(x[t,t′])
·
RQ

t,t′(x[t,t′])

RQ
t,t′(x

′
[t,t′])

 . (51)

A.5 DETAILS ON LOCAL EXPLORATION

In this section, we discuss our choice for local exploration.

A.5.1 GAUSSIAN DIFFUSION

For Gaussian diffusion, we modify the corrector step in the predictor-corrector algorithm by Song et al.
(2021b). More concretely, we apply the Unadjusted Langevin Algorithm (ULA) using the score of πt.
This is, in most cases, available and is simply the combination of the pretrained diffusion’s score pt.
One exception is the reward-tilting case. In this case, if the reward is cheap and differentiable, we can
simply take the gradient of it to calculate the score of πt. In our experiments on trajectory stitching,
we apply this local move. On the other hand, when the reward is non-differentiable or expensive to
take a gradient, we can omit the local move step, as discussed in the footnote in Section 3.1. For our
experiment on prompted reward-tilting, we omit this local move.

We also find that using the step size proposed by Song et al. (2021b) leads to instability in our
case. Therefore, we choose to use the step size aligned with the “step size” of the denoising process.
Precisely, the standard deviation of the Gaussian noise in the EM step (with discretisation size δt) for
Equation (6) at step t is σt

√
δt. In ULA at t, we hence set the step size to 1

2σ
2
t δt so that the standard

deviation of the Gaussian noise added in the ULA aligns with that in the denoising kernel.

A.5.2 CTMC

For CTMC, the concrete score approximates the density ratio (Lou et al., 2023)

sθt (x)y ≈
pt(x)

pt(y)
. (52)

Using this relation, we can define a rate matrix based on the concrete score that satisfies detailed
balance (DB). One choice is a Metropolis-Hastings-style rate matrix:

Q(x, y) = r(x, y)min(1, sθt (x)y)1x ̸=y − 1x=y

∑
y ̸=x

Q(x, y), (53)

where r(x, y) ≥ 0 is the proposal kernel. For example, we could use a uniform proposal:

r(x, y) =
1

|X| − 1
, (54)

Another option is to set the proposal kernel to the noising/masking process r(x, y) = Λt(x, y)
directly. However, for tasks such as CFG, we cannot use the predictor-corrector algorithm proposed
in Campbell et al. (2022), as we do not have access to the concrete score for the marginal of the CFG
dynamics. Therefore, we need to resort to these MH-style correctors. In our experiments, we also
found that CTMC also performs well without local moves.
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A.6 COMPUTATIONAL COMPARISON BETWEEN SMC AND CREPE

Here, we include a discussion on the computation cost comparison between SMC and CREPE. To
keep the discussion simple, we will use the Gaussian diffusion model as an example.

Assume in SMC, we resample every K steps, and in total we resample M times with a batch size of
N . In CREPE, we run PT at M diffusion times, and discrete K steps for communication, and in total
collect samples with N iterations. In both cases, the number of network evaluations will be aligned.

For SMC, it’s easy to see we need M ·K ·N NFEs in total. For the CREPE communication step. At
each iteration, we only swap half of the levels, but we need to propose and calculate the RND for
both directions, contributing to M ·K/2× 2 NFEs. The local move will not need new NFEs, as we
already evaluate the score for the newly accepted sample when we calculate the RND. Therefore, in
total, CREPE also need M ·K ·N NFEs.

A.7 LIMITATIONS

• CREPE typically requires a burn-in period to reach optimal performance. For large systems and
expensive networks, this can result in a high computational cost;

• CREPE relies on the assumption of a perfect diffusion model without discretisation error, which
often does not hold in practice. While we did not observe major failures in our experiments, this
assumption may break in other settings. Besides, these approximation errors can accumulate over
iterations, leading to deviations from the desired target.

B EXPERIMENTAL DETAILS

B.1 TEMPERING

Model and Training Details. For all three molecules, we use EGNN network following (Hoogeboom
et al., 2022). We use the VE (EDM) schedule following Karras et al. (2022), and adopt their
preconditioning (cin, cout, cskip) as well. For Dipeptide and Tetrapeptide, the network has 5 layers,
each with 256 hidden units. For Hexapeptide, we increase the network size to 5 layers and 512 hidden
units. Networks are trained with Adam with a learning rate 1e-4 until convergence. We also apply
an EMA with a rate of 0.999.

Data. The samples were gathered following He et al. (2025b) from a 5-microsecond simulation
with Generalised Born implicit solvent implemented in openmmtools (Chodera et al., 2025) with
AMBER ff96 classical force field. The Langevin middle integrator is implemented in Eastman et al.
(2023) with a friction of 1/picosecond and a step size of 2 femtoseconds.

Metrics. We evaluate energy and interatomic distance TVD following Akhound-Sadegh et al. (2024).
We use the implementation of W2 distance by Akhound-Sadegh et al. (2024) as well to evaluate the
sample W2. However, our system is invariant to rotation and translation. Therefore, we align all
samples to a reference sample by the Kabsch algorithm (Kabsch, 1976) before evaluating W2 distance.
We use PyEMMA (Scherer et al., 2015) to project samples into 2D using TICA with lag=8. The
TICA is fitted on the ground truth trajectory. We first transfer the sample from Cartesian coordinates
to backbone torsion angles before applying TICA. We then employ the MMD to the 2D TICA plot,
using the implementation by Chen et al. (2024), with a fixed bandwidth chosen to be the mid-distance
between ground truth samples data and maintained throughout the evaluation of different methods.

Since some of the metrics are expensive to evaluate on large datasets, we randomly select 5,000
samples from both the ground truth and our generated samples by SMC or CREPE when evaluating
all these metrics. We repeat this procedure three times and report the mean along with error bars.

CREPE Hyperparameters Our SDE follows EDM (Karras et al., 2022) with forward SDE defined as
dXt =

√
2tdWt. We choose t ∈ [tmin = 0.001, tmax = 10], and discretised into 201 steps following

Karras et al. (2022) by [t
1/ρ
max +

step idx
200 (t

1/ρ
min − t

1/ρ
max)]ρ, with ρ = 7. We then select one PT level every 4

diffusion steps, resulting in M = 51 levels, with each level containing K = 4 steps. We run CREPE
for 50,000 iterations, collecting all samples after iteration 1000.
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We run CREPE with both communication and local move. We also use the reference process when
calculating R as described in Appendix A.3.1.

SMC (FKC and RNE) Hyperparameters We adopt the same schedule and discretisation as CREPE.
We resample every 4 diffusion denoising steps to align with the setup of CREPE. Both FKC and
RNE are run in batches, a common strategy to mitigate the diversity loss in SMC (He et al., 2025c;
Lee et al., 2025). Specifically, for each target, we run 50 batches of size 1,000, so that the overall
computational budget for SMC and CREPE is aligned.

B.2 IMAGE CFG DEBIASING

Model Details We use the EDM2-S model on ImageNet-64 and the EDM2-XS model on ImageNet-
512 (Karras et al., 2024). The ImageNet-64 model is in pixel-space, while the ImageNet-512 model
is a latent diffusion model.

CREPE Hyperparameters We aim to debias CFG with w = 1.7. Our SDE follows EDM (Karras
et al., 2022) with forward SDE defined as dXt =

√
2tdWt. We choose t ∈ [tmin = 0.002, tmax = 80],

and discretised into 128 steps by [t
1/ρ
max +

step idx
127 (t

1/ρ
min − t

1/ρ
max)]ρ, with ρ = 7. However, we only apply

PT within the first 100 steps, after which we proceed using standard Euler–Maruyama updates with
CFG dynamics. We select one PT level every diffusion step, resulting in M = 100 levels, with each
level containing K = 1 step. We omit local exploration steps.

SMC (FKC) Hyperparameters We use the same SDE, together with systematic resampling, adopting
the same 128-step EDM schedule with FKC applied until timestep 100. After this, we proceed using
standard Euler–Maruyama updates, same as CREPE.

Evaluation details for Figure 4 In Figure 4, we report IR, CLIP and FID for different numbers of
particles N used in CREPE and FKC. For each setup, we run B independent runs with randomly
selected B classes. The selection is fixed between CREPE and FKC. We then gather NB samples to
evaluate the metrics. To ensure the number of samples is roughly the same, for each different choice
of N , we set B = ceil(5000/N).

B.3 IMAGE REWARD-TILTING

We first debias CFG with w = 1.3, together with reward-tilting. The reward is defined with
ImageReward with the prompt we provide.

Model Details We use the same model as CFG debiasing: the EDM2-S model on ImageNet-64 and
the EDM2-XS model on ImageNet-512 (Karras et al., 2024).

Reward Details The final reward r is given by ImageReward (Xu et al., 2023) with the prompt
we provide. We also multiply the reward value by 100 as the original magnitude is small. The
intermediate reward is defined by rt(xt) = βtE[x0|xt] where the expectation is calculated by
Tweedie’s formula using the pretrained score network. The βt is selected to be a smooth interpolant
between β1 = 0 and β0 = 1. We use βtm = [β

1/ρ
1 + m

M (β
1/ρ
0 − β

1/ρ
1 )]ρ, with ρ = 5 for the PT level

corresponding to tm. The correspondence between m and tm is described in the following paragraph.

CREPE Hyperparameters Our SDE follows EDM (Karras et al., 2022) with forward SDE defined
as dXt =

√
2tdWt. We choose t ∈ [tmin = 0.002, tmax = 80], and discretised into 64 steps by

[t
1/ρ
max +

step idx
63 (t

1/ρ
min − t

1/ρ
max)]ρ, with ρ = 7. However, we only apply PT within the first 32 steps, after

which we proceed using standard Euler–Maruyama updates with CFG dynamics. We select one PT
level every diffusion step, resulting in M = 32 levels, with each level containing K = 1 step. We
omit local exploration steps as the ImageReward is expensive and not implemented in a differentiable
way.

Prompt Details The prompts and corresponding class indices are as follows:

“a blue balloon”, idx 417

“a colorful pinwheel”, idx 723

“a green Christmas stocking”, idx 496
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“a yellow cab with dark background”, idx 468

“an empty shopping cart”, idx 791

B.4 MAZE

Model and Training Details We use an MLP with 5 layers and 512 hidden units to parameterise
the diffusion model. We use the VE (EDM) schedule following Karras et al. (2022), and adopt their
preconditioning (cin, cout, cskip) as well. Networks are trained with Adam with a learning rate 1e-4
until convergence. We also apply an EMA with a rate of 0.999.

Data We use the pointmaze-giant-stitch-v0 dataset from Park et al. (2024), which consists
of short trajectories of length 64 in a large 2D maze. We visualise some training trajectories in Figure 5
(Left). We follow Luo et al. (2025) to first normalise the data to [-1, 1] for training. When evaluating
and visualising, we unnormalise the trajectory back to its original scale.

Metrics We evaluate the success rate from the initial point to the target point. (Luo et al., 2025)
considers a trajectory successfully navigating through the maze when the distance between the first
point in the trajectory and the initial point is smaller than 0.45 (unnormalised scale). However, in
our case, we impose a harsher criterion: we additionally require the distance between the tail of the
last short trajectory and the head of the next short trajectory to be smaller than 0.45. We impose this
criterion as our stitching is performed via a reward function instead of directly training the diffusion
model conditional on both ends. Additionally, we also require that any points along the entire stitched
trajectory have no overlap with the walls.

Choice of Reward Function We first define the reward r for the data in the clean space (t = 0), and
then provide the formula for the reward rt when t > 0. Recall we want to define a reward function
so that: (1) the starting point of the first trajectory is sufficiently close to the initial state, (2) the
endpoint of the last trajectory is sufficiently close to the target state, and (3) consecutive trajectories
are connected in a tail-to-head manner. We can impose the L2 distance for each of the constraints.
But it is known that L2 distance is making an implicit Gaussian noise assumption, which is typically
not “sharp” enough. Instead, we can also impose the L1 distance. However, the L1 distance can
be too weak when two points are far apart, as it implicitly assumes a Laplacian noise, which may
lead to heavy-tailed behaviour. Therefore, to make use of both advantages of L1 and L2, we take
the summation of both. We use Xj,i to represent the i-th point in the j-th short trajectory. Also, we
use −1 to represent the last element, following the index convention of Python. We use O and P to
represent the initial and target points.

Reward for initial point: rO = −λO(λL2 ||X0,0 −O||22 + λL1 ||X0,0 −O||11) (55)

Reward for target point: rP = −λP (λL2 ||X−1,−1 − P ||22 + λL1 ||X−1,−1 − P ||11) (56)
Reward for neighboring trajectories: (57)

rN = −
∑
j

λN (λL2 ||Xj,−1 −Xj+1,0||22 + λL1 ||Xj,−1 −Xj+1,0||11) (58)

where we set λO = λP = 100× J , λN = 100, λL2 = 1 and λL2 = 10. and the final reward is:

r = rO + rP + rN (59)

For the case where we introduce an intermediate point I , we additionally impose

rI = −
∑
i

∑
j

λIαij(λL2 ||Xj,i − I||22 + λL1 ||Xj,i − I||11) (60)

where we set λI = 100× J and αij is an “attention” defined by

αij =
exp(−τλL2 ||Xj,i − I||22 − τλL1 ||Xj,i − I||11)∑

i

∑
j exp(−τλL2 ||Xj,i − I||22 − τλL1 ||Xj,i − I||11)

(61)

and the temperature τ = 10. The final results of CREPE will not be strongly influenced by the
hyperparameter choices of the reward. However, there are two main principles to tune these values:
(1) the reward strength should not be too small, as the trajectory will not be well-connected; (2) the
reward strength should not be too large, otherwise the PT swap rate will be 0 at some PT levels.
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Therefore, when tuning these hyperparameters, one may not need to run the algorithm for a long
time. If the short trajectories do not form a tail-to-head manner quickly, then the strength needs to be
increased. On the other hand, if the communication rate is always 0 at some PT levels, the strength
needs to be reduced.

We then consider how to choose the intermediate reward rt at diffusion time step t. We define it
following the same principle as Chung et al. (2023):

rt(X
0
t , X

1
t , · · · , XJ

t ) = βt · rt(E[X0|X0
t ],E[X0|X1

t ], · · · ,E[X0|XJ
t ]) (62)

where we use Xj
t to represent the j-th short trajectory and E[X0|Xj

t ] are calculated by Tweedie’s
formula using the learned score network. The βt is selected to be a smooth interpolant between
β1 = 0 and β0 = 1. We use βtm = [β

1/ρ
1 + m

M (β
1/ρ
0 − β

1/ρ
1 )]ρ, with ρ = 10 for the PT level

corresponding to tm. In the next paragraph, we describe the correspondence between m and tm.

CREPE Hyperparameters Our SDE follows EDM (Karras et al., 2022) with forward SDE defined as
dXt =

√
2tdWt. We choose t ∈ [tmin = 0.001, tmax = 20], and discretised into 601 steps following

Karras et al. (2022) by [t
1/ρ
max +

step idx
600 (t

1/ρ
min − t

1/ρ
max)]ρ, with ρ = 7. We then select one PT level every

diffusion step, resulting in M = 601 levels, with each level containing K = 1 steps. We run CREPE
with both communication and local move.

B.5 CTMC

Model Details We follow the experimental setup of Lee et al. (2025) for CTMC experiments on
MNIST. We use Campbell et al. (2022)’s UNet with num scales=3, num res blocks=3,
ch mult=[1, 2, 4], class embed dim=32, ch=64.

SMC Hyperparameters We aim to sample from the target with CFG strength w = 1.2. We follow
(Lee et al., 2025) to perform partial resampling, using a resampling fraction of 80% and an effective
size threshold of 0.2 (i.e., trigger resampling when ESS ≤ 0.2). We discretise the diffusion time
horizon with 200 steps, and perform SMC with a batch size of 128. When collecting data for
evaluating FID, we repeat 4 batches for each class.

CREPE Hyperparameters We use the same setup for w and discretisation steps as SMC. We treat
each diffusion step as one PT level, resulting in M = 200 levels, with each level containing K = 1
steps. We run 512 steps for each class to align the budget with SMC. We did not perform the local
move and found it works well.
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C ADDITIONAL RESULTS

C.1 SAMPLES OF DEBIASING CFG ON IMAGENET

Here we provide more examples for CFG Debiasing with FKC and CREPE in Figures 8 to 11. The
x-axis is the number of particles: in SMC (e.g., FKC), they are running in parallel, while in CREPE,
they are running sequentially. For a clear visualisation, we thin along this axis by a factor of 8. The
y-axis corresponds to the diffusion steps: in SMC, they are running sequentially along one direction;
while in CREPE, they are running in parallel and undergo mutual communication steps. For a clear
visualisation, we thin along this axis by a factor of 2. We can see that SMC tend to have low sample
diversity due to repeatedly resampling, while CREPE maintains higher sample diversity after burn-in.

(a) FKC (b) CREPE

Figure 8: CFG Debiasing with FKC and CREPE for class “slot” (idx 800).

(a) FKC (b) CREPE

Figure 9: CFG Debiasing with FKC and CREPE for class “tick” (idx 78).
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(a) FKC (b) CREPE

Figure 10: CFG Debiasing with FKC and CREPE for class “spiny lobster” (idx 123).

(a) FKC (b) CREPE

Figure 11: CFG Debiasing with FKC and CREPE for class “toilet tissue” (idx 999).

C.2 SAMPLES OF REWARD-TILTING ON IMAGENET

In Figure 1, we visualise chains of thinned samples for different prompts. Here, we present the results
for the entire PT iteration. As each task has 200 images of 512 × 512, we downsize them here. We
observe that CREPE produces diverse samples across iterations, aligning with the prompt after the
initial burn-in period. We also notice that neighbouring iterations often yield similar images, which
arises from the use of non-reversible PT: the last PT level is updated only in alternating (odd or even)
iterations.
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(a) class: balloon;
prompt: a blue balloon.

(b) class: pinwheel;
prompt: a colorful pinwheel.

(c) class: shopping cart;
prompt: an empty shopping cart.

(d) class: Christmas stocking;
prompt: a green Christmas stocking.

(e) class: cab;
prompt: a yellow cab with dark background.

(f) class: umbrella;
prompt: a closed umbrella.

Figure 12: Prompted reward-tilting on ImageNet-512. From left to right and top to bottom, each
image corresponds to one CREPE iteration. We visualise the entire image trajectory in the first 200
PT iterations. The last example 12f is a failure mode. Please refer to Appendix C.3 for a discussion
on the failure mode.

C.3 FAILURE MODE OF REWARD-TILTING ON IMAGENET

While we demonstrated that prompted reward-tilting can be used to control image content in finer
detail, it does not always succeed. One failure case arises when the class contains no samples that
satisfy the prompt. For example, in Figure 12f, the algorithm fails to generate a closed umbrella.

C.4 SUCCESS RATE OF TRAJECTORY STITCHING

Table 3: Success rates of CREPE across 5 tasks. The CompDiffuser results are taken from Luo et al.
(2025), while the CREPE results are averaged over 250 samples within each iteration range.

Method Success rate (%)

CompDiffuser (Luo et al., 2025) 68

CREPE
iteration 0–50k 8.5
iteration 50–100k 59.7
iteration 100–150k 84.6
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C.5 MORE RESULTS ON TRAJECTORY STITCHING WITH ONLINE REFINEMENT

In Figure 5, we select representative PT iterations to visualise the trajectory samples. To further
quantify the performance of online refinement, we evaluate the success rate of reaching the final
target and the pass rate through the intermediate point, shown in Figure 13. At iteration 100k, we
introduce an additional reward corresponding to the intermediate point. As can be seen, the pass rate
through the intermediate point quickly increases after the new reward is added, while the success rate
slightly drops but remains high. This demonstrates that CREPE is capable of flexibly incorporating
new constraints during sampling and adapting the trajectories online without retraining.
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Figure 13: Success rate and pass rate through intermediate point in the trajectory stitching task with
online refinement.
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C.6 DEBIASING CFG FOR CTMC ON MNIST

Figure 14: We visualise the PT trajectory along both the annealing path and PT iterations. For clarity,
we thin the annealing path by a factor of 4 and record only every 8th PT iteration.
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