Published in Transactions on Machine Learning Research (07/2025)

Predictive Control and Regret Analysis of
Non-Stationary MDP with Look-ahead Information

Ziyi Zhang ziyizhan@andrew. cmu. edu,
Department of Computer Science
Carnegie Mellon University

Yorie Nakahira yorie@cmu.edu
Department of Computer Science
Carnegie Mellon University

Guannan Qu gqu@andrew.cmu.edu
Department of Computer Science
Carnegie Mellon University

Reviewed on OpenReview: |https: //openreview. net/pdf? id=u0bs1YwXjQ

Abstract

Policy design in non-stationary Markov Decision Processes (MDPs) is inherently challenging
due to the complexities introduced by time-varying system transition and reward, which
make it difficult for learners to determine the optimal actions for maximizing cumulative
future rewards. Fortunately, in many practical applications, such as energy systems, look-
ahead predictions are available, including forecasts for renewable energy generation and
demand. In this paper, we leverage these look-ahead predictions and propose an algorithm
designed to achieve low regret in non-stationary MDPs by incorporating such predictions.
Our theoretical analysis demonstrates that, under certain assumptions, the regret decreases
exponentially as the look-ahead window expands. When the system prediction is subject
to error, the regret does not explode even if the prediction error grows sub-exponentially
as a function of the prediction horizon. We validate our approach through simulations and
confirm its efficacy in non-stationary environments.

1 Introduction

Policy design of non-stationary Markov Decision Processes (MDPs) has always been challenging due to
the time-varying system dynamics and rewards, so the learner usually suffers from uncertainties of future
rewards and transitions. Fortunately, exogenous predictions are available in many applications. For example,
in energy systems, look-ahead information is available in the form of renewable generation forecasts and
demand forecasts (Amin et al.l |2019)). It is intuitive to design an algorithm that controls the energy system
by utilizing that information to concentrate energy usage in the time frame with the lowest energy price
and lower the overall energy cost. To give another example, smart servers can make predictions of future
internet traffic from historical data (Katris & Daskalakil |2015). Given that the dispatcher tries to minimize
the average waiting time of all tasks, if there is only light traffic, the average waiting time will be most
reduced by only using the fastest server. If the dispatcher forecasts that there will be heavy traffic in the
future, all servers should work to reduce the length of the queue.

However, although policy adaptation in a time-varying environment has been extensively studied (Auer et al.|
2008; Richards et al., 2021; |Zhang et al., |2024; |Gajane et all [2018)), they do not typically take advantage
of exogenous predictions. One branch of work focuses on adaptation and relies on periodic reset of the
controller (Auer et al., |2008) or prior knowledge of the environment (Richards et al. [2021; |Zhang et al.
2024). However, prior knowledge of the environment is usually difficult to obtain, and periodically resetting

https://openreview.net/pdf?id=uObs1YwXjQ

Published in Transactions on Machine Learning Research (07/2025)

the controller generates a linear regret. Another branch of work focuses on predicting the future based on
past data. As past data can not accurately reflect the system in the future, they often need a previously
specified (small) variation budget (Merlis, 2024} Lee et al.||2024} |Gajane et al.| [2018} [Padakandla et al., [2020)
to achieve sublinear regret. Overall, existing works demonstrate significant challenges in achieving sublinear
regret under general non-stationary MDP on a single trajectory without assumptions on sublinear variation
budget.

Most of the above algorithms do not utilize exogenous predictions widely available in applications. With
the availability of predictions, it is natural to reason that if we could obtain accurate predictions of the
entire future, we would easily obtain the optimal policy (thus zero regret). Furthermore, even if accurate
predictions of the full future are not possible, it is reasonable to expect that these imperfect predictions can
help the decision maker. Given these intuitions, we ask the question: with potentially imperfect prediction
of transition kernel and reward function into the future, can we design an algorithm that leverages the
prediction to obtain a sublinear regret with reasonable length and accuracy of the prediction?

Contribution: We propose an algorithm, Model Predictive Dynamical Programming (MPDP), that utilizes
predictions of transitional probability and reward function to minimize the dynamic regret under the setting
of a single trajectory. We utilize the look-ahead information and the span semi-norm to show that, under
certain assumptions, the regret decays exponentially with the length of the prediction horizon when the
prediction is error-less. Specifically, we show that MPDP achieves a regret of O(T Lk/J ID), where T is the
time horizon, k is the prediction horizon, v < 1, and J, D are constants determined by the properties of
the MDP. Even when the system prediction is subject to error, we demonstrate that the regret does not
explode if the growth rate of error is subexponential as a function of the prediction horizon. To the best of
our knowledge, this paper is the first paper that explores the use of exogenous predictions in non-stationary
MDP without prior knowledge and proposes an algorithm with decaying regret as the prediction horizon
increases and the prediction error descreases.

The key technique underlying our result for sublinear regret is the contraction of the Bellman operator under
the span semi-norm. We show that the value function of MPDP converges to the optimal value function
exponentially in the span semi-norm under certain assumptions, which leads to the overall sublinear regret.
Our result serves as the first step towards future applications of model predictive control in non-stationary
RL with no prior information.

1.1 Related Works

Non-stationary reinforcement learning Many works have been done for reinforcement learning (RL)
in non-stationary environment, in which a learner tries to maximize accumulated reward during its lifetime.
For example, Merlis| (2024)); Lee et al.| (2024) both use past data to predict future system dynamics via
Temporal Difference (TD) learning. However, the standard TD methods are established on stationary MDP,
so its applications on non-stationary MDP require a limited variation budge on a single trajectory (Li et al.,
2019b; [Lee et al., 2024} [Wei & Luo, 2021; |Chandak et al., 2020; |Jali et all [2025) or among a sequence of
episodes (Feng et all 2023 Moon & Hashemil 2024 |Zhao et al.l 2022)). For example, |Jali et al.| (2025)

recently achieves a regret of O(\/SiAAéT%), where S is the size of state space, A is the size of action space,
Ar is the total variation budget, and 7' is the time horizon. Other works reset the controller at the end
of each episode (Gajane et al., |2018} |Auer et al., 2008) and assume the ground-truth MDP stays the same
within each episode. In this line of work, Merlis| (2024) also utilizes prediction in policy design and achieves
a regret of O(H?>S?AVK In(SATK)), where K is the number of total episodes. However, this work only
allows for changes in either the reward function or the transitional probability while the other stays the
same for all episodes, whereas in our setting, we allow for changes in both reward function and transitional
probability and achieve an exponentially decaying regret. Another line of work actively detects the switch
of MDPs by maintaining an estimate of system dynamics and resetting the controller when a switch is
detected (Alami et al., [2023; [Dahlin et al., [2023). More recently, a new branch of work uses exogenous
predictions, but requires pre-trained optimal policies for each potential MDP the learner encounters, and
designs the policy through a mixture of those optimal policies (Pourshamsaei & Nobakhti, 2024]). Compared
with those works, this paper focuses on a different setting of policy design on a single rollout, which does not

Published in Transactions on Machine Learning Research (07/2025)

allow reset of system at the end of each episode for traditional non-stationary episodic RL. Furthermore, we
utilize exogenous predictions for controlling a non-stationary MDP instead of generating those predictions
from past data and do not require any prior knowledge about those MDPs.

Model predictive control Traditionally, model predictive control is a branch of control theory that, at
each time step, calculates a predictive trajectory for the upcoming %k time steps and then implements the
first control action from this trajectory (Lin et al., [2021). Some of these works seek to achieve guarantees
such as static regret (Agarwal et al.l [2019; [Simchowitz & Foster, 2020), dynamic regret (Li et al.; |2019a;
Yu et all [2020), or competitive ratio (Shi et al,, [2020). From a theoretical perspective, extensive research
has been conducted on the asymptotic properties of MPC, including stability and convergence, under broad
assumptions about the system dynamics (Diehl et al.;|2011} |Angeli et al.||2012). Remarkably, |[Lin et al. (2021)
shows that regret in a linear-time-varying system decays exponentially with the length of the prediction
horizon. However, most of those works assume linear and deterministic system dynamics in continuous
space in order to obtain a theoretical regret guarantee. In this paper, we focus on an MDP setting with
finite state spaces and stochastic transition kernels, where the tools and algorithm design are very different.

2 Problem Formulation

We start by introducing the discrete non-stationary Markov Decision Process characterized by the tuple
(S, A, T, {PYE o, {r:}E,). Here S, A denote the discrete state space and action space, respectively. The set
of functions {P;(:|s,a)}(s,a)esx.4 is the collection of transition probability measures indexed by the state-
action pair (s,a) and time step ¢t. The set of function {r;(s,a)}s .)csx.a is the expected instantaneous
reward, where r;(s,a) is the deterministic reward function taking value in [0,1] incurred by taking action
a at state s and time step t. We denote T as the time horizon. Lastly, we use m(+]) to denote a decision
policy at time ¢ that maps s; to a; and use 7 to denote the collection of {m;}7_.

The learner does not have access to the transition probability {P;}; and reward functions {r;};. Instead,
we consider a setting in which the learner can predict the future and obtain estimates of future transitional
probabilities P and rewards 7 for k time steps. More specifically, at any time ¢, the learner has reward
and transitional probability estimation 7 4, If’Hm for any ¢ € {1,...,k}. The error of the predictions are
characterized in the below definition.
Assumption 1 (prediction error). The reward estimation #(s,a) and transitional probability estimation P
has the error bound
[Petee(s,a) — reve(s, a)] < e,

Hthrflt('|3,a) - Pt+e('|57‘l)HTV < o,

for all s,a,t, where ||| denotes the total variation norm.

The fact that the prediction error is a function of the prediction distance £ is intuitive, as system forecasts
are often more accurate in the near future than in the distant future.

The learner implements an algorithm ALG that at time ¢, observes s; and is given the prediction 7, 15t+g‘t
for any ¢ € {1,...,k}. It generates a policy at step ¢, denoted as 7, based on available information. Given
the algorithm ALG, its value function is defined by

T
VALS () = > EAYC [ri(si, i) s = 8] - (1)

i=t
such that s; 11 ~ P;(:|s;, a;) for all i, where a; is generated by ;.

We also define the offline optimal, which is the optimal value had the learner known all the future transitions
and rewards precisely. Formally, the optimal value function is defined by

T
Vi'(s) = IP{aX}E [ri(si,ai)|s: = s],

i=t

where in the expectation, a; ~ m;(s;).

Published in Transactions on Machine Learning Research (07/2025)

The learner’s objective is to design a policy 7 that utilizes the dynamics forecast to maximize the cumulative
reward and minimize the dynamic regret

R(ALG) := Vg (s0) — V5*"*%(s0), (2)

for some fixed initial state sg.

Ezxample 1. A server needs to allocate resources for tasks and minimize the average wait time for each job.
We consider the setting that there are n servers, each has a service rate p;, and a single queue with a time-
varying arrival rate A;. The system’s state space is the length of the queue and whether each server is idle
or busy, and its action space is the decision of sending a job in the queue to an available server or not doing
anything. The transitional probability is determined as follows. At each time, a job arrives at the queue
with probability A¢/(A; + >, pti). Then, a dispatcher decides whether to send a job in the queue to one of
the idle servers or wait till the next time step. Also, the busy servers will complete the job and become idle
with probability (3", 1:)/(A + Y, pts). For a detailed explanation of the setup, see Jali et al.| (2024)). In this
example, the job arrival rate A\; varies in time, and having a prediction of the future arrival rate can help the
dispatcher in making the job assignment decision. Existing methods for future Internet traffic forecasting
(Katris & Daskalakil [2015) can greatly help with the process and reduce the average wait time.

Example 2. Renewable energy generation is heavily influenced by environmental factors, and its prediction is
also subject to error with different prediction horizons. We consider a discrete-time model for electric vehicle
(EV) charging. A list of EV arrives at the charging station from time step 0 to 7. The i-th EV arrives at
the station at time a;, if the station is already full, it would leave the station without charging. If there is an
unused charging stand, it sets a departure time d; and an energy demand e;. Moreover, each charging stand
has a charging rate capacity p, and the station has an overall charging capacity C. The station needs to
charge all electric vehicles that arrive by setting a charging rate r; ; for each vehicle ¢ at each time step t. The
energy demand of each vehicle has to be satisfied, i.e. Z?;ai r;.+ = e;. Moreover, the charging rate has to be

below the threshold of each charging stand and the station, i.e. for every ¢, r;+ € [0, u, Z§:1 rit < C. For a
detailed explanation of the setup, see |Chen et al.| (2022)). Moreover, the energy price fluctuates with energy
supply and demand. Since the energy price fluctuates with time ¢, the station wants to minimize the total
cost of energy while still fulfilling the energy demand of all vehicles before their departures. In this setup, the
state space is the energy demand of each EV, the energy price, and the time frame in which those demands
have to be met. The action space is the decision of whether to supply the required amount of energy now or
to wait for a later time. As both EV parking demands and energy price can be forecasted (Provoost et al.)
2020; [McHugh et al., 2022} |Kapoor et al.| [2025), learners can utilize this information to adjust their policies.

3 Preliminary

Before we introduce the algorithm, we introduce a few concepts that play a key role in the decay of regret.

3.1 Span Semi-norm and Bellman Operator

First, we introduce the span semi-norm.

Definition 1. For any vector v € R¢, define the span seminorm of v, denoted as sp(v) by
sp(v) := maxv(i) — minv(4),
1 K3

where v(7) is the i’th entry of v.

The properties of span semi-norm is briefly described in Proposition [A7] in Appendix [A] More description
can be found in [Puterman| (1994). We use span semi-norm to quantify our approximation of the @ functions.
Since we use argmax on the @ function to determine which action the learner should take, shifting the
entire () function by a constant does not affect the policy. Since span semi-norm has this property (see
Proposition in Appendix |A]), we use span semi-norm to quantify the deviation of our estimated @
function from the ground-truth @ function.

Published in Transactions on Machine Learning Research (07/2025)

We also introduce the Bellman operator in the vector format:

Liv(s) = max {rt(s,a) + Z Pt(s’|s,a)v(s')} , (3)
s'eS
where v € RISl is the vector of value function for all states. Similarly, define
Liv(s) = Equn(s) ln(s,a) + Z Pt(s’s,a)v(s’)‘| . (4)
s'eS

Furthermore, we denote the time-varying nested Bellman operator as follows:

Lyy :=Lio---0Ly (5)
L :=L{to-- oLy, (6)
where fog := f(g(-)) is the nested operator. Similarly, we use P/ and P/ to denote the transitional

probability matrix when using policy 7 or taking action a at time ¢, respectively. We use PJ,, and szfa"
to denote the nested product of the transitional probabilities.

We now introduce the J-stage contraction.

Definition 2 (J-stage contraction). We say a sequence of operators {F}},eq1,... .7y : S — S is a J-stage span
contraction if exists v € (0, 1), such that

sp(Fyo---oFyju—Fyo---0Fpyv) < ysplu—v),

for all u,v € RISt € {1,...,T — J}.

Assumption 2. There exists J € ZT such that for the optimal policy 7* = {7} }7_, and any other policy
m = {m,}F_, at time step t € {0,...,T — J},

n(m,7") :slnslirelszmin {Pgrt 0--+0 Pg}‘](ﬂsl)vptﬂ: -0 Ptﬁ?}‘](ﬂsz)} =0
’ jES

The above assumption is similar to the uniform ergodicity assumption in |[Yu & Mannor| (2009)); [Li et al.
(2019b). To see this, we note that Assumption III.1 of [Yu & Mannor| (2009)) also requires ergodicity among
states in a non-stationary environment under any pairs of policies. This assumption implies that the effect of
any mistake decays exponentially with the number of passing time steps. In episodic non-stationary RL (e.g.,
Moon & Hashemi| (2024); |Zhao et al.| (2022))), this assumption is automatically satisfied as the environment
resets at the end of each episode, so the learner can recover any mistake in future episodes. Further, we
point out that if Assumption [2]is not satisfied, it would imply that there exist certain situations within the
MDP such that, for any k and 7', there exists an non-stationary MDP that violates Assumption [2] such that
any algorithm would have expected regret of O(T). We give a counter-example of such non-stationary MDP
in Counter-example [F-1]

In the next proposition, we introduce how Assumption [2] establishes contraction, which we later use to show
the decay of regret.

Proposition 3.1. For any non-stationary MDP satisfying Assumption [4, L, defined in equation [3 is a
J-stage contraction operator with contraction coefficient

v=1—minn(mw,7").
™

The proof of Proposition [3.1] is deferred to Appendix [A]

Published in Transactions on Machine Learning Research (07/2025)

3.2 Diameter

The diameter of MDP is commonly used in reinforcement learning (Gajane et al.| |2018; Wu et al., 2022]).
We extend the definition to non-stationary MDP.

Definition 3. Given a non-stationary MDP, time ¢, state s, policy 7, and family of sets {S?) C S}, define
di(s,m,{SD}) =inf{r : 7> 0,54, € ST |5, = s},

where {s;1,}2 is generated by policy , and let T({S"};|m, s) denote the minimal travel time from s to
the family of sets {S()}; starting at any ¢, i.e.

TSt s) = sup { Blds(s,m, {SV}:)]} ™)

Let Sf := argmax, V;*(s) denote the set of states with the maximal value function at time step i. Define
the diameter of a non-stationary MDP as

D = max min {T({S; }i|m, 5)} 8)

In this paper, the time horizon T is finite. Therefore, when ¢ > T', we have S} = S. As the agent will arrive
at {S}}; immediately after the T-th time step, we always have D < T + 1 for any finite horizon MDP.

Proposition 3.2. For a stationary MDP, The diameter as defined in Definition[3 is upper bounded by the
conventional diameter definition for stationary MDP as in|Wu et al| (2022).

The proof of Proposition [3.2|is straightforward, as the {s;,;}; is constant for all £,7 in time-invariant MDP.

The diameter of a non-stationary MDP upper bounds the span semi-norm of the optimal value function, as
we present in the following Proposition:

Proposition 3.3. For any non-stationary MDP with diameter D defined in Deﬁm’tion@ sp(Vi*) < D for
all t.

The proof of Proposition [3.3]is deferred to Appendix [B]

4 Main Results

4.1 Algorithm Design

On a high level, at each time step t, the proposed algorithm Model Predictive Dynamic Programming
(MPDP) works by conducting a dynamic programming style planning for the next k steps, and takes the
first action. More precisely, we define the Bellman operator L on system dynamics forecast as follows:

Lt_;’_g‘t'l}(s) = rgleaj({'Ft_;’_gt(s, &) + Z Pt+g‘t(8/|8, &)1}(8’)} 5 (9)
s'eS

where the learner optimize on the forecast of reward and transitional probability, instead of the ground-truth

as in equation [3] The learner picks action a such that

ay =argmax 7(s¢, a) + max E[fy 1 (541, ap41) + max E[- - - +max foyp(Si4k,a,4,)]]
acA At41 At42 Atk (10)

— I N W
arg I;leail(t|t © O LiykitWo,

where Wy denotes the zero constant vector. Intuitively, the learner undergoes a dynamic programming
process for the future k steps based on the reward and transitional probability forecasts, and takes the first
action of the dynamic programming. Then, the learner obtains a new forecast and repeats the process.

Published in Transactions on Machine Learning Research (07/2025)

Algorithm 1 Model predictive dynamical programming (MPDP)

. Select v(® € R™, specify € > 0, and set S = 0.
:fort=0,1,2,...,7T do

Forcast Pt, N 7Pt+k7 ft, ce 7ft+k

Select a; according to equation

se41 ~ Pi(t]se, ar).
end for

AN

The algorithm is simple and intuitive. In line 3 of Algorithm [T} we forecast the system dynamics of the
future k steps. In line 4, we pick the first action that maximizes the reward in the future k steps. The
algorithm design is inspired by model predictive control (Garcia et al., [1989), and we try to optimize the
performance of the learner within the prediction horizon and decide the action by a dynamic programming
style algorithm.

4.2 Regret Guarantee

In this section, we introduce our bound on regret as defined in equation

Theorem 4.1. For any non-stationary MDP satisfying Assumption[d, Algorithm[1] achieves a regret of

k)71 -1 7 7
R(MPDP) <T%*/7ID 4 2Teo + 260D +4T Y~ 4’ (Z ity 61-J+]-D>
j=1

i=0 =1

k%J k%J
+4Tr)/|.k/JJ (Z €\k/T|T+] + Z(SU@/JJJJFJ‘D) s

j=1 =1
where k%J ==k — |k/J] - J.

In the error-free setting (the prediction does not have error), Theoremsimpliﬁes to the following corollary.
Corollary 4.2. If the system dynamics forecast is exact for the future k steps, then

R(MPDP) < TH*/7/1 D,

We observe that, in the error-free case (Corollary , the regret depends linearly on the time horizon T'
and diameter D and decays exponentially with the prediction horizon k& when Assumption [2]is satisfied. In
particular, Algorithm [1| with a log-prediction horizon k& = O(log T') will obtain a regret sublinear in 7. This
means that predictions, even if a short horizon, are powerful in the sense that it leads to sublinear regret
without any assumptions on the variation budget.

In the setting of inaccurate prediction (Theorem , we observe that regret grows linearly with the predic-
tion error €y, dp. It is important to note that the sensitivity to €, §; decays exponentially in ¢, meaning that
the regret is more sensitive to the prediction error of the near horizon than the long horizon. Therefore, even
if the prediction error increases as £ increases, as long as the increase is subexponential, using predictions in
the far future with potentially large errors still has a positive impact on the overall performance.

Lastly, our results also indicate a tradeoff between the error induced by the inaccurate predictions and the
additional information it provides. For predictions further into the future, while it may contain valuable
information, the potentially large error can also lead to a worse regret. We note that the learner can solve
an optimization problem to determine the best k to maximize on the exponential decay property and avoid
the large error caused by forecasting too far into the future.

We briefly outline the steps of the proof of Theorem[I.1]in Section[5] The full proof is deferred to Appendix[E}

Published in Transactions on Machine Learning Research (07/2025)

5 Proof Outline

We split the proof outline into three separate steps. In the first step, we show that the estimated value
function converges to the ground truth value function in the span semi-norm with increasing prediction
horizon. In the second step, we bound the error of the estimated) function using the step-wise error bound
of the Bellman operator. With the error of @ function bounded, if the learner makes a mistake using the
estimated @ function, the maximal loss caused by that mistake can be bounded. Therefore, we can bound
the maximal regret in the last step.

Step 1: One step error bound. As Algorithm [I| takes a greedy approach to optimize the reward within
the prediction horizon of length k, we first need to approximate the optimal value function V;* within the k
steps.

Let pt_Mt denote the predicted transition probability for (¢ 4 ¢) -th step at time step ¢, and let #; denote the

predicted reward function. Let 1%“ denote the vector of the maximal expected reward at time ¢ for the next
k steps,

Aé() 0, t+4>Tortl>k,)
Yi(s) = N 5 11
: ma {mw(s,a) + ES,NPHMH’Q)%H(5/)} , t+L<T <k
Similarly, let @Z),’f denote the vector of the maximal expected reward with completely accurate forecasts.
- 0, t+¢>Torl>k,
s) = . 12
Vi (s) max {rHe(s,a) + ES’NPt+g(~|s,a)wf+1(5/)} , t+L<T,L<k. (12)

Since the forecast is different from the true system dynamics, we need to bound the difference between 1%
and wf step-wise. First, we make a simple observation.

Lemma 5.1. For a zero constant vector Wy, 99 = L; o --- o Ly Wy, where t' = min{T,t + k}. Similarly,
w? =Lio---oLyWp.

Proof: ~We proceed by induction. If £ = 0, the equality is trivial. The induction step directly follows from
equation [3] and equation

O
The above lemma implies that, when t +k > T', we have ¢9(s) = V;*(s) for all s. Furthermore, we point out

that Vi* = Lyo---o LyWy = Lyo... Ly V7. Correspondingly, we need to bound the error generated by
each layer of the Bellman operators.

Lemma 5.2. For any V,V € RIS such that sp(V) < D,sp(V) < D and sp(V — V) < b, we have

sp (LH@V - ith/) < b+ 26+ 28,D.

The proof of the above lemma is left to Appendix [C]
Step 2: Bounding the error of () function. We define the optimal @ function as follows

Q:(Sv a) =r(s,a) + E[th-l(st-i-lﬂst =s,a; = al, (13)

Since we use zZAJ and 1) to estimate the value function V7 of each time step, we can construct estimates of @}
as follows:

\i}t(sa a) = Tt(sv a) + ES/NIP,,(~|S,¢1) ["/;?4»1(8,)]7 (14)
Uy(s,a) = 7y(s,a) + By, (5.a) [0 (s)]- (15)

In order to bound the error between U, and @7, we need to pound two pairs of the difference: the difference
between ¥; and)7, and the difference between ¥, and W;. The details of those steps are deffered to

Published in Transactions on Machine Learning Research (07/2025)

Lemma and Lemma [D.4] in Appendix [D] respectively. With an error bound of our approximated Q
function, we can upper bound the loss of reward by each mistake made by the algorithm.

Corollary 5.3. Let a be the action picked by Algorithm [1] with prediction error as defined in Assumption []]
at the t-th time step at state s, and let a* be the optimal action at time t, then,

lk/J]~-1 J J
Qi(s,0") = Qi(s,) <A™/ sp (Viiin) + 20 + 200D +4) 1 o' (Z SR 6u+jD>
j=1

1=0
k%J £%J
+ 4y1+/V] (Z €lk/I]-d+j T Z 5Lk/JJ-J+jD> :

Jj=1 Jj=1

Jj=1

The proof of Corollary [5.3]is deferred to Appendix

Step 3: Bounding regret. Since the error of @) function is bounded at every step, we can upper bound
the regret R by bounding the telescoping sum of E[>", (Q; (s¢, af) — Q7 (¢, at))]. By bounding the error at
each step, we obtain Theorem

6 Simulation

6.1 Queueing system

In the first simulation, we simulate a queueing system based on the setup provided in Example[I] Specifically,
we consider a representative example of 3 servers whose service rates {j; }i—1,2,3 are 100, 10, 1, respectively,
with time horizon T'= 100 and varying load A; fluctuating from 10 to 100.

In the first part of this simulation, we compare regrets of different lengths of the prediction horizon k& and
the Fast Available Server (FAS) (Lin & Kumar} [1984), ratio-of-service-rate-thresholds (RSRT) algorithm
(Ozkan & Kharoufehl [2014), and Non-Stationary Natural Actor-Critic (NS-NAC) (Jali et al.l [2025). FAS
is a popular algorithm frequently used in practice, which sends any available job immediately to the fastest
available server. RSRT is a threshold policy where a job is routed to the fastest among the available servers
only if the queue length exceeds a predetermined threshold (Ozkan & Kharoufeh, 2014). It has been proven
to be the optimal policy in the two-server setting (Ozkan & Kharoufehl 2014)). Notably, typical time-varying
RL algorithm, such as NS-NAC, would not work in this example without a pretrained initial policy, as there
are infinitely many states in the queuing problem, and the policy would keep exploring new states with longer
queue lengths. For a proper comparison, we set the initial policy similar to RSRT with a small exploration
probability for every action. We then compute regret where the optimal policy has full knowledge of the
transitional probability. For each k € {1,...,15}, we run 20 trials and record the average regret for each
k value. The agent has access to the predicted arrival rate of jobs with some Gaussian additive prediction
error \; i= A +N(0,0) with o € {0,1,2}. The optimal policy we compute our regret from is the policy that
is computed knowing all future transitional probability and reward functions. The arrival of jobs fluctuates
periodically with a sin function with magnitude 110 to simulate periodical change in demand. The queue
length of FAS is consistently the longest throughout the time horizon, and RSRT has a queue length similar
to that of MPDP with £ = 8. MPDP with £ = 12 has the shortest queue length throughout most of the
time steps. As shown in the rest of Figure [T} the proposed algorithm outperforms both benchmarks with
k > 8 under noise-free setting and also outperforms both benchmarks with & > 10 with prediction error.
Specifically, we see a decay in log-scale of regret. However, as we have J-stage contraction, the regret does
not necessarily decrease monotonically with every increase in k.

In the second part of the simulation, we fix £ = 10 and examine the relationship between the magnitude of
the prediction error and regret more closely. Although the learner can still forecast the system dynamics in
the future, the predicted arrival rate of jobs 5\t =M + N(0,0¢). We first hold o4 to be constant of ¢, £ as
in the first part. Therefore, the variance of the prediction error does not increase with the distance of the
forecast into the future. As shown in Figure the regret initially remained minimal and increased linearly
after variance reaches 8, as shown in Theorem

Published in Transactions on Machine Learning Research (07/2025)

1 10° 4
10° 10° 4

= = =
V| mmm e e Q Q
<4 <4 [@
g g | BT e g
14 2 o1 10-1
MPDP 10 MPDP 10 MPDP
107! 20% and 80% confidence interval 20% and 80% confidence interval 20% and 80% confidence interval
30% and 70% confidence interval 30% and 70% confidence interval 30% and 70% confidence interval
40% and 60% confidence interval 40% and 60% confidence interval 40% and 60% confidence interval
FAS FAS FAS
~== RSRT ~== RSRT —== RSRT
NS-NAC NS-NAC NS-NAC
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
k k k
(a) o =0 (b)yo=1 (c)o=2

Figure 1: Figure Figure and Figure [Lc[show the regret of MPDP under different additive prediction
error N'(0,0). The red solid line shows the mean of the regret, and the shaded area shows the confidence
interval.

17.5 1.0
20% and 80% confidence interval 20% and 80% confidence interval
30% and 70% confidence interval 30% and 70% confidence interval
5.0 40% and 60% confidence interval 08 40% and 60% confidence interval
12.5
0.6
» 10.0 =
5 o 04
2 75 o
g7 g
0.2
5.0
25 0.0
0.0 1 -0.2
T
0 2 2 6 8 10 15 2.0 2.5 3.0 35 4.0 45
variance of prediction error o growth rate of prediction error g
(a) (b)

Figure 2: Figure [2a]shows the average regret remains almost constant with variance of prediction error below
5 and starts to grow afterward. Figure [2b]shows the regret slowly increases with the growth rate of variance
of the prediction error with respect to the prediction horizon.

Most practical forecast are usually more accurate for closer future than distant future. In applications like
wind power generation, it has been shown that the accuracy of forecasts decreases at a linear rate with
respect to the distant in the future (Qu et all 2013). Therefore, in the third simulation, we fix £ = 10 and
the initial variance of the prediction error to be 1 and examine the relationship between regret and growth
rate of variance with respect to the prediction horizon g. More specifically, for each forecast, we fix the
variance oo = 1, and oy = g * {. We are most interested in the case where g > 1, as the variance tends
to increase with respect to the distance to the future predicted by the forecast. As shown in Figure 2D the
regret does increase with growth rate g, but the increase is relatively slow. Even for the case g = 4, which
indicates the variance increases by 4 times for every time step, thus reaching 40 times of the initial error at
the end of the prediction horizon, the average regret merely increased 2 times. Indeed, by the expression in
Theorem the regret would never explode if the growth rate of variance is sub-exponential.

Lastly, we introduce a simplified version of the queueing problem in Example [I While keeping all other
factors identical, we fix A\; € {30,130} and switch A; every 50 steps. By fixing A to only two potential values,
we simplify the setting where a traditional RL algorithm with context detection might have an advantage.
To incorporate more changes in MDP, we also extend the time horizon to T' = 300.

The result of the simulation is shown in Figure 3] We introduce RL-CD proposed in|da Silva et al.| (2006) as
a new benchmark. For a proper comparison, we also set the initial policy to be similar to RSRT, with a small

10

Published in Transactions on Machine Learning Research (07/2025)

MPDP

20% and 80% confidence interval
30% and 70% confidence interval
40% and 60% confidence interval
FAS

MPDP

20% and 80% confidence interval
30% and 70% confidence interval
40% and 60% confidence interval
FAS

MPDP

20% and 80% confidence interval
30% and 70% confidence interval
40% and 60% confidence interval
FAS

-== RSRT -
=== NS-NAC -=-
RL-CD.

RSRT o=s
NS-NAC o=o
RLCD e FEEEEEEEEEEE e

RSRT
NS-NAC
RL-CD

regret
regret

(a) o=0 (c)o=2

Figure 3: Figure Figure and Figure [3c|show the regret of MPDP under different additive prediction
error M (0,0) in a setting with a finite number of changes in MDP’s. The red solid line shows the mean of
the regret, and the shaded area shows the confidence interval.

exploration probability for every action. Due to the scarcity of changes, both RL-CD and NS-NAC perform
worse than RSRT, which is provably optimal for queueing systems with constant A. However, the proposed
algorithm still outperforms RSRT with & > 9 in all three noise settings with o € {0,1,2}, demonstrating
the effectiveness of MPDP when model prediction is available.

6.2 EV charging

In this section, we consider a scenario of EV charging station under the setup of Example 2] with time horizon
T = 50. The charging station has three charging stands, and the energy price fluctuates between 2 and 18.

We first show the correlation between the change of energy price and energy usage. We compare the regret
of our algorithm with the benchmark policy smoothed least-laxity-first algorithm (sLLF) proposed in |Chen
et al| (2022)), which prorize charging the EV that is the closest to the departure time. However, given the
fluctuating energy price, the optimal policy should charge the EVs at the time steps with the lowest energy
price that can still satisfy the energy demand of the EVs before their departure times. As shown in Figure [4a],
compared with sLLF, our algorithm selects better time for charging each EV. In particular, when k increases,
most of the peak of energy demand falls within the shaded area with low energy price.

We then show the decay of regret with respect to the growth in the prediction horizon. Compared with
traditional scheduling algorithm proposed in |Chen et al.| (2022)), our algorithm can better handle the fluctu-
ation in energy price. As shown in Figure [4D] even with only a few steps of prediction, the station’s regret
decays exponentially.

7 Conclusion

This paper designs a noval algorithm for non-stationary MDP utilizing exogenous prediction. We showed,
under the assumption of uniform ergodicity, our algorithm achieves a regret of O(Ty¥//1 D). When k =
O(logT), we obtain a regret sublinear in 7. We also show that even when the prediction error grows
subexponentially, the regret does not explode. The future directions of this work includes the application
of this framework in partially observable MDPs and the extension of this framework when only part of the
transitional probability and reward functions are predictable.

References

Naman Agarwal, Elad Hazan, and Karan Singh. Logarithmic regret for online control. Advances in Neural
Information Processing System, 32, 2019.

Reda Alami, Mohammed Mahfoud, and Eric Moulines. Restarted bayesian online change-point detection for
non-stationary markov decision processes, 2023. URL https://arxiv.org/abs/2304.00232.

11

https://arxiv.org/abs/2304.00232

Published in Transactions on Machine Learning Research (07/2025)

100 A

oo o
(RO
© N0 w

10!

@
o
E
o

"1 \ =
LN

| b
i ‘\,,/ \\/ " \/\ | \\

0 10 20 30 40 50 3 2 5
time step t

(a) (b)

Figure 4: Figure [4ashows the power usage at different time steps. The shaded area indicates the time period
with energy prices below 8. We see that with k& > 7, the most energy usage happens within the area with low
energy prices, reducing the total energy cost of the station. Figure [{b] demonstrates that the regret of EV
charging decays with the prediction horizon. Compared with traditional scheduling policies, the proposed
algorithm can lower the total energy cost even with a few prediction steps.

energy usage
regret

o
~
®
©

Poojitha Amin, Ludmila Cherkasova, Rob Aitken, and Vikas Kache. Analysis and demand forecasting of
residential energy consumption at multiple time scales. In 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 494-499, 2019.

David Angeli, Rishi Amrit, and James B. Rawlings. On average performance and stability of economic model
predictive control. IEEE Transactions on Automatic Control, 57(7):1615-1626, 2012. doi: 10.1109/TAC.
2011.2179349.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learning. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.), Advances in Neural Information Processing
Systems, volume 21. Curran Associates, Inc., 2008.

Yash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar Mahadevan, and Philip S.
Thomas. Optimizing for the future in non-stationary mdps. In Proceedings of the 37th International
Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Niangjun Chen, Christian Kurniawan, Yorie Nakahira, Lijun Chen, and Steven H. Low. Smoothed least-
laxity-first algorithm for electric vehicle charging: Omnline decision and performance analysis with re-
source augmentation. IEEE Transactions on Smart Grid, 13(3):2209-2217, 2022. doi: 10.1109/TSG.2021.
3138615.

Bruno C. da Silva, Eduardo W. Basso, Ana L. C. Bazzan, and Paulo M. Engel. Dealing with non-stationary
environments using context detection. In Proceedings of the 23rd International Conference on Machine
Learning, ICML 06, pp. 217-224, New York, NY, USA, 2006. Association for Computing Machinery.
ISBN 1595933832. doi: 10.1145/1143844.1143872. URL https://doi.org/10.1145/1143844.1143872.

Nathan Dahlin, Subhonmesh Bose, and Venugopal V. Veeravalli. Controlling a markov decision process with
an abrupt change in the transition kernel. In 2028 American Control Conference (ACC), pp. 3401-3408,
2023. doi: 10.23919/ACC55779.2023.10156034.

Moritz Diehl, Rishi Amrit, and James B. Rawlings. A lyapunov function for economic optimizing model
predictive control. IEEE Transactions on Automatic Control, 56(3):703-707, 2011. doi: 10.1109/TAC.
2010.2101291.

Songtao Feng, Ming Yin, Ruiquan Huang, Yu-Xiang Wang, Jing Yang, and Yingbin Liang. Non-stationary
reinforcement learning under general function approximation, 2023. URL https://arxiv.org/abs/2306.
00861.

12

https://doi.org/10.1145/1143844.1143872
https://arxiv.org/abs/2306.00861
https://arxiv.org/abs/2306.00861

Published in Transactions on Machine Learning Research (07/2025)

Pratik Gajane, Ronald Ortner, and Peter Auer. A sliding-window algorithm for markov decision processes
with arbitrarily changing rewards and transitions. CoRR, abs/1805.10066, 2018.

Carlos E. Garcia, David M. Prett, and Manfred Morari. Model predictive control: Theory and practice—a
survey. Automatica, 25(3):335-348, 1989. ISSN 0005-1098. doi: https://doi.org/10.1016/0005-1098(89)
90002-2.

Neharika Jali, Guannan Qu, Weina Wang, and Gauri Joshi. Efficient reinforcement learning for routing jobs
in heterogeneous queueing systems, 2024. URL https://arxiv.org/abs/2402.01147.

Neharika Jali, Eshika Pathak, Pranay Sharma, Guannan Qu, and Gauri Joshi. Natural policy gradient for
average reward non-stationary RL, 2025. URL https://openreview.net/forum?id=GGZISiwgNt|

Gaurav Kapoor, Nuttanan Wichitaksorn, Mengheng Li, and Wenjun Zhang. Forecasting half-hourly electric-
ity prices using a mixed-frequency structural var framework. Econometrics, 13(1), 2025. ISSN 2225-1146.
doi: 10.3390/econometrics13010002.

Christos Katris and Sophia Daskalaki. Comparing forecasting approaches for internet traffic. Expert Systems
with Applications, 42(21):8172-8183, 2015. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2015.06.
029.

Hyunin Lee, Ming Jin, Javad Lavaei, and Somayeh Sojoudi. Pausing policy learning in non-stationary
reinforcement learning, 2024. URL https://arxiv.org/abs/2405.16053.

Yingying Li, Xin Chen, and Na Li. Online optimal control with linear dynamics and predictions: algorithms
and regret analysis. Proceedings of the 33rd International Conference on Neural Information Processing
Systems, 13, 2019a.

Yingying Li, Aoxiao Zhong, Guannan Qu, and Na Li. Markov decision processes with time-varying transition
probabilities and rewards. 2019b.

Woei Lin and P. Kumar. Optimal control of a queueing system with two heterogeneous servers. IEEE
Transactions on Automatic Control, 29(8):696-703, 1984. doi: 10.1109/TAC.1984.1103637.

Yiheng Lin, Yang Hu, Guanya Shi, Haoyuan Sun, Guannan Qu, and Adam Wierman. Perturbation-based
regret analysis of predictive control in linear time varying systems. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 5174-5185. Curran Associates, Inc., 2021.

Catherine McHugh, Sonya Coleman, and Dermot Kerr. Hourly electricity price forecasting with narmax.
Machine Learning with Applications, 9:100383, 2022. ISSN 2666-8270. doi: https://doi.org/10.1016/j.
mlwa.2022.100383.

Nadav Merlis. Reinforcement learning with lookahead information, 2024. URL https://arxiv.org/abs/
2406.02258.

Sang Bin Moon and Abolfazl Hashemi. Optimistic regret bounds for online learning in adversarial markov
decision processes. In The 40th Conference on Uncertainty in Artificial Intelligence, 2024. URL https:
//openreview.net/forum?id=tdz5SyQ2CX.

Sindhu Padakandla, Prabuchandran K. J., and Shalabh Bhatnagar. Reinforcement learning algorithm for
non-stationary environments. Applied Intelligence, 50(11):3590-3606, nov 2020. ISSN 0924-669X. doi:
10.1007/s10489-020-01758-5. URL https://doi.org/10.1007/s10489-020-01758-5!

Hossein Pourshamsaei and Amin Nobakhti. Predictive reinforcement learning in non-stationary environments

using weighted mixture policy. Applied Soft Computing, 153:111305, 2024. ISSN 1568-4946. doi: https:
//doi.org/10.1016/j.as0¢.2024.111305.

13

https://arxiv.org/abs/2402.01147
https://openreview.net/forum?id=GGZISiwgNt
https://arxiv.org/abs/2405.16053
https://arxiv.org/abs/2406.02258
https://arxiv.org/abs/2406.02258
https://openreview.net/forum?id=tdz5SyQ2CX
https://openreview.net/forum?id=tdz5SyQ2CX
https://doi.org/10.1007/s10489-020-01758-5

Published in Transactions on Machine Learning Research (07/2025)

Jesper C. Provoost, Andreas Kamilaris, Luc J.J. Wismans, Sander J. van der Drift, and Maurice van
Keulen. Predicting parking occupancy via machine learning in the web of things. Internet of Things,
12:100301, 2020. ISSN 2542-6605. doi: https://doi.org/10.1016/j.i0t.2020.100301. URL https://www.
sciencedirect.com/science/article/pii/S2542660520301335.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley
& Sons, Inc., USA, 1st edition, 1994. ISBN 0471619779.

Guannan Qu, Jie Mei, and Dawei He. Short-term wind power forecasting based on numerical weather
prediction adjustment. In 2013 11th IEEE International Conference on Industrial Informatics (INDIN),
pp. 453-457, 2013. doi: 10.1109/INDIN.2013.6622927.

Spencer M. Richards, Navid Azizan, Jean-Jacques E. Slotine, and Marco Pavone. Adaptive-control-oriented
meta-learning for nonlinear systems. Robotics: Science and Systems, 2021.

Guanya Shi, Yiheng Lin, Soon-Jo Chung, Yisong Yue, and Adam Wierman. Online optimization with mem-
ory and competitive control. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS 720, 2020.

Max Simchowitz and Dylan Foster. Naive exploration is optimal for online LQR. In Hal Daumé III and
Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 8937-8948. PMLR, 13-18 Jul 2020.

Chen-Yu Wei and Haipeng Luo. Non-stationary reinforcement learning without prior knowledge: An optimal
black-box approach, 2021. URL https://arxiv.org/abs/2102.05406

Yue Wu, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal regret for learning infinite-horizon
average-reward mdps with linear function approximation. In Gustau Camps-Valls, Francisco J. R. Ruiz,
and Isabel Valera (eds.), Proceedings of The 25th International Conference on Artificial Intelligence and
Statistics, volume 151 of Proceedings of Machine Learning Research, pp. 3883-3913. PMLR, 28-30 Mar
2022.

Chenkai Yu, Guanya Shi, Soon-Jo Chung, Yisong Yue, and Adam Wierman. The power of predictions in
online control. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS 20, 2020.

Jia Yuan Yu and Shie Mannor. Online learning in markov decision processes with arbitrarily changing
rewards and transitions. In 2009 International Conference on Game Theory for Networks, pp. 314-322,
2009. doi: 10.1109/GAMENETS.2009.5137416.

Ziyi Zhang, Guannan Qu, and Yorie Nakahira. Fast bandit-based policy adaptation in diverse environments,
03 2024.

Peng Zhao, Longfei Li, and Zhi-Hua Zhou. Dynamic regret of online markov decision processes. In Inter-
national Conference on Machine Learning, 2022. URL https://api.semanticscholar.org/CorpusID:
250360901.

Erhun Ozkan and Jeffrey P. Kharoufeh. Optimal control of a two-server queueing system with fail-
ures. Probability in the Engineering and Informational Sciences, 28(4):489-527, 2014. doi: 10.1017/
S0269964814000114.

A Contraction in span semi-norm

In this section, we briefly introduce some properties of span semi-norm, and how it helps to show the
contraction property in Theorem [£.1}

Proposition A.1. The span has the following properties:

14

https://www.sciencedirect.com/science/article/pii/S2542660520301335
https://www.sciencedirect.com/science/article/pii/S2542660520301335
https://arxiv.org/abs/2102.05406
https://api.semanticscholar.org/CorpusID:250360901
https://api.semanticscholar.org/CorpusID:250360901

Published in Transactions on Machine Learning Research (07/2025)

1. sp(v) > 0,Yv € R4,
2. sp(u+v) < sp(u) +sp(v) for all u,v € R%.

3. sp(kv) = |k|sp(v) for all k € R,v €€ RY.

5. sp(v) = sp(—v).

(
(
(
4. sp(v -+ ke) = sp(v) for all k € R, where e = [1,...,1]T.
(
6. sp(v) < 2][v]ly.

The proof of the above proposition easily follows from Definition [, More detailed properties of the span
semi-norm can be found in |[Puterman| (1994)). In the following proposition, we show the fundamental step of
J-stage contraction.

Proposition A.2. Let v € R™ and policies 7y, ..., T4, then
sp(Py 7 v) < vsp(v),

where P is the transitional probability at time t with action determined by w, P.;,"" = P[*--- PJ*, and

VZI*S%IEI}SZMH{H o Gls), PLTY ()}

D) ﬂ%’gz ‘Ptﬂtt:jw tﬂttJ:r}H (Jluw)| = rnax Z tﬂtt-s-ﬁjﬂ P;;_::;+J(j|u)]+

Furthermore, v € [0,1], and there exists v such that sp(P[," ;" v) = ysp(v).

Proof: For simplicity, we drop subscript ¢ : ¢+ J, superscript a; : a4y, and use P to represent an arbitrary
transitional probability matrix. We further define

Alw) = Islélg v(s), Tw) = max v(s).

Let b(i, k; §) := min{ P(j]¢), P(j|k)}. For any v,

> P(jliyo(d) = > Pjlk)v(j

JES jES
=D [P(jlé) = b(i, ks)]o(G) — Y _[PGilk) = b(i, ks o)
JjeES jES
< [P(li) = b(i, ks)Y (0) = > _[Pilk) = (i, ks §)]A(v)
JES jeS
=(1= > b(i,k;) sp(v).
JES
Therefore,
sp(PL 75 0) < max([1 = (i, k;)] sp(v),
' S
from which the proposition statement immediately follows. O

We are now ready to prove Proposition [3.1]

Proof: [Proof of Proposition Let v* denote the optimal value function at time ¢ +.J +1, and let v € RIS
denote the value function for an arbitrary policy at time t+J+1. s* = argmaxses{Lt:t+0*(8) — Le.e45v(s) },

15

Published in Transactions on Machine Learning Research (07/2025)

and s, = argminges{Ls.4j0*(s) — Legygv(s)}. Further, let mf ; denote the optimal policy according to
Liy;0---0Lyy ;(v*), and let ms4; denote the optimal policy to take according to Liy; 0 -+ o0 Ly y(v) then

L4450 (8%) = Ly gv(s™) < L:tt-t‘:]J “(5%) = Lyt v(s®) = PtﬂZﬁJ(” —v)(s"),

Lit4gv™(8x) = L gv(se) > Ly, ft-f:JJU*(S*) Ly v(s.) = PLET (v° = v)(s.).
Therefore,
Sp(Lt:t4g0* — Ly gv) < P, t’:}" (0" —v)(s*) = P (v = v)(ss)
< max PL (0" —0)(s) — min PR (0" —0)(s)
P”t:t+J .
<sp Pt;rij;rfj (v* —=v) . (16)
tit+J
Applying Proposition to equation [16] immediately leads to the theorem statement. |

B Diameter

In this section, we prove Proposition which shows that the span semi-norm of value function V; is upper
bounded by diameter D for all ¢.

Proof: [Proof of Proposition Let v* denote the optimal policy and &’ denote the policy defined in
Definition [3| trying to move fastest to {sf,,;}ic(p;. By Definition [3, under a trajectory generated by 7’
starting from time ¢ at s, define d = inf{r : 7 > 0, 5,4~ = 57, . }. d is a stopping time and by Definition
E[d] < D.

sp(Vi) =V (s7) = Vi (s.)

t+d—1 t+d—1
=E™ [Y rulsnran) + Vipa(seva)lse = "= E™ [D ra(sn, an) + Viia(sera)lse = 5]
h=t h=t
t+d—1 t+d—1
<E" | ri(snsan) + Viia(sera)lse = s"T=E7 [D ralsn, an) + Viia(sera)lss = 5]
h=t h=t
t+d—1 t+d 1
= (E“ [Th(sh, an)|s = s Z rr(Sh,an)|ss = s*]>
h=t =t

+@“mmmm=ﬂ—mmm>

<0

<Ed < D.

O

Intuitively, if V;*(s*) > V;*(s«), then a better policy will be to move to arg max, V%, ,(s) as fast as possible,
during which only D reward will be lost in expectation.

C Proof of Lemma

In this section, we prove Lemmal[5.2] which bounds the step-wise error incurred by using the forecast system
dynamics, instead of the ground-truth transition and reward functions.

16

Published in Transactions on Machine Learning Research (07/2025)

Proof: [Proof of Lemma Assume that sp (V — V) < b. Given a state s, let a denote the action chosen
in L;,,V(s), and 4 denote the action chosen in ﬁt+g|t‘7(). By the construction of Algorithm [1f we obtain

Peree(5,0) + By p sV () 2 Pree(5,0) + By gy e V()
> rive(5,@) = €0+ Bynpyy (1o V (8') — (ES’NPt+e<~|s,a>‘7(8') L RN AC)) (17)
> rere(s,a) — e+ Es’th+z(-|s,d)V(sl) — ES’NPt+e('|S@) (V(S/) — V(S/)> — 0¢D.

The first inequality is due to the relative optimality of a for 1% , and the second/third inequalities are by
Assumption [T] and Holder’s inequality. Similarly,

reve(s,a) + Eg o, (1s.a)V () = rige(s,0) + Egop,,(15.0)
> fpe(s,0) — €0+ Egop y(1s.a)V(8) = Egopyyo(s.a) <V(5l) - ‘7(5/)) (18)
> Peqe(s,a) — e + ESINEHH(‘@,&)V(SI) —Eonpyo(]s,a) (‘7(8/) - V(S/)) —0,D.
Combining equation [I7] and equation [I8 we obtain
ree(5,8) + B ooty V() = By ooy (V(5) = V() = e = 60D
<fiie(s,a) +E, _ ptw(,‘s’&)ms') (19)
<rere(s,d@) + By npy,(1s.a) V() = Evapy(lsa) (‘7(3/) - V(Sl)) +e+ 00D
Therefore,
LV (s) = LigdV(s) =Fopen(s, a) + Eg by, (ls, oV () = rere(s,8) = Bap (1sa)V (). (20)
Substituting equation @ into equation [I9] we obtain
“Eonp, (¢ 1s.a) (V(() —€0—0eD < Liy 0tV (8)—LiseV(s) € —Europy, 15,0y (V') = V(s")) +ee+6.D. (21)
s) —

Lit¢V(s)} and s, := arg mins{ﬁt_s_atf/(s) — Ly4 4V (s)}. Using Deﬁnition
and the assumption that sp (f/ — V) < b, we obtain

Let s* := argmaxg{LtH‘tV(

Sp(ﬁtJrZ\tV — Ly V) = [A/tJrZ\tV(S*) — LyyoV(s*) — (zt+€|tv(3*) - Lt+eV($*)>

< Pre(ls*,8) = Pryo(c|ss @)ooy sp(V = V) + ec + 6D + e + 6,0 (22)
< b+ 261{ + 2(5@D.

D Bounding the error of () function

In order to bound the error of) function for every ¢, we must first bound the error of each estimated value
function 9. We complete this in two steps. First, we bound the difference between ¥ and ¢Y in span
semi-norm. Then, we bound the difference between 1Y and V,*.

Proposition D.1.

[k/J]-1 J k%.J k%J
sp (U —0f) <2 Z Zmﬂ + 251J+J + 2N ey + D OgagaD |
Jj=1 j=1

for all t, where k%J ==k — |k/J|-J

17

Published in Transactions on Machine Learning Research (07/2025)

Proof: ~ We prove the case where t + k < T, the case where t + k > T follows the exact same line. By
Lemma 5.1

G =P =Lio--o0 Ly Wo — Lyg 0+ 0 LyyxeWo. (23)
We proceed step-wise on sp(iﬁf — 1%) for ¢ going backward from k to 0. For the base case where £ =k + 1,
we have sp (prrt Af“) =sp(Wp — Wp) = 0.

By Proposition we know sp(V;) < D. By the monotonicity of Bellman operator, sp(¢f) < D, sp(f) < D
for all ¢,¢. Therefore, we obtain

Sp (1;?-’1;?) :Sp(LtO-'~0Lt+kW0—j;tO-'~Oit+kWO)

J J
gsp(Lto...oLtH(z;g_q;g))+2Zei+225i[) (24)
i=1 i=1
i J J
§Vsp<w5—¢;})+2261+225iD (25)
i=1 i=1
[k/71=1 [J J E%.J E%J
<2 Z o Zez’J—i-j + Z5z’J+jD + 2yLA/ 7] Z €lk/J)-T4+5 T Z Okyal-a+iD |,
i=0 j=1 j=1 j=1 j=1
(26)

where equation [24] is obtained by Lemma [5.2] and equation [25] is obtained by Proposition [3:1] We repeat
the steps in equation 24 and equation [25] to obtain equation [26] O

We are now ready to bound the difference between 1,@? and V;* in span semi-norm.
Lemma D.2. Givent+k <T,

sp(vf — Vi) <47 sp(Vy).
Ift+k > T, the estimation of V;* is exact, i.e. 1%’“ =V

Proof: The latter equality is clear from the definition of the Bellman operator, so we just need to prove
the first inequality.

sp(df = Vi) =sp (Lio---oLipk o (Wo) = Lyo -0 Liyk o (Viypsr))
<A sp (Wo = Viigan)
= fyUf/JJ sp (V;:Llwl) 7

where we applied Proposition for |k/J] times. The last equality holds because Wy = 0. |
We are now ready to bound the difference between the optimal) function @)} and the estimated) function

U,. Similar to the beginning of this section, we divide the proof into two steps. First, we bound the difference
between the optimal @ function @)} and the estimated @ function with exact forecast W,.

Lemma D.3. For any states s andt+ k < T, the Q function of the MDP satisfies
sp(Q7 (s,-) = Wi(s,) < AW/ sp(Viiia).

Ift+k > T, the estimation of Q is exact, i.e. Wy (s,-) = Qi (s,-).

18

Published in Transactions on Machine Learning Research (07/2025)

Proof: The latter equality is a direct result of the construction of ¥, in equation so we only need to
prove the first inequality. By the Bellman operator,

sp(Q; (5,) = Wu(s,) =max ((re(s,a) + B[V (si1)[se = 5,00 = a])
— (re(s,a) + B[Pty (s041) |50 = 5,00 = a]))
— min ((re(s, a) + E[Vi (se41)|se = 5,0 = al)
— (re(s,a) + B[P, (sei)|se = = a]))
— max B[V (se1) — 094 (s >|st — 5,0, = a])
—minE[V,3, (s041) — Uy (se41)lse = s, a0 = al)
<maxE[Vyy (s) = 9711(s)]) — min B[V, (s) = 9, (s)])
=sp(Viy — 7;?“)
<y sp (Vikga)

where we used Lemma [D:2] for the last inequality. O

Then, we bound the difference between the ¥, and the estimated @ function ¥, with forecast under As-
sumption [T]
Lemma D.4. For any state s, action a and time t,

[k/J]—1 J J k%.J k%.J
[Ti(s,a)=Ti(s,a)| < co+doD+2 Y 7' (Z €itj + Z5iJ+jD> +2y] (Z €lh/atari+ Y 5Lk/JJ<J+jD> :
=1

=0 j=1 j=1 j=1
Proof:
(Wi (s, a) = Wi (s,)| <|rels,a) = Pyl a)| + [Eormpy o, (P41 ()] = By opy (o, [$001(5)]]
<eo +]Eswpt(-\s,a)[i;?H(S/) - 1&&1(5/)” + doD
[k/J]—1 J J k%.J Kk%.J
<ep + 00D + 2 Z ~* (Z €ig+j + Z 6i]+jD> + ZFyLk/‘” (Z €lk/T]-J+i T Z 5Uc/JJ-J+jD> ,
i=0 j=1 j=1 Jj=1 Jj=1
where we used Proposition [D.1] O

We are now ready for Proof of Corollary [5.3]

Proof: [Proof of Corollary Lemma shows that for any s, if the proposed algorithm picks action a
instead of the optimal action a*, we have

(Qf (s,a*) = Wy(s,a*)) — (Qf (s,a) — Wy(s,a)) < sp (Viiks1)
=(Qi (s,a") — Wy(s,a*) + Wy (s,a*) — Wy (s,a*))

—(Qi (s,0) — Wy(s,a) + Wy (s,a) — Wy(s,a)) < "7 sp (
=Q;(s,a) — Q1 (s,a) <" sp (Viip1) + (Wils,a%) — Wy(s,a))

<0

+ | Bi(s,a%) = Bi(s,0%)| + a5) — (s, a)|
[k/J]1-1 J

J
=Qi(s,a") = Qi (s,a) <y sp (V1) +2e0 +200D+4 > 4 | Y e+ Y 6isyD
i=0 j=1 j=1

E%J E%J

+ 4y LK/ 7] Z €lk/I]-J+i T Z Okya)-a+5D |,
j=1 j=1

19

Published in Transactions on Machine Learning Research (07/2025)

where we used Lemma twice in the last inequality. O
Theorem D.5. IfQ;(s,a;)—max, azar {Q5(s,a)} > y*/ T sp (Vt”jrk) for allt, s, then the proposed algorithm

is equivalent to the optimal policy.

E Proof of Theorem 4.1

We are now ready to prove Theorem [1]

Proof: [Proof of Theorem Let {(8;,a;)}:; denote the sequence of state-action pairs generated by Al-
gorithm [1| with accurate prediction , and {s;,a;} denote the sequence of state-action pairs generated by
Algorithm [1} Let {a}} := {argmax, Q;(si,a)}; denote the optimal action at each of those states.

Vo' (50) = Vo(s0) =(ro(s0, ag) —r0(s0, @0)) + (Esy~P(-[s0,a5) (V1 (51)] — By mP(-[50,a0) V1" (51)])

+ (Esy~P([50,a0) Vi (51) = Va(s1)]) (27)
= (Qo(s0,a5) — Qo(0,a0)) + Es,~p([50,a0) [V1 (51) — Vi(s1)] (28)
T—k—2 [k/J]—1 J
< Z 'yLk/‘” sp (V;},HQ) + 2T ey + 2160 D + AT Z At Z €J+j + Z 0ig4+5;D
=0 i=0 j=1
(29)
k%J k%J
ATy IS e D O lkyayea45D | - (30)
J=1 J=1

In equation[27)and equation 28] we expand out the value functions and rearrange the terms. Applying Corol-
lary [.3] leads to the resulting bound. O

F Lower bound of regret for non-stationary MDP not satisfying Assumption 2|

In order to show the necessity of Assumption [2] we provide the following counter-example that generates a
linear regret for any k.

Counter-example F.1. For any fixed k,T such that k& < T, we can generate the following non-stationary
MDP with three states {s'}i—123. The learner starts at s' and must make the decision of going to s?
or s2 at time step 0. Each of these actions has a reward of 0. s2,s3 are sinks, and the learner can not
move out after time step 1. Clearly, the above MDP does not satisfy Assumption [2] since for any J > 0,
Pl o P47 (s']s?) = 0 for all policies 7. At time step 0, a state s* € {s2,s3} is chosen at random, such
that the learner gets a reward of 1 if at s* for all time steps after k + 1, and a reward of 0 if otherwise. We
claim that any algorithm with prediction horizon k would generate a linear regret for the above MDP, as
there is a non-zero constant probability for any policy to not choose s* at time step 0.

20

	Introduction
	Related Works

	Problem Formulation
	Preliminary
	Span Semi-norm and Bellman Operator
	Diameter

	Main Results
	Algorithm Design
	Regret Guarantee

	Proof Outline
	Simulation
	Queueing system
	EV charging

	Conclusion
	Contraction in span semi-norm
	Diameter
	Proof of Lemma 5.2
	Bounding the error of Q function
	Proof of Theorem 4.1
	Lower bound of regret for non-stationary MDP not satisfying assumption:strongconnect

