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Abstract

Understanding the mathematical foundations underlying neural network training
dynamics is essential for mechanistic interpretability research. We develop a
continuous-time, matrix-valued stochastic differential equation (SDE) framework
that rigorously connects SGD optimization to the evolution of spectral structure in
weight matrices. We derive exact SDEs showing that singular values follow Dyson
Brownian motion with eigenvalue repulsion, and characterize stationary distribu-
tions as gamma-type densities with power-law tails that explain the empirically
observed ‘bulk+tail” spectral structure in trained networks. Through controlled
experiments on transformer and MLP architectures, we validate our theoretical pre-
dictions and demonstrate quantitative agreement between SDE-based forecasts and
observed spectral evolution, providing a mathematical framework for mechanistic
interpretability researchers to predict when interpretable structure emerges during
training and monitor the development of internal representations.

1 Introduction

Deep neural networks have fundamentally transformed machine learning, achieving unprecedented
performance across diverse domains [[13}132/|9]. Yet despite their empirical success, our theoretical
understanding of how neural networks learn remains remarkably incomplete [36}20]]. Central to this
understanding is the evolution of weight matrices, whose spectral properties—the distribution and dy-
namics of singular values—provide deep insights into optimization dynamics, generalization behavior,
and implicit regularization [24, [18]]. This gap is particularly relevant for mechanistic interpretability,
which seeks to understand neural networks through analysis of their internal representations [22]].
While most interpretability research focuses on analyzing trained networks, understanding the mathe-
matical foundations of how representations develop during training could provide valuable insights
into when and why interpretable structure emerges during the learning process.

At initialization, weight matrices exhibit well-characterized random matrix statistics described by
the Marchenko-Pastur law, which characterizes the eigenvalue distribution of large random matrices,
and related results from random matrix theory (RMT). However, training fundamentally alters these
spectral properties, producing empirically observed ‘bulk+tail’ structured distributions that correlate
strongly with generalization performance [23|[19]. Existing theoretical frameworks fail to explain
this transformation: while RMT describes initial conditions and stochastic differential equations
(SDEs) can model SGD, current analyses focus on scalar parameters or low-rank models, failing to
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capture the full matrix-valued dynamics [16]]. Most critically, no unified framework connects the
microscopic stochastic dynamics of SGD to the macroscopic spectral evolution observed empirically.

In this paper, we bridge this gap by developing a continuous-time, matrix-valued SDE framework
with carefully designed small-scale experiments that captures the full dynamics of singular value
evolution under SGD. Our key contributions are:

1. We derive exact SDEs for individual singular values under isotropic SGD noise, connecting
the microscopic parameter updates to macroscopic spectral dynamics. Under the assumption
of negligible gradients, we show that squared singular values follow a Dyson Brownian
motion with 8 = 1, explaining the eigenvalue repulsion and spectral spreading.

2. We characterize the stationary spectral distribution in the non-negligible gradient regime us-
ing mean-field theory. We prove that the limiting distribution follows a gamma-type density
with power-law tails, recovering the empirically observed ‘bulk+tail’ structure in trained
networks and providing the first theoretical explanation for this empirical phenomenon.

3. Through experiments on transformer [32], vision transformer [4], and MLP [28] archi-
tectures, we demonstrate quantitative agreement between our SDE-based predictions and
spectral evolution and propose an algorithm to forecast singular value dynamics from
minimal gradient information. The code for all of our experiments is available here:
https://anonymous.4open.science/r/featureevolution-0E1C/

We show that SGD’s stochastic noise acts like a “spectral sculptor"—initially spreading eigenval-
ues apart via repulsion, then concentrating them into beneficial empirically observed ‘bulk+tail’
structured patterns that enable generalization, connecting microscopic mini-batch randomness to
macroscopic spectral evolution. Our work demonstrates how small-scale experimentation can unlock
fundamental insights with implications for initialization strategies, optimization algorithm design,
and understanding why deep learning works.

2 Related Works

Spectral Analysis of Neural Network Weights. RMT establishes that at initialization, weight
matrices follow Wigner’s semicircle law [34] and the Marc¢enko—Pastur distribution [[17], with edge
statistics governed by Tracy-Widom distributions [30]. Training induces pronounced deviations:
singular-value spectra become highly anisotropic [29], evolving ‘bulk+tail’ structured distributions
linked to class structure [23] and implicit regularization [19]]. Martin and Mahoney [19] identified
5+1 phases of spectral evolution and showed that batch size affects spectral properties, with smaller
batches leading to stronger implicit self-regularization. Extensions to empirically observed ‘bulk+tail’
structured matrix ensembles [2] provide theoretical foundations past Gaussian universality classes.

SGD as Stochastic Dynamics. SGD can be approximated by stochastic differential equations
(SDEs), with constant-rate SGD behaving like an Ornstein—Uhlenbeck process [[15] and anisotropic
noise structures enabling escape from sharp minima [37]]. Weight updates have been mapped to
Dyson Brownian motion [[1], explaining eigenvalue repulsion as a Coulomb-gas phenomenon. The
mathematical foundation relies on It6 calculus for matrix functions [6] and Fokker-Planck equations
for interacting particle systems [26]]. The implicit regularization effects of gradient descent have been
explored [21].

Training Dynamics and Interpretability. Recent mechanistic interpretability research has revealed
that neural networks undergo distinct phases during training, such as grokking transitions [25] and
sudden attention head specialization [33]]. Understanding the mathematical foundations underlying
these phenomena could inform interpretability research by providing principled frameworks for
analyzing training dynamics.

3 Methodology

Our approach transitions from discrete microscopic SGD dynamics to continuous macroscopic
spectral evolution. We produce notation for the training of neural networks via a spatiotemporal
interpretation of the evolution of the weight matrices with stochasticity: dW (z,t) = —n%dt +
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V2nDw (z,t) dWw (x,t), where % is the gradient of the loss, 7 is the learning rate, D is
an effective diffusion constant described by dWyy, and dWV, are independent matrix/vector-valued
Wiener processes, capturing the stochastic dynamics of SGD. We split our analysis into two cases:
negligible gradient in loss and non-negligible gradient in loss. For the first limit (negligible gradient in
loss, or 2% W) ~ 0), we perform SVD/eigenvalue decomposition and use Ito Calculus (see|Appendi
to arrive at the result of

Theorem 3.1 (Stochastic Dynamics of Singular Values). Let W € R™*™ evolve via stochastic
gradient descent with noise. Then, the singular values o, (W) follow the SDE:

m-n+1 o
do(t) = | —nul (VwL)vy, +nD o > = _’“02 dt + \/2nDdB(t)
' j#k R

J
where uy, vy, are the singular vectors and D is the effective diffusion strength.

This theorem shows that under SGD noise, singular values behave like interacting particles that repel
each other (the > -k terms), explaining why the spectrum spreads out during training rather than
collapsing. This SDE can then be mapped to Dyson-Brownian Motion processes (see
whose statistics are described by the Mar¢enko—Pastur and Tracy-Widom distributions

respectively (Lemma 6.11).

After deriving these microscopic underpinnings, we may consider the second case (non-negligible
gradient in loss, or % # 0) and transition into a macroscopic limit by considering the empirical
spectral density distribution p(), ¢) such that: p(A,t) = L 377 | §(A—Ax(t)) Asr — oo, we assume
that p()\, t) converges to a deterministic density function, normalized such that [ p(X,¢)d\ = 1.

To study the dynamics of the squared singular values {;} then, we adopt a mean-field perspective by
assuming the effective influence of the complex loss function £(1V) is captured by a potential £ p
that depends only on this set. This postulates the form: L(W) ~ Ly r({A;}) = § Z;Zl (Aj =A%),

where these eigenvalues ); are “driven” to A* as in|Lemma 6.1(

Although deep neural network training objectives are generally nonconvex, it was shown in prior work
[5]] that every stationary point of the original nonconvex problem coincides with the global optimum
of a suitably defined subsampled convex program. As such, while the parameter-space landscape
may admit many critical points, their spectral signatures at stationarity are governed by a convex
variational principle. Consequently, modeling the large-r limit of the empirical spectral density p(\, t)
via a deterministic mean-field potential £ is fully justified as in[Corollary 6.15] Evaluating this
spectral density distribution, neglecting its highest order terms, and we derive [Theorem 3.2

Theorem 3.2 (Stationary Distribution of Singular Values). Under the stationary mean-field approxi-
mation, the probability density function of the singular values follows a Gamma-type distribution:

m—n+3

() "~
4anD m—n+1 _ ( B1 o2
PU(U) = 2WJ 2 e (477D)

where 31 is an effective noise constant representing the mean-field restoring force of the gradient, D
is the diffusion constant, and the weight matrix W is m x n.

This gamma-type distribution with power-law tails captures the “bulk+tail" structure observed
empirically—most singular values cluster in a bulk region, while a few large values form the heavy
tail that correlates with good generalization.

We present the proofs for both theorems in [Appendix 6.1} Note that we treat [Theorem 3.2] phe-

nomenologically by fitting to within bounds beyond the Tracy-Widom distribution predictions (see
Corollary 6.1)). Thus, we take a “mean-field" approach to deconstructing this system. See Lemma]
6.17| and |Lemma 6.18]for the estimation of the effective diffusion and noise constants governing the
stochastic dynamics.




4 Experiments

4.1 Experimental Setup

We validate our spectral-SDE framework on three canonical architectures, namely a GPT-2 model;
a Vision Transformer (ViT) [4]]; and a MLP—all trained with SGD. This selection is motivated by
extensive prior work showing ‘bulk-+tail” spectra arise across MLPs, CNNs, and transformers [19],
and that different architectures exhibit distinct spectral biases and mode-learning rates [33)]. We
initialize all weights from architecture-specific Gaussian priors, then train GPT-2 on Shakespeare text
[10]], and ViT/MLP on MNIST and CIFAR-100 [[12]]. More experimental details are in[Appendix|
8]

4.2 Singular Value Evolution Simulation and Analysis

Batch: 200
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Figure 1: Singular-value histograms at batches 0, 200, and 400, overlaid with the Mar¢enko—Pastur
(MP) bulk law (red dashed) and the Tracy—Widom (TW) edge curve (green).

In[Figure 1] at initialization the empirical spectrum adheres almost exactly to the MP prediction with
no outliers beyond the TW edge, verifying random initialization assumptions. Our analysis begins
by modeling the stochasticity of SGD with an isotropic noise term, resulting in a Langevin-type
SDE. We acknowledge that this is an idealization; the true noise covariance of SGD is known to be
anisotropic and parameter-dependent. However, this assumption provides a tractable starting point
that allows us to establish a clear, analytical connection to the classical frameworks of Random Matrix
Theory. This approach enables us to isolate and understand the fundamental repulsive dynamics that
serve as a baseline for spectral evolution. We explicitly address the extension to the more realistic
anisotropic case in our appendix (see Propesition 6.16), which we identify as a crucial direction for
future work. At batch 200, the MP/TW fits begin to underpredict mass near the spectrum’s edge. This
underprediction implies that growing correlations within the weight matrix diminish the effective
size of the random matrix, consequently amplifying the dominance of edge statistics and fluctuations.
Physically, this has the interpretation that we are still traversing either local minima or plateaus
within the loss function landscape (producing weakly correlated learned features). At batch 400, this
tail becomes increasingly pronounced: the bulk shifts rightward and a persistent shoulder of large
singular values forms outside the MP support, showing that our matrix is becoming increasingly
correlated. This is predicted to result from mostly gradient-derived information. Thus we understand
the singular values beyond the TW threshold as highly correlated learned features. We empirically
test our theory via[Algorithm 1} The algorithm uses gradient loss and singular value information to
use the dynamic equation previously described to predict singular values over time.
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Figure 2: Predicted singular values (dashed)
versus true. Figure 3: Predicted heavy tails via

corem 5.



In we track the top 8 singular values of a representative linear layer in a MLP over 800
training batches with CIFAR-10, plotting empirical trajectories against our bootstrap-drift predictions.
The leading modes rise faster and the gradual increases of lower modes are reproduced by the
prediction algorithm, with deviations starting around batch 300 as the spectrum begins to develop
empirically observed ‘bulk+tail’ structure. This close alignment across all 8 modes up to the heavy-
tail regime demonstrates that our continuous-time, matrix-valued SDE framework accurately forecasts
the full singular-value dynamics from minimal gradient information. However, we hypothesize the
anisotropic noise causes a bulk of the observed deviation for the singular values. This hypothesis
is as follows: the larger singular values might experience greater effects from anisotropic noise
due to preferential alignment of noise with their dominant singular vectors and potentially larger
Hessian components (see [Proposition 6.16). In[Figure 3| the fits predict the qualitative shape well,
but underpredict counts significantly, which we attribute to the aforementioned anisotropic noise
hypothesis.

4.3 Practical Applications

Our framework provides mechanistic interpretability researchers with quantitative tools for un-
derstanding representation development. By monitoring the transition from Marchenko-Pastur to
bulk+tail spectral structure, researchers can: (1) identify critical training phases when interpretable
features emerge - the deviation from random matrix statistics signals the onset of structured learning;
(2) predict which layers develop interpretable structure first by tracking layer-wise spectral evolution
rates; (3) design interventions that encourage interpretable representations by tuning 1 and D to
elucidate feature consolidation. The spectral repulsion mechanism we identify suggests that SGD
naturally separates features into distinct modes, potentially explaining why neural networks often
learn disentangled representations amenable to interpretation.

5 Conclusion

We develop a continuous-time, matrix-valued SDE framework connecting SGD’s microscopic dynam-
ics to macroscopic spectral evolution, revealing that squared singular values follow Dyson Brownian
motion and produce gamma-type distributions with power-law tails that explain the empirically
observed ‘bulk+tail’ structure in trained networks. Through controlled experiments, we demonstrate
quantitative agreement between our predictions and observed spectral evolution, with our forecasting
algorithm accurately predicting singular value trajectories until empirically observed ‘bulk+tail” struc-
ture emerges. While our current analysis assumes isotropic noise, future extensions to anisotropic
SGD fluctuations could bridge the gap to real optimization dynamics and enable new preconditioning
schemes. For mechanistic interpretability specifically, our framework offers a principled method to
predict when random initializations give way to structured, potentially interpretable representations,
providing researchers with quantitative markers for when to deploy interpretability tools during
training. By providing a complete theoretical characterization of how spectral structure emerges
during training, we offer a foundation for future work exploring the relationship between optimization
dynamics and the development of interpretable representations.
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A Appendix
A.1 Main Theorem Proofs

Proof. We regard the SGD update with isotropic noise as the Itd SDE on the weight matrix
dW = Adt + /2nDdW, A=—-—nVwL,

where dVV is a matrix-valued Wiener increment with independent entries. Writing the SVD W =
UXVT and denoting the kth singular value by oy, we apply Itd’s lemma to the scalar function
f(W) = o, (W). First, by standard matrix-perturbation theory,

_ T _m-n+1 Ok
Vwak—ukvk, Awak—T—l—Z 3 5 -

Hence the general It6 formula

df (W) = idw..JrlZLdW”dW
- AW 2 WO, 0P

4,7,0,4



together with

dWi; = Agjdt +/2nDdWij,  dWi; AWy = 20D 8, 85, dt,
yields

doy, = <Vwak, A> dt + 1D Awoydt + /20D (Vyoy, dW).
Substituting Vo, = ugv] gives

doy = [—77 ul (Vw L)vy, + nD(m;T”:l + Z Ugfj’a?ﬂdt + V20D dBk(t),
J#k

where df, = uf dWW vy, is a scalar Wiener increment.
Finally, set A\, = o} and apply It0 again:

d\ = 20 doy, + (doy)? = 20y doy, + 21D dt.
Substituting the above expression for do and simplifying yields

Ay, = {72\/ﬁnu£(vwﬁ)vk + 0D (m—n+3) + 24D > )\k)\_k)\}dt + 2/ N /20D dBi (1),
ik

J

which is the desired result. O

At initialization (t = 0), the singular value spectrum of a random weight matrix is indeed described
by the Marchenko-Pastur (MP) law. The contribution of our theorem is not to re-derive this initial
state, but rather to characterize the initial dynamics that drive the spectrum away from this random
configuration. The theorem formally describes the repulsive force (> 2k --) induced by SGD’s
stochastic updates, which is the fundamental mechanism that introduces structure into the spectrum.
We note that the dynamics of the squared singular values, A\; = o7, are more precisely termed a
Wishart process, a matrix-valued generalization related to Dyson Brownian motion.



Proof. Under the stationary mean-field approximation with vanishing gradient, each squared singular
value \; evolves according to the one-dimensional SDE

d\i = (g — B1A)dt + /89D Ay dWy,
where ag = nD(m — n + 3) and 51 > 0 is a constant. The corresponding stationary Fokker—Planck

equation for the density p(\) is (by setting 22 (’\ DR
Op(A,t 0 1 62
pgt ) _ ~ L@ = BN\ )] + 5 55 [8nDAp(A, 1))
d 1 d?
0 = ——[(a0 = BN p(WV)] + 5 735 [81D Ap(N)].

Integrating once under the zero-flux boundary condition gives

(a0 = BiA) p(A) = 4nD — [Ap(k)]

Rearranging and separating variables, we have

PN _ ( a )l B
p(\) 4anD A 4nD’
Integrating gives us
_ (@0 _ ﬂ
Inp(\) = (4nD 1)1 A= ph

so that

with C fixed by normalization below

<0
(£25)™"
I(5%)

Noting ooy = nD(m — n + 3) gives us the claimed form.

C:

Finally, since 0 = V/\, we find the push-forward density

m—n+3
4

By
po(0) = 20p(0?) = 2% ot eXp(_ o ‘72)’

(=)

as desired. O

In deriving the stationary distribution in Theorem 3.2, we adopt a mean-field approximation. This
approach decouples the interacting system of singular values, allowing us to analyze the dynamics
of a single value within an effective potential. We recognize that this is a significant simplification,
as the Coulomb-type repulsion term is fundamental to the transient dynamics. However, our goal
here is to model the effective stationary state that emerges after prolonged training. In this limit, it is
reasonable to approximate the complex, N-body interaction by an average restoring force, captured by
the £, term. While this model neglects higher-order correlations, it yields a tractable Fokker-Planck
equation whose solution successfully recovers the characteristic shape of the "bulk and tail" structure
observed empirically.



A.2 Backpropagation as a Discrete Spatial-Temporal System

In this section, we recast layer-wise backpropagation as a recursion in discrete space = (layer index)
and time ¢ (training iteration), laying the foundation for the continuous limit.

Theorem A.1 (Error Signal Recursion). In the discrete spatial-temporal interpretation, the error
signal §(x,t) satisfies

oL
0a(Xmax, t)
forx = Xpax —1,..., 1.

§(Xmax, t) = Of (2(Xmax, 1)), 6(z,t) = (W(z+1,8)" 6(z+1,1) 0 f (2(, 1)),

Proof. By definition §(z,t) = 0L/0z(x,t). At the boundary = Xpax,
oL Oa 0L ,

= 7@&(Xmax,t) . % = % ® f (Z)

For z < Xp,ax we apply the chain-rule and get

6(Xmax7 t)

oL
d(z,t) = 9o D) (W(z+1,6)7 0L/0z(z+1,1))Of (2(z,t) = (W(z+1,8)" §(z+1,1))0f (2(z, ).
O
Corollary A.2 (Gradient Formulas). The parameter gradients satisfy
oL oL

= §(x,t - 1,07 = §(x,1).

Wy Wt —LOT, G =)
Proof. We see that this immediately by 0z = a OW + 0b and the definition of 6. O

These theorems serve as the discrete foundation for Section[3] enabling the PDE and SDE derivations.

A.3 PDE Representation in Continuous Limit

In this section, by letting the layer and time increments vanish, we derive PDEs describing the
deterministic flow of parameters.
Theorem A.3 (Continuum PDE for Weight Evolution). As At, Ax — 0, the discrete update
W (z,t+ At) — W(x,t) = —nd(z,t) alx — 1,t)T converges formally to the PDE

AW (,t) = —n 6w, t) f(2(x = 1,0)) 7, (x,t) = (916) (2, 1) © f (2(a, 1)),

where 9] denotes the backward difference operator.

Proof. We first express

W(z,t + At) = W(z,t) _ “né(e,t)ale —1,0)7.

At
Sending At — 0 yields the time-derivative. Meanwhile replacing the backward recursion for § by
the adjoint of the forward difference gives the continuous spatial dependence. O

This PDE describes the mean-drift component of training and underlies our stochastic perturbations

A.4 SGD as a Matrix-Valued Ito SDE

In this section, we show that random mini-batch gradients introduce Brownian-like noise into the
weight dynamics.

Theorem A.4 (SGD as Itd SDE). Under mini-batch noise, with variance parameter D, the weight
update W (x,t + At) — W(z,t) = —nVw L(z,t) + /20D & converges to the It6 SDE

dW (z,t) = —nVwLdt + /20D dW(x,t),

where dVV is matrix-valued Brownian motion.
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Proof. By central-limit scaling of the mini-batch noise we see that \/% >.(VL;=VL) LN (0, D),
hence in the limit A¢ — 0 it becomes the Wiener increment v/2nD dWV. O

This result justifies the isotropic noise term in the SDE.

A.5 1to’s Lemma for Singular Values
In this section, we compute the drift and diffusion contributions to each singular value under the
matrix [td SDE.

Lemma A.5 (Gradient and Laplacian of o). Let W = UXVT be the SVD of W € R™ " with
Yk =0k > 0. Then

m-n+1 Ok
Vwo'k = ukv,{, Awak = T + Z P}
J#k

g2
0 — 0

Proof. The gradient is standard from matrix perturbation theory. The Laplacian follows by differenti-
ating twice and using orthonormality of singular vectors. O

Theorem A.6 (It6 SDE for 0,). Under dW = A dt + \/2€ AW, the kth singular value obeys
doy, = (Tr((uku,{ )T A) + EAWJk) dt +\/2€

where df3;, = ukT dW vy, is scalar Brownian motion.

Proof. We apply the general Itd formula

df(W) = Zfi] dWl] + % Z fij,kl dWidekl7
] i,5,k,l

with f(W) = o, (W), and use dW;;dWy; = 2€ ;1,9 dt, together with the lemma above. O

These theorems form the basis for the interacting SDEs of singular values.

A.6 Mapping to Dyson Brownian Motion

In this section, we show that in the zero-gradient regime, squared singular values follow a Dyson-type
interacting particle SDE.

Theorem A.7 (Dyson-SDE Identification). Let A\, = o3. Then in the gradient-flat regime VL = 0,

) dt + 2y/20D Ay dB,

J

A
d\,, = (nD(m—n—i-?)) —|—27)DZ " _k)\
i#k

which after time-rescaling becomes the 3 = 1 Dyson Brownian motion dY; = (M_TM +

YOI YY%Y) ds + 2V, AW

Proof. Compute d)\y, viaItd on f(o) = o2, use the previous SDE, drop the gradient term, and choose

s = t/(2nD) so that the prefactors match exactly the canonical form. O

This theorem helps to explain the eigenvalue repulsion and spectral spreading.
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A.7 Stationary Fokker—Planck and Gamma Law
We show that solving the steady-state Fokker—Planck PDE for one SDE yields a Gamma-family
density.

Proposition A.8 (Stationary Density is Gamma-type). For the one-particle SDE d\; = (ag —
B1At) dt + /80D Ny AWy, the stationary solution of the Fokker—Planck equation is

p(N) x ATib 1 exp<—4ﬁ1D )\), A > 0.

Proof. Setting the time-derivative to zero, we get
0= —0x[(c0 — B1A)p] + 203 [8nD Ap).

[
4anD

1)% — f ID, and exponentiate to obtain the Gamma-form. O
7

Integrating once under zero-flux boundary conditions and separating variables, we get % = (

Obtaining a Gamma form, we see that this justifies the heavy-tail exponents observed in our experi-
mental results.

A.8 Further Mathematical Analysis

In this section, we assemble classical random—matrix and integral-transform results that underpin our
spectral SDE framework. First, we recall the Marchenko—Pastur and Tracy—Widom edge laws, which
describe the untrained and boundary fluctuations of large random weight matrices. Then we turn
to Hilbert transforms and stationary mean-field equations, which provide the macroscopic density
needed in our Fokker—Planck analysis of singular-value dynamics.

A.8.1 Derivation of the Stochastic Term /3
Proposition A.9 (Solving for the Stochastic Term). Given the stochastic differential equation for the

temporal evolution of an eigenvalue Ay, the stochastic term 3 can be isolated.

Proof. We begin with the SDE describing the evolution of the eigenvalue \j, which includes terms
for the gradient of the loss, eigenvalue repulsion, and a stochastic component driven by 3:

8)\k

A
= fkaW+ZA : R (1)

8)\k

+ ik 8W Z A = VB3 )

Finally, we divide by the coefficient of /3, which is v/n A, to obtain the expression for the stochastic
term:
1 8)%
b= Je VA kaw Zxk—

3
This completes the derivation. O

A.8.2 Scaling Limits and Tracy-Widom Limit

At initialization, our weight matrices follow Wishart (or MP) statistics. Understanding the bulk and
edge of this spectrum is essential both to verify our isotropic SGD noise reproduces classical limits
and to identify regimes where empirically observed ‘bulk+tail” structured deviations occur.

Lemma A.10. Bulk and Edge of the Marchenko-Pastur Law We first let M = %X X7 be an
m x m Wishart matrix with X € R™*™ having i.i.d. entries of variance 1. As m,n — oo with

12



m/n — v € (0,1], the empirical spectral distribution of M converges to the Marchenko—Pastur

density
Ay — — A
pup(z) = VO 2:?}/5; >, €A, Ay,

where

A = (1£7)2
This proof is presented in [[17], where the Stieltjes transform of M is utilized. In all, this bulk law
justifies our use of MP fits at £ = 0, and sets the stage for tracking departures under SGD noise.

Lemma A.11 (Edge Scaling Constants). Under the same regime, we let A1 be the largest eigenvalue
of M. We define

12 (1+ S

,U“m,n = >\+7 O'm,n = ()\+) n2/3
Then the centered and scaled variable
/\(1) — Hm,n
Xmmnp = ———————
Om,n

has fluctuations on order one as m,n — oo.
Corollary A.12 (Tracy—Widom F; Limit). It was shown in [31]] and this was proven by expressing
the gap probability as a Fredholm determinant of the Airy kernel, thereby vyielding the limit.

lim P(Xm,n < s) = Fi(s),

m,n—00
where F} is the Tracy—Widom distribution for 5 = 1 (real symmetric ensembles).
Definition A.13 (Airy Kernel and Process). The Airy kernel is

Ky = Ai(x) Ai’(y; - z:i'(x) Ai(y) |

and the Airy process {A(t)} is the determinantal process with kernel

Kai(t1,&15 t2, &) = / e~ 2T A§(€) 4 u) Ai(&o + u) du.
0

Remark A.14. The largest eigenvalue fluctuations of Dyson’s Brownian motion (with 8 = 1) also
converge to the Airy process, giving a dynamical Tracy-Widom law for \(1)(t) under appropriate
time scaling.

A.8.3 Hilbert Transform and Stationary Density

To derive the macroscopic spectral density under our isotropic SDE, we solve a stationary
Fokker—Planck equation via Hilbert transforms. The lemma below gives a closed-form for power-law
inputs, enabling the Gamma-like stationary density.

Lemma A.15 (Hilbert Transform of Power Law Densities). If p(x) = Cz® on [0, R], then its
finite-interval Hilbert transform is

™ T —

R «
Hipl(N) = lPV (/0 C’x)\ da:) = C A\ cot(mar) + O(1),

forx € (0,R) and o ¢ Z.

Corollary A.16 (Stationary Density at Large r). Under the quadratic mean-field potential and
isotropic noise, the large-r stationary ps(\) solving

nD(m —n +3) — 2mnD %()\ Hipa) (V) = 0

behaves to leading order like
pst(>\) o )\%(m—n—ﬁ—3)—17
recovering the Gamma-type density in the effective single-particle Fokker—Planck.

This provides the explicit stationary spectrum that emerges from our isotropic SDE.
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A.8.4 Anisotropic Analysis

Thus far, our analysis has assumed that the random fluctuations in SGD are isotropic meaning every
direction in parameter space experiences the same noise strength. In practice, however, noise can be
highly direction-dependent—Ilayers, singular modes, or even individual parameters often see very
different variance due to batch structure, learning-rate schedules, or architecture specifics. Accounting
for this anisotropy is crucial if we hope to predict not only the locations of singular values, but also
the relative spreading and alignment of singular vectors over training. The following proposition
shows how the general Itd-lemma approach naturally incorporates a full covariance structure (W, t),
yielding additional second—derivative corrections to the drift and a directionally weighted diffusion
term. This richer SDE then serves as the foundation for a non-homogeneous Dyson-type PDE in the
mean-field limit, capable of capturing empirically observed anisotropic spectral evolution. We carry
out the derivations below, and we leave experimentation for anisotropic analysis for future work.

We have for anisotropic analysis,
dW = —nVwLdt + B(W,t)dB,,

where B(W, ) B(W,t)T = 21 %(W, t) and dB; is our standard matrix Wiener process.

Proposition A.17 (Anisotropic Noise - Changes to SDE for Singular Values). We let W (t) =
Ut)S(t) V(t)T be the SVD of W, and we denote oy (t) the k™ singular value. Then under the
dynamics above, we have

820k
%o},
Since Vo, = ukv,? and ——————— is known from matrix-perturbation theory, the drift becomes
OW;;0Wpg

ug(—nvwﬁ)vk + 7 Tr[E(W, t) Vﬁvak] ,
and the diffusion term is \/2n (ugvl, /S(W,t) dBy).

Proof. For ascalar f(W), we know by Ito’s Lemma that

of 1 ?f

i = = OW,; aWij + Wi OW,qg

AW;; AW,

©,J,P,q
Now, we proceed to substitute dW;;. We get that
dWij = —n (VWE)ij dt + Z Bijap dBag.
o,

Hence

or
8Wij

—n(VwL)i;] dt +
id.o B

ij Bijap dBag.

ij

=(Vw/f, —nVwL)
We see that only the noise part contributes second-order terms, hence we have
dWij dWpq = (Z Bijap dBaB) (Z Bpgys dlgvé) = Z Bij.ap Bpg,ap dt = 21 2ip7.jq<m t)dt.
o, v,6 a,B

Thus, we have

1 0% f 0 f

- AW,; AW, = S —

2 L QWi OW, 0P 2 OW,; W,

4,7,0,4 4,50,

Yipiq(W,t) dt.

=5 32(0%f) [20 Dlip.iq
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Now, we proceed to group all the dt terms, giving us the drift term below

1 0% f

(Vwf, -nVwL) + 3 W[Qﬁz(w’m

4 ip.jq’

1,7,P:9

and the remaining stochastic term is the martingale term given by

o Bijap dBap = (Vw f, B(W,t) dB;).

Finally, from matrix perturbation theory, we know that
9?0y,

_ 2
oW, o, — LYW

T
Vwor = ugv -
WOk kUl s ij.pq’

so the final SDE is

doy, = (upvl, —n Vw L) dt+% Z (Vivor].. [2nS(W,t)], . dt + (upv), B(W,t)dB,),

17,P4q wp,J4q

drift from loss 4,5,P:q

as proposed. O
Lemma A.18. (Estimating the Diffusion Constant for Stationary Distribution Fitting)

In order to connect our theoretical diffusion coefficient D to observable quantities during training, we
employ a simple dimensional-analysis argument. The diffusion term in our singular-value SDE has
units of (singular-value)* per unit time, so D must scale like the variance of singular-value changes
divided by the time step. Empirically, the broadening of the spectrum is characterized by the gap
between the largest mode and a representative central mode—here taken as oyax — Omed. Over ty
batch updates, this gap typically increases by an amount on the order of its own magnitude. Matching
units then gives

[ L2 s (Umaz - O'med)2
S tb

where 0,4, corresponds the maximum singular value, 0 ,0q corresponds to the median singular
value, and ty, is the time (which is represented as the batch update number in our spatiotemporal
interpretation).

Lemma A.19. (Estimating the Noise Constant [31 for Stationary Distribution Fitting)
Letting L(w) = % 21111 L;(W) be the loss function, and defining the batch gradient (true gradient)
as:

1N
VL(w) =+ ; VL (W)
and minibatch gradient for a randomly sampled minibatch Sy of size B as:
Vis,(w) = "13];1 VL;(w)
we model the SGD noise for a minibatch S as the difference:
B1(W, S¢) = VLs, (W) — VL(W)

Implying - )
1B (W, S)II" = IV Ls, (W) = VL(w)||

The minibatch gradient is an unbiased estimator: Eg, [V Lg, (w)] = VL(w). The variance of the
minibatch gradient, which is the formal measure of SGD noise, is given by the expected squared
norm of the noise term:

Var(VLs,(w)) = Es, [|VLs,(w) = VL(w)|*] = Es,[||6:(W, S¢)||*

Thus we use this empirically determined value of 31 for our fits for the stationary distributions.
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B Algorithm Details

Algorithm 1 Predicting Singular—Value Dynamics via Bootstrapped Drift

1: Input: WO eR™*" o T, k
2: Output: {c®M}T

3 (U, S, V]« svd(WO); Uy = Uy 0+ diag(E)w, Vi < Vi

4: fort=0,...,T —1do

55 G —nVyt®

6: M + UkTG Vi

7: fori=1,...,kdo

8: AO‘i — Mii

9: du;, dv; = Z(Jiyg“ n Uii”;jﬂ) CARIRAR),
J7#i

10: o; + max(o; + Aoy, 9)

11: U; + Uk[Z,i] + du;, V; + Vk[,l] + dv;

12: end for ~ ~ ~ _
13: Uk, Vi + orth([Ul, ey Uk]), Orth([Vl, ey Vk])
14: Align signs of Uy, Vj, columns with previous

15: end for

16: return {c(V)}

B.1 Computational Complexity Analysis

Algorithm|T] offers significant computational advantages over naive approaches that recompute the
full SVD at each time step. We analyze the complexity for an m x n weight matrix over T' time steps,
tracking the top k singular values.

Initial Setup. The initial SVD computation (Line 3) requires O(min(m?n, mn?)) operations,
which is performed only once.

Per-Timestep Complexity. For each of the 7" time steps, the algorithm performs:

 Gradient computation: O(G) operations, where G depends on the specific loss function
and network architecture.

* Projection: Computing M = U GV}, requires O(kmn) operations.

* Singular value updates: For each of the k singular values, the drift computation involves
O(k) operations and the singular vector updates require O(k max(m,n)) operations, yield-
ing O(k? max(m,n)) total.

* Orthogonalization: The Gram-Schmidt orthogonalization step costs O(k? max(m,n))
operations.

Total Complexity. The overall computational complexity is:
O(min(m*n,mn?) + T(G + kmn + k* max(m, n)))

Efficiency Gains. When & < min(m,n) (typically & < 10 for the leading modes), our algo-
rithm achieves substantial speedups compared to naive full SVD recomputation at each step, which
would require O(7T min(m?n, mn?)) operations. For large matrices where m,n > k, the per-
timestep cost reduces from O(min(m?n, mn?)) to O(kmn + k? max(m,n)), representing a factor

of ©(min(m,n)/k) improvement in the SVD-related computations.

C Additional Experimental Details

SGD. Our use of SGD follows the classic Ornstein—Uhlenbeck approximation for constant-rate
noise [[13]], while observed anisotropies in batch-size and learning-rate interactions [[8] directly inform
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our extension to non-isotropic noise. Choosing a quadratic mean-field potential for large-width
spectral dynamics is supported by recent convergence results in overparameterized models [3} [27]].

GPT2. We use the nanoGPT implementation [11]] which follows the transformer decoder-only
architecture with four transformer layers, four attention heads per layer, and 256-dimensional embed-
dings. The learning rate starts at 5 * 10~ with cosine decay to 5 x 10~°. We use a batch size of 12
sequences of 256 tokens each.

Vision Transformer (ViT). ViT is configured with two encoder layers, four attention heads, and a
256-dimensional embedding. Inputs (H x H) are segmented into patches (P x P), transformed by
standard Transformer blocks (FFN expansion ratio o = 2), and classified via a linear head initialized
asw ~ N(0,1/vHgim). We set (H, P) = (28,7) for MNIST and (32, 8) for CIFAR-100.

Multilayer Perceptron (MLP). Our MLP comprises three hidden layer of 1024 dimensions.
Weight matrices are initialized from A/(0, 1/fan;, ), with biases initialized to zero.

Other Considered Models. ResNet architecture [[7] is not used as it consists mostly of convolutional
layers with structured weight sharing patterns making some spectral properties less interpretable for
understanding loss landscapes.

D Additional Experimental Results

Layer: head.weight Layer: transformer.layers.0.linear1.weight Layer: transformer.layers.0.linear2.weight
755 B

Trend (slope=0.160) Trend (slope=0.570) 34 Trend (slope=0.698)
oges 8T

Spread (Max - Min Singular Value)

107 1072 10
Learning Rate Learning Rate Learning Rate

Layer: transformer.layers.1.linearl.weight Layer: transformer.layers. L linear2.weight

2350 347
Trend (slope=0.366) Trend (slope=0.812)

- Min Singular Value)

2.00

read (Max
Spread (Max - Min Singular Value)

Spre
5

Figure 4: Spread of singular values (max—median) versus learning rate for different vision transformer
weight matrices, with red dashed least-squares trends and slopes indicating sensitivity.

Across all layers, increasing the learning rate from 102 to 10~! amplifies the spectral spread,
indicating that higher noise levels drive greater anisotropy in the weight matrix. Moreover, the fitted
trend-line slopes reveal that the second feed-forward projection in each layer is most sensitive to
learning-rate scaling. In particular, in layer 1 (slope ~ 0.81)—whereas the output head’s weights
remain comparatively stable (slope ~ 0.16). These results show that isotropic SGD induces layer-
dependent spectral broadening, with deeper feed-forward blocks experiencing the strongest effect.
When a certain critical learning rate is hit, we see that the spread decreases, indicating more uniformity
in singular values, potentially implying that fewer features are being learnt by the model, thus meriting
further investigation to understand this phenomenon.

17



	Introduction
	Related Works
	Methodology
	Experiments
	Experimental Setup
	Singular Value Evolution Simulation and Analysis
	Practical Applications

	Conclusion
	Appendix
	Main Theorem Proofs
	Backpropagation as a Discrete Spatial-Temporal System
	PDE Representation in Continuous Limit
	SGD as a Matrix‐Valued Itô SDE
	Itô’s Lemma for Singular Values
	Mapping to Dyson Brownian Motion
	Stationary Fokker–Planck and Gamma Law
	Further Mathematical Analysis
	Derivation of the Stochastic Term 
	Scaling Limits and Tracy-Widom Limit
	Hilbert Transform and Stationary Density
	Anisotropic Analysis


	Algorithm Details
	Computational Complexity Analysis

	Additional Experimental Details
	Additional Experimental Results

