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Abstract

Understanding the mathematical foundations underlying neural network training1

dynamics is essential for mechanistic interpretability research. We develop a2

continuous-time, matrix-valued stochastic differential equation (SDE) framework3

that rigorously connects SGD optimization to the evolution of spectral structure in4

weight matrices. We derive exact SDEs showing that singular values follow Dyson5

Brownian motion with eigenvalue repulsion, and characterize stationary distribu-6

tions as gamma-type densities with power-law tails that explain the empirically7

observed ‘bulk+tail’ spectral structure in trained networks. Through controlled8

experiments on transformer and MLP architectures, we validate our theoretical pre-9

dictions and demonstrate quantitative agreement between SDE-based forecasts and10

observed spectral evolution, providing a mathematical framework for mechanistic11

interpretability researchers to predict when interpretable structure emerges during12

training and monitor the development of internal representations.13

1 Introduction14

Deep neural networks have fundamentally transformed machine learning, achieving unprecedented15

performance across diverse domains [13, 32, 9]. Yet despite their empirical success, our theoretical16

understanding of how neural networks learn remains remarkably incomplete [36, 20]. Central to this17

understanding is the evolution of weight matrices, whose spectral properties—the distribution and dy-18

namics of singular values—provide deep insights into optimization dynamics, generalization behavior,19

and implicit regularization [24, 18]. This gap is particularly relevant for mechanistic interpretability,20

which seeks to understand neural networks through analysis of their internal representations [22].21

While most interpretability research focuses on analyzing trained networks, understanding the mathe-22

matical foundations of how representations develop during training could provide valuable insights23

into when and why interpretable structure emerges during the learning process.24

At initialization, weight matrices exhibit well-characterized random matrix statistics described by25

the Marchenko-Pastur law, which characterizes the eigenvalue distribution of large random matrices,26

and related results from random matrix theory (RMT). However, training fundamentally alters these27

spectral properties, producing empirically observed ‘bulk+tail’ structured distributions that correlate28

strongly with generalization performance [23, 19]. Existing theoretical frameworks fail to explain29

this transformation: while RMT describes initial conditions and stochastic differential equations30

(SDEs) can model SGD, current analyses focus on scalar parameters or low-rank models, failing to31

capture the full matrix-valued dynamics [16]. Most critically, no unified framework connects the32

microscopic stochastic dynamics of SGD to the macroscopic spectral evolution observed empirically.33
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In this paper, we bridge this gap by developing a continuous-time, matrix-valued SDE framework34

with carefully designed small-scale experiments that captures the full dynamics of singular value35

evolution under SGD. Our key contributions are:36

1. We derive exact SDEs for individual singular values under isotropic SGD noise, connecting37

the microscopic parameter updates to macroscopic spectral dynamics. Under the assumption38

of negligible gradients, we show that squared singular values follow a Dyson Brownian39

motion with β = 1, explaining the eigenvalue repulsion and spectral spreading.40

2. We characterize the stationary spectral distribution in the non-negligible gradient regime us-41

ing mean-field theory. We prove that the limiting distribution follows a gamma-type density42

with power-law tails, recovering the empirically observed ‘bulk+tail’ structure in trained43

networks and providing the first theoretical explanation for this empirical phenomenon.44

3. Through experiments on transformer [32], vision transformer [4], and MLP [28] archi-45

tectures, we demonstrate quantitative agreement between our SDE-based predictions and46

spectral evolution and propose an algorithm to forecast singular value dynamics from47

minimal gradient information. The code for all of our experiments is available here:48

https://anonymous.4open.science/r/featureevolution-0E1C/49

We show that SGD’s stochastic noise acts like a “spectral sculptor"—initially spreading eigenval-50

ues apart via repulsion, then concentrating them into beneficial empirically observed ‘bulk+tail’51

structured patterns that enable generalization, connecting microscopic mini-batch randomness to52

macroscopic spectral evolution. Our work demonstrates how small-scale experimentation can unlock53

fundamental insights with implications for initialization strategies, optimization algorithm design,54

and understanding why deep learning works.55

2 Related Works56

Spectral Analysis of Neural Network Weights. RMT establishes that at initialization, weight57

matrices follow Wigner’s semicircle law [34] and the Marčenko–Pastur distribution [17], with edge58

statistics governed by Tracy-Widom distributions [30]. Training induces pronounced deviations:59

singular-value spectra become highly anisotropic [29], evolving ‘bulk+tail’ structured distributions60

linked to class structure [23] and implicit regularization [19]. Martin and Mahoney [19] identified61

5+1 phases of spectral evolution and showed that batch size affects spectral properties, with smaller62

batches leading to stronger implicit self-regularization. Extensions to empirically observed ‘bulk+tail’63

structured matrix ensembles [2] provide theoretical foundations past Gaussian universality classes.64

SGD as Stochastic Dynamics. SGD can be approximated by stochastic differential equations65

(SDEs), with constant-rate SGD behaving like an Ornstein–Uhlenbeck process [15] and anisotropic66

noise structures enabling escape from sharp minima [37]. Weight updates have been mapped to67

Dyson Brownian motion [1], explaining eigenvalue repulsion as a Coulomb-gas phenomenon. The68

mathematical foundation relies on Itô calculus for matrix functions [6] and Fokker-Planck equations69

for interacting particle systems [26]. The implicit regularization effects of gradient descent have been70

explored [21].71

Training Dynamics and Interpretability. Recent mechanistic interpretability research has revealed72

that neural networks undergo distinct phases during training, such as grokking transitions [25] and73

sudden attention head specialization [33]. Understanding the mathematical foundations underlying74

these phenomena could inform interpretability research by providing principled frameworks for75

analyzing training dynamics.76

3 Methodology77

Our approach transitions from discrete microscopic SGD dynamics to continuous macroscopic78

spectral evolution. We produce notation for the training of neural networks via a spatiotemporal79

interpretation of the evolution of the weight matrices with stochasticity: dW (x, t) = −η ∂L
∂W (x,t)dt+80 √

2ηDW (x, t) dWW (x, t), where ∂L
∂W (x,t) is the gradient of the loss, η is the learning rate, D is81
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an effective diffusion constant described by dWW , and dWb are independent matrix/vector-valued82

Wiener processes, capturing the stochastic dynamics of SGD. We split our analysis into two cases:83

negligible gradient in loss and non-negligible gradient in loss. For the first limit (negligible gradient in84

loss, or ∂L(W )
∂W ≈ 0), we perform SVD/eigenvalue decomposition and use Ito Calculus (see Appendix85

6.1) to arrive at the result of Theorem 3.1:86

Theorem 3.1 (Stochastic Dynamics of Singular Values). Let W ∈ Rm×n evolve via stochastic87

gradient descent with noise. Then, the singular values σk(W ) follow the SDE:88

dσk(t) =

−ηuT
k (∇WL)vk + ηD

m− n+ 1

2σk
+
∑
j ̸=k

σk

σ2
k − σ2

j

 dt+
√
2ηDdβk(t)

where uk, vk are the singular vectors and D is the effective diffusion strength.89

This theorem shows that under SGD noise, singular values behave like interacting particles that repel90

each other (the
∑

j ̸=k terms), explaining why the spectrum spreads out during training rather than91

collapsing. This SDE can then be mapped to Dyson-Brownian Motion processes (see Appendix 6.692

whose statistics are described by the Marčenko–Pastur (Lemma 6.9) and Tracy-Widom distributions93

respectively (Lemma 6.11).94

After deriving these microscopic underpinnings, we may consider the second case (non-negligible95

gradient in loss, or ∂L(W )
∂W ̸= 0) and transition into a macroscopic limit by considering the empirical96

spectral density distribution ρ(λ, t) such that: ρ(λ, t) = 1
r

∑r
k=1 δ(λ−λk(t)) As r →∞, we assume97

that ρ(λ, t) converges to a deterministic density function, normalized such that
∫
ρ(λ, t)dλ = 1.98

To study the dynamics of the squared singular values {λj} then, we adopt a mean-field perspective by99

assuming the effective influence of the complex loss function L(W ) is captured by a potential LMF100

that depends only on this set. This postulates the form: L(W ) ≈ LMF ({λj}) = c
2

∑r
j=1(λj − λ∗)2,101

where these eigenvalues λj are “driven" to λ∗ as in Lemma 6.10.102

Although deep neural network training objectives are generally nonconvex, it was shown in prior work103

[5] that every stationary point of the original nonconvex problem coincides with the global optimum104

of a suitably defined subsampled convex program. As such, while the parameter-space landscape105

may admit many critical points, their spectral signatures at stationarity are governed by a convex106

variational principle. Consequently, modeling the large-r limit of the empirical spectral density ρ(λ, t)107

via a deterministic mean-field potential LMF is fully justified as in Corollary 6.15. Evaluating this108

spectral density distribution, neglecting its highest order terms, and we derive Theorem 3.2:109

Theorem 3.2 (Stationary Distribution of Singular Values). Under the stationary mean-field approxi-110

mation, the probability density function of the singular values follows a Gamma-type distribution:111

pσ(σ) = 2

(
β1

4ηD

)m−n+3
4

Γ
(
m−n+3

4

) σ
m−n+1

2 e−(
β1

4ηD )σ2

where β1 is an effective noise constant representing the mean-field restoring force of the gradient, D112

is the diffusion constant, and the weight matrix W is m× n.113

This gamma-type distribution with power-law tails captures the “bulk+tail" structure observed114

empirically—most singular values cluster in a bulk region, while a few large values form the heavy115

tail that correlates with good generalization.116

We present the proofs for both theorems in Appendix 6.1. Note that we treat Theorem 3.2 phe-117

nomenologically by fitting to within bounds beyond the Tracy-Widom distribution predictions (see118

Corollary 6.1). Thus, we take a “mean-field" approach to deconstructing this system. See Lemma119

6.17 and Lemma 6.18 for the estimation of the effective diffusion and noise constants governing the120

stochastic dynamics.121
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4 Experiments122

4.1 Experimental Setup123

We validate our spectral-SDE framework on three canonical architectures, namely a GPT-2 model;124

a Vision Transformer (ViT) [4]; and a MLP—all trained with SGD. This selection is motivated by125

extensive prior work showing ‘bulk+tail’ spectra arise across MLPs, CNNs, and transformers [19],126

and that different architectures exhibit distinct spectral biases and mode-learning rates [35]. We127

initialize all weights from architecture-specific Gaussian priors, then train GPT-2 on Shakespeare text128

[10], and ViT/MLP on MNIST [14] and CIFAR-100 [12]. More experimental details are in Appendix129

8.130

4.2 Singular Value Evolution Simulation and Analysis131

Figure 1: Singular-value histograms at batches 0, 200, and 400, overlaid with the Marčenko–Pastur
(MP) bulk law (red dashed) and the Tracy–Widom (TW) edge curve (green).

In Figure 1, at initialization the empirical spectrum adheres almost exactly to the MP prediction with132

no outliers beyond the TW edge, verifying random initialization assumptions. Our analysis begins133

by modeling the stochasticity of SGD with an isotropic noise term, resulting in a Langevin-type134

SDE. We acknowledge that this is an idealization; the true noise covariance of SGD is known to be135

anisotropic and parameter-dependent. However, this assumption provides a tractable starting point136

that allows us to establish a clear, analytical connection to the classical frameworks of Random Matrix137

Theory. This approach enables us to isolate and understand the fundamental repulsive dynamics that138

serve as a baseline for spectral evolution. We explicitly address the extension to the more realistic139

anisotropic case in our appendix (see Proposition 6.16), which we identify as a crucial direction for140

future work. At batch 200, the MP/TW fits begin to underpredict mass near the spectrum’s edge. This141

underprediction implies that growing correlations within the weight matrix diminish the effective142

size of the random matrix, consequently amplifying the dominance of edge statistics and fluctuations.143

Physically, this has the interpretation that we are still traversing either local minima or plateaus144

within the loss function landscape (producing weakly correlated learned features). At batch 400, this145

tail becomes increasingly pronounced: the bulk shifts rightward and a persistent shoulder of large146

singular values forms outside the MP support, showing that our matrix is becoming increasingly147

correlated. This is predicted to result from mostly gradient-derived information. Thus we understand148

the singular values beyond the TW threshold as highly correlated learned features. We empirically149

test our theory via Algorithm 1. The algorithm uses gradient loss and singular value information to150

use the dynamic equation previously described to predict singular values over time.151

Figure 2: Predicted singular values (dashed)
versus true. Figure 3: Predicted heavy tails via

Theorem 3.2.
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In Figure 2, we track the top 8 singular values of a representative linear layer in a MLP over 800152

training batches with CIFAR-10, plotting empirical trajectories against our bootstrap-drift predictions.153

The leading modes rise faster and the gradual increases of lower modes are reproduced by the154

prediction algorithm, with deviations starting around batch 300 as the spectrum begins to develop155

empirically observed ‘bulk+tail’ structure. This close alignment across all 8 modes up to the heavy-156

tail regime demonstrates that our continuous-time, matrix-valued SDE framework accurately forecasts157

the full singular-value dynamics from minimal gradient information. However, we hypothesize the158

anisotropic noise causes a bulk of the observed deviation for the singular values. This hypothesis159

is as follows: the larger singular values might experience greater effects from anisotropic noise160

due to preferential alignment of noise with their dominant singular vectors and potentially larger161

Hessian components (see Proposition 6.16). In Figure 3, the fits predict the qualitative shape well,162

but underpredict counts significantly, which we attribute to the aforementioned anisotropic noise163

hypothesis.164

4.3 Practical Applications165

Our framework provides mechanistic interpretability researchers with quantitative tools for un-166

derstanding representation development. By monitoring the transition from Marchenko-Pastur to167

bulk+tail spectral structure, researchers can: (1) identify critical training phases when interpretable168

features emerge - the deviation from random matrix statistics signals the onset of structured learning;169

(2) predict which layers develop interpretable structure first by tracking layer-wise spectral evolution170

rates; (3) design interventions that encourage interpretable representations by tuning η and D to171

elucidate feature consolidation. The spectral repulsion mechanism we identify suggests that SGD172

naturally separates features into distinct modes, potentially explaining why neural networks often173

learn disentangled representations amenable to interpretation.174

5 Conclusion175

We develop a continuous-time, matrix-valued SDE framework connecting SGD’s microscopic dynam-176

ics to macroscopic spectral evolution, revealing that squared singular values follow Dyson Brownian177

motion and produce gamma-type distributions with power-law tails that explain the empirically178

observed ‘bulk+tail’ structure in trained networks. Through controlled experiments, we demonstrate179

quantitative agreement between our predictions and observed spectral evolution, with our forecasting180

algorithm accurately predicting singular value trajectories until empirically observed ‘bulk+tail’ struc-181

ture emerges. While our current analysis assumes isotropic noise, future extensions to anisotropic182

SGD fluctuations could bridge the gap to real optimization dynamics and enable new preconditioning183

schemes. For mechanistic interpretability specifically, our framework offers a principled method to184

predict when random initializations give way to structured, potentially interpretable representations,185

providing researchers with quantitative markers for when to deploy interpretability tools during186

training. By providing a complete theoretical characterization of how spectral structure emerges187

during training, we offer a foundation for future work exploring the relationship between optimization188

dynamics and the development of interpretable representations.189
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A Appendix276

A.1 Main Theorem Proofs277

Theorem 3.1278

Proof. We regard the SGD update with isotropic noise as the Itô SDE on the weight matrix279

dW = Adt +
√
2ηD dW, A = − η∇WL,

where dW is a matrix-valued Wiener increment with independent entries. Writing the SVD W =280

UΣV T and denoting the kth singular value by σk, we apply Itô’s lemma to the scalar function281

f(W ) = σk(W ). First, by standard matrix-perturbation theory,282

∇Wσk = uk v
T
k , ∆Wσk =

m− n+ 1

2σk
+
∑
j ̸=k

σk

σ2
k − σ2

j

.

Hence the general Itô formula283

df(W ) =
∑
i,j

∂f

∂Wij
dWij + 1

2

∑
i,j,p,q

∂2f

∂Wij∂Wpq
dWij dWpq,
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together with284

dWij = Aij dt+
√
2ηD dWij , dWij dWpq = 2ηD δip δjq dt,

yields285

dσk =
〈
∇Wσk, A

〉
dt + ηD∆Wσk dt +

√
2ηD ⟨∇Wσk, dW⟩.

Substituting∇Wσk = ukv
T
k gives286

dσk =
[
−η uT

k (∇WL)vk + ηD
(

m−n+1
2σk

+
∑
j ̸=k

σk

σ2
k−σ2

j

)]
dt +

√
2ηD dβk(t),

where dβk = uT
k dW vk is a scalar Wiener increment.287

Finally, set λk = σ2
k and apply Itô again:288

dλk = 2σk dσk + (dσk)
2 = 2σk dσk + 2ηD dt.

Substituting the above expression for dσk and simplifying yields289

dλk =
[
−2
√
λk η u

T
k (∇WL)vk + ηD (m−n+3) + 2ηD

∑
j ̸=k

λk

λk − λj

]
dt + 2

√
λk

√
2ηD dβk(t),

which is the desired result.290

At initialization (t = 0), the singular value spectrum of a random weight matrix is indeed described291

by the Marchenko-Pastur (MP) law. The contribution of our theorem is not to re-derive this initial292

state, but rather to characterize the initial dynamics that drive the spectrum away from this random293

configuration. The theorem formally describes the repulsive force (
∑

j ̸=k ...) induced by SGD’s294

stochastic updates, which is the fundamental mechanism that introduces structure into the spectrum.295

We note that the dynamics of the squared singular values, λk = σ2
k, are more precisely termed a296

Wishart process, a matrix-valued generalization related to Dyson Brownian motion.297

8



Theorem 3.2298

Proof. Under the stationary mean-field approximation with vanishing gradient, each squared singular299

value λt evolves according to the one-dimensional SDE300

dλt = (α0 − β1 λt) dt +
√
8ηD λt dWt,

where α0 = ηD(m− n+ 3) and β1 > 0 is a constant. The corresponding stationary Fokker–Planck301

equation for the density p(λ) is (by setting ∂p(λ,t)
∂t = 0302

∂p(λ, t)

∂t
= − ∂

∂λ
[(α0 − β1λ)p(λ, t)] +

1

2

∂2

∂λ2
[8ηDλp(λ, t)]

0 = − d

dλ

[
(α0 − β1λ) p(λ)

]
+

1

2

d2

dλ2

[
8ηD λp(λ)

]
.

Integrating once under the zero-flux boundary condition gives303

(α0 − β1λ) p(λ) = 4ηD
d

dλ

[
λ p(λ)

]
.

Rearranging and separating variables, we have304

p′(λ)

p(λ)
=
( α0

4ηD
− 1
) 1
λ
− β1

4ηD
.

Integrating gives us305

ln p(λ) =
( α0

4ηD
− 1
)
lnλ − β1

4ηD
λ + lnC,

so that306

p(λ) = C λ
α0
4ηD−1 exp

(
− β1

4ηD λ
)
,

with C fixed by normalization below307

C =

(
β1

4ηD

) α0
4ηD

Γ
(

α0

4ηD

) .

Noting α0 = ηD(m− n+ 3) gives us the claimed form.308

Finally, since σ =
√
λ, we find the push-forward density309

pσ(σ) = 2σ p(σ2) = 2

(
β1

4ηD

)m−n+3
4

Γ
(
m−n+3

4

) σ
m−n+3

2 −1 exp
(
− β1

4ηD σ2
)
,

as desired.310

In deriving the stationary distribution in Theorem 3.2, we adopt a mean-field approximation. This311

approach decouples the interacting system of singular values, allowing us to analyze the dynamics312

of a single value within an effective potential. We recognize that this is a significant simplification,313

as the Coulomb-type repulsion term is fundamental to the transient dynamics. However, our goal314

here is to model the effective stationary state that emerges after prolonged training. In this limit, it is315

reasonable to approximate the complex, N-body interaction by an average restoring force, captured by316

the β1 term. While this model neglects higher-order correlations, it yields a tractable Fokker-Planck317

equation whose solution successfully recovers the characteristic shape of the "bulk and tail" structure318

observed empirically.319
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A.2 Backpropagation as a Discrete Spatial-Temporal System320

In this section, we recast layer-wise backpropagation as a recursion in discrete space x (layer index)321

and time t (training iteration), laying the foundation for the continuous limit.322

Theorem A.1 (Error Signal Recursion). In the discrete spatial–temporal interpretation, the error323

signal δ(x, t) satisfies324

δ(Xmax, t) =
∂L

∂a(Xmax, t)
⊙f ′(z(Xmax, t)

)
, δ(x, t) =

(
W (x+1, t)T δ(x+1, t)

)
⊙f ′(z(x, t)),

for x = Xmax − 1, . . . , 1.325

Proof. By definition δ(x, t) = ∂L/∂z(x, t). At the boundary x = Xmax,

δ(Xmax, t) =
∂L

∂a(Xmax, t)
· ∂a
∂z

=
∂L
∂a
⊙ f ′(z) .

For x < Xmax we apply the chain-rule and get326

δ(x, t) =
∂L

∂z(x, t)
=
(
W (x+1, t)T ∂L/∂z(x+1, t)

)
⊙f ′(z(x, t)) =

(
W (x+1, t)T δ(x+1, t)

)
⊙f ′(z(x, t)).

327

Corollary A.2 (Gradient Formulas). The parameter gradients satisfy328

∂L
∂W (x, t)

= δ(x, t) a(x− 1, t)T ,
∂L

∂b(x, t)
= δ(x, t).

Proof. We see that this immediately by ∂z = a ∂W + ∂b and the definition of δ.329

These theorems serve as the discrete foundation for Section 3, enabling the PDE and SDE derivations.330

A.3 PDE Representation in Continuous Limit331

In this section, by letting the layer and time increments vanish, we derive PDEs describing the332

deterministic flow of parameters.333

Theorem A.3 (Continuum PDE for Weight Evolution). As ∆t,∆x → 0, the discrete update334

W (x, t+∆t)−W (x, t) = −η δ(x, t) a(x− 1, t)T converges formally to the PDE335

∂tW (x, t) = −η δ(x, t) f
(
z(x− 1, t)

)T
, δ(x, t) =

(
∂†
xδ
)
(x, t)⊙ f ′(z(x, t)),

where ∂†
x denotes the backward difference operator.336

Proof. We first express337

W (x, t+∆t)−W (x, t)

∆t
= −η δ(x, t) a(x− 1, t)T .

Sending ∆t→ 0 yields the time-derivative. Meanwhile replacing the backward recursion for δ by338

the adjoint of the forward difference gives the continuous spatial dependence.339

This PDE describes the mean-drift component of training and underlies our stochastic perturbations340

A.4 SGD as a Matrix-Valued Itô SDE341

In this section, we show that random mini-batch gradients introduce Brownian-like noise into the342

weight dynamics.343

Theorem A.4 (SGD as Itô SDE). Under mini-batch noise, with variance parameter D, the weight344

update W (x, t+∆t)−W (x, t) = −η∇WL(x, t) +
√
2ηD ξ converges to the Itô SDE345

dW (x, t) = −η∇WL dt+
√
2ηD dW(x, t),

where dW is matrix-valued Brownian motion.346
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Proof. By central-limit scaling of the mini-batch noise we see that 1√
∆t

∑
i(∇Li−∇L)

d−→ N (0, D),347

hence in the limit ∆t→ 0 it becomes the Wiener increment
√
2ηD dW .348

This result justifies the isotropic noise term in the SDE.349

A.5 Itô’s Lemma for Singular Values350

In this section, we compute the drift and diffusion contributions to each singular value under the351

matrix Itô SDE.352

Lemma A.5 (Gradient and Laplacian of σk). Let W = UΣV T be the SVD of W ∈ Rm×n with353

Σkk = σk > 0. Then354

∇Wσk = ukv
T
k , ∆Wσk =

m− n+ 1

2σk
+
∑
j ̸=k

σk

σ2
k − σ2

j

.

Proof. The gradient is standard from matrix perturbation theory. The Laplacian follows by differenti-355

ating twice and using orthonormality of singular vectors.356

Theorem A.6 (Itô SDE for σk). Under dW = Adt+
√
2ϵ dW, the kth singular value obeys357

dσk =
(

Tr((ukv
T
k )

TA) + ϵ∆Wσk

)
dt+

√
2ϵ dβk,

where dβk = uT
k dW vk is scalar Brownian motion.358

Proof. We apply the general Itô formula359

df(W ) =
∑
i,j

fij dWij +
1
2

∑
i,j,k,l

fij,kl dWijdWkl,

with f(W ) = σk(W ), and use dWijdWkl = 2ϵ δikδjl dt, together with the lemma above.360

These theorems form the basis for the interacting SDEs of singular values.361

A.6 Mapping to Dyson Brownian Motion362

In this section, we show that in the zero-gradient regime, squared singular values follow a Dyson-type363

interacting particle SDE.364

Theorem A.7 (Dyson–SDE Identification). Let λk = σ2
k. Then in the gradient-flat regime∇L ≈ 0,365

dλk =
(
ηD(m− n+ 3) + 2ηD

∑
j ̸=k

λk

λk − λj

)
dt+ 2

√
2ηD λk dβk,

which after time-rescaling becomes the β = 1 Dyson Brownian motion dYk =
(

m−n+3
2 +366 ∑

j ̸=k
Yk

Yk−Yj

)
ds+ 2

√
Yk dWk.367

Proof. Compute dλk via Itô on f(σ) = σ2, use the previous SDE, drop the gradient term, and choose368

s = t/(2ηD) so that the prefactors match exactly the canonical form.369

This theorem helps to explain the eigenvalue repulsion and spectral spreading.370
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A.7 Stationary Fokker–Planck and Gamma Law371

We show that solving the steady-state Fokker–Planck PDE for one SDE yields a Gamma-family372

density.373

Proposition A.8 (Stationary Density is Gamma-type). For the one-particle SDE dλt = (α0 −374

β1λt) dt+
√
8ηD λt dWt, the stationary solution of the Fokker–Planck equation is375

p(λ) ∝ λ
α0
4ηD−1 exp

(
− β1

4ηD λ
)
, λ > 0.

Proof. Setting the time-derivative to zero, we get376

0 = −∂λ
[
(α0 − β1λ)p

]
+ 1

2∂
2
λ

[
8ηD λp

]
.

Integrating once under zero-flux boundary conditions and separating variables, we get p′

p = ( α0

4ηD −377

1) 1λ −
β1

4ηD , and exponentiate to obtain the Gamma-form.378

Obtaining a Gamma form, we see that this justifies the heavy-tail exponents observed in our experi-379

mental results.380

A.8 Further Mathematical Analysis381

In this section, we assemble classical random–matrix and integral–transform results that underpin our382

spectral SDE framework. First, we recall the Marchenko–Pastur and Tracy–Widom edge laws, which383

describe the untrained and boundary fluctuations of large random weight matrices. Then we turn384

to Hilbert transforms and stationary mean-field equations, which provide the macroscopic density385

needed in our Fokker–Planck analysis of singular-value dynamics.386

A.8.1 Derivation of the Stochastic Term β387

Proposition A.9 (Solving for the Stochastic Term). Given the stochastic differential equation for the388

temporal evolution of an eigenvalue λk, the stochastic term β can be isolated.389

Proof. We begin with the SDE describing the evolution of the eigenvalue λk, which includes terms390

for the gradient of the loss, eigenvalue repulsion, and a stochastic component driven by β:391

∂λk

∂t
= −√ηλk

∂L

∂W
+
∑
j ̸=k

λk

λk − λj
+
√
ηλkβ (1)

∂λk

∂t
+
√
ηλk

∂L

∂W
−
∑
j ̸=k

λk

λk − λj
=
√
ηλkβ (2)

Finally, we divide by the coefficient of β, which is
√
ηλk, to obtain the expression for the stochastic392

term:393

β =
1√
ηλk

∂λk

∂t
+
√
ηλk

∂L

∂W
−
∑
j ̸=k

λk

λk − λj

 (3)

This completes the derivation.394

A.8.2 Scaling Limits and Tracy-Widom Limit395

At initialization, our weight matrices follow Wishart (or MP) statistics. Understanding the bulk and396

edge of this spectrum is essential both to verify our isotropic SGD noise reproduces classical limits397

and to identify regimes where empirically observed ‘bulk+tail’ structured deviations occur.398

Lemma A.10. Bulk and Edge of the Marchenko-Pastur Law We first let M = 1
nXXT be an399

m × m Wishart matrix with X ∈ Rm×n having i.i.d. entries of variance 1. As m,n → ∞ with400
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m/n → γ ∈ (0, 1], the empirical spectral distribution of M converges to the Marchenko–Pastur401

density402

ρMP (x) =

√
(λ+ − x)(x− λ−)

2πγx
, x ∈ [λ−, λ+],

where403

λ± = (1±√γ)2.

This proof is presented in [17], where the Stieltjes transform of M is utilized. In all, this bulk law404

justifies our use of MP fits at t = 0, and sets the stage for tracking departures under SGD noise.405

Lemma A.11 (Edge Scaling Constants). Under the same regime, we let λ(1) be the largest eigenvalue406

of M . We define407

µm,n = λ+, σm,n = (λ+)
1/2 (1 + γ−1/2)1/3

n2/3
.

Then the centered and scaled variable408

χm,n =
λ(1) − µm,n

σm,n

has fluctuations on order one as m,n→∞.409

Corollary A.12 (Tracy–Widom F1 Limit). It was shown in [31] and this was proven by expressing410

the gap probability as a Fredholm determinant of the Airy kernel, thereby yielding the limit.411

lim
m,n→∞

P
(
χm,n ≤ s

)
= F1(s),

where F1 is the Tracy–Widom distribution for β = 1 (real symmetric ensembles).412

Definition A.13 (Airy Kernel and Process). The Airy kernel is413

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
,

and the Airy process {A(t)} is the determinantal process with kernel414

KAi(t1, ξ1; t2, ξ2) =

∫ ∞

0

e−u(t2−t1)Ai(ξ1 + u)Ai(ξ2 + u) du.

Remark A.14. The largest eigenvalue fluctuations of Dyson’s Brownian motion (with β = 1) also415

converge to the Airy process, giving a dynamical Tracy–Widom law for λ(1)(t) under appropriate416

time scaling.417

A.8.3 Hilbert Transform and Stationary Density418

To derive the macroscopic spectral density under our isotropic SDE, we solve a stationary419

Fokker–Planck equation via Hilbert transforms. The lemma below gives a closed-form for power-law420

inputs, enabling the Gamma-like stationary density.421

Lemma A.15 (Hilbert Transform of Power Law Densities). If ρ(x) = C xα on [0, R], then its422

finite-interval Hilbert transform is423

H[ρ](λ) =
1

π
PV

(∫ R

0

C xα

x− λ
dx

)
= C λα cot(πα) +O(1),

for λ ∈ (0, R) and α /∈ Z.424

Corollary A.16 (Stationary Density at Large r). Under the quadratic mean-field potential and425

isotropic noise, the large-r stationary ρst(λ) solving426

ηD(m− n+ 3)− 2πηD
d

dλ

(
λH[ρst](λ)

)
= 0

behaves to leading order like427

ρst(λ) ∝ λ
1
4 (m−n+3)−1,

recovering the Gamma-type density in the effective single-particle Fokker–Planck.428

This provides the explicit stationary spectrum that emerges from our isotropic SDE.429
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A.8.4 Anisotropic Analysis430

Thus far, our analysis has assumed that the random fluctuations in SGD are isotropic meaning every431

direction in parameter space experiences the same noise strength. In practice, however, noise can be432

highly direction-dependent—layers, singular modes, or even individual parameters often see very433

different variance due to batch structure, learning-rate schedules, or architecture specifics. Accounting434

for this anisotropy is crucial if we hope to predict not only the locations of singular values, but also435

the relative spreading and alignment of singular vectors over training. The following proposition436

shows how the general Itô-lemma approach naturally incorporates a full covariance structure Σ(W, t),437

yielding additional second–derivative corrections to the drift and a directionally weighted diffusion438

term. This richer SDE then serves as the foundation for a non-homogeneous Dyson-type PDE in the439

mean-field limit, capable of capturing empirically observed anisotropic spectral evolution. We carry440

out the derivations below, and we leave experimentation for anisotropic analysis for future work.441

We have for anisotropic analysis,442

dW = − η∇WL dt + B(W, t) dBt,

where B(W, t)B(W, t)T = 2ηΣ(W, t) and dBt is our standard matrix Wiener process.443

Proposition A.17 (Anisotropic Noise - Changes to SDE for Singular Values). We let W (t) =444

U(t) Σ(t)V (t)T be the SVD of W , and we denote σk(t) the kth singular value. Then under the445

dynamics above, we have446

dσk =
〈
∇Wσk , −η∇WL

〉
dt +

1

2

∑
i,j,p,q

∂2σk

∂Wij∂Wpq

[
2ηΣ(W, t)

]
ip,jq

dt +
〈
∇Wσk , B(W, t) dBt

〉
.

Since ∇Wσk = ukv
T
k and

∂2σk

∂Wij∂Wpq
is known from matrix-perturbation theory, the drift becomes447

uT
k

(
−η∇WL

)
vk + η Tr

[
Σ(W, t)∇2

Wσk

]
,

and the diffusion term is
√
2η ⟨ukv

T
k ,
√

Σ(W, t) dBt⟩.448

Proof. For a scalar f(W ), we know by Ito’s Lemma that449

df =
∑
i,j

∂f

∂Wij
dWij +

1

2

∑
i,j,p,q

∂2f

∂Wij ∂Wpq
dWij dWpq.

Now, we proceed to substitute dWij . We get that450

dWij = −η (∇WL)ij dt +
∑
α,β

Bij,αβ dBαβ .

Hence451 ∑
i,j

∂f

∂Wij
dWij =

∑
i,j

∂f

∂Wij

[
−η(∇WL)ij

]
︸ ︷︷ ︸

=⟨∇W f,−η∇WL⟩

dt +
∑

i,j,α,β

∂f

∂Wij
Bij,αβ dBαβ .

We see that only the noise part contributes second-order terms, hence we have452

dWij dWpq =
(∑
α,β

Bij,αβ dBαβ
)(∑

γ,δ

Bpq,γδ dBγδ
)
=
∑
α,β

Bij,αβ Bpq,αβ dt = 2ηΣip,jq(W, t) dt.

Thus, we have453

1

2

∑
i,j,p,q

∂2f

∂Wij ∂Wpq
dWij dWpq = η

∑
i,j,p,q

∂2f

∂Wij ∂Wpq
Σip,jq(W, t)︸ ︷︷ ︸

= 1
2

∑
(∂2f) [2ηΣ]ip,jq

dt.
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Now, we proceed to group all the dt terms, giving us the drift term below454

⟨∇W f, −η∇WL⟩ +
1

2

∑
i,j,p,q

∂2f

∂Wij∂Wpq

[
2ηΣ(W, t)

]
ip,jq

,

and the remaining stochastic term is the martingale term given by455 ∑
i,j,α,β

∂f

∂Wij
Bij,αβ dBαβ =

〈
∇W f, B(W, t) dBt

〉
.

Finally, from matrix perturbation theory, we know that456

∇Wσk = uk v
T
k ,

∂2σk

∂Wij ∂Wpq
=
[
∇2

Wσk

]
ij,pq

,

so the final SDE is457

dσk = ⟨ukv
T
k , −η∇WL⟩︸ ︷︷ ︸

drift from loss

dt +
1

2

∑
i,j,p,q

[
∇2

Wσk

]
ij,pq

[
2ηΣ(W, t)

]
ip,jq

dt +
〈
ukv

T
k , B(W, t) dBt

〉
,

as proposed.458

Lemma A.18. (Estimating the Diffusion Constant for Stationary Distribution Fitting)459

In order to connect our theoretical diffusion coefficient D to observable quantities during training, we460

employ a simple dimensional-analysis argument. The diffusion term in our singular-value SDE has461

units of (singular-value)2 per unit time, so D must scale like the variance of singular-value changes462

divided by the time step. Empirically, the broadening of the spectrum is characterized by the gap463

between the largest mode and a representative central mode—here taken as σmax − σmed. Over tb464

batch updates, this gap typically increases by an amount on the order of its own magnitude. Matching465

units then gives466

[D] =
L2

s
7→ (σmax − σmed)

2

tb

where σmax corresponds the maximum singular value, σmed corresponds to the median singular467

value, and tb is the time (which is represented as the batch update number in our spatiotemporal468

interpretation).469

Lemma A.19. (Estimating the Noise Constant β1 for Stationary Distribution Fitting)
Letting L(w) = 1

N

∑N
i=1 Li(W ) be the loss function, and defining the batch gradient (true gradient)

as:

∇L(w) = 1

N

N∑
i=1

∇Li(W )

and minibatch gradient for a randomly sampled minibatch St of size B as:

∇LSt
(w) =

1

B

∑
j∈St

∇Lj(w)

we model the SGD noise for a minibatch St as the difference:

β1(W,St) = ∇LSt
(W )−∇L(W )

Implying
∥β1(W,St)∥2 = ∥∇LSt(W )−∇L(w)∥2

The minibatch gradient is an unbiased estimator: ESt
[∇LSt

(w)] = ∇L(w). The variance of the
minibatch gradient, which is the formal measure of SGD noise, is given by the expected squared
norm of the noise term:

Var(∇LSt(w)) ≡ ESt

[
∥∇LSt(w)−∇L(w)∥2

]
≡ ESt [∥β1(W,St)∥2

Thus we use this empirically determined value of β1 for our fits for the stationary distributions.470
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B Algorithm Details471

Algorithm 1 Predicting Singular–Value Dynamics via Bootstrapped Drift

1: Input: W (0)∈Rm×n, η, T, k
2: Output: {σ(t)}Tt=0

3: [U,Σ, V ]← svd(W (0)); Uk ← U:,1:k, σ ← diag(Σ)1:k, Vk ← V:,1:k

4: for t = 0, . . . , T − 1 do
5: G← −η∇W ℓ(t)

6: M ← U⊤
k GVk

7: for i = 1, . . . , k do
8: ∆σi ←Mii

9: dui, dvi =
∑
j ̸=i

(
Mji

σi−σj+ε +
Mij

σi+σj+ε

)
(Uk[:, j], Vk[:, j])

10: σi ← max(σi +∆σi, δ)

11: Ũi ← Uk[:, i] + dui, Ṽi ← Vk[:, i] + dvi
12: end for
13: Uk, Vk ← orth

(
[Ũ1, . . . , Ũk]

)
, orth

(
[Ṽ1, . . . , Ṽk]

)
14: Align signs of Uk, Vk columns with previous
15: end for
16: return {σ(t)}

B.1 Computational Complexity Analysis472

Algorithm 1 offers significant computational advantages over naive approaches that recompute the473

full SVD at each time step. We analyze the complexity for an m×n weight matrix over T time steps,474

tracking the top k singular values.475

Initial Setup. The initial SVD computation (Line 3) requires O(min(m2n,mn2)) operations,476

which is performed only once.477

Per-Timestep Complexity. For each of the T time steps, the algorithm performs:478

• Gradient computation: O(G) operations, where G depends on the specific loss function479

and network architecture.480

• Projection: Computing M = UT
k GVk requires O(kmn) operations.481

• Singular value updates: For each of the k singular values, the drift computation involves482

O(k) operations and the singular vector updates require O(kmax(m,n)) operations, yield-483

ing O(k2 max(m,n)) total.484

• Orthogonalization: The Gram-Schmidt orthogonalization step costs O(k2 max(m,n))485

operations.486

Total Complexity. The overall computational complexity is:
O
(
min(m2n,mn2) + T (G+ kmn+ k2 max(m,n))

)
Efficiency Gains. When k ≪ min(m,n) (typically k ≤ 10 for the leading modes), our algo-487

rithm achieves substantial speedups compared to naive full SVD recomputation at each step, which488

would require O(T min(m2n,mn2)) operations. For large matrices where m,n ≫ k, the per-489

timestep cost reduces from O(min(m2n,mn2)) to O(kmn+ k2 max(m,n)), representing a factor490

of Θ(min(m,n)/k) improvement in the SVD-related computations.491

C Additional Experimental Details492

SGD. Our use of SGD follows the classic Ornstein–Uhlenbeck approximation for constant-rate493

noise [15], while observed anisotropies in batch-size and learning-rate interactions [8] directly inform494
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our extension to non-isotropic noise. Choosing a quadratic mean-field potential for large-width495

spectral dynamics is supported by recent convergence results in overparameterized models [3, 27].496

GPT2. We use the nanoGPT implementation [11] which follows the transformer decoder-only497

architecture with four transformer layers, four attention heads per layer, and 256-dimensional embed-498

dings. The learning rate starts at 5 ∗ 10−4 with cosine decay to 5 ∗ 10−5. We use a batch size of 12499

sequences of 256 tokens each.500

Vision Transformer (ViT). ViT is configured with two encoder layers, four attention heads, and a501

256-dimensional embedding. Inputs (H ×H) are segmented into patches (P × P ), transformed by502

standard Transformer blocks (FFN expansion ratio α = 2), and classified via a linear head initialized503

as w ∼ N (0, 1/
√
Hdim). We set (H,P ) = (28, 7) for MNIST and (32, 8) for CIFAR-100.504

Multilayer Perceptron (MLP). Our MLP comprises three hidden layer of 1024 dimensions.505

Weight matrices are initialized from N (0, 1/fanin), with biases initialized to zero.506

Other Considered Models. ResNet architecture [7] is not used as it consists mostly of convolutional507

layers with structured weight sharing patterns making some spectral properties less interpretable for508

understanding loss landscapes.509

D Additional Experimental Results510

Figure 4: Spread of singular values (max–median) versus learning rate for different vision transformer
weight matrices, with red dashed least-squares trends and slopes indicating sensitivity.

Across all layers, increasing the learning rate from 10−3 to 10−1 amplifies the spectral spread,511

indicating that higher noise levels drive greater anisotropy in the weight matrix. Moreover, the fitted512

trend-line slopes reveal that the second feed-forward projection in each layer is most sensitive to513

learning-rate scaling. In particular, in layer 1 (slope ≈ 0.81)—whereas the output head’s weights514

remain comparatively stable (slope ≈ 0.16). These results show that isotropic SGD induces layer-515

dependent spectral broadening, with deeper feed-forward blocks experiencing the strongest effect.516

When a certain critical learning rate is hit, we see that the spread decreases, indicating more uniformity517

in singular values, potentially implying that fewer features are being learnt by the model, thus meriting518

further investigation to understand this phenomenon.519
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