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ABSTRACT

In practice, due to the need for online interaction with the environment, deploy-
ing reinforcement learning (RL) agents in safety-critical scenarios is challenging.
Offline RL offers the promise of directly leveraging large, previously collected
datasets to acquire effective policies without further interaction. Although a num-
ber of offline RL algorithms have been proposed, their performance is generally
limited by the quality of dataset. To address this problem, we propose an Adaptive
Policy constrainT (AdaPT) method, which allows effective exploration on out-of-
distribution actions by imposing an adaptive constraint on the learned policy. We
theoretically show that AdaPT produces a tight upper bound on the distributional
deviation between the learned policy and the behavior policy, and this upper bound
is the minimum requirement to guarantee policy improvement at each iteration.
Formally, we present a practical AdaPT augmented Actor-Critic (AdaPT-AC) al-
gorithm, which is able to learn a generalizable policy even from the dataset that
contains a large amount of random data and induces a bad behavior policy. The
empirical results on a range of continuous control benchmark tasks demonstrate
that AdaPT-AC substantially outperforms several popular algorithms in terms of
both final performance and robustness on four datasets of different qualities.

1 INTRODUCTION

Reinforcement learning (RL) provides a mathematical formalism for learning-based sequential deci-
sion. Existing RL algorithms typically require to adopt an online learning paradigm, which involves
online interactions with the environment and learns from its own collected experience. Howev-
er, this limits their applicability in real-world scenarios (Garcıa & Fernández, 2015; Dulac-Arnold
et al., 2019), where online interaction is expensive (e.g., in robotics (Dasari et al., 2019)) or there is a
safety consideration with updating the policy online (e.g., in healthcare (Shortreed et al., 2011; Ne-
mati et al., 2016)). As a feasible solution, offline RL (also known as batch RL (Lange et al., 2012))
concerns a more realistic setting in which an agent has access to only a fixed dataset of logged ex-
perience, without any further interactions with the environment. This setting is of particular interest
for industrial applications such as recommendation system (Bottou et al., 2013) and autonomous
driving (Yu et al., 2018). Nevertheless, the inability to interact with the environment directly poses
a major challenge to offline RL, especially in the case of low-quality offline datasets.
While off-policy algorithms can in principle learn from arbitrary data, the performance is usually
poor in the offline setting. These failures can generally be attributed to distributional shift, a fun-
damental issue of offline RL, which leads to large extrapolation error when the policy learned from
one distribution is evaluated on a different distribution (Fujimoto et al., 2019). To overcome this
challenge, a commonly used approach is to constrain the learned policy against the behavior policy
induced by the dataset (Kumar et al., 2019; Wu et al., 2019). However, some of policy constraint
based methods are developed exclusively for offline datasets of specific source and thus are vul-
nerable to the low-quality dataset, a common case in real scenarios. In addition, the performance
of these methods is limited to behaviors within the data manifold. For example, when an offline
dataset contains a large amount of random data and induces a bad behavior policy, existing policy
constraint based methods struggle to learn a generalizable policy due to the difficulty to trade off
error accumulation and suboptimality of the learned policy (Levine et al., 2020). Therefore, how
to adaptively adjust the policy constraint imposed on the learned policy regardless of the quality of
dataset remains a major issue in the field of offline RL.
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In this paper, we seek to develop an Adaptive Policy constrainT (AdaPT) method that enables the
agent to learn a generalizable policy even from low-quality datasets. To that end, we make the
observation that the optimal distributional deviation between the learned policy and the behavior
policy can be seen as an upper bound for AdaPT. Inspired by the idea underlying policy consistency
learning (Nachum et al., 2017), we can derive an adaptive form for this upper bound in the behavior
regularized offline RL framework. The resulting adaptive upper bound is related to the intensity
of regularization and thus reflects the suboptimality of the learned policy. In fact, there are several
appealing advantages to apply AdaPT. First, the policy constraint can be adjusted adaptively accord-
ing to the performance of the learned policy. Second, the feasible policy set induced by the policy
constraint is large enough to include the learned policy at the last iteration. While the former makes
it possible to adaptively control the constraint imposed on the learned policy, the latter ensures an
improved policy can always be obtained theoretically at each iteration.
The primary contribution of this work is a model-free AdaPT augmented Actor-Critic (AdaPT-AC)
algorithm, which can perform well even in the case of low-quality offline datasets. Our AdaPT-AC is
developed directly by augmenting the vanilla behavior regularized policy iteration with the proposed
AdaPT, the standard form of which can be readily derived based on a behavior consistency relation
among the learned policy, the learned value functions and the behavior policy. We theoretically
show that AdaPT produces a tight upper bound on the distributional deviation between the learned
policy and the behavior policy, and this upper bound is the minimum requirement to guarantee
policy improvement at each iteration. In particular, our AdaPT-AC enables the agent to learn a
policy that can be improved to a great extend and is allowed to deviate far from the behavior policy.
We empirically compare the AdaPT-AC to several popular algorithms on very complex and high-
dimensional continuous control tasks, such as the Humanoid benchmark in OpenAI Gym (Brockman
et al., 2016). For each task, we construct four offline datasets of different qualities. The results
demonstrate that AdaPT-AC substantially outperforms the prior methods on these offline datasets,
and is the only method that still performs well on low-quality datasets, such as our very low dataset
where 80 percent of the data is completely random.

2 RELATED WORK

As a safe way to deploy RL agents in the real world, offline RL shows great potential for applica-
tion in industrial scenarios. Here we briefly review the existing offline RL approaches, which can
be partitioned into two broad categories: policy constraint based methods and explicit uncertainty
estimation based methods.
The basic idea underlying policy constraint based methods is to constrain, explicitly or implicitly, the
learned policy to stay close to the behavior policy, and ensure the Bellman backup is never executed
on out-of-distribution actions. The methods in this family differ in terms of the probability metric
used to measure “closeness” (such as KL-divergence (Jaques et al., 2019; Peng et al., 2019; Siegel
et al., 2020), Wasserstein distance (Wu et al., 2019), or MMD (Gretton et al., 2007; Kumar et al.,
2019)) and how this constraint is introduced and enforced. However, a notorious challenge associat-
ed with these methods is that the degree of improvement beyond the behavior policy is restricted by
error accumulation (Fujimoto et al., 2019; Simão et al., 2019), and a small divergence from the be-
havior policy at each step can give rise to a policy that diverges away from the behavior distribution
and performs very poorly (Levine et al., 2020). Aside from directly constraining the policy, another
conceptually attractive approach to mitigating the effect of out-of-distribution actions is to estimate
the epistemic uncertainty of the Q-function. The intuition behind uncertainty estimation based meth-
ods is that the uncertainty is expected to be substantially large for out-of-distribution actions, and
thus can be utilized to produce conservative target values in such cases. In general, such methods
learn an uncertainty set or distribution over possible Q-functions by maintaining a lower confidence
bound (Auer et al., 2009; Kumar et al., 2020), or directly representing samples from the distribution
over Q-functions, for example via bootstrap ensembles (Osband et al., 2016; Anschel et al., 2017;
Agarwal et al., 2020) or parameterization (ODonoghue et al., 2018). However, offline RL requires
a calibrated uncertainty estimation to directly capture the trustworthiness of the Q-function, which
is often very difficult, especially with modern high-capacity function approximators, such as deep
neural networks (DNNs).
Besides the above two established approaches, there have also been significant efforts on enabling
standard off-policy RL algorithms (Precup et al., 2001; Bellemare et al., 2017; Fujimoto et al., 2018;
Dabney et al., 2018) in the offline setting on large-scale datasets (Pietquin et al., 2011; De Bruin

2



Under review as a conference paper at ICLR 2021

et al., 2015; Gu et al., 2017; Zhang & Sutton, 2017; Kalashnikov et al., 2018; Cabi et al., 2019).
These methods do not explicitly correct for the distributional deviation between the learned policy
and the behavior policy, and thus require to make unrealistic assumptions on the quality or source
of dataset. In contrast, this work aims to adaptively adjust the policy constraint according to the
performance of the learned policy, and the proposed method is able to learn a generalizable policy
even from low-quality datasets that contain a large amount of random data.

3 PRELIMINARIES

3.1 NOTATION

We consider an infinite-horizon Markov decision process (MDP) setting. An MDP is typically
defined by a tuple M = (S,A, P, p0, r, γ), where S is the state space, A is the action space,
P : S × A × S → [0,∞) is a conditional probability distribution that describes the dynamics of
the system, p0 defines the initial state distribution p0(s), r : S × A → R defines a reward function,
and γ ∈ (0, 1] is a scalar discount factor. The goal of an RL agent is to learn a policy π, which is
a mapping from each state s ∈ S and action a ∈ A to the conditional probability π(a|s) of taking
action a when in state s. Throughout this paper, we will use ρπ(st) and ρπ(st, at) to denote the state
and state-action marginal of the trajectory distribution induced by the policy π(at|st).
In this work, we address the offline RL problem for complex continuous domains. Specifical-
ly, we aim to learn a policy π(at|st) from a fixed dataset D consisting of single-step transitions
(st, at, r(st, at), st+1). Similar to prior works (Wu et al., 2019; Siegel et al., 2020), we define the
behavior policy πb(at|st) as the conditional distribution p(at|st) observed in D. Under this defi-
nition, such a behavior policy πb(at|st) is always well-defined even if the dataset was collected by
multiple, distinct behavior policies, and can be fitted with max-likelihood method over D.

3.2 BEHAVIOR REGULARIZED OFFLINE REINFORCEMENT LEARNING

Standard RL learns a policy by directly maximizing the expected sum of rewards∑
t E(st,at)∼ρπ [r(st, at)]. In contrast, the main idea underlying behavior regularization methods

for offline RL is to ensure that the learned policy π(at|st) is constrained against the behavior pol-
icy πb(at|st). Therefore, we will consider a behavior regularized objective, which augments the
standard objective with the expected sum of policy penalties over ρπ(st)

J(π) =

T∑
t=0

E(st,at)∼ρπ [r(st, at)− αD(π, πb, st)] , (1)

where D(π, πb, st) is a distributional deviation function between π(·|st) and πb(·|st) over actions
(e.g. KL divergence or Wasserstein distance). The temperature parameter α ≥ 0 determines the
relative importance of the policy penalty term against the reward, and thus control the degree to
which the learned policy π is allowed to deviate from the behavior policy πb. In particular, the
standard objective can be recovered in the limit as α → 0. It is common in prior works (Wu et al.,
2019; Kumar et al., 2019) to use a fixed α or adaptively train α as a Lagrangian multiplier by setting
a fixed threshold for the average distributional deviation.
How to determine the degree of behavior regularization is a key challenge in behavior regularized
offline RL. Existing methods generally use a fixed α or train it to satisfy a policy constraint that
has a specified upper bound. A major limitation of these approaches is that they prefer to use a
conservative upper bound and thus keep the distributional deviation small to control errors due to
out-of-distribution actions. However, in practice, the distributions do need to deviate in order for the
learned policy to improve over the behavior policy, especially in cases where the dataset D contains
a large amount of random data and induces a bad behavior policy. In this work, we will discuss how
we can devise a model-free offline RL algorithm, which imposes an adaptive policy constraint on
the learned policy regardless of the quality of dataset.

4 METHODOLOGY

Our offline RL algorithm can be derived starting from a general formulation of Adaptive Policy
constrainT (AdaPT), which is the key idea of our work. In this section, we first present this derivation
to obtain the main results. Then the proposed AdaPT is applied to develop a practical deep RL
algorithm for learning from offline data.
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4.1 ADAPTIVE POLICY CONSTRAINT

In this work, we aim to achieve robust offline RL even from low-quality datasets, such as the dataset
that contains a large amount of random data, which usually induces a bad behavior policy. To learn a
policy whose performance is not largely limited by the behavior policy, we propose a novel method,
i.e., Adaptive Policy constrainT (AdaPT), which allows effective exploration on out-of-distribution
actions by imposing an adaptive constraint on the distributional deviation between the learned policy
and the behavior policy. Our AdaPT can be derived starting from a behavior regularized variant of
softmax temporal consistency (Nachum et al., 2017). This variant arises by optimizing the objective
(1) with the distributional deviations D(π, πb, ·) having a form of KL divergence. In this setting, the
state value function (also known as value function) V π(s), describes the expected sum of discounted
future rewards and policy penalties when starting in state s and thereafter following policy π. Then
we can define state value V π(s) recursively as

V π(s) = Ea∼π,s′
[
r(s, a)− α log π(a|s) + α log πb(a|s) + γV π(s′)

]
. (2)

Let π∗ = arg maxπ EsV π(s) denote the optimal policy corresponding to the above Bellman e-
quation (2), and let V ∗ = V π

∗
denote the optimal value function. Then the optimal action value

function (also known as Q-function) can be expressed as Q∗(s, a) = r(s, a) + γEs′
[
V ∗(s′)

]
. It is

worth noting that when α > 0, the optimal policy π∗ is no longer deterministic, since the relative
entropy term prefers the use of policies with more uncertainty. By reformulating the right-hand
side (RHS) of Equation (2) as a KL divergence between the learned policy π and the rest, we can
explicitly solve for the optimal policy π∗ as a Boltzmann distribution of the form

π∗(a|s) = exp
{
Q∗(s, a)/α+ log πb(a|s)− V ∗(s)/α

}
. (3)

Taking the log of both sides of Equation (3) reveals an important connection among the optimal
values Q∗(s, a), V ∗(s), and corresponding action probabilities under the log-policy log π∗(a|s) and
log πb(a|s). Then we can formally characterize the distributional deviation between π∗ and πb in
terms of Q and value functions as

log π∗(a|s)− log πb(a|s) = (Q∗(s, a)− V ∗(s))/α. (4)
We point out that similar notion of behavior consistency established in Equation (4) has been studied
in previous works (Nachum et al., 2017; 2018). For example, Nachum et al. (2018) has proposed
to restrict the learned policy within a relative entropy trust region around a prior policy for more
stable learning. Here we make new observations to achieve robust offline RL even from low-quality
datasets. We note that the behavior consistency (4) gives the optimal distributional deviation between
the learned policy π and the behavior policy πb for a specific α, and thus shows the possibility to
construct an adaptive policy constraint for offline RL. The formal result is given in Proposition 1.
Proposition 1 (Adaptive Policy constrainT). Suppose that the policy set Π is composed of all the
policies π satisfying the consistency constraint

Es∼D,a∼π
[

log
π(a|s)
πb(a|s)

]
≤ Es∼D,a∼π∗

[
log

π∗(a|s)
πb(a|s)

]
. (5)

Then, when optimizing the objective (1) within the policy set Π, the following inequality holds

Es∼D,a∼π
[

log
π(a|s)
πb(a|s)

]
≤ Es∼D

[
Q∗(s, arg maxaQ

∗(s, a))−V ∗(s)
α

]
. (6)

Proof. See Appendix A.

The proposed AdaPT has several good properties. First, the search space of policy is restricted to
a small set Π to avoid unstable global exploration, which may lead to large extrapolation error on
out-of-distribution actions. Second, the policy set Π corresponds to the minimal radius that includes
the optimal policy π∗, around the behavior policy. Third, the upper bound in Equation (5) can
adapt to the behavior policy πb, which generally reflects the quality of dataset. More concretely,
the constraint imposed on the learned policy can be adjusted adaptively according to the quality of
dataset, encouraging the agent to explore in space away from the behavior policy.

4.2 ADAPTIVE POLICY CONSTRAINT BASED POLICY ITERATION

We now derive AdaPT based policy iteration, a general algorithm that alternates between policy
evaluation and policy improvement in the adaptive policy constraint framework. Our derivation is
based on a tabular setting to enable theoretical analysis.
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In the policy evaluation step, we wish to compute the action value of a policy π according to the
behavior regularized objective (1). For a fixed policy π and temperature parameter α, the action
value can be computed iteratively, starting from any Q-function and repeatedly applying a modified
Bellman backup operator T π,α given by

T π,αQ(st, at) := r(st, at) + γEst+1,at+1∼π

[
Q(st+1, at+1)− α log

π(at+1|st+1)

πb(at+1|st+1)

]
. (7)

Then, for an initial Q-function Q0, we can obtain the optimal Q-function Qπ for any policy π by
repeatedly applying T π,α to the old Q-function, namely, Qn+1 = T π,αQn. The convergence is
readily proved by defining a relative entropy augmented reward and then applying the standard
convergence results for policy evaluation (Sutton & Barto, 2018).

In the policy improvement step, we update the policy by directly applying the new Q-function to (3).
Specifically, for each state and action, we update the policy within the policy set Πk according to

πk+1(at|st) = arg min
π∈Πk

DKL
(
π, exp {Qπk(st, at)/α+ log πb(at|st)− logZπk,α(st)}

)
, (8)

whereZπk,α(st) is an action-independent normalization function. and the policy set Πk is composed
of all the policies π that satisfy

Es∼D,a∼π
[
log

π(a|s)
πb(a|s)

]
≤Es∼D,a∼πk

[
Qπk(s, a)−V πk(s)

α

]
≤Es∼D

[
Qπk(s, a′)−V πk(s)

α

]
, (9)

where a′ = arg maxaQ
πk(s, a). This particular choice of update can be guaranteed to result into

an improved policy in terms of its Q-function and avoid optimizing in the whole policy space. We
show that the new policy has a higher Q-value than the old policy with respective to the objective in
Equation (1). This result is formalized in Theorem 1.
Theorem 1. Let πk+1 is updated using Equation (8). Then the second term of Equation (9) is the
minimum upper bound to ensure that Qπk+1(st, at) ≥ Qπk(st, at) for all (st, at) ∈ D.

Proof. See Appendix B.

The convergence of the whole algorithm can be readily proved based on Theorem 1, and we refer the
reader to the Theorem 1 of Haarnoja et al. (2018) for a complete analysis. Although this algorithm
will provably find the optimal solution, we can perform it in its exact form only in the tabular case.
In the next section, we will approximate the algorithm for continuous domains.

4.3 ADAPTIVE POLICY CONSTRAINT AUGMENTED ACTOR-CRITIC

As discussed above, large, continuous domains require us to derive a practical approximation to
AdaPT based policy iteration. Here we present a practical model-free offline actor-critic algorithm,
which relies on function approximator to represent the Q-value and policy. In particular, we employ
an adaptive scheme to update the temperature parameter α based on the proposed AdaPT. For the
remainder of this paper, we will consider a parameterized Q-function Qθ(st, at) and a tractable
policy πφ(at|st). In the following, we will derive update rules for network parameters (θ, φ) and
temperature parameter α.

The critic network approximates the Q-function. According to Equation (7), the parameters of critic
can be optimized directly by minimizing the following Bellman residual

JQ(θ) = E(st,at,rt,st+1)∼D
[
Qθ(st, at)− rt − γV (st+1)

]2
, (10)

where D is a fixed offline dataset, and

V (st+1) = Eat+1∼πφ
[
Qθ′(st+1, at+1)− α log πφ(at+1|st+1) + α log πb(at+1|st+1)

]
. (11)

Note that θ′ is the parameter vector of a target critic network. There is no need to include a separate
function approximator for V , since it is related to the Q-function, the learned policy and the behavior
policy as shown in Equation (11). Here we evaluate this quantity using actions sampled from πφ.
In addition, we also parameterize two Q-functions Qθi(i = 1, 2) and train them independently to
mitigate positive bias in the policy improvement step that is known to degrade the performance of
value-based methods (Fujimoto et al., 2018; Haarnoja et al., 2018).
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The actor network approximates the policy, the parameters of which can be trained by directly min-
imizing the KL divergence on the RHS of Equation (8), which we reproduce here in parameterized
form for completeness

Jπ(φ) = DKL
(
πφ(·|st)

∥∥ exp
{
Qθ(st, ·)/α+ log πb(·|st)− logZαθ (st)

})
. (12)

There are several options to minimize Jπ , depending on the choice of the policy class. A general
likelihood ratio gradient estimator that can be used to update the actor network is given as follows
∇φJπ(φ) = Eat∼πφ

[
∇φ log πφ(at|st)

(
log πφ(at|st)−log πb(at|st)−Qθ(st, at)/α+1

)]
, (13)

which can be derived directly by replacing the entropy term of soft policy gradient (Shi et al., 2019)
with our relative entropy term. In our implementation, we employ a Gaussian policy with mean and
covariance predicted by DNNs. In this special setting, an alternative is to apply the reparameteriza-
tion trick, which allows us to backpropagate the gradient from the critic network.

The temperature parameter α controls the degree to which the learned policy πφ is allowed to deviate
from the behavior policy πb. However, the original form of AdaPT (9) is intractable, since the action
with the highest Q-value is unavailable in continuous cases. To tackle this problem, we instead
utilize a Max-Q approximation πq , which samples a few actions from πφ and then returns the one
with the highest Q-value Qθ. While in principle we could choose any update rule, it will turn out to
be convenient to use the stochastic gradient descent as follows

∇αJα(α) = β Eat∼N (πq,σ)

[
Qθ(st, at)−V (st)

α

]
− Eat∼πφ

[
log

πφ(at|st)
πb(at|st)

]
, (14)

where V (st) is evaluated using actions sampled from πφ as in Equation (11),N (πq, σ) is a Gaussian
policy with a covariance matrix σ, and β is a positive correction coefficient to mitigate the bias
introduced by the Max-Q sampling policy. Moreover, to stabilize the training, the first term of
Equation (14) is bounded by a maximum target divergence B. We emphasize that the above update
rule shows an adaptive scheme to learn α. When the learned policy πφ is too close to the behavior
policy πb, α will be decreased to result in a relaxed policy constraint according to Equation (14).

The complete algorithm, which we call AdaPT augmented Actor-Critic (AdaPT-AC), is summarized
in Appendix D. AdaPT-AC alternates between updating the parameters of networks and temperature
parameter using the stochastic gradients on batches sampled from a fixed offline dataset.

5 EXPERIMENTS

The goal of our experimental evaluation is to verify the effectiveness of our method on offline
datasets, especially on those datasets that contain a large amount of random data and induce bad
behavior policies. To that end, we evaluate our AdaPT-AC on a range of challenging MuJoCo contin-
uous control tasks (Todorov et al., 2012) from the OpenAI Gym benchmark suite (Brockman et al.,
2016), including Humanoid-v2, Reacher-v2, Walker2d-v2, Hopper-v2, Ant-v2 and HalfCheetah-
v2. For each task, we construct four datasets of different qualities, as described in Section 5.1.
We compare our algorithm against several baselines, including behavioral cloning (BC), offline
implementation of soft actor-critic (offline SAC) (Haarnoja et al., 2018), batch-constrained deep Q-
learning (BCQ) (Fujimoto et al., 2019), bootstrapping error accumulation reduction (BEAR) (Kumar
et al., 2019), behavior regularized actor-critic with value penalty (BRAC-v) (Wu et al., 2019) and
the H-variant of conservative Q-learning (CQL(H)) (Kumar et al., 2020). For more details on the
experimental setup and hyperparameters of each method, see Appendix C.

5.1 OFFLINE DATASET

To comprehensively evaluate our method, we follow (Wu et al., 2019) to construct four offline
datasets of different qualities (mixed, medium, low, very low) for each task. All these datasets
have one million (1M) transitions collected with different combinations of multiple policies, as
described below. mixed: all transitions observed during a training run of an online SAC algorithm
until a specified iteration step is reached. medium: 0.2M transitions with a random policy πr, 0.4M
transitions with a partially trained policy πp and 0.4M transitions with a perturbed version of πp, i.e.,
π̃p. low: 0.6M transitions with πr, 0.2M transitions with πp and 0.2M transitions with π̃p. very low:
0.8M transitions with πr, 0.1M transitions with πp and 0.1M transitions with π̃p. The performance
of the partially trained policies (distinct from the behavior policies which have injected noise) and
more details about how to generate these datasets are given in Appendix C.
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Table 1: Evaluation results comparing BC, offline SAC, BCQ, BEAR, BRAC-v, CQL(H) and our AdaPT-AC
on four datasets. All results are reported as the average undiscounted return of the learned policy over three
independent trials with random seeds. Here we omit BRAC with policy regularization (BRAC-p) (Wu et al.,
2019) because BRAC-v generally obtains higher performance than BRAC-p. The results of offline SAC are
given in Appendix E due to the limitation of space.

Tasks Datasets BC BCQ BEAR BRAC-v CQL(H) AdaPT-AC (ours)

Humanoid

mixed 4007±437 2347±230 2417±200 2168±250 271±10 5001±151
medium 2631±211 1590±130 624±87 1537±334 136±59 4282±523
low 582±82 966±152 259±15 1200±144 283±216 4496±381
very low 406±100 574±53 219±39 866±150 178±94 4487±373

Walker2d

mixed 3711±116 3614±616 2347±257 3926±261 4669±14 4724±24
medium 1683±12 1733±365 2246±131 2956±216 3347±74 3785±138
low 851±426 1076±47 1474±845 2240±309 929±55 3452±12
very low 1000±631 1248±31 1162±236 1550±588 441±18 3360±44

Hopper

mixed 3519±12 1753±285 2654±34 3532±76 3605±11 3614±16
medium 1809±186 1641±495 2136±199 2729±559 2686±9 3461±22
low 464±439 1401±509 2658±213 1789±953 2819±467 3325±41
very low 720±398 1104±106 1975±782 747±406 3045±76 2740±121

Reacher

mixed -3.3±0.3 -3.2±0.0 -3.2±0.2 -3.3±0.3 -3.3±0.0 -2.8±0.1
medium -4.7±0.2 -4.1±0.2 -3.7±0.1 -4.1±0.0 -4.0±0.0 -3.3±0.1
low -4.9±0.2 -4.4±0.1 -4.0±0.4 -4.3±0.1 -4.5±0.1 -3.4±0.2
very low -5.3±0.1 -4.2±0.0 -4.8±0.2 -4.3±0.2 -4.3±0.2 -3.5±0.3

HalfCheetah

mixed 8417±25 7782±201 8205±33 9201±26 8896±20 9343±29
medium 4651±12 5392±99 4533±15 6268±35 5920±28 6764±77
low 3590±490 5343±13 4805±27 6189±14 5899±12 6672±82
very low 1823±914 5299±10 4753±76 6149±23 5750±66 6286±105

Ant

mixed 4922±55 3600±282 4974±102 4041±329 5026±135 4982±216
medium 2276±64 2451±152 2514±40 3198±154 3031±70 3324±29
low 2215±26 2272±87 2712±45 3241±96 2908±40 3412±70
very low 2205±38 2246±88 2710±41 2911±49 2753±45 3250±53

It is worth noting that we do not directly use the D4RL (Fu et al., 2020), which is a recently pro-
posed standard benchmark suite for offline RL, due to several reasons. First, the D4RL includes only
three MuJoCo continuous tasks (HalfCheetah, Hopper and Walker2d). Second, we want to generate
lower-quality datasets for evaluation, such as our low and very low datasets which contain a large
amount of random data and induce bad behavior policies. Third, our mixed and medium datasets
correspond to the mixed and random-medium datasets of D4RL, respectively. Therefore, our dataset
suite, which includes two lower-quality datasets (i.e., low and very low), can be seen as a straight-
forward and important extension to D4RL. In addition, we do not compare different algorithms on
completely random dataset, since almost all algorithms fail to achieve satisfactory performance.

5.2 COMPARATIVE EVALUATION

We compare AdaPT-AC against baselines by training on these fixed datasets and evaluating the
learned policies on the real environments. Table 1 summarizes the performance of different algo-
rithms across all tasks and datasets. The training curves are given in Appendix E. The empirical
results show that AdaPT-AC substantially outperforms all baselines on almost all tasks and datasets,
verifying the effectiveness of our method. On the hardest task, Humanoid-v2, AdaPT-AC achieves
the best performance on all datasets, whereas the others fail to make great progress. In addition, we
can observe that as the quality of dataset becomes worse or as the difficulty of dataset increases (i.e.,
from medium to very low), almost all baseline methods have an obvious performance degradation,
since their performance is largely limited by that of the behavior policy. In contrast, our AdaPT-
AC can still perform well on the low and very low datasets that contain a large amount of random
data and induce bad behavior policies. This conclusion indicates that our AdaPT method is able to
adaptively adjust the constraint imposed on the learned policy according to the quality of dataset,
as discussed in Section 4.1. Moreover, it can be seen that although the low and very low datasets
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induce bad behavior policies, our AdaPT-AC is able to learn a policy that can be improved to a great
extend and is allowed to deviate far from the behavior policy.

5.3 ABLATION STUDIES

To understand how each component in AdaPT-AC affects performance, we further conduct a through
ablation study to examine how sensitive AdaPT-AC is to the choice of two main hyperparameters,
namely correction coefficient β and maximum target divergence B. In practice, we found β and B
to be the only two hyperparameters that require tuning for new tasks.
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Figure 1: Learning performance and curves of AdaPT-AC
with varying correction coefficient β.

Correction coefficient. Since the induced
policy of Q-function in the second term of
Equation (9) is intractable when a param-
eterized policy is used, we instead apply
a greater upper bound to update the tem-
perature parameter, as shown in Equation
(14). To mitigate the bias introduced by
a greater upper bound, the target diver-
gence is multiplied by a correction coef-
ficient β ∈ (0, 1). Figure 1 shows how
learning performance and learning curve change when the correction coefficient is varied. The
learning curves on other datasets are given in Appendix E. It can be seen that AdaPT-AC is slightly
sensitive to the value of correction coefficient β. Specifically, a small β leads to a strict constraint
on the learned policy, hence the learning is prone to collapse when bad transitions are sampled. For
a large β, the agent is allowed to explore in a larger action space, resulting in unstable learning.
With the right correction coefficient, the model balances policy constraint and exploration, leading
to better performance and stable learning. In practice, we found that correction coefficient is not
sensitive to different tasks, and 0.5 is an appropriate choice for most tasks.
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Figure 2: Learning performance and curves of AdaPT-AC
with varying maximum target divergence B.

Maximum target divergence. In princi-
ple, it is unnecessary to restrict the tar-
get divergence with B if the expectation
can be calculated exactly in Equation (14).
However, in our implementation, we have
to approximate it by sampling a few ac-
tions for continuous domains. To avoid
extreme distributional deviation resulted
from out-of-distribution actions and stabi-
lize the learning, the target divergence is
bounded by a maximum value B. Figure 2 compares the final performance and learning curves of
our AdaPT-AC with three different values of B. The learning curves on other datasets are given in
Appendix E. We can see that AdaPT-AC is also slightly sensitive to the choice of maximum target
divergence B. A large B allows the agent to explore on out-of-distribution actions that are far from
the behavior policy, but at the cost of unstable learning. In practice, we just need to make a coarse
grid search to choose an appropriate B.

6 CONCLUSION

In this work, we proposed Adaptive Policy constrainT augmented Actor-Critic (AdaPT-AC), a prac-
tical model-free offline RL algorithm that can learn a generalizable policy even from the datasets
that contain a large amount of random data. AdaPT-AC can adaptively adjust the constraint imposed
on the learned policy to allow effective exploration on out-of-distribution actions. We theoretically
show that AdaPT produces a tight upper bound on the distributional deviation between the learned
policy and the behavior policy, and this upper bound is the minimum requirement to guarantee pol-
icy improvement at each iteration. In particular, our AdaPT-AC enables the agent to learn a policy
that can be improved to a great extend and is allowed to deviate far from the behavior policy. Em-
pirically, we demonstrate that AdaPT-AC outperforms several prior algorithms on a range of very
complex and high-dimensional continuous control tasks, especially in the case of low-quality offline
datasets. Our results suggest that AdaPT provides a promising avenue for achieving near-optimal
performance with policy constraint based offline RL methods, and further exploring explicit and
direct implementations of AdaPT is an exciting direction for future work.
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database composition in deep reinforcement learning. In Deep Reinforcement Learning Workshop,
NeurIPS, 2015.

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement
learning. arXiv preprint arXiv:1904.12901, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alexander J Smola.
A kernel approach to comparing distributions. In Proceedings of the National Conference on
Artificial Intelligence, volume 22, pp. 1637, 2007.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International Confer-
ence on Robotics and Automation, pp. 3389–3396. IEEE, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, 2018.

9



Under review as a conference paper at ICLR 2021

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–
673, 2018.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, pp. 11784–11794, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pp. 45–73. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 2775–2785, 2017.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Trust-pcl: An off-policy trust
region method for continuous control. In International Conference on Learning Representations,
2018.

Shamim Nemati, Mohammad M Ghassemi, and Gari D Clifford. Optimal medication dosing from
suboptimal clinical examples: A deep reinforcement learning approach. In 2016 38th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2978–
2981. IEEE, 2016.

Brendan ODonoghue, Ian Osband, Remi Munos, and Volodymyr Mnih. The uncertainty bellman
equation and exploration. In International Conference on Machine Learning, pp. 3836–3845,
2018.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in Neural Information Processing Systems, pp. 4026–4034, 2016.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Olivier Pietquin, Matthieu Geist, Senthilkumar Chandramohan, and Hervé Frezza-Buet. Sample-
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A PROOF OF PROPOSITION 1

Proof. By substituting Equation (4) into the RHS of Equation (5), we have

Es∼D,a∼π
[
log

π(a|s)
πb(a|s)

]
≤ Es∼D,a∼π∗

[
Q∗(s, a)−V ∗(s)

α

]
(15)

≤ Es∼D
[
Q∗(s, arg maxaQ

∗(s, a))−V ∗(s)
α

]
. (16)

The final inequality is obtained since the expected Q-value Ea∼π[Q∗(s, a)] under any policy π is
always not greater that maxaQ

∗(s, a).

B PROOF OF THEOREM 1

Proof. We will drop the state and action arguments from the following derivation for improved
readability. According to the Bellman equation, the policy πk at the last iteration step satisfies

ED,πk
[

log
πk
πb

]
= ED,πk

[
Qπk−V πk

α

]
≤ ED

[
maxaQ

πk−V πk
α

]
, (17)

hence we get πk ∈ Πk. In the policy improvement step, since πk+1 is the optimal solution to
Equation (8), it must be the case that

DKL
(
πk+1, exp{Qπk/α+ log πb − logZπk,α}

)
≤

DKL
(
πk, exp{Qπk/α+ log πb − logZπk,α}

)
,

(18)

By rewriting the KL divergence in its tractable form and further replacing Eπk [Qπk − α log πk +
α log πb] with V πk , we obtain

V πk ≤ Eπk+1

[
Qπk − α log

πk+1

πb

]
. (19)

Next, consider the behavior regularized Bellman equation:
Qπk = r + γEs′ [V πk ] (20)

≤ r + γEs′,a′∼πk+1

[
Qπk − α log

πk+1

πb

]
(21)

≤ r + γEs′,a′∼πk+1

[
r′ − α log

πk+1

πb
+ γEs′′ [V πk ]

]
(22)

...
≤ Qπk+1 . (23)

We keep expanding Qπk and then applying Equation (19) on the RHS, which converges to Qπk+1 .
It is worth noting that the above inequality only holds when πk ∈ Πk. Therefore, the second term
of Equation (9) is the minimum to guarantee policy improvement in terms of its Q-function.

C EXPERIMENTAL DETAILS

Dataset collection. We consider six challenging MuJoCo continuous control tasks. For each task,
we generate four offline datasets of different qualities, i.e., mixed, medium, low and very low.
Each dataset contains 1 million (1M) transitions, which are collected using a mixture of multiple
policies of different qualities. To simulate the real-world scenarios, we first obtain a partially trained
policy πp by training a policy with off-policy SAC and performing online interaction until the policy
performance achieves a performance threshold. The performance of the partially trained policies
and corresponding performance thresholds are listed in Table 2. Then, we perturb πp with ε-greedy
(ε = 0.1) noise, resulting in an exploration policy π̃p. That is, at each step, π̃p has 0.1 probability to
take a uniformly random action, otherwise takes the action sampled from πp. In addition to πp and
π̃p, we also use a uniform-at-random policy πr to generate some random data, since there generally
exists a large amount of random data in many industrial scenarios. The specific dataset collections
are shown below:
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Table 2: The performance of the partially trained policies and corresponding perfor-
mance thresholds for each task.

Tasks performance threshold performance of the partially trained policy

Humanoid-v2 1500 1821
Walker2d-v2 1000 1092
Hopper-v2 1000 1136
Reacher-v2 -6.0 -5.8

HalfCheetah-v2 2500 2855
Ant-v2 1000 1007

• mixed: The dataset consists of all transitions observed during a training run of an online
SAC algorithm until the maximum iteration step is reached.

• medium: The dataset is a mixture of three parts: 0.2M transitions are collected by the
random walk policy πr, 0.4M transitions are collected by purely executing πp, and the
remaining 0.4M transitions are collected by the perturbed policy π̃p.
• low: This dataset is also a mixture of three parts: 0.6M transitions are collected by the

random walk policy πr, 0.2M transitions are collected by purely executing πp, and the
remaining 0.2M transitions are collected by the perturbed policy π̃p.
• very low: Similar to the medium and low datasets, 0.8M transitions are collected by the

random walk policy πr, 0.1M transitions are collected by purely executing πp, and the
remaining 0.1M transitions are collected by the perturbed policy π̃p.

Implementation details. Most of our baselines build on the open source implementations 1 released
by the authors of BRAC, hence we refer the readers to the Appendix A of Wu et al. (2019) for a
detailed description. Here we only give the implementation details of our AdaPT-AC algorithm. For
all function approximators, we use fully-connected neural networks with RELU activations. For
policy networks, we use tanh (Gaussian) on outputs following BEAR (Kumar et al., 2019). The
sizes of policy network and Q-network are (200, 200) and (300, 300), respectively. As in other deep
RL algorithms, we maintain source and target Q-functions with an update rate 0.005 per iteration.
The distributional deviation is calculated by sampling 4 actions. As discussed previously, the target
divergence or the adaptive upper bound is calculated by sampling 4 actions with a Gaussian policy.
While the expectation of this Gaussian policy is obtained by sampling 10 actions from the learned
policy πθ and then take the one with the highest learned Q-value, the variance is directly chosen
as the variance of the learned policy. We use Adam for actor, critic and temperature parameter
optimizers, the learning rates of which are 3e-4, 1e-3 and 3e-5, respectively. The maximum training
step is set to 1× 106. At test time, we follow (Wu et al., 2019; Kumar et al., 2019) by sampling 10
actions from πθ at each step and take the one with the highest learned Q-value.

Hyperparameters. For all baselines, we use the hyperparameters reported in Wu et al. (2019),
which has performed a grid search over some important hyperparameters. For our AdaPT-AC, we
do a grid search over correction coefficient β and maximum target divergence B. Specifically, we
search correction coefficient over three values (0.3, 0.5, 0.7) on walker2d-v2 and then use the best
one for all tasks. The maximum target divergence is sensitive to different tasks, hence we search
over five values (3, 5, 10, 20, 50) for each task. The correction coefficient and maximum target
divergence used on each task are listed in Table 3. Other hyperparameters, were kept identical to the
BRAC algorithm implementation, inlcuding the twin Q-function trick, soft-target updates, etc.

1https://github.com/google-research/google-research/tree/master/
behavior_regularized_offline_rl
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Table 3: The correction coefficient and maximum target divergence used on each
task for our AdaPT-AC algorithm.

Tasks correction coefficient β
maximum target divergence B

mixed medium low very low

Humanoid-v2 0.5 10 10 10 10
Walker2d-v2 0.5 5 3 5 5
Hopper-v2 0.5 3 3 3 3
Reacher-v2 0.5 10 10 10 20

HalfCheetah-v2 0.5 50 50 50 50
Ant-v2 0.5 10 5 10 10

D ALGORITHM

Algorithm 1: AdaPT-AC: Adaptive Policy constrainT augmented Actor-Critic
1 Randomly initialize critic Qθ and actor πφ with weights θ and φ;
2 Initialize target network Qθ′ with θ′ ← θ, and temperature parameter α with α← α0;
3 Set offline dataset D, target update rate τ , minibatch size N , learning rates {λθ, λφ, λα};
4 for each gradient step do
5 Sample N transitions (s, a, r, s′) from D;
6 Update critic network: θ ← θ − λθ∇θJQ(θ)
7 Update actor network: φ← φ− λφ∇φJπ(φ)
8 Update temperature parameter: α← α− λα∇αJα(α)
9 Update target network: θ′ ← τθ + (1− τ)θ′

10 end

E ADDITIONAL RESULTS

Table 4: Evaluation results of offline SAC on four datasets. All results are
reported as the average undiscounted return of the learned policy over three
independent trials with random seeds.

Tasks Datasets offline SAC Tasks Datasets offline SAC

Humanoid

mixed 1047±488

Walker2d

mixed 1731±416
medium 451±23 medium 916±70
low 629±25 low 892±82
very low 672±58 very low 827±65

Hopper

mixed 3584±18

Reacher

mixed -2.8±0.1
medium 2716±464 medium -3.2±0.2
low 1730±830 low -3.2±0.1
very low 1618±721 very low -3.2±0.1

HalfCheetah

mixed 9010±25

Ant

mixed 99±151
medium 6585±34 medium 229±235
low 6538±92 low 240±248
very low 6292±98 very low 240±244
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Figure 3: Learning curves of different algorithms on the medium datasets.
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Figure 4: Learning curves of different algorithms on the low datasets.
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Figure 5: Learning curves of different algorithms on the very low datasets.
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(a) Walker2d (mixed dataset)
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(b) Walker2d (medium dataset)
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(c) Walker2d (very low dataset)

Figure 6: Learning curves of AdaPT-AC with varying correction coefficient β.
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(b) Walker2d (medium dataset)
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Figure 7: Learning curves of AdaPT-AC with varying maximum target divergence B.
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