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Abstract

With the rapid growth in language processing001
applications, fairness has emerged as an impor-002
tant consideration in data-driven solutions. Al-003
though various fairness definitions have been004
explored in the recent literature, there is lack005
of consensus on which metrics most accu-006
rately reflect the fairness of a system. In this007
work, we propose a new formulation – accu-008
mulated prediction sensitivity, which measures009
fairness in machine learning models based on010
the model’s prediction sensitivity to perturba-011
tions in input features. The metric attempts to012
quantify the extent to which a single prediction013
depends on a protected attribute, where the014
protected attribute encodes the membership015
status of an individual in a protected group.016
We show that the metric can be theoretically017
linked with a specific notion of group fairness018
(statistical parity) and individual fairness. It019
also correlates well with humans’ perception020
of fairness. We conduct experiments on two021
text classification datasets – Jigsaw Toxicity,022
and Bias in Bios, and evaluate the correlations023
between metrics and manual annotations on024
whether the model produced a fair outcome.025
We observe that the proposed fairness metric026
based on prediction sensitivity is statistically027
significantly more correlated with human an-028
notation than the existing counterfactual fair-029
ness metric.030

1 Introduction031

Ongoing research is increasingly emphasizing the032

development of methods which detect and miti-033

gate unfair social bias present in machine learning-034

based language processing models. These methods035

come under the umbrella of algorithmic fairness036

which has been quantitatively expressed with nu-037

merous definitions (Mehrabi et al., 2019b; Jacobs038

and Wallach, 2021). These fairness definitions are039

broadly categorized into two types, i.e, individual040

fairness and group fairness. Individual fairness041

(e.g., counter-factual fairness (Kusner et al., 2017))042

is aimed at evaluating whether a model gives simi- 043

lar predictions for individuals with similar personal 044

attributes (e.g., age or race). On the other hand, 045

group fairness (e.g., statistical parity (Dwork et al., 046

2012)) evaluates fairness across cohorts with same 047

protected attributes instead of individuals (Mehrabi 048

et al., 2019b). Although these two broad categories 049

of fairness define valid notions of fairness, hu- 050

man understanding of fairness is also used to mea- 051

sure fairness in machine learning models (Dhamala 052

et al., 2021). Existing studies often consider only 053

one or two these verticals of measuring fairness. 054

In our work, we propose a formulation based on 055

models sensitivity to input features – the accumu- 056

lated prediction sensitivity, to measure fairness of 057

model predictions. We establish its theoretical rela- 058

tionship with statistical parity (group fairness) and 059

individual fairness (Dwork et al., 2012) metrics. 060

We then demonstrate the correlation between the 061

proposed metric and human perception of fairness 062

using empirical experiments. 063

Researchers have proposed metrics to quantify 064

fairness based on a model’s sensitivity to input 065

features. Specifically, Maughan and Near (2020); 066

Ngong et al. (2020) propose a prediction sensitiv- 067

ity metric that attempts to quantify the extent to 068

which a single prediction depends on a protected 069

attribute. The protected attribute encodes the mem- 070

bership status of an individual in a protected group. 071

Prediction sensitivity can be seen as a form of fea- 072

ture attribution, but specialized to the protected 073

attribute. In our work, we extend their concept of 074

prediction sensitivity to propose accumulated pre- 075

diction sensitivity. Akin to the metric proposed by 076

(Maughan and Near, 2020; Ngong et al., 2020), our 077

metric also relies on model output’s sensitivity to 078

changes in input features. Our metric generalizes 079

their notion of sensitivity, where the model sen- 080

sitivity to various input features can be weighted 081

non-uniformly. We show that the formulation fol- 082

lows certain properties for the chosen definitions 083
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of group and individual fairness and also present084

several methodologies to select weights assigned to085

sensitivity of model’s output to input features. For086

each selection, we present the correlation between087

the accumulated prediction sensitivity and human088

assessment of the model-output fairness.089

We define our metric in the Section 3 and090

present bounds on it (under settings when a classi-091

fier follows the selected group fairness or individual092

fairness constraints) in Sections 4 and 5, respec-093

tively. Next, given that the human perception of094

fairness is not theoretically defined, we present an095

empirical study on two text classification tasks in096

Section 6. We request a group of annotators to097

annotate whether they think that model output is098

biased against a specific gender and observe that099

the proposed metric correlates positively with more100

biased outcomes. We then observe correlations101

between our metric and the stated human under-102

standing of fairness. We find that not only the103

proposed accumulated prediction sensitivity met-104

ric correlates positively with human perception of105

bias, but also beats an existing baseline based on106

counterfactual fairness.107

2 Related Work108

Over the past decade multiple efforts have been109

made on defining, measuring, and mitigating bi-110

ases in natural language understanding and gen-111

eration models (Sun et al., 2019; Mehrabi et al.,112

2019a; Sheng et al., 2021). Dwork et al. (2012)113

and Kusner et al. (2017) focus on individual fair-114

ness and propose novel classification approaches115

to ensure that a classification decision is fair to-116

wards an individual. Another set of works focus on117

group fairness. Corbett-Davies et al. (2017) present118

fair classification to ensure population from differ-119

ent race groups receive similar treatment. Hardt120

et al. (2016) focus on shifting the cost of incor-121

rect classification from disadvantaged groups for122

group fairness. Zhao and Chang (2020) propose123

an approach to measure group fairness in local re-124

gions. Finally, Kearns et al. (2019) combine the125

best properties of the group and individual notions126

of fairness.127

Multiple recent works also focus on developing128

new dataset and associated metrics to capture vari-129

ous types of biases in specific application domains.130

For example, Dhamala et al. (2021) and Nangia131

et al. (2020) propose dataset and metrics to measure132

social biases and stereotypes in language model133

generations, Bolukbasi et al. (2016); Caliskan et al. 134

(2017); Manzini et al. (2019) define metrics to ac- 135

cess gender and race biases in word vector repre- 136

sentations, and Wang et al. (2019) define metrics to 137

quantify and mitigate biases in visual recognition 138

task. Ethayarajh (2020) propose Bernstein bounds 139

to represent uncertainty about the bias. Majority 140

of these bias metrics are automatically computed, 141

for example, using a regard classifier (Sheng et al., 142

2019), sentiment classifier (Dhamala et al., 2021), 143

toxicity classifier (Dixon et al., 2018) or true posi- 144

tive rate difference between privileged and under- 145

privileged groups (De-Arteaga et al., 2019b). A 146

few works additionally validate the alignment of 147

these automatically computed bias metrics with 148

human understanding of biases by collecting an- 149

notations of biases on a subset of test data from 150

crowd-workers (Sheng et al., 2019; Dhamala et al., 151

2021). Blodgett et al. (2021, 2020) discuss the 152

limitations of several these bias datasets and mea- 153

surements. 154

However, the majority of existing bias metrics 155

are specific to the type of the model and the ap- 156

plication domain used, they may not be tested for 157

correlation with human judgement of biases, and 158

their relationship to existing definitions of fairness 159

has not been explored. Additionally, metrics such 160

as true positive or error difference between groups 161

requires ground truth labels, thereby making their 162

computation in real-time systems difficult. Spe- 163

icher et al. (2018) have attempted to present uni- 164

fied approach to measuring group and individual 165

fairness via inequality indices, however we note 166

that such metrics are non-trivial to extend to un- 167

structured data such as text. For example, gender 168

information in a text may be subtle (e.g. mention of 169

softball) and it is unclear whether presence of this 170

word should be considered to impact the gender- 171

ness of the text. Accumulated prediction sensitivity 172

metric, presented in this paper, attempts to address 173

all the above limitations of existing bias metrics. 174

We acknowledge that the proposed metric is yet to 175

be associated with other notions of fairness (e.g. 176

preference based notion of fairness (Zafar et al., 177

2017)). 178

3 Accumulated Prediction Sensitivity 179

Below, we define accumulated prediction sensitiv- 180

ity, a metric that capture the sensitivity of a model 181

to protected attributes. 182

Definition 1 (Accumulated Prediction sensitivity). 183
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Let x ∈ X be a feature vector drawn from the184

input space X . Let w,v be stochastic vectors185

whose entries are non-negative values that sum to186

one. Given x, let f be a K-class classifier, such187

that f(x) = [f1(x), .., fk(x), .., fK(x)] denotes188

the K-dimensional probability output generated by189

the classifier. We define accumulated prediction190

sensitivity P as:191

P = wTJv; where J(k, i) =

∣∣∣∣∂fk(x)

∂xi

∣∣∣∣ . (1)192

J is a matrix such that the (k, i)th entry is193 ∣∣∣∂fk(x)
∂xi

∣∣∣, where xi is the ith entry in x. The product194

wTJ sums the absolute derivatives |∂fk(x)
∂xi
| across195

fk, k = 1, ..,K and returns a vector of summed196

derivatives with respect to each xi ∈ x. The prod-197

uct of v withwTJ further averages the derivatives198

across all the features xi ∈ x to yield the scalar P .199

The value ∂fk(x)
∂xi

captures the expected change200

in model output for the kth class given a perturba-201

tion in xi. If xi is a protected feature, arguably a202

smaller value of ∂fk(x)
∂xi

implies a fairer model; as203

then the model’s outcome does not change sharply204

with changes in xi. In order to capture the sensi-205

tivity of the model with respect to the protected206

features, one also needs to choose v judiciously.207

For example, given the explicit set of protected fea-208

tures in x, one can select v such that only entries209

corresponding those features are assigned a non-210

zero value, while the rest are set to zero. Given211

this heuristics, we expect the value P to be smaller212

for fairer models. In the next sections, we con-213

nect the accumulated prediction sensitivity to two214

known notions of fairness and human perception of215

fairness. Note that we use the following notation216

scheme in this paper – bold capital letters for ma-217

trices, bold small letters for vectors and un-bolded218

letters for scalars.219

4 Relation to Group Fairness: Statistical220

Parity221

Given a set of protected features (e.g. gender), a222

model satisfies statistical parity if model outcome223

is independent of the protected features (we note224

that identifying protected features may not always225

be feasible in the real world). We represent the226

feature vector x = [xp,xl], where xp is the set227

of protected features and xl is the remainder. Ac-228

cordingly, we choose v to be a vector such that the229

entries that sum |∂fk(xp)
∂xi

|∀xp ∈ xp in J are non-230

zero; and zero otherwise. This choice is intuitive as 231

then we sum the gradients in J that correspond to 232

protected features and measure model’s sensitivity 233

to them. The predictor f(x) will satisfy statistical 234

parity if f(xp,xl) = f(x′
p,xl)∀xp 6= x′

p. Given 235

this, we state the following theorem. 236

Theorem 1. Given a vector v with non-zero entries 237

corresponding to xp and zero entries for xl, if 238

the predictor f(x) satisfies statistical parity with 239

respect to xp, accumulated prediction sensitivity 240

will be zero. 241

Proof: If f(x) satisfies statistical parity with 242

respect toxp, the values ∂fk(x)
∂xp
∀xp ∈ xp will be all 243

zeros. This is due to the fact that the function fk(x) 244

can not be defined based on entries xp ∈ xp for 245

it to be independent of them. Therefore, for every 246

multiplication in the product Jv, either the entry 247
∂fk(x)
∂xp

will be 0 or the entry in v corresponding to 248

xl will be 0. Hence, P will be 0. 249

5 Relation to Individual Fairness 250

Dwork et al. (2012) state the notion of individ- 251

ual based fairness as: "We interpret the goal of 252

mapping similar people similarly to mean that 253

the distributions assigned to similar people are 254

similar". They propose adding a Lipschitz prop- 255

erty constraint during the classifier optimization. 256

Given a loss function L defined to optimize 257

the parameters θ of the classifier f(x), a dis- 258

tance function d(x,x′) that computes distance be- 259

tween data-points x,x′, another distance function 260

D(f(x)),f(x′)) that computes distance between 261

classifier predictions on x,x′ and a constant L, 262

Dwork et al. (2012) propose the following con- 263

strained optimization. 264

min
θ
L; such that

D(f(x)),f(x′)) < Ld(x,x′);∀x,x′ ∈X.
(2) 265

It is natural to choose an Lp norm (Bourbaki, 266

1987) for d and D. For a classifier f that is trained 267

with the above constrained optimization and the 268

choice of distance metrics D, d is an Lp norm, we 269

state the following. 270

Theorem 2. If the predictor f(x) is trained with 271

the constrained optimization stated in Eq. (2), the 272

accumulated prediction sensitivity will be upper 273

bounded by L. 274

Proof: We restate the constraint in Eq. (2) as 275

(note that the inequality sign does not change as 276
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distance metricsD, d are required to be positive for277

x 6= x′)278

∀x 6= x′, L >
D(f(x),f(x′))

d(x,x′)
. (3)279

Given the inequality holds for any pair of x,x′,280

it must also hold true for an x′ of the following281

choice.282

x′ = x+ [0, 0,∆xi, 0, 0];283

where ∆xi is a scalar perturbation in the ith entry284

in x. For a chosen Lp norm, Eq (3) becomes285

L >
[
∑K

k=1 |fk(x)− fk(x′)|p]
1
p

|∆xi|
286

>
[|fk(x)− fk(x′)|p]

1
p

|∆xi|
. (4)287

Since each entry |fk(x)− fk(x′)|p, k = 1, ..K288

is expected to be non-zero and zeroing out all such289

entries (but one) will yield a lower value than the290

summation
∑K

k=1 |fk(x) − fk(x′)|p. We can re-291

write Eq. (4) as:292

|fk(x)− fk(x+ [0, 0,∆xi, 0, 0])|
|∆xi|

.293

We can further chose ∆xi such that it is small294

perturbation, leading to the following.295

L > lim
∆xi→0

|fk(x)− fk(x+ [0, 0,∆xi, 0, 0])|
|∆xi|

=
∣∣∣∂fk(x)

∂xi

∣∣∣.296

Therefore, each entry in J is upper bounded by297

L. As vectors v,w are stochastic and they com-298

pute weighted averages of bounded entries in J , P299

(defined in Eq. (1)) must be less than or equal to L.300

We also note that as L becomes larger, the con-301

straint in the Eq. (2) becomes looser. Therefore, a302

higher value of L during optimization is expected303

to loosen the fairness constraint as well as the304

bound on fairness sensitivity. This aligns with our305

intuition of lower values of P for fairer models.306

6 Correlations with Human Perception307

of Fairness308

While the conditional statistical parity and indi-309

vidual fairness establish theoretical constraints on310

the model behaviour (e.g. independence from pro- 311

tected features and similarity in prediction out- 312

comes for similar data-points), humans may carry a 313

different notion of fairness for model outcomes on 314

individual data-points. This notion may be based 315

on their understanding of cultural norms, which 316

in turn effect their decisions in identifying which 317

model outputs could be considered biased. In this 318

section, we present experiments that correlate ac- 319

cumulated prediction sensitivity with human per- 320

ception of fairness. 321

6.1 Human Perception of Fairness 322

Given a data-point x and model prediction f(x), 323

we assign one of the K classes to the data-point. In 324

order to evaluate the human perception of fairness 325

on the data-point, we request a group of annotators 326

to evaluate the model prediction (taken as the arg- 327

max of the model output) and assess whether they 328

believe the output is biased. For instance, given the 329

social/cultural norms, a profession classifier assign- 330

ing a data-point “she worked in a hospital” to nurse 331

instead of doctor can be perceived as biased. To 332

correlate the accumulated prediction sensitivity P 333

with the human understanding of fairness, we con- 334

duct experiments on two text classification datasets. 335

We describe the datasets below, followed by our 336

choices for w and v. 337

6.2 Datasets 338

We experiment with our proposed metric on two 339

classification tasks, i.e, occupation classification 340

on Bias in Bios dataset (De-Arteaga et al., 2019a)1 341

and toxicity classification with Jigsaw Toxicity 342

dataset2. We focus on these two datasets as they 343

have been investigated in several previous stud- 344

ies (Pruksachatkun et al., 2021) and have been re- 345

ported to carry significant presence of bias. Bias in 346

bios data (De-Arteaga et al., 2019a) is purposed 347

to train occupation classifier which predicts occu- 348

pation given the biography of an individual. We 349

split the data to have 107,171 train samples, 71,447 350

validation samples and 91,917 test examples. For 351

this data, the task classifier is an occupation clas- 352

sification model which is composed of a standard 353

LSTM-based encoder combined with the output 354

layer of 28 nodes, i.e, number of occupation classes. 355

Jigsaw Toxicity dataset is commonly used to train 356

1The data is available at
https://github.com/microsoft/biosbias

2The data is available at https://www.kaggle.com/c/jigsaw-
unintended-bias-in-toxicity-classification
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toxic classifier which is tasked to predict if an input357

sentence is toxic or not. This dataset has input sen-358

tences as the comments from Wikipedia’s talk page359

edits labeled with the degree of toxicity. We split360

the dataset such that we have 1,443,900 training,361

360,974 validation samples and 97,320 test sam-362

ples. In this dataset, the task classifier is a binary363

classifier trained to predict whether a comment is364

toxic or not. We labeled the samples with >0.5365

toxicity score as toxic and others as non-toxic to366

train the task classifier. The task classifier trained367

with Jigsaw Toxicity dataset achieved an AUC of368

0.957.369

6.3 Selecting the vectors w370

The vector w sums up the absolute partial deriva-371

tives of fk(x) with respect to a given feature372

xi, ∀k = 1, ..,K. In our setup, we consider in-373

put features to be the word embeddings and the374

matrix J is computed over the same. Given a D-375

dimensional word embedding, K classes and N376

words in x, J will be a matrix of size (K)×(DN).377

In all our experiments, we choose w to be a uni-378

form vector with entries 1/K. Such a choice as-379

signs equal weight to the partial derivatives com-380

puted over each class. One may chose to put a381

higher weight on derivatives computed over a spe-382

cific class, if there is a reason to believe that the383

accumulated prediction sensitivity should be in-384

formed more with respect to that class. For in-385

stance, for a classifier that stratifies medical images386

into various diseases (Agrawal et al., 2019), dispar-387

ity in model performance with respect to malicious388

diseases can be considered more costly. Therefore,389

derivatives for classes that represent more mali-390

cious disease can be weighted higher.391

6.4 Selecting the vectors v392

Through the vector v, we aim to select words in x393

that carry gendered information. We use two for-394

mulations for the the vector v as discussed below.395

6.4.1 Using a list of gendered words396

In this setup, we use the set of gendered words397

from (Bolukbasi et al., 2016) and assign entries in398

v corresponding to those words as 1/(Ng × D),399

where Ng is the count of gendered words in the400

data-point.401

6.4.2 Using a Protected Status Model (PSM)402

While prior work has used word matching to a403

pre-defined corpus of tokens describing various404

demographic cohorts (Bolukbasi et al., 2016), these 405

corpus do not contain words that stereotypically are 406

associated with a particular cohort but may not be 407

explicitly tied to that cohort. For example, the 408

word “volleyball” is associated with females in the 409

analysis presented by (Dinan et al., 2020). 410

To capture this nuance, we propose using another 411

classifier (that acts on the same dataset as used to 412

train the original classifier, for which we aim to 413

compute P ) and using it to identify tokens contain- 414

ing information about the protected attribute (e.g. 415

gender). We discuss the model training below. 416

Protected Status Model: To extend accumu- 417

lated prediction sensitivity to settings with no ex- 418

plicit protected attribute, we train a protected status 419

model g. Given the data-point x, goal of the PSM 420

model g(x) is to predict the protected attributes. 421

Given a trained g(x), we then compute another 422

matrix Jg, where the (j, i)th entry is |∂gm(x)
xi
| (gm 423

is the probability outcomes corresponding to the 424

mth protected attribute class; e.g. male in a gen- 425

der classifier). We then define an entry vi ∈ v 426

as
∑

j Jg(m, i) (the vector v is normalized to be 427

stochastic). Intuitively, the sum
∑

j Jg(m, i) cap- 428

tures the model output sensitivity with respect to 429

the input features xi and is expected to higher if xi 430

carries more gendered information. 431

In our experiments, we train separate PSM mod- 432

els for gender sensitivity computation on Bias-in- 433

bios and Jigsaw data-sets, as each data-point in 434

these data-sets is additionally labeled with a bi- 435

nary gender class (male/female)3. Gender PSMs 436

predicts the associated gender given the datapoint 437

x. Training PSM on the same datasets used to 438

train the task classifier f helps capture the gender 439

stereotypes present in the respective datasets. For 440

instance, in a given dataset, if the word “volley- 441

ball” appears more often in the data-points that 442

correspond to the female gender, the gender classi- 443

fier’s sensitivity to this word is expected to be high 444

as the classifier may pay higher emphasis to this 445

word for gender classification. We use the same 446

model architecture as the task classifier models for 447

PSM training. PSM models for gender classifica- 448

tion achieve an accuracy of 98.79% and 95.39% 449

for Bias in bios and Jigsaw Toxicity datasets, re- 450

spectively. These accuracies are computed over the 451

same train/test split as the task classifier. 452

3We note that this is a limitation of this work as gender
can be non-binary.
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Individual Fairness Metrics Bias in Bios Jigsaw Toxicity

Corr. MI Corr. MI
P1 (uniform w,v) 0.206 0.013 0.117 0.007
CF (Garg et al., 2019) 0.326 0.025 0.214 0.022
P4 (v set using gendered words) 0.34 0.037 0.227 0.054
P5 (v set using gendered words and embedding vectors) 0.363 0.098 0.295 0.061
P2 (v set using PSM) 0.397 0.102 0.358 0.097
P3 (v set using PSM and embedding vectors) 0.441 0.105 0.374 0.101

Table 1: Point bi-serial correlations (Corr.) and Mutual Information (MI) between different individual fairness
metrics with human annotations on Bios in Bias and Jigsaw toxicity datasets. Bold numbers are the correlations
where we see statistically significant increase over CF baseline. The metric variants are sorted based on the
correlation values. We use the bootstrap method to compute statistical significance (Koehn, 2004) at p-value<0.05.

6.4.3 Using Word Embedding Vectors453

In addition to using the list of gendered words and454

PSM, we also test with a setting where we multi-455

ply the word embedding vectors to the proposed456

formulations of v. We stack the word embedding457

vectors for each word xi ∈ x to obtain a vector458

of embeddings ei. We perform an element-wise459

multiplication of the embedding vectors ei with the460

vector with entries 1/(Ng×D) for gendered words461

or
∑

j Jg(j, i) obtained using PSM. This choice is462

motivated based upon the findings in (Han et al.,463

2020). They leverage the magnitude of embedding464

vectors in determining saliency of the input words465

for the classification task at hand. Their proposed466

methodology computes saliency maps over the fea-467

tures xi ∈ x by multiplying embedding vectors468

with partial derivatives of the class probabilities469

with respect to embedding vectors themselves.470

6.5 Fairness Metrics471

We experiment with six fairness metrics. Out of472

the six, one metric is a baseline based on counter-473

factual fairness and the rest are variants of the ac-474

cumulated prediction sensitivity P .475

Counter-factual Fairness (CF) : We use the476

counter-factual fairness definition mentioned in477

Garg et al. (2019) and compute the metric as the dif-478

ference in model predictions between the original479

sample f(x) and its corresponding counter-factual480

gendered sample f(x̂). We take the L1 norm of481

the vector f(x) − f(x̂). For example, we take482

the difference in predictions between the sample483

"She practices dentistry" and "He practices den-484

tistry", which is the corresponding counter-factual485

sample. We use the definitional gender token sub-486

stitutions from Bolukbasi et al. (2016) to create487

counter-factual samples.488

P1: Uniformly weighted prediction sensitivity :489

In this setting, the values of w and v are set to490

uniform values 1
K and 1

DN , respectively. This is a 491

weak baseline as the choice of v does not provide 492

any information regarding the gender-ness of the 493

input words. 494

P2: Weighted Prediction Sensitivity based on 495

PSM : In this setting, w is chosen to be a uniform 496

vector, while v is chosen based on the PSM model. 497

P3: Weighted Prediction sensitivity + Embed- 498

ding weights : In this setting, v is chosen based 499

on the PSM model (akin to the metric in P2) which 500

is further multiplied element-wise with the word 501

embedding vectors. 502

P4: Hard gender weights based Prediction sen- 503

sitivity : In this metric, we use the list of gendered 504

words described in section 6.4.1 to determine v. 505

The value of entries in v is set to 1
DNg

. 506

P5: Hard gender weights based prediction sen- 507

sitivity + Embeddings: This setting is same as 508

above, except entries in v are further multiplied 509

element-wise with the word embedding vectors. 510

6.6 Evaluation 511

To evaluate whether the proposed prediction sensi- 512

tivity correlates with human perception of fairness, 513

we collect annotations from crowd workers using 514

the Amazon Mechanical Turk platform. Crowd 515

workers are asked to annotate if a model predic- 516

tion appears to be a biased prediction or not. For 517

Bias in Bios dataset, each sample presented to the 518

annotators has the biography and occupation pre- 519

dicted by the model. We collect annotations on a 520

random sample of the test set. For each biography 521

and a predicted occupation, we ask annotators to 522

label if the prediction is indicative of bias or if it 523

is unbiased. Bias refers to a situation where an 524

occupation is incorrectly predicted based on the 525

gender associated with the biography. For instance, 526

if the input biography is “she studied at Harvard 527

Medical School and practices dentistry.” and is 528
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Model Heat Map
Examples from the Bias in Bios dataset

TC

PSM
TC

PSM
Example from the Jigsaw toxicity dataset

TC

PSM

Table 2: Color coded representations for the vectors wTJ (top entry in each row) and v (bottom entry in each
row) per input word xi. Darker the color, the higher the magnitude of each of these vectors. These vectors are
multiplied to compute accumulated prediction sensitivity. TC: task classifier, PSM: Protected Status Model.

predicted as nurse, then we call this prediction bi-529

ased since the biography fits better for a doctor. In530

case of unbiased predictions, the prediction is not531

expected to be influenced by the gender content in532

the biography.533

Figure 1 presents a sample of examples provided534

to the annotators for annotating the Bias in bios535

dataset. Each page in the annotation task consisted536

of ten biography-profession pairs. We collect anno-537

tations for each biography-profession pair from at538

least three annotators and pick the label with major-539

ity vote. Similarly for Jigsaw Toxicity dataset, each540

sample presented to the annotators contains the text541

and associated toxicity predicted by the model. We542

restrict the set of annotators to be master annotators543

and the location of annotators to be Unites States.544

Based on the initial pilot studies conducted in the545

Amazon Mechanical Turk platform, we setup a546

payment rate to ensure a fair compensation of at547

least 15$/hour for all annotators that work at an548

average pace.549

We annotated 900 test data-points from each550

dataset. We note that these test data-points were551

misclassified by the classifiers f trained for each552

dataset. While such a sampling may not conform to553

the true distribution of biased/unbiased model out-554

comes on the overall test set, we expect to get more555

biased samples amongst the misclassified samples.556

The distribution between biased and unbiased out-557

puts was about 55:45 for Bias in Bios and 50:50558

for Jigsaw Toxicity. For the Bias in Bios and Jig-559

saw Toxicity datsets, we obtained a Fliess’ kappa560

of 0.43 and 0.47, respectively, amongst the three561

annotators. This is considered a moderate level of562

agreement, which we believe is expected for an563

relatively ambiguous task to identify model out-564

comes influenced by gender. We compute mutual565

information and bi-serial correlations as the pri- 566

mary measures of association between the human 567

annotations and the accumulated model sensitivity. 568

7 Results 569

Table 1 lists the bi-serial correlations and mutual 570

information between manual annotations and the 571

different fairness metrics. First, we observe that 572

correlations of the baseline with human judgement 573

are mediocre (0.326 and 0.214) compared to the 574

human judgement. We attributed this to the fact 575

that the metric attempts to quantify a fairly sub- 576

jective assessment of bias that may have different 577

interpretation (as also pointed out by the moderate 578

level of annotation agreement across annotators). 579

However, the proposed variants of P have stronger 580

correlations compared to the counter-factual base- 581

line (except the method P1). As expected, we see 582

the smallest correlation for P1, since this metric 583

does not account for gender-ness in v. However, 584

metrics that determine v based on PSM prediction 585

sensitivity and gendered words get higher corre- 586

lations over P1 and the CF baseline. Variant of 587

P with v informed using the embedding vectors 588

further lead to improved correlations. We also ob- 589

serve weaker statistical significance in the case of 590

Jigsaw Toxicity due to a weaker PSM. We attribute 591

this to the noise present in gender annotations for 592

Jigsaw Toxicity dataset. Hence, the performance 593

of PSM in predicting the protected status is crucial 594

for accurately measuring fairness. 595

7.1 Discussion 596

In order to further analyse the effect of PSM, we 597

look into heat-maps capturing wTJ and v sepa- 598

rately. As a reminder, the first quantity captures 599

the weighted average of partial derivatives of class 600

7



Figure 1: Examples of biased/unbiased outcomes shown to the M-turk annotators

probabilites with respect to the input features, while601

the second quantity computes the weights assigned602

to sum up the aforementioned averages. Table 2603

shows while v mostly captures gendered words604

such as “she”, “her” and “woman”, it also captures605

words such as “social”, “architecture” and “cheated”606

to carry more gendered information compared to607

other words. While these words conventionally are608

not gendered, for the datasets at hand, they seem to609

provide information whether the input data-point610

belongs to male/female gender. We also note that611

wTJ weighs on occupation specific tokens such612

as "physician", "executive", etc.613

This finding supports our motivations to compute614

v based on PSM and capturing feature attributions615

assigned to tokens that are implicitly related to a616

specific gender (instead of the definitional gender617

tokens only). Hence, by incorporating PSM in618

computing P , we can capture bias present in non-619

trivial gendered tokens.620

8 Conclusion621

Evaluating fairness is a challenging task as it re-622

quires selecting a notion of fairness (e.g. group623

or individual fairness) and then identifying met-624

rics that can capture these notions of fairness while625

evaluating a classifier. Additionally, certain notions626

of fairness may not be well defined and can change627

based upon social norms (e.g. “volleyball” being628

closely associated with females); that may seep629

into the dataset at hand. In this work, we define630

an accumulated prediction sensitivity metric that631

relies on the partial derivatives of model’s class632

probabilities with respect to input features. We633

establish properties of this metric with respect to634

the three verticals of fairness metrics: group, indi-635

vidual and human-perception based. We provide636

bounds on the metric’s value when a predictor is637

expected to carry statistical parity or is trained with 638

individual fairness. We also evaluate this metric 639

with fairness as perceived through human evalua- 640

tion of model outputs. We test variants of the pro- 641

posed metric against an existing baseline derived 642

from counter-factual fairness and observe better 643

mutual information and correlation. Specifically, a 644

variant of the metric that relies on a Protected Sta- 645

tus Model (that identifies tokens that carry gender 646

information but may not conventionally be consid- 647

ered gendered) yields the best correlation with the 648

human evaluation. 649

In the future, one can associate the proposed 650

formulation with other categories of group and in- 651

dividual fairness (Mehrabi et al., 2019a). We also 652

aim to test the metric on other datasets with other 653

protected attributes (e.g. race, nationality). Finally, 654

we can compare the metric across these datasets to 655

compare trends across protected groups. 656

9 Broader Impact 657

This work can be used to evaluate bias in models, 658

and thus used to evaluate models serving human 659

consumers. As with all metrics, the metric does not 660

capture all notions of bias, and thus should not be 661

the only consideration for serving models. While 662

this is a valid risk, this is one that is not specific 663

to prediction sensitivity. Good use of this metric 664

requires users to be cognizant of these strengths 665

and weaknesses. We also note that the metric re- 666

quires defining protected attributes (e.g. gender) 667

and our work carries the limitation that the selected 668

datasets contain binary gender annotations. Defin- 669

ing protected attributes may not always be possible 670

and when possible, the protected attribute classes 671

may not be comprehensive. 672
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