
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RECOVERING KNOWLEDGE BY HARDENING LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent neural language models show impressive capabilities on a wide range of
tasks. However, it is not fully understood how the knowledge of the language is
encoded in these models. In this work, we focus on the simplest case of languages,
regular languages, and study language models trained on strings matching certain
regular expressions. We propose a method, dubbed LaMFA, to recover the full
knowledge of the regular language model by hardening it into a finite automaton.
Such hardening is conducted by empirically partition the latent space of language
models into finite states, and then recover a deterministic finite automaton by
the estimated transition probabilities between these states. Through experiments
on regular languages of varying complexity, we demonstrate that LaMFA can
effectively extract DFA that consistently replicate the performance of the original
language model. Notably, the extracted DFAs exhibit enhanced generalization
capabilities, achieving 100% accuracy even in out-of-distribution scenarios

1 INTRODUCTION

Recent progress on large language models (Brown et al., 2020; Chowdhery et al., 2022; OpenAI,
2023) has shown impressive capabilities of neural networks on a remarkably wide range of tasks
such as chatbot (OpenAI, 2023), code generation (Chen et al., 2021), math word problem solv-
ing (Lewkowycz et al., 2022; Zheng et al., 2023; Yu et al., 2023), theorem proving (Polu & Sutskever,
2020; Jiang et al., 2023; Wang et al., 2023b;a) and even tasks on other modalities such as image
classification (Dosovitskiy et al., 2021), text-to-image generation (Koh et al., 2024), VQA (OpenAI,
2023). Some postulate that certain large language models such as GPT-4 have made an important
step towards Artificial General Intelligence (AGI) (Bubeck et al., 2023).

Impressive as their achievements are, the idea behind these large language models is strikingly simple.
As all languages (and further all sorts of information) consist of sequences of tokens (characters, bits,
etc) xi, it all boils down to model the decomposed joint distribution

p(x1, x2, ..., xT) =

T∏
t=1

p(xi|x<t) (1)

for a given T ∈ N. The key to the success of large language models lies in their ability to compress
information by learning this objective (Schmidhuber & Heil, 1996; Deletang et al., 2024). By training
on vast corpora of text, language models effectively learn to compress the statistical regularities
and patterns inherent in language. This compression process leads to the strong generalization
performance observed in state-of-the-art LLMs (Deletang et al., 2024).

Nonetheless, the nature of the compressed knowledge encoded within neural language models remains
largely opaque. Though efforts have been made by probing factual knowledge (Jiang et al., 2020)
or syntax concepts (Shi et al., 2016; Tenney et al., 2019), the internal representations and decision-
making processes of natural language models remain unclear. This lack of interpretability poses
significant challenges, particularly when it comes to addressing issues such as hallucinations (Brown
et al., 2020; Zhang et al., 2023), where models generate false or nonsensical information with high
confidence.

In this paper, we aim to shed light on the internal mechanism of language models by studying their
behavior on regular languages (Chomsky, 1959; Hopcroft et al., 2007). Regular languages, defined

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Summary of datasets/languages.

Name regex #states. #examples examples description complexity dependency
alter 0(10)∗ 3 44 0, 01010 alternate 0 and 1 AC0 local
mdY \d{2}/\d{2}/\d{4} 11 50000 09/12/2022 real date strings of format m/d/Y AC0 local
end0 (0|1) ∗ 0 3 50000 110, 0010 end with 0 TC0 local

parity0 (1|01 ∗ 0)∗ 2 50000 1, 1010 contain an even number of 0s TC0 global
div3 (0|1(01 ∗ 0) ∗ 1)∗ 3 10000 00, 11, 1001 binary integers divisible by 3 TC0 global

by specific regular expressions (regex) (Kleene, 1951), provide a controlled and well-understood
framework for examining the learning and generalization capabilities of language models. Strings of
a given regular language can be generated through a random walk on a finite state automaton (DFA),
which is equivalent to the defining regex. Therefore, the regex or its equivalent automaton represent
the compressed knowledge underlying the training instances. The central question we seek to address
is:

Given a neural language model trained exclusively on strings conforming to a
regular expression, can one recover an equivalent automaton from it?

If successful, such recovery would provide insights into how language models compress and represent
linguistic knowledge, and qualify the knowledge they have acquired.

We focus on two prominent architectures: LSTM (Hochreiter & Schmidhuber, 1997) and GPT
(decoder-only transformers) (Vaswani et al., 2017; Radford et al., 2019). We propose a hardening
process to convert a language model into an equivalent finite automaton, a method we term LaMFA
(Language Model to Finite Automaton). Given a trained language model, we begin by sampling
strings it generates. We then discretize the state space using clustering techniques such as k-means.
For LSTMs, the state space is naturally defined as its latent space. For GPTs, we hypothesize that
the latent space immediately preceding the final linear layer serves as the state space. Next, we
merge and denoise the states using the estimated transition matrix based on the existing partition,
thereby reducing potential redundancy. A DFA is then computed using the final state partition
and the transition matrix. An equivalent regex can further be obtained using the state elimination
method (Brzozowski & McCluskey, 1963).

We conducted experiments on five different regular languages, varying in their circuit complex-
ity (Arora & Barak, 2009) and context dependency, as shown in Table 1. Our experiments reveal
several key insights into the behavior of language models on regular languages. We find that all
models perform exceptionally well on languages with local context dependency, regardless of circuit
complexity. However, languages requiring global context pose significant challenges, especially for
LSTM models. Notably, LaMFA successfully extract DFA from the trained models, which often
demonstrate improved validity rates and strong generalization capabilities. In some cases, these
extracted DFA achieve high consistency with the original one, while in others, they encode more
states, particularly in larger models. These findings suggest a complex interplay between model
architecture, size, and the nature of the language being modeled.

The contributions of this paper can be summarized as follows.

• We conduct experiments on five regular languages with varying complexity, to investigate
how linguistic knowledge is encoded and compressed in language models.

• We propose a simple method, LaMFA, to recover the knowledge from trained language
models and empirically show that it can effectively extract DFA of high consistency with
the neural model;

• Our observations draw new insights of the complex interplay between model architectures,
language complexity, and the structure of extracted DFA;

• We argue that this pipeline potentially serve as a benchmark for improved interpretability of
language models. We release all codes as well as the checkpoints of language models in the
experiments

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Many efforts have been made on explaining the knowledge captured by the neural language model for
safety or ethical concerns, and its further developing (Madsen et al., 2022). Given the complex nature
of both natural language and deep networks, existing explanation methods are based on knowledge
probing, i.e. inspect the existence of specific knowledge in the model through prediction tasks or
ablations (Tenney et al., 2019; Dalvi et al., 2022; Jiang et al., 2020; Shi et al., 2016; Meng et al.,
2023; Madsen et al., 2022; Allen-Zhu & Li, 2024b). Such probing is conducted at different levels.
For example, Jiang et al. (2020) assess the storage of factual knowledge through automatic prompting.
Other existing works use predicting tasks to probe the existence of specific types of linguistic
information in the hidden layers (Shi et al., 2016; Tenney et al., 2019). Meng et al. (2023) identify
neurons associated with specific factual knowledge by causal interventions. Although probing helps
in locating knowledge, the overall generating mechanism of the language model remains unexplained.

Recent works focus on assessing the expressive power of neural networks with their ability to
recognize formal languages. Theoretically, LSTMs have been demonstrated to be strictly more
powerful than regular languages, capable of perfectly emulating finite-state automata Merrill (2019).
Empirically, Gers & Schmidhuber (2001), Sennhauser & Berwick (2018) and Bhattamishra et al.
(2020b) have evaluated the potential of LSTMs to acquire context-free grammars. Regarding
transformers, theoretical limitations have derived for different restricted form of transformers on
recognizing formal languages of different circuit complexity (Hahn, 2020; Hao et al., 2022; Merrill
et al., 2022; Merrill & Sabharwal, 2023; Li et al., 2024). For example, Merrill & Sabharwal (2023)
show that log-precision transformers Merrill & Sabharwal (2024) are upper-bounded by uniform TC0,
i.e. they are only possible to compute formal grammars that can be simulated by a circuit in uniform
TC0. Empirically, Bhattamishra et al. (2020a) examined LSTM and encoder-only transformers’ ability
to recognize regular languages and implement counter mechanisms. Liu et al. (2023) demonstrated
that transformers can learn automata with fewer layers than theoretically expected.

The extraction of deterministic finite automata from RNNs that recognizing formal languages has
been extensively studied over the past few decades. (Giles et al., 1991; Omlin & Giles, 1996; Das
& Mozer, 1993; Weiss et al., 2018; Michalenko et al., 2019). Early work by Giles et al. (1991)
and Omlin & Giles (1996) focus on simple second-order RNNs. More recently, (Weiss et al., 2018)
extended this study to more complex architectures such as GRU and LSTM. Our work builds upon
this foundation by further extending the extraction process to transformer-based models.

A key distinction of our study is its focus on generative probabilistic language models, whereas
previous works primarily examined RNNs and transformers trained on language recognition tasks,
which result in deterministic models. By investigating generative language models, our research
complements and expands upon this established body of work. Concurrent work by Allen-Zhu & Li
(2024a) aligns with this effort. They focus on a family of synthetic context-free languages exhibiting
hierarchical structures. By probing the trained model’s latent states quantify attention patterns, they
suggest that GPT models learn CFGs by implementing a dynamic programming-like algorithm. In
comparison, we focus on regular languages, which provide a simpler yet powerful framework for
analyzing model behavior, allowing us to precisely control the complexity and context dependency of
the input. By utilizing finite automata as our analytical tool, we can examine both RNN-based and
transformer-based architectures through a unified lens.

3 PRELIMINARY

As we focus on training datasets where all examples are strings matching certain regular expressions,
we briefly introduce two closely related and equivalent notions: regular expressions (regex) and
deterministic finite automata (DFA).

Regular languages and regular expressions. Given an alphabet (sometimes also called a vo-
cabulary), i.e. a finite set V of characters (e.g. V = {0, 1}), let V ∗ denote all words con-
sisting of characters in V . A language L is a subset of V ∗, i.e. L ⊆ V ∗. A regular lan-
guage is a language that is recursively defined as one of the following cases: (1) ∅ or {c},
where c ∈ V ; (2) L1 ∪ L2; (3) L1L2 := {w1w2|w1 ∈ L1, w2 ∈ L2}, i.e. concatenation; (4)
L∗
1 := {w1w2...wn|n ∈ N, wi ∈ L1, i = 1, ..., n}, where L1 and L2 are regular languages. The

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

q0start q1 q2
0

1

0

(a) alter: 0(10)∗

q0start q1 q2
0

1

1

0

0

1

(b) end0: (0|1) ∗ 0

q0start q1

0

1

0

1

(c) parity0: (1|01 ∗ 0)∗

q0start q1 q2

1

0

1

0

0

1

(d) div3: (0|1(01 ∗ 0) ∗ 1)∗

Figure 1: Examples of deterministic finite automata (DFA) and their corresponding regular
expression. They are respectively DFA accepting strings that (a) alter: begin with 0 and followed
by any number of copies of the string 10; (b) end0: end with 0; (c) parity0: contain an even
number of 0s; (d) div3: are divisible by 3 when considered as an integer in base 2. Edges that do
not point to any state are not shown.

unary operation ‘∗’ is called the Kleene star. A regular expression is a string specifying how a regular
language is defined using the above recursive rules, and is recursively defined as one of the following
cases: (1) ϵ (empty string) or c, where c ∈ V ; (2) r1|r2 (or); (3) r1r2 (concatenation); (4) r1∗ (Kleene
star); where r1 and r2 are regular expressions. Common usage of brackets is also allowed.

Deterministic finite automata. A deterministic finite automaton can be considered as a special
Turing machine where the machine can only read from left to right (i.e. one-way) and cannot write in
the tape (i.e. read-only). Formally, a DFA is defined as a 5-tuple (Q,V, δ, q0, F), consisting of (1) a
finite set of states Q; (2) a finite set of input symbols called the alphabet (or vocabulary) V ; (3) a
transition function δ : Q×V → Q; (4) an initial state (or start state) q0 ∈ Q; (5) a set of accept states
(or final states) F ⊆ Q (often depicted with double circles). Some examples of DFA and regular
expressions are shown in Figure 1. These DFA/regex are also used in our experiments.

Equivalence of regular expressions and DFA. Both regular expressions and DFA specify each
a certain language L ⊆ V ∗. It is a commonly known fact that regular expressions and DFA are
equivalent in the sense that they both specify all regular languages. Algorithms exist for converting
between regular expressions and DFAs, often utilizing non-deterministic finite automata (NFA) as an
intermediate step (Kleene, 1956; McNaughton & Yamada, 1960). This equivalence allows us to use
these representations interchangeably in formal language theory and practical applications.

4 METHODOLOGY

The pipeline of our proposed method LaMFA is shown in Figure 2. LaMFA begins with a trained
language model. The language model is trained on a dataset of strings matching a given but unknown
regular expression r∗ using an auto-regressive loss akin to GPT. Then, we sample strings Xi using
the language model (considered as a generative network) and do clustering on the features of all
substrings Xi[: t], i.e. the first t characters of Xi, in the latent space before the last linear layer. Next,
each substring Xi[: t] is now attached to one center ci,t ∈ C of these clusters and we estimate a
transition matrix P ∈ [0, 1]k×|V |×k using all triplets

(ci,t, Xi[t], ci,t+1) ∈ C × V × C,

where k := |C| is the number of clusters and |V | is the alphabet size. To mitigate the effect of the
randomness of the clustering algorithm and the noise, an additional merging and denoising procedure
is applied to merge redundant cluster classes in C and remove noisy transition patterns in P . A
DFA is then obtained using the estimated transition matrix and a corresponding regular expression
is computed using the classical state elimination method (Brzozowski & McCluskey, 1963). In the
following, we give detailed introductions to the training settings and the LaMFA method.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Language model training (b) LaMFA

Figure 2: (a) Beforehand training. A language model is trained on a dataset of strings matching an
unknown regular expression. (b) Pipeline of LaMFA. Generate: strings are sampled using the trained
language model. Discretize: the feature vectors before last linear layer of the substrings of sampled
words are clustered in the latent space. Estimate: a deterministic finite automaton is computed via the
estimation of the transition matrix. Finally the corresponding regular expression is obtained.

4.1 TRAINING DATA GENERATION

We select 5 simple regular languages to generate datasets for training the language model: alter,
mdY, end0, parity0, and div3. The DFA of some are visualized in Figure 1. A summary of
the datasets can be found in Table 1. Specifically, alter consists of strings that alternate 0 and
1, following the regex pattern 0(10)∗. mdY contains real date strings in the format mm/dd/yyyy,
matching the regex \d{2}/\d{2}/\d{4}. end0 includes strings ending with 0. parity0 contains
strings with an even number of 0s. div3 consists of binary integers divisible by 3.

These languages vary in their circuit complexity of their grammars. alter and mdY belong to the
complexity group AC0, i.e. they can be recognized by constant-depth circuit families with polynomial
size (Arora & Barak, 2009). However the rest 3 languages are not, thus belong to the complexity
group TC0. According to previous empirical and theoretical studies (Bhattamishra et al., 2020a;
Li et al., 2024), transformers struggles in recognizing regular languages outside AC0. Thus it is
interesting to examining if similar conclusion can draw in language generation ability.

Beyond circuit complexity, these languages exhibit varying degrees of context dependency. We
define a language as having local context dependency if recognizing it requires only a constant-length
context window. Conversely, languages with global context dependency necessitate information from
the entire input sequence. Analysis of the regular expressions reveals that alter, mdY, and end0
exhibit local dependency, whereas parity0 and div3 require global context. For example, alter
can be recognized using a context window of merely two characters.

We consider a random walk on the DFA graph to generate strings. It starts from the initial state
and terminating only on the final states. For each episode of the random walk, the characters on
all traversed edges then form a valid string accepted by the DFA. The only randomness we need to
introduce is in the choice of the next character to read. For this, we apply a uniform distribution on all
possible actions/characters. Notably, there is an extra action ‘terminate’ in each final state. We follow
this data-generating process to generate 10000 examples for div3, 50000 examples for parity0
and end0. For mdY, we generate date strings from 01/01/1900 to 03/16/2023, in the m/d/Y format,
with 50000 examples. For alter, we generate all 44 possible examples under the constraint on
maximum length (≤ 88). Note that training data generated as above can contain repetitive strings.

4.2 KNOWLEDGE RECOVERING

In this subsection, we present the detailed process of recovering knowledge from a neural network.
The algorithmic description of our method is illustrated in Algorithm 1 and Algorithm 2. Given a
language model fully trained, we plan to recover the original knowledge from itself by hardening
it. Specifically, LaMFA begins with generating a series of sequences by language models. For each

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 LaMFA

Input: A trained language model pθ with parameters θ. From pθ one also gets a function p̄θ : V ∗ →
Rd that computes feature vectors before last layer.

Input: N : number of strings to sample.
Input: K: number of clusters.
Output: Pc,v,c′ : transition matrix; Oc,v: output matrix.

1: S ← {Xi}Ni=1 ∼ pθ # Generate using LM
2: S′ ← {X[: t]}X∈S;t=1,...,len(X) # Consider all substrings of first t characters
3: H ′ ← {p̄θ(s′)}s′∈S′ # Compute feature vectors
4: F ← KMeans(H ′,K), where F : Rd → C and C := {1, ...,K} # Discretize the feature

vectors into clusters
5: E ← {(F (X[: t− 1]), X[t], F (X[: t]))}, where X ∈ S; t = 2, ..., len(X) # Construct

triplets
6: Pc,v,c′ ← #{e ∈ E|e1 = c, e2 = v, e3 = c′}/#{e ∈ E|e1 = c, e2 = v} # Estimate the

transition matrix
7: Oc,v ← #{e ∈ E|e1 = c, e2 = v)}/#{e ∈ E|e1 = c)} # Estimate the output matrix
8: Pc,v,c′ , Oc,v, F ←Merge(Pc,v,c′ , Oc,v, F,K) # See Algorithm 2
9: return Pc,v,c′ , Oc,v .

Algorithm 2 Merge

Input: Pc,v,c′ : transition matrix, Oc,v: output matrix, F : clustering function
Input: K: number of clusters.
Output: P ∗

c,v,c′ : new transition matrix, O∗
c,v: new output matrix, F ∗: new clustering function

1: k ← K
2: repeat
3: i, j ← argmaxi,j cosine_similarity ([flatten(Pi,:,:), Oi], [flatten(Pj,:,:), Oj])

Find the most two similar clusters i, j
4: {F |C = i} ← {F |C = j} # Merge cluster i, j
5: Denoise operation shown in Equation (2).
6: Update Pc,v,c′ , Oc,v, F for merged clusters.
7: Update the best tuple P ∗

c,v,c′ , O
∗
c,v, F

∗ (according to valid rate).
8: k ← k − 1
9: until k = 1

10: return P ∗
c,v,c′ , O

∗
c,v, F

∗.

generated sequence Xi, the hidden representation of each token Xi[t] in the last Transformer/LSTM
layer is extracted, noted by hi[t] ∈ Rd. d is the hidden dimension of the language model. The
hidden state encodes the substrings Xi[: t] and ideally corresponds to the DFA states. We denoted
all of the collected hidden states as set H = {hi[t]}. Subsequently, LaMFA utilizes the k-means
algorithm (Ahmed et al., 2020) to cluster the collected hidden states hi[t] into k clusters. After
clustering, the 5-tuple components of DFA can be obtained:

• Q: the finite set of states Q is denoted as the clusters in k-means algorithms, which have k
different states.

• V : the input symbols set V corresponds to the vocabulary of generated sequences.
• δ: illustrated in Algorithm 1, by counting the number of transitions between two consecutive

tokens, LaMFA can construct a transition matrix P of dimensions k × |V | × k, where Pijk

represents the frequency of transitions from cluster i to cluster k, given the input Vj . After
normalization, this leads to the formulation of the corresponding transition function δ.

• q0: the starting state q0 is denoted as the cluster corresponding to the special token <bos>’s
hidden state.

• F : the final states F are correspond to the clusters which can generate special token <eos>.

Note that DFA can only take tokens as inputs and thus can not generate sequences directly. To
make it generative, LaMFA maintains an additional K × V frequency matrix O where each row

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

represents the output token distribution for its corresponding state. By normalizing the frequency
matrix ω = diag

(
1∑n

k=1 Oik

)
O, it becomes an output probability matrix which enables the recovered

DFA to generate sequences.

Due to the unpredictability of cluster numbers and potential noise, it is important to allow a sufficiently
large k in the k-means algorithm. To achieve this we incrementally test larger values and evaluate
the resulting DFA’s accuracy. This process continues until the accuracy improvement falls below a
threshold τ = 0.1. After this step, LaMFA merges redundant clusters and removes noisy transition
patterns in P . This approach ensures a precise mapping of the model’s hidden states, accounting for
the clustering algorithm’s randomness and possible imperfections in the language model’s training.

Merging and denoising. The merging and denoising procedures are illustrated in Algorithm 2. The
merging procedure aims to combine similar and redundant clusters. For each merge step, LaMFA
greedy merges the two most similar clusters. Specifically, to find the most similar clusters, LaMFA
first reshapes the transition matrix δ ∈ RK×|V |×K into |V | individual matrices, each of size δ1..|V | ∈
RK×K . Subsequently, we concatenate these |V | matrices as well as normalized frequency matrix
ω ∈ RK×|V | along their second axis which forms the characteristic matrix M ∈ RK×(|V |×K+|V |):

M = [δ1, δ2, ..., δ|V |, ω]

where [·, ·] denotes the concatenation operation. Each row in the characteristic matrix M depicts the
corresponding cluster’s outgoing transition behavior under all circumstances. Finally, the most similar
two cluster is obtained by calculating the cluster-to-cluster similarity matrix MMT and picking out
the cluster pair with the highest similarity score. LaMFA then re-calculates the new transition matrix
P and frequency matrix O by treating these two clusters are one. Additionally, a denoising operation
is performed on top of the newly obtained P and O before normalization. Specifically, sharpening is
performed in all |V | slice of P:,v,: (where v ranges from 1 to |V |):

P ′
k,v,j =

P
1
T

k,v,j∑K
l=1 P

1
T

k,v,l

K∑
l=1

Pk,v,l (2)

For frequency matrix O, we set all frequencies under threshold τo to zero to abandon the noisy
frequency signal. After the denoising operation, we obtained new δ and ω by normalizing P and O.
Intuitively, removing the noisy pattern in the δ and ω will increase the resulting automaton’s accuracy.
LaMFA utilize this heuristic by greedily merging similar states until the resulting automaton’s
accuracy begins to decrease. Merging and denoising are iteratively conducted for K steps.

After this step, a finite automaton, which is probably non-deterministic will be acquired. We convert
it into a DFA with the classical subset construction algorithm (Rabin & Scott, 1959).

5 EXPERIMENTS

5.1 SETTINGS

Dataset. We experiment with the 5 datasets introduced in Section 4.1: parity0, div3, alter,
end0 and mdY. Each dataset is split into train/eval-ID/eval-OOD according to the ratio 3/1/1. The
eval-OOD set is an out-of-distribution (OOD) evaluation set. For parity0, div3, alter and
end0, eval-OOD sets consist of their longest 20% samples. For mdy, the eval-OOD set consists of
date strings with the top 20% largest sum of digits. The eval-ID set and train set are random splits of
the rest samples.

Configuration and Evaluation. The detailed architecture of the experimented language models is
shown in Table 3. Details about the training hyperparameters are included in the Appendix. Valid
rate (denoted as valid in tables) and the cross-entropy loss (denoted as ce in tables) are used as
the evaluation metric for measuring the quality and diversity of the language model. To compute the
valid rate, we generate 10,000 samples under each language model, and then test the validity of the
generated sample by the ground-truth regex of the corresponding language. The valid rate is then
defined as the ratio of the valid samples in all generated non-empty strings. The cross-entropy loss is
calculated on the evaluation set to compare the relative distributional similarity between different
language models and sample distributions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: The valid rate and cross-entropy loss of different language models. “neural” denotes the
raw trained models. “kmeans” denotes the model after the k-means step in LaMFA. “LaMFA-DFA”
denotes the final hardened model. Three architectures are used: LSTM (0.50K), GPT-tiny (0.68K or
1.09K), and GPT-nano (86.16K). Underlined items correspond to cases where LaMFA recovers the
exact/equivalent regular expression. Top values are bolded.

Dataset Model neural kmeans LaMFA-DFA

valid ↑ ce ↓ valid ↑ ce ↓ # cluster valid ↑ ce ↓ # cluster

alter
LSTM 98.33 3.80 90.46 3.84 10 99.33 3.78 3

GPT-tiny 98.51 5.27 98.76 5.29 10 100.00 3.92 3
GPT-nano 99.41 4.26 99.50 4.23 10 100.00 4.00 3

mdY
LSTM 92.91 10.97 86.62 11.6 72 90.00 11.66 41

GPT-tiny 99.82 10.80 99.19 11.28 55 99.82 11.19 15
GPT-nano 99.94 10.73 94.12 10.92 56 96.39 10.91 24

end0
LSTM 99.92 4.12 100.00 4.12 5 100.00 4.12 3

GPT-tiny 99.96 4.10 99.79 4.11 39 100.00 4.11 33
GPT-nano 99.96 4.11 100.00 4.15 60 100.00 4.14 47

parity0
LSTM 53.37 5.23 53.82 4.86 5 53.37 4.87 2

GPT-tiny 70.40 4.39 70.29 4.44 65 70.44 4.43 45
GPT-nano 98.05 4.02 98.31 4.48 74 100.00 4.67 3

div3
LSTM 41.25 6.08 42.21 6.01 12 42.68 6.00 7

GPT-tiny 56.07 5.68 56.40 5.72 39 57.17 5.72 34
GPT-nano 85.43 5.28 84.42 5.46 96 85.05 5.42 77

Table 3: Architectures of language models. Time denotes the average time (ms) used for generating
10000 samples with GPU.

Models embed. dim. layers #param. time (ms)
LSTM 6 1 0.50K 38.7

GPT-tiny 6 1 0.68K 2027.7
GPT-nano 48 3 86.16K 11245.8

5.2 RESULTS

Our experiments yielded several significant insights into the behavior of language models when
applied to regular languages.

5.2.1 LANGUAGE MODEL PERFORMANCE

The results in Table 2 reveal that the context dependency feature of regular languages has a more
significant impact on language models’ performance than circuit complexity. All models, regardless of
their architecture, demonstrated exceptional performance on languages with local context dependency
(i.e., alter, mdY, and end0), achieving an average accuracy of 98.34%. This high performance
held true across various levels of circuit complexity.

However, languages requiring global context (parity0 and div3) presented significant challenges,
particularly for LSTM models. While GPT-nano maintained relatively high performance with an
average accuracy of 91.74% on these globally dependent languages, LSTM models showed a marked
decrease in performance (53.37% on parity0, 41.25% on div3).

Among different architectures, GPT-nano consistently outperformed others, achieving valid rates
higher than 98% across all five datasets. It’s worth noting that neural language models, like most
‘soft’ algorithms, rarely achieve perfect (100%) accuracy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: OOD performance of different language models on all datasets.

Dataset Model neural LaMFA-DFA

valid ↑ ce ↓ valid ↑ ce ↓

alter
LSTM 96.26 5.14 99.75 5.27

GPT-tiny 50.00 9.99 100.00 6.93
GPT-nano 98.92 6.48 100.00 6.40

mdY
LSTM 93.15 10.85 98.06 11.11

GPT-tiny 99.95 10.74 100.00 11.09
GPT-nano 99.95 10.71 100.00 10.67

end0
LSTM 99.84 13.57 100.00 13.61

GPT-tiny 99.97 13.68 100.00 13.90
GPT-nano 99.97 13.60 100.00 13.79

parity0
LSTM 50.94 16.83 47.37 16.72

GPT-tiny 50.52 21.89 52.02 32.15
GPT-nano 64.52 47.12 100.00 21.19

div3
LSTM 34.86 24.87 32.55 24.30

GPT-tiny 30.70 30.59 32.56 41.59
GPT-nano 32.11 31.44 36.66 42.09

(a) alter (b) mdY

Figure 3: The comparison between ground truth states and LaM clusters. The state shown in
different colors denotes the ground truth state of DFA. The corresponding cluster shown in different
shapes denotes the hardening result computed by LaMFA. (a) alter result computed using LaMFA
recovering from GPT-nano. (b) mdY result computed using LaMFA recovering from GPT-tiny.

5.2.2 DFA EXTRACTION.

Comparing the neural and LaMFA-DFA column in Table 2, the extracted DFA by LaMFA show
consistency with the original model in their validity and cross-entropy loss. To gain deeper insights,
we visualized the states of the original generating DFA and the clusters defined by LaMFA. As shown
in Figure 3 (a), the clusters are divided exactly the same as the original DFA states on alter. In
Figure 3 (b), 15 clusters recovered from GPT-tiny on mdY also show highly consistent results.

In many cases, we observe that the number of states in LaMFA-DFA can be much larger than that
of the ground truth minimal DFA, even when the validity is 100%. Figure 4 (a) visualize two
LaMFA-DFA. It shows that LaMFA-DFA of LSTM on end0 is exactly equivalent to the ground-truth
regex. Interestingly, the DFA of GPT-tiny contains an extra state (0,1,2), which corresponds to the
hidden refusing state for recognizing alter strings. These observations suggest that larger models
may learn more nuanced representations of the language, potentially capturing subtleties beyond the
minimal DFA representation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) alter-GPT-tiny (b) end0-LSTM

Figure 4: The extracted DFA from (a) GPT-tiny on alter; (b) LSTM on end0.

5.2.3 GENERALIZATION CAPABILITY

LaMFA-DFA generally achieved better evaluation performance compared to the original neural
models. For instance, recovered DFAs based on all three architectures reached 100% valid rate
and lower cross-entropy on the end0 dataset. Table 4 presents the out-of-distribution (OOD)
generalization evaluation results. For GPT-tiny and GPT-nano, the hardened models consistently
demonstrated higher OOD valid rates. For LSTM, on alter, end0, and mdY, LaMFA improved
the valid rate while maintaining comparable cross-entropy loss.

Comparing OOD performance (Table 4) with in-distribution performance (Table 2), we noticed that
both GPT-tiny and GPT-nano experienced significant drops in valid rate on parity0 (from 70.4 to
50.52, and 98.05 to 76.56, respectively). Interestingly, these observation align with previous DFA
extraction studies on language recognization RNNs (Giles et al., 1991; Das & Mozer, 1993), which
showed that extracted rules often exhibit better generalization ability than the original neural models.

6 CONCLUSION AND DISCUSSIONS

This paper presents a pioneering study bridging probabilistic modeling with symbolic computation
models (automata). By examining trained language models on regular languages of varying complex-
ity, we demonstrate that context dependency is the dominant factor in language modeling complexity.
This insight offers new perspectives on regular language complexity and the expressiveness of lan-
guage models. Our proposed method, LaMFA, successfully extracted DFAs from trained models,
often showing consistency with the original models in terms of validity and cross-entropy loss. In
some cases, extracted DFAs captured more nuanced representations than the minimal ground truth
DFA. LaMFA-extracted DFAs generally demonstrated better evaluation performance and improved
out-of-distribution generalization compared to the original neural models, aligning with previous
findings in DFA extraction studies. It marks a significant advancement in model interpretability
and generalization. Our observations reveal a complex interplay between model size, language
complexity, and the structure of extracted DFA.

This research complements existing work on regular language recognition models and opens new
avenues for studying language models through the lens of symbolic computation. By establishing
this connection, we pave the way for future investigations that combining probabilistic and symbolic
approaches in computational linguistics and machine learning. Furthermore, we argue that this
pipeline—training models on multiple different regular languages and investigating the extracted
DFA—can potentially serve as a benchmark for analyzing language models of different architectures.
To facilitate future development and research in this area, we are releasing all codes and checkpoints
used in this study.

However, it’s crucial to acknowledge the limitations of this study. First, our focus on formal languages,
specifically regular languages, limits the direct generalization of our findings to natural language
processing tasks, which involve far more complex linguistic structures and ambiguities. Second, while
our DFA extraction algorithm yielded promising results, there is potential for developing stronger,
more efficient algorithms that could extract even more accurate or compact automata representations.
Finally, our experiments were conducted on relatively small-scale models compared to the massive
language models currently at the forefront of AI research. Extending this work to larger-scale models
could reveal different behaviors or challenges, particularly in terms of computational feasibility
and the complexity of extracted automata. These limitations point to valuable directions for future
research in this area.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm: A
comprehensive survey and performance evaluation. Electronics, 9(8):1295, 2020.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, learning hierarchical language
structures, 2024a. URL https://arxiv.org/abs/2305.13673.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and
extraction, 2024b. URL https://arxiv.org/abs/2309.14316.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of Trans-
formers to Recognize Formal Languages. In Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), pp. 7096–7116, Online, November
2020a. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.576. URL
https://aclanthology.org/2020.emnlp-main.576.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Practical Ability of Recurrent Neural
Networks to Recognize Hierarchical Languages, November 2020b. URL http://arxiv.org/
abs/2011.03965. Number: arXiv:2011.03965 arXiv:2011.03965 [cs].

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. Language Models are Few-
Shot Learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

J. A. Brzozowski and E. J. McCluskey. Signal flow graph techniques for sequential circuit state
diagrams. IEEE Transactions on Electronic Computers, EC-12(2):67–76, 1963. doi: 10.1109/
PGEC.1963.263416.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, et al. Sparks of Artificial General Intelli-
gence: Early experiments with GPT-4, March 2023. URL http://arxiv.org/abs/2303.
12712. arXiv:2303.12712 [cs].

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, et al. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 [cs], July 2021. URL http://arxiv.org/abs/2107.03374. arXiv:
2107.03374.

Noam Chomsky. On certain formal properties of grammars. Information and control, 2(2):137–167,
1959.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, et al. PaLM: Scaling Language Modeling
with Pathways, October 2022. URL http://arxiv.org/abs/2204.02311. Number:
arXiv:2204.02311 arXiv:2204.02311 [cs].

Fahim Dalvi, Abdul Rafae Khan, Firoj Alam, Nadir Durrani, Jia Xu, and Hassan Sajjad. Discovering
latent concepts learned in bert. arXiv preprint arXiv:2205.07237, 2022.

Sreerupa Das and Michael C Mozer. A unified gradient-descent/clustering architecture for finite state
machine induction. Advances in neural information processing systems, 6, 1993.

Gregoire Deletang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher
Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus
Hutter, and Joel Veness. Language modeling is compression. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=jznbgiynus.

11

https://arxiv.org/abs/2305.13673
https://arxiv.org/abs/2309.14316
https://aclanthology.org/2020.emnlp-main.576
http://arxiv.org/abs/2011.03965
http://arxiv.org/abs/2011.03965
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2204.02311
https://openreview.net/forum?id=jznbgiynus
https://openreview.net/forum?id=jznbgiynus

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Felix A Gers and E Schmidhuber. Lstm recurrent networks learn simple context-free and context-
sensitive languages. IEEE transactions on neural networks, 12(6):1333–1340, 2001.

C Lee Giles, Clifford B Miller, Dong Chen, Guo-Zheng Sun, Hsing-Hen Chen, and Yee-Chun Lee.
Extracting and learning an unknown grammar with recurrent neural networks. Advances in neural
information processing systems, 4, 1991.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. Conference
Name: Neural Computation.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, lan-
guages, and computation. Pearson/Addison Wesley, Boston, 3rd ed edition, 2007. ISBN 978-0-
321-45536-9 978-0-321-46225-1 978-0-321-45537-6. OCLC: ocm69013079.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=SMa9EAovKMC.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.

S. C. Kleene. Representation of Events in Nerve Nets and Finite Automata. In Representation of
Events in Nerve Nets and Finite Automata, pp. 3–42. Princeton University Press, March 1956. ISBN
978-1-4008-8261-8. doi: 10.1515/9781400882618-002. URL https://www.degruyter.
com/document/doi/10.1515/9781400882618-002/html.

SC Kleene. Representationof events in nerve nets and finite automata. CE Shannon and J. McCarthy,
1951.

Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov. Generating images with multimodal language
models. Advances in Neural Information Processing Systems, 36, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving Quantitative Reasoning Problems with
Language Models. Advances in Neural Information Processing Systems, 35:3843–3857, Decem-
ber 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transform-
ers to solve inherently serial problems. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=De4FYqjFueZ.

Andreas Madsen, Siva Reddy, and Sarath Chandar. Post-hoc interpretability for neural nlp: A survey.
ACM Computing Surveys, 55(8):1–42, 2022.

12

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=SMa9EAovKMC
https://www.degruyter.com/document/doi/10.1515/9781400882618-002/html
https://www.degruyter.com/document/doi/10.1515/9781400882618-002/html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=De4FYqjFueZ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

R McNaughton and H Yamada. Regular Expressions and State Graphs for Automata. IRE TRANSAC-
TIONS ON ELECTRONIC COMPUTERS, 1960.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and Editing Fac-
tual Associations in GPT, January 2023. URL http://arxiv.org/abs/2202.05262.
arXiv:2202.05262 [cs].

William Merrill. Sequential neural networks as automata. In Jason Eisner, Matthias Gallé, Jeffrey
Heinz, Ariadna Quattoni, and Guillaume Rabusseau (eds.), Proceedings of the Workshop on Deep
Learning and Formal Languages: Building Bridges, pp. 1–13, Florence, August 2019. Association
for Computational Linguistics. doi: 10.18653/v1/W19-3901. URL https://aclanthology.
org/W19-3901.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. Advances
in Neural Information Processing Systems, 36, 2024.

William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association for Computational Linguistics, 10:843–856,
2022.

Joshua J. Michalenko, Ameesh Shah, Abhinav Verma, Swarat Chaudhuri, and Ankit B. Patel.
Finite automata can be linearly decoded from language-recognizing RNNs. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=H1zeHnA9KX.

Christian W Omlin and C Lee Giles. Extraction of rules from discrete-time recurrent neural networks.
Neural networks, 9(1):41–52, 1996.

OpenAI. GPT-4 Technical Report, March 2023. URL http://arxiv.org/abs/2303.08774.
arXiv:2303.08774 [cs].

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem Prov-
ing. arXiv:2009.03393 [cs, stat], September 2020. URL http://arxiv.org/abs/2009.
03393. arXiv: 2009.03393.

Michael O Rabin and Dana Scott. Finite automata and their decision problems. IBM journal of
research and development, 3(2):114–125, 1959.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, February 2019. ISSN 0021-9991.
doi: 10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Jürgen Schmidhuber and Stefan Heil. Sequential neural text compression. IEEE Transactions on
Neural Networks, 7(1):142–146, 1996.

Luzi Sennhauser and Robert Berwick. Evaluating the Ability of LSTMs to Learn Context-Free
Grammars. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pp. 115–124, Brussels, Belgium, November 2018. Association
for Computational Linguistics. doi: 10.18653/v1/W18-5414. URL https://aclanthology.
org/W18-5414.

Xing Shi, Inkit Padhi, and Kevin Knight. Does String-Based Neural MT Learn Source Syntax?
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pp. 1526–1534, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1159. URL https://aclanthology.org/D16-1159.

13

http://arxiv.org/abs/2202.05262
https://aclanthology.org/W19-3901
https://aclanthology.org/W19-3901
https://openreview.net/forum?id=H1zeHnA9KX
https://openreview.net/forum?id=H1zeHnA9KX
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2009.03393
http://arxiv.org/abs/2009.03393
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://aclanthology.org/W18-5414
https://aclanthology.org/W18-5414
https://aclanthology.org/D16-1159

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4593–4601, 2019.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, April 2020. ISSN 2375-2548. doi: 10.1126/sciadv.
aay2631. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159912/.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Heng Liao, and Xiaodan Liang.
Lego-prover: Neural theorem proving with growing libraries, 2023a.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen, Yichun Yin, Jing Xiong, Enze Xie, Han Shi,
Yujun Li, Lin Li, Jian Yin, Zhenguo Li, and Xiaodan Liang. DT-Solver: Automated Theorem
Proving with Dynamic-Tree Sampling Guided by Proof-level Value Function. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 12632–12646, Toronto,
Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
706. URL https://aclanthology.org/2023.acl-long.706.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural networks
using queries and counterexamples. In International Conference on Machine Learning, pp. 5247–
5256. PMLR, 2018.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219, 2023.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-Hint Prompting
Improves Reasoning in Large Language Models, May 2023. URL http://arxiv.org/abs/
2304.09797. Number: arXiv:2304.09797 arXiv:2304.09797 [cs].

14

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159912/
https://aclanthology.org/2023.acl-long.706
http://arxiv.org/abs/2304.09797
http://arxiv.org/abs/2304.09797

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXTENDED RELATED WORKS

Probing knowledge in language models. Many efforts have been made on explaining the knowl-
edge captured by the neural language model for safety or ethical concerns, and its further develop-
ing (Madsen et al., 2022). Given the complex nature of both natural language and deep networks,
existing explanation methods are based on knowledge probing, i.e. inspect the existence of specific
knowledge in the model through prediction tasks or ablations (Tenney et al., 2019; Dalvi et al., 2022;
Jiang et al., 2020; Shi et al., 2016; Meng et al., 2023; Madsen et al., 2022; Allen-Zhu & Li, 2024b).
Such probing is conducted at different levels. For example, Jiang et al. (2020) assess the storage of
factual knowledge through automatic prompting. Other existing works use predicting tasks to probe
the existence of specific types of linguistic information in the hidden layers (Shi et al., 2016; Tenney
et al., 2019). Meng et al. (2023) identify neurons associated with specific factual knowledge by causal
interventions. Although probing helps in locating knowledge, the overall generating mechanism of
the language model remains unexplained.

Symbolic regression. Symbolic regression is the task of learning a symbolic representation from
data. For example, physics-informed neural networks (PINNs) (Raissi et al., 2019) aim at discovering
the partial differential equations behind a given dataset. AI Feymann (Udrescu & Tegmark, 2020)
also tries to rediscover equations in physics from data using neural networks. Different from symbolic
regression, our method only relies on trained parameters and assumes no knowledge at all of the
training data.

Assessing neural networks with formal languages. Recent works focus on assessing the expres-
sive power of neural networks with their ability to recognize formal languages. Theoretically, LSTMs
have been demonstrated to be strictly more powerful than regular languages, capable of perfectly
emulating finite-state automata Merrill (2019). Regarding transformers, theoretical limitations have
derived for different restricted form of transformers on recognizing formal languages of different
circuit complexity (Hahn, 2020; Hao et al., 2022; Merrill et al., 2022; Merrill & Sabharwal, 2023).
For example, Hao et al. (2022) and Hahn (2020) have derived theoretical limitations for hard atten-
tion transformers, where attention distributions focus all probability mass on a single index. Their
findings indicate that AC0, the class of languages recognizable by constant-depth circuit families,
serves as an upper bound for the formal languages that hard-attention transformers can recognize.
Notably, the formal language parity0 falls outside AC0. Merrill & Sabharwal (2023) show that
log-precision transformers Merrill & Sabharwal (2024) are upper-bounded by uniform TC0, i.e.
they are only possible to compute formal grammars that can be simulated by a circuit in uniform
TC0. Empirically, Bhattamishra et al. (2020a) examined Transformers’ ability to recognize regular
languages and implement counter mechanisms. Liu et al. (2023) demonstrated that transformers can
learn automata with fewer layers than theoretically expected. Sennhauser & Berwick (2018) and
Bhattamishra et al. (2020b) have evaluated the potential of LSTMs to acquire context-free grammars.

In this work, we focus on probabilistic language models, i.e. neural networks trained with the
language modeling task, instead of recognition. Concurrent work by Allen-Zhu & Li (2024a) aligns
with this effort. They focus on a family of synthetic context-free languages exhibiting hierarchical
structures. By probing the trained model’s latent states quantify attention patterns, they suggest that
GPT models learn CFGs by implementing a dynamic programming-like algorithm. In comparison,
we focus on regular languages, which provide a simpler yet powerful framework for analyzing model
behavior. This approach allows us to precisely control the complexity and context dependency of
the input. By utilizing finite automata as our analytical tool, we can examine both RNN-based and
transformer-based architectures through a unified lens. Furthermore, this approach enables us to build
upon previous theoretical works, highlighting the crucial distinctions between language generation
and recognition tasks.

Finite automata extraction. The extraction of deterministic finite automata from RNNs has been
extensively studied over the past few decades. (Giles et al., 1991; Omlin & Giles, 1996; Das & Mozer,
1993; Weiss et al., 2018; Michalenko et al., 2019). Early work by Giles et al. (1991) and Omlin
& Giles (1996) focus on simple second-order RNNs. Giles et al. (1991) pioneered this field by
developing a dynamic clustering algorithm to extract production rules from trained second-order
RNNs. This method involved state clustering, transition mapping, and graph reduction to obtain
minimal DFA representations. They proposed that in some cases this approach often resulted in

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Month
Check

Day
Check

Year
Check

Slash
1

Slash
2

AND

Output

Input
Layer

Layer 1:
Digit Checks

Layer 2:
Final AND

Figure 5: AC0 Circuit for recognizing mdY.

Table 5: The hyperparameters

Dataset parity0 div3 alter end0 mdY

max length 88 88 88 88 12
batch size 64 64 10 64 64

optimizer SGD
scheduler CosineAnnealingLR
learning rate 1e-3
epoch 500

extracted grammars that outperformed the original neural networks in classifying unseen strings.
Omlin & Giles (1996) further introduce techniques to extract multiple consistent DFAs from a single
network. They focused on improving rule quality and developed heuristics for selecting the most
accurate DFA representation of the learned grammar. More recently, (Weiss et al., 2018) propose
a new method using Angluin’s L∗ algorithm with the trained RNN as an oracle to extract a DFA
representing its behavior. They efficiently extracted accurate automata from complex networks,
including GRU and LSTM architectures. By applying this technique to RNNs trained to 100% train
and test accuracy on simple languages, they discover that some RNNs have not generalized to the
intended concept.

Our work builds upon this foundation by further extending the extraction process to transformer-based
models. A key distinction of our study is its focus on generative language models, whereas previous
works primarily examined RNNs trained on language recognition tasks, which result in deterministic
models. By investigating generative language models, our research complements and expands upon
this established body of work.

B REGULAR LANGUAGES AND CIRCUIT COMPLEXITY

alter can be recognized by the AC0 circuit because the language requires only local, fixed-distance
checks that can be performed in parallel. The circuit uses a NOT gate to ensure the string starts with
0, followed by a layer of AND gates that check for alternating 1s and 0s in adjacent positions. These
AND gates operate independently on different parts of the input, allowing simultaneous evaluation.
A final OR gate combines these results. This structure maintains the key properties of AC0: constant
depth (three layers including input), polynomial size (linear growth with input length), and unbounded
fan-in (at the OR gate). mdY can also be recognized with AC0 circuit since it has fixed length and
finite alphabet. We illustrate a feasible circuit in Figure 5.

C HYPER-PARAMETERS

The detailed hyper-parameters of experiments are illustrated in Table 5.

As the alphabets are simple, there is no need for tokenization and each character is considered as an
independent token.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) k-means

(b) LaMFA

Figure 6: Valid rate and cross-entropy loss v.s. the number of clusters in k-means and LaMFA,
respectively. (a) The k-means performance increases with the number of clusters. (b) LaMFA
increases the generalization ability by merging the state from large clusters to ground truth clusters.

D MORE RESULTS

D.1 CLUSTERING

We perform a study on the impact of the initial number of clusters as shown in Figure 6. Figure 6a
illustrates how k influences the method only with k-means clustering, and Figure 6b demonstrates how
k influences the whole algorithm LaMFA. As can be seen, larger k usually has better performance,
while it may lead to overfitting (with large cross-entropy) as it is the case for mdY, div3 and
parity0.

We show more clustering results for the datasets div3 and end0 in Figure 7. We can see that the
estimated states (i.e. the clusters) for end0 correspond well to the ground truth. But it is not the
case for div3. This is due to the difficulty of the dataset div3, especially the fact that the language
model over-fits the dataset and get almost random OOD generalization performance. This can be
seen from the results in Tables 2 and 4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) div3

(b) end0

Figure 7: The comparison between ground truth states and LaMFA clusters, as a continuation of
Figure 3. (a) div3 result computed using LaMFA recovering from GPT-nano. (b) end0, using
LSTM. We can see that the estimated states (i.e. the clusters) for end0 correspond well to the ground
truth. But it is not the case for div3, due to the difficulty of the dataset.

18

	Introduction
	Related Work
	Preliminary
	Methodology
	Training Data Generation
	Knowledge Recovering

	Experiments
	Settings
	Results
	Language model performance
	DFA Extraction.
	Generalization capability

	Conclusion and discussions
	Extended related works
	Regular languages and circuit complexity
	Hyper-parameters
	More results
	Clustering

