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ABSTRACT

Recent neural language models show impressive capabilities on a wide range of
tasks. However, it is not fully understood how the knowledge of the language is
encoded in these models. In this work, we focus on the simplest case of languages,
regular languages, and study language models trained on strings matching certain
regular expressions. We propose a method, dubbed LaMFA, to recover the full
knowledge of the regular language model by hardening it into a finite automaton.
Such hardening is conducted by empirically partition the latent space of language
models into finite states, and then recover a deterministic finite automaton by
the estimated transition probabilities between these states. Through experiments
on regular languages of varying complexity, we demonstrate that LaMFA can
effectively extract DFA that consistently replicate the performance of the original
language model. Notably, the extracted DFAs exhibit enhanced generalization
capabilities, achieving 100% accuracy even in out-of-distribution scenarios

1 INTRODUCTION

Recent progress on large language models (Brown et al., 2020; Chowdhery et al., 2022; OpenAI,
2023) has shown impressive capabilities of neural networks on a remarkably wide range of tasks
such as chatbot (OpenAI, 2023), code generation (Chen et al., 2021), math word problem solv-
ing (Lewkowycz et al., 2022; Zheng et al., 2023; Yu et al., 2023), theorem proving (Polu & Sutskever,
2020; Jiang et al., 2023; Wang et al., 2023b;a) and even tasks on other modalities such as image
classification (Dosovitskiy et al., 2021), text-to-image generation (Koh et al., 2024), VQA (OpenAI,
2023). Some postulate that certain large language models such as GPT-4 have made an important
step towards Artificial General Intelligence (AGI) (Bubeck et al., 2023).

Impressive as their achievements are, the idea behind these large language models is strikingly simple.
As all languages (and further all sorts of information) consist of sequences of tokens (characters, bits,
etc) xi, it all boils down to model the decomposed joint distribution

p(x1, x2, ..., xT ) =

T∏
t=1

p(xi|x<t) (1)

for a given T ∈ N. The key to the success of large language models lies in their ability to compress
information by learning this objective (Schmidhuber & Heil, 1996; Deletang et al., 2024). By training
on vast corpora of text, language models effectively learn to compress the statistical regularities
and patterns inherent in language. This compression process leads to the strong generalization
performance observed in state-of-the-art LLMs (Deletang et al., 2024).

Nonetheless, the nature of the compressed knowledge encoded within neural language models remains
largely opaque. Though efforts have been made by probing factual knowledge (Jiang et al., 2020)
or syntax concepts (Shi et al., 2016; Tenney et al., 2019), the internal representations and decision-
making processes of natural language models remain unclear. This lack of interpretability poses
significant challenges, particularly when it comes to addressing issues such as hallucinations (Brown
et al., 2020; Zhang et al., 2023), where models generate false or nonsensical information with high
confidence.

In this paper, we aim to shed light on the internal mechanism of language models by studying their
behavior on regular languages (Chomsky, 1959; Hopcroft et al., 2007). Regular languages, defined

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Summary of datasets/languages.

Name regex #states. #examples examples description complexity dependency
alter 0(10)∗ 3 44 0, 01010 alternate 0 and 1 AC0 local
mdY \d{2}/\d{2}/\d{4} 11 50000 09/12/2022 real date strings of format m/d/Y AC0 local
end0 (0|1) ∗ 0 3 50000 110, 0010 end with 0 TC0 local

parity0 (1|01 ∗ 0)∗ 2 50000 1, 1010 contain an even number of 0s TC0 global
div3 (0|1(01 ∗ 0) ∗ 1)∗ 3 10000 00, 11, 1001 binary integers divisible by 3 TC0 global

by specific regular expressions (regex) (Kleene, 1951), provide a controlled and well-understood
framework for examining the learning and generalization capabilities of language models. Strings of
a given regular language can be generated through a random walk on a finite state automaton (DFA),
which is equivalent to the defining regex. Therefore, the regex or its equivalent automaton represent
the compressed knowledge underlying the training instances. The central question we seek to address
is:

Given a neural language model trained exclusively on strings conforming to a
regular expression, can one recover an equivalent automaton from it?

If successful, such recovery would provide insights into how language models compress and represent
linguistic knowledge, and qualify the knowledge they have acquired.

We focus on two prominent architectures: LSTM (Hochreiter & Schmidhuber, 1997) and GPT
(decoder-only transformers) (Vaswani et al., 2017; Radford et al., 2019). We propose a hardening
process to convert a language model into an equivalent finite automaton, a method we term LaMFA
(Language Model to Finite Automaton). Given a trained language model, we begin by sampling
strings it generates. We then discretize the state space using clustering techniques such as k-means.
For LSTMs, the state space is naturally defined as its latent space. For GPTs, we hypothesize that
the latent space immediately preceding the final linear layer serves as the state space. Next, we
merge and denoise the states using the estimated transition matrix based on the existing partition,
thereby reducing potential redundancy. A DFA is then computed using the final state partition
and the transition matrix. An equivalent regex can further be obtained using the state elimination
method (Brzozowski & McCluskey, 1963).

We conducted experiments on five different regular languages, varying in their circuit complex-
ity (Arora & Barak, 2009) and context dependency, as shown in Table 1. Our experiments reveal
several key insights into the behavior of language models on regular languages. We find that all
models perform exceptionally well on languages with local context dependency, regardless of circuit
complexity. However, languages requiring global context pose significant challenges, especially for
LSTM models. Notably, LaMFA successfully extract DFA from the trained models, which often
demonstrate improved validity rates and strong generalization capabilities. In some cases, these
extracted DFA achieve high consistency with the original one, while in others, they encode more
states, particularly in larger models. These findings suggest a complex interplay between model
architecture, size, and the nature of the language being modeled.

The contributions of this paper can be summarized as follows.

• We conduct experiments on five regular languages with varying complexity, to investigate
how linguistic knowledge is encoded and compressed in language models.

• We propose a simple method, LaMFA, to recover the knowledge from trained language
models and empirically show that it can effectively extract DFA of high consistency with
the neural model;

• Our observations draw new insights of the complex interplay between model architectures,
language complexity, and the structure of extracted DFA;

• We argue that this pipeline potentially serve as a benchmark for improved interpretability of
language models. We release all codes as well as the checkpoints of language models in the
experiments
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2 RELATED WORK

Many efforts have been made on explaining the knowledge captured by the neural language model for
safety or ethical concerns, and its further developing (Madsen et al., 2022). Given the complex nature
of both natural language and deep networks, existing explanation methods are based on knowledge
probing, i.e. inspect the existence of specific knowledge in the model through prediction tasks or
ablations (Tenney et al., 2019; Dalvi et al., 2022; Jiang et al., 2020; Shi et al., 2016; Meng et al.,
2023; Madsen et al., 2022; Allen-Zhu & Li, 2024b). Such probing is conducted at different levels.
For example, Jiang et al. (2020) assess the storage of factual knowledge through automatic prompting.
Other existing works use predicting tasks to probe the existence of specific types of linguistic
information in the hidden layers (Shi et al., 2016; Tenney et al., 2019). Meng et al. (2023) identify
neurons associated with specific factual knowledge by causal interventions. Although probing helps
in locating knowledge, the overall generating mechanism of the language model remains unexplained.

Recent works focus on assessing the expressive power of neural networks with their ability to
recognize formal languages. Theoretically, LSTMs have been demonstrated to be strictly more
powerful than regular languages, capable of perfectly emulating finite-state automata Merrill (2019).
Empirically, Gers & Schmidhuber (2001), Sennhauser & Berwick (2018) and Bhattamishra et al.
(2020b) have evaluated the potential of LSTMs to acquire context-free grammars. Regarding
transformers, theoretical limitations have derived for different restricted form of transformers on
recognizing formal languages of different circuit complexity (Hahn, 2020; Hao et al., 2022; Merrill
et al., 2022; Merrill & Sabharwal, 2023; Li et al., 2024). For example, Merrill & Sabharwal (2023)
show that log-precision transformers Merrill & Sabharwal (2024) are upper-bounded by uniform TC0,
i.e. they are only possible to compute formal grammars that can be simulated by a circuit in uniform
TC0. Empirically, Bhattamishra et al. (2020a) examined LSTM and encoder-only transformers’ ability
to recognize regular languages and implement counter mechanisms. Liu et al. (2023) demonstrated
that transformers can learn automata with fewer layers than theoretically expected.

The extraction of deterministic finite automata from RNNs that recognizing formal languages has
been extensively studied over the past few decades. (Giles et al., 1991; Omlin & Giles, 1996; Das
& Mozer, 1993; Weiss et al., 2018; Michalenko et al., 2019). Early work by Giles et al. (1991)
and Omlin & Giles (1996) focus on simple second-order RNNs. More recently, (Weiss et al., 2018)
extended this study to more complex architectures such as GRU and LSTM. Our work builds upon
this foundation by further extending the extraction process to transformer-based models.

A key distinction of our study is its focus on generative probabilistic language models, whereas
previous works primarily examined RNNs and transformers trained on language recognition tasks,
which result in deterministic models. By investigating generative language models, our research
complements and expands upon this established body of work. Concurrent work by Allen-Zhu & Li
(2024a) aligns with this effort. They focus on a family of synthetic context-free languages exhibiting
hierarchical structures. By probing the trained model’s latent states quantify attention patterns, they
suggest that GPT models learn CFGs by implementing a dynamic programming-like algorithm. In
comparison, we focus on regular languages, which provide a simpler yet powerful framework for
analyzing model behavior, allowing us to precisely control the complexity and context dependency of
the input. By utilizing finite automata as our analytical tool, we can examine both RNN-based and
transformer-based architectures through a unified lens.

3 PRELIMINARY

As we focus on training datasets where all examples are strings matching certain regular expressions,
we briefly introduce two closely related and equivalent notions: regular expressions (regex) and
deterministic finite automata (DFA).

Regular languages and regular expressions. Given an alphabet (sometimes also called a vo-
cabulary), i.e. a finite set V of characters (e.g. V = {0, 1}), let V ∗ denote all words con-
sisting of characters in V . A language L is a subset of V ∗, i.e. L ⊆ V ∗. A regular lan-
guage is a language that is recursively defined as one of the following cases: (1) ∅ or {c},
where c ∈ V ; (2) L1 ∪ L2; (3) L1L2 := {w1w2|w1 ∈ L1, w2 ∈ L2}, i.e. concatenation; (4)
L∗
1 := {w1w2...wn|n ∈ N, wi ∈ L1, i = 1, ..., n}, where L1 and L2 are regular languages. The
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(b) end0: (0|1) ∗ 0
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0

1

0

1

(c) parity0: (1|01 ∗ 0)∗

q0start q1 q2

1

0

1

0

0

1

(d) div3: (0|1(01 ∗ 0) ∗ 1)∗

Figure 1: Examples of deterministic finite automata (DFA) and their corresponding regular
expression. They are respectively DFA accepting strings that (a) alter: begin with 0 and followed
by any number of copies of the string 10; (b) end0: end with 0; (c) parity0: contain an even
number of 0s; (d) div3: are divisible by 3 when considered as an integer in base 2. Edges that do
not point to any state are not shown.

unary operation ‘∗’ is called the Kleene star. A regular expression is a string specifying how a regular
language is defined using the above recursive rules, and is recursively defined as one of the following
cases: (1) ϵ (empty string) or c, where c ∈ V ; (2) r1|r2 (or); (3) r1r2 (concatenation); (4) r1∗ (Kleene
star); where r1 and r2 are regular expressions. Common usage of brackets is also allowed.

Deterministic finite automata. A deterministic finite automaton can be considered as a special
Turing machine where the machine can only read from left to right (i.e. one-way) and cannot write in
the tape (i.e. read-only). Formally, a DFA is defined as a 5-tuple (Q,V, δ, q0, F ), consisting of (1) a
finite set of states Q; (2) a finite set of input symbols called the alphabet (or vocabulary) V ; (3) a
transition function δ : Q×V → Q; (4) an initial state (or start state) q0 ∈ Q; (5) a set of accept states
(or final states) F ⊆ Q (often depicted with double circles). Some examples of DFA and regular
expressions are shown in Figure 1. These DFA/regex are also used in our experiments.

Equivalence of regular expressions and DFA. Both regular expressions and DFA specify each
a certain language L ⊆ V ∗. It is a commonly known fact that regular expressions and DFA are
equivalent in the sense that they both specify all regular languages. Algorithms exist for converting
between regular expressions and DFAs, often utilizing non-deterministic finite automata (NFA) as an
intermediate step (Kleene, 1956; McNaughton & Yamada, 1960). This equivalence allows us to use
these representations interchangeably in formal language theory and practical applications.

4 METHODOLOGY

The pipeline of our proposed method LaMFA is shown in Figure 2. LaMFA begins with a trained
language model. The language model is trained on a dataset of strings matching a given but unknown
regular expression r∗ using an auto-regressive loss akin to GPT. Then, we sample strings Xi using
the language model (considered as a generative network) and do clustering on the features of all
substrings Xi[: t], i.e. the first t characters of Xi, in the latent space before the last linear layer. Next,
each substring Xi[: t] is now attached to one center ci,t ∈ C of these clusters and we estimate a
transition matrix P ∈ [0, 1]k×|V |×k using all triplets

(ci,t, Xi[t], ci,t+1) ∈ C × V × C,

where k := |C| is the number of clusters and |V | is the alphabet size. To mitigate the effect of the
randomness of the clustering algorithm and the noise, an additional merging and denoising procedure
is applied to merge redundant cluster classes in C and remove noisy transition patterns in P . A
DFA is then obtained using the estimated transition matrix and a corresponding regular expression
is computed using the classical state elimination method (Brzozowski & McCluskey, 1963). In the
following, we give detailed introductions to the training settings and the LaMFA method.
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(a) Language model training (b) LaMFA

Figure 2: (a) Beforehand training. A language model is trained on a dataset of strings matching an
unknown regular expression. (b) Pipeline of LaMFA. Generate: strings are sampled using the trained
language model. Discretize: the feature vectors before last linear layer of the substrings of sampled
words are clustered in the latent space. Estimate: a deterministic finite automaton is computed via the
estimation of the transition matrix. Finally the corresponding regular expression is obtained.

4.1 TRAINING DATA GENERATION

We select 5 simple regular languages to generate datasets for training the language model: alter,
mdY, end0, parity0, and div3. The DFA of some are visualized in Figure 1. A summary of
the datasets can be found in Table 1. Specifically, alter consists of strings that alternate 0 and
1, following the regex pattern 0(10)∗. mdY contains real date strings in the format mm/dd/yyyy,
matching the regex \d{2}/\d{2}/\d{4}. end0 includes strings ending with 0. parity0 contains
strings with an even number of 0s. div3 consists of binary integers divisible by 3.

These languages vary in their circuit complexity of their grammars. alter and mdY belong to the
complexity group AC0, i.e. they can be recognized by constant-depth circuit families with polynomial
size (Arora & Barak, 2009). However the rest 3 languages are not, thus belong to the complexity
group TC0. According to previous empirical and theoretical studies (Bhattamishra et al., 2020a;
Li et al., 2024), transformers struggles in recognizing regular languages outside AC0. Thus it is
interesting to examining if similar conclusion can draw in language generation ability.

Beyond circuit complexity, these languages exhibit varying degrees of context dependency. We
define a language as having local context dependency if recognizing it requires only a constant-length
context window. Conversely, languages with global context dependency necessitate information from
the entire input sequence. Analysis of the regular expressions reveals that alter, mdY, and end0
exhibit local dependency, whereas parity0 and div3 require global context. For example, alter
can be recognized using a context window of merely two characters.

We consider a random walk on the DFA graph to generate strings. It starts from the initial state
and terminating only on the final states. For each episode of the random walk, the characters on
all traversed edges then form a valid string accepted by the DFA. The only randomness we need to
introduce is in the choice of the next character to read. For this, we apply a uniform distribution on all
possible actions/characters. Notably, there is an extra action ‘terminate’ in each final state. We follow
this data-generating process to generate 10000 examples for div3, 50000 examples for parity0
and end0. For mdY, we generate date strings from 01/01/1900 to 03/16/2023, in the m/d/Y format,
with 50000 examples. For alter, we generate all 44 possible examples under the constraint on
maximum length (≤ 88). Note that training data generated as above can contain repetitive strings.

4.2 KNOWLEDGE RECOVERING

In this subsection, we present the detailed process of recovering knowledge from a neural network.
The algorithmic description of our method is illustrated in Algorithm 1 and Algorithm 2. Given a
language model fully trained, we plan to recover the original knowledge from itself by hardening
it. Specifically, LaMFA begins with generating a series of sequences by language models. For each
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Algorithm 1 LaMFA

Input: A trained language model pθ with parameters θ. From pθ one also gets a function p̄θ : V ∗ →
Rd that computes feature vectors before last layer.

Input: N : number of strings to sample.
Input: K: number of clusters.
Output: Pc,v,c′ : transition matrix; Oc,v: output matrix.

1: S ← {Xi}Ni=1 ∼ pθ # Generate using LM
2: S′ ← {X[: t]}X∈S;t=1,...,len(X) # Consider all substrings of first t characters
3: H ′ ← {p̄θ(s′)}s′∈S′ # Compute feature vectors
4: F ← KMeans(H ′,K), where F : Rd → C and C := {1, ...,K} # Discretize the feature

vectors into clusters
5: E ← {(F (X[: t− 1]), X[t], F (X[: t]))}, where X ∈ S; t = 2, ..., len(X) # Construct

triplets
6: Pc,v,c′ ← #{e ∈ E|e1 = c, e2 = v, e3 = c′}/#{e ∈ E|e1 = c, e2 = v} # Estimate the

transition matrix
7: Oc,v ← #{e ∈ E|e1 = c, e2 = v)}/#{e ∈ E|e1 = c)} # Estimate the output matrix
8: Pc,v,c′ , Oc,v, F ←Merge(Pc,v,c′ , Oc,v, F,K) # See Algorithm 2
9: return Pc,v,c′ , Oc,v .

Algorithm 2 Merge

Input: Pc,v,c′ : transition matrix, Oc,v: output matrix, F : clustering function
Input: K: number of clusters.
Output: P ∗

c,v,c′ : new transition matrix, O∗
c,v: new output matrix, F ∗: new clustering function

1: k ← K
2: repeat
3: i, j ← argmaxi,j cosine_similarity ([flatten(Pi,:,:), Oi], [flatten(Pj,:,:), Oj ])

# Find the most two similar clusters i, j
4: {F |C = i} ← {F |C = j} # Merge cluster i, j
5: Denoise operation shown in Equation (2).
6: Update Pc,v,c′ , Oc,v, F for merged clusters.
7: Update the best tuple P ∗

c,v,c′ , O
∗
c,v, F

∗ (according to valid rate).
8: k ← k − 1
9: until k = 1

10: return P ∗
c,v,c′ , O

∗
c,v, F

∗.

generated sequence Xi, the hidden representation of each token Xi[t] in the last Transformer/LSTM
layer is extracted, noted by hi[t] ∈ Rd. d is the hidden dimension of the language model. The
hidden state encodes the substrings Xi[: t] and ideally corresponds to the DFA states. We denoted
all of the collected hidden states as set H = {hi[t]}. Subsequently, LaMFA utilizes the k-means
algorithm (Ahmed et al., 2020) to cluster the collected hidden states hi[t] into k clusters. After
clustering, the 5-tuple components of DFA can be obtained:

• Q: the finite set of states Q is denoted as the clusters in k-means algorithms, which have k
different states.

• V : the input symbols set V corresponds to the vocabulary of generated sequences.
• δ: illustrated in Algorithm 1, by counting the number of transitions between two consecutive

tokens, LaMFA can construct a transition matrix P of dimensions k × |V | × k, where Pijk

represents the frequency of transitions from cluster i to cluster k, given the input Vj . After
normalization, this leads to the formulation of the corresponding transition function δ.

• q0: the starting state q0 is denoted as the cluster corresponding to the special token <bos>’s
hidden state.

• F : the final states F are correspond to the clusters which can generate special token <eos>.

Note that DFA can only take tokens as inputs and thus can not generate sequences directly. To
make it generative, LaMFA maintains an additional K × V frequency matrix O where each row

6
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represents the output token distribution for its corresponding state. By normalizing the frequency
matrix ω = diag

(
1∑n

k=1 Oik

)
O, it becomes an output probability matrix which enables the recovered

DFA to generate sequences.

Due to the unpredictability of cluster numbers and potential noise, it is important to allow a sufficiently
large k in the k-means algorithm. To achieve this we incrementally test larger values and evaluate
the resulting DFA’s accuracy. This process continues until the accuracy improvement falls below a
threshold τ = 0.1. After this step, LaMFA merges redundant clusters and removes noisy transition
patterns in P . This approach ensures a precise mapping of the model’s hidden states, accounting for
the clustering algorithm’s randomness and possible imperfections in the language model’s training.

Merging and denoising. The merging and denoising procedures are illustrated in Algorithm 2. The
merging procedure aims to combine similar and redundant clusters. For each merge step, LaMFA
greedy merges the two most similar clusters. Specifically, to find the most similar clusters, LaMFA
first reshapes the transition matrix δ ∈ RK×|V |×K into |V | individual matrices, each of size δ1..|V | ∈
RK×K . Subsequently, we concatenate these |V | matrices as well as normalized frequency matrix
ω ∈ RK×|V | along their second axis which forms the characteristic matrix M ∈ RK×(|V |×K+|V |):

M = [δ1, δ2, ..., δ|V |, ω]

where [·, ·] denotes the concatenation operation. Each row in the characteristic matrix M depicts the
corresponding cluster’s outgoing transition behavior under all circumstances. Finally, the most similar
two cluster is obtained by calculating the cluster-to-cluster similarity matrix MMT and picking out
the cluster pair with the highest similarity score. LaMFA then re-calculates the new transition matrix
P and frequency matrix O by treating these two clusters are one. Additionally, a denoising operation
is performed on top of the newly obtained P and O before normalization. Specifically, sharpening is
performed in all |V | slice of P:,v,: (where v ranges from 1 to |V |):

P ′
k,v,j =

P
1
T

k,v,j∑K
l=1 P

1
T

k,v,l

K∑
l=1

Pk,v,l (2)

For frequency matrix O, we set all frequencies under threshold τo to zero to abandon the noisy
frequency signal. After the denoising operation, we obtained new δ and ω by normalizing P and O.
Intuitively, removing the noisy pattern in the δ and ω will increase the resulting automaton’s accuracy.
LaMFA utilize this heuristic by greedily merging similar states until the resulting automaton’s
accuracy begins to decrease. Merging and denoising are iteratively conducted for K steps.

After this step, a finite automaton, which is probably non-deterministic will be acquired. We convert
it into a DFA with the classical subset construction algorithm (Rabin & Scott, 1959).

5 EXPERIMENTS

5.1 SETTINGS

Dataset. We experiment with the 5 datasets introduced in Section 4.1: parity0, div3, alter,
end0 and mdY. Each dataset is split into train/eval-ID/eval-OOD according to the ratio 3/1/1. The
eval-OOD set is an out-of-distribution (OOD) evaluation set. For parity0, div3, alter and
end0, eval-OOD sets consist of their longest 20% samples. For mdy, the eval-OOD set consists of
date strings with the top 20% largest sum of digits. The eval-ID set and train set are random splits of
the rest samples.

Configuration and Evaluation. The detailed architecture of the experimented language models is
shown in Table 3. Details about the training hyperparameters are included in the Appendix. Valid
rate (denoted as valid in tables) and the cross-entropy loss (denoted as ce in tables) are used as
the evaluation metric for measuring the quality and diversity of the language model. To compute the
valid rate, we generate 10,000 samples under each language model, and then test the validity of the
generated sample by the ground-truth regex of the corresponding language. The valid rate is then
defined as the ratio of the valid samples in all generated non-empty strings. The cross-entropy loss is
calculated on the evaluation set to compare the relative distributional similarity between different
language models and sample distributions.
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Table 2: The valid rate and cross-entropy loss of different language models. “neural” denotes the
raw trained models. “kmeans” denotes the model after the k-means step in LaMFA. “LaMFA-DFA”
denotes the final hardened model. Three architectures are used: LSTM (0.50K), GPT-tiny (0.68K or
1.09K), and GPT-nano (86.16K). Underlined items correspond to cases where LaMFA recovers the
exact/equivalent regular expression. Top values are bolded.

Dataset Model neural kmeans LaMFA-DFA

valid ↑ ce ↓ valid ↑ ce ↓ # cluster valid ↑ ce ↓ # cluster

alter
LSTM 98.33 3.80 90.46 3.84 10 99.33 3.78 3

GPT-tiny 98.51 5.27 98.76 5.29 10 100.00 3.92 3
GPT-nano 99.41 4.26 99.50 4.23 10 100.00 4.00 3

mdY
LSTM 92.91 10.97 86.62 11.6 72 90.00 11.66 41

GPT-tiny 99.82 10.80 99.19 11.28 55 99.82 11.19 15
GPT-nano 99.94 10.73 94.12 10.92 56 96.39 10.91 24

end0
LSTM 99.92 4.12 100.00 4.12 5 100.00 4.12 3

GPT-tiny 99.96 4.10 99.79 4.11 39 100.00 4.11 33
GPT-nano 99.96 4.11 100.00 4.15 60 100.00 4.14 47

parity0
LSTM 53.37 5.23 53.82 4.86 5 53.37 4.87 2

GPT-tiny 70.40 4.39 70.29 4.44 65 70.44 4.43 45
GPT-nano 98.05 4.02 98.31 4.48 74 100.00 4.67 3

div3
LSTM 41.25 6.08 42.21 6.01 12 42.68 6.00 7

GPT-tiny 56.07 5.68 56.40 5.72 39 57.17 5.72 34
GPT-nano 85.43 5.28 84.42 5.46 96 85.05 5.42 77

Table 3: Architectures of language models. Time denotes the average time (ms) used for generating
10000 samples with GPU.

Models embed. dim. layers #param. time (ms)
LSTM 6 1 0.50K 38.7

GPT-tiny 6 1 0.68K 2027.7
GPT-nano 48 3 86.16K 11245.8

5.2 RESULTS

Our experiments yielded several significant insights into the behavior of language models when
applied to regular languages.

5.2.1 LANGUAGE MODEL PERFORMANCE

The results in Table 2 reveal that the context dependency feature of regular languages has a more
significant impact on language models’ performance than circuit complexity. All models, regardless of
their architecture, demonstrated exceptional performance on languages with local context dependency
(i.e., alter, mdY, and end0), achieving an average accuracy of 98.34%. This high performance
held true across various levels of circuit complexity.

However, languages requiring global context (parity0 and div3) presented significant challenges,
particularly for LSTM models. While GPT-nano maintained relatively high performance with an
average accuracy of 91.74% on these globally dependent languages, LSTM models showed a marked
decrease in performance (53.37% on parity0, 41.25% on div3).

Among different architectures, GPT-nano consistently outperformed others, achieving valid rates
higher than 98% across all five datasets. It’s worth noting that neural language models, like most
‘soft’ algorithms, rarely achieve perfect (100%) accuracy.
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Table 4: OOD performance of different language models on all datasets.

Dataset Model neural LaMFA-DFA

valid ↑ ce ↓ valid ↑ ce ↓

alter
LSTM 96.26 5.14 99.75 5.27

GPT-tiny 50.00 9.99 100.00 6.93
GPT-nano 98.92 6.48 100.00 6.40

mdY
LSTM 93.15 10.85 98.06 11.11

GPT-tiny 99.95 10.74 100.00 11.09
GPT-nano 99.95 10.71 100.00 10.67

end0
LSTM 99.84 13.57 100.00 13.61

GPT-tiny 99.97 13.68 100.00 13.90
GPT-nano 99.97 13.60 100.00 13.79

parity0
LSTM 50.94 16.83 47.37 16.72

GPT-tiny 50.52 21.89 52.02 32.15
GPT-nano 64.52 47.12 100.00 21.19

div3
LSTM 34.86 24.87 32.55 24.30

GPT-tiny 30.70 30.59 32.56 41.59
GPT-nano 32.11 31.44 36.66 42.09

(a) alter (b) mdY

Figure 3: The comparison between ground truth states and LaM clusters. The state shown in
different colors denotes the ground truth state of DFA. The corresponding cluster shown in different
shapes denotes the hardening result computed by LaMFA. (a) alter result computed using LaMFA
recovering from GPT-nano. (b) mdY result computed using LaMFA recovering from GPT-tiny.

5.2.2 DFA EXTRACTION.

Comparing the neural and LaMFA-DFA column in Table 2, the extracted DFA by LaMFA show
consistency with the original model in their validity and cross-entropy loss. To gain deeper insights,
we visualized the states of the original generating DFA and the clusters defined by LaMFA. As shown
in Figure 3 (a), the clusters are divided exactly the same as the original DFA states on alter. In
Figure 3 (b), 15 clusters recovered from GPT-tiny on mdY also show highly consistent results.

In many cases, we observe that the number of states in LaMFA-DFA can be much larger than that
of the ground truth minimal DFA, even when the validity is 100%. Figure 4 (a) visualize two
LaMFA-DFA. It shows that LaMFA-DFA of LSTM on end0 is exactly equivalent to the ground-truth
regex. Interestingly, the DFA of GPT-tiny contains an extra state (0,1,2), which corresponds to the
hidden refusing state for recognizing alter strings. These observations suggest that larger models
may learn more nuanced representations of the language, potentially capturing subtleties beyond the
minimal DFA representation.
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(a) alter-GPT-tiny (b) end0-LSTM

Figure 4: The extracted DFA from (a) GPT-tiny on alter; (b) LSTM on end0.

5.2.3 GENERALIZATION CAPABILITY

LaMFA-DFA generally achieved better evaluation performance compared to the original neural
models. For instance, recovered DFAs based on all three architectures reached 100% valid rate
and lower cross-entropy on the end0 dataset. Table 4 presents the out-of-distribution (OOD)
generalization evaluation results. For GPT-tiny and GPT-nano, the hardened models consistently
demonstrated higher OOD valid rates. For LSTM, on alter, end0, and mdY, LaMFA improved
the valid rate while maintaining comparable cross-entropy loss.

Comparing OOD performance (Table 4) with in-distribution performance (Table 2), we noticed that
both GPT-tiny and GPT-nano experienced significant drops in valid rate on parity0 (from 70.4 to
50.52, and 98.05 to 76.56, respectively). Interestingly, these observation align with previous DFA
extraction studies on language recognization RNNs (Giles et al., 1991; Das & Mozer, 1993), which
showed that extracted rules often exhibit better generalization ability than the original neural models.

6 CONCLUSION AND DISCUSSIONS

This paper presents a pioneering study bridging probabilistic modeling with symbolic computation
models (automata). By examining trained language models on regular languages of varying complex-
ity, we demonstrate that context dependency is the dominant factor in language modeling complexity.
This insight offers new perspectives on regular language complexity and the expressiveness of lan-
guage models. Our proposed method, LaMFA, successfully extracted DFAs from trained models,
often showing consistency with the original models in terms of validity and cross-entropy loss. In
some cases, extracted DFAs captured more nuanced representations than the minimal ground truth
DFA. LaMFA-extracted DFAs generally demonstrated better evaluation performance and improved
out-of-distribution generalization compared to the original neural models, aligning with previous
findings in DFA extraction studies. It marks a significant advancement in model interpretability
and generalization. Our observations reveal a complex interplay between model size, language
complexity, and the structure of extracted DFA.

This research complements existing work on regular language recognition models and opens new
avenues for studying language models through the lens of symbolic computation. By establishing
this connection, we pave the way for future investigations that combining probabilistic and symbolic
approaches in computational linguistics and machine learning. Furthermore, we argue that this
pipeline—training models on multiple different regular languages and investigating the extracted
DFA—can potentially serve as a benchmark for analyzing language models of different architectures.
To facilitate future development and research in this area, we are releasing all codes and checkpoints
used in this study.

However, it’s crucial to acknowledge the limitations of this study. First, our focus on formal languages,
specifically regular languages, limits the direct generalization of our findings to natural language
processing tasks, which involve far more complex linguistic structures and ambiguities. Second, while
our DFA extraction algorithm yielded promising results, there is potential for developing stronger,
more efficient algorithms that could extract even more accurate or compact automata representations.
Finally, our experiments were conducted on relatively small-scale models compared to the massive
language models currently at the forefront of AI research. Extending this work to larger-scale models
could reveal different behaviors or challenges, particularly in terms of computational feasibility
and the complexity of extracted automata. These limitations point to valuable directions for future
research in this area.
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A EXTENDED RELATED WORKS

Probing knowledge in language models. Many efforts have been made on explaining the knowl-
edge captured by the neural language model for safety or ethical concerns, and its further develop-
ing (Madsen et al., 2022). Given the complex nature of both natural language and deep networks,
existing explanation methods are based on knowledge probing, i.e. inspect the existence of specific
knowledge in the model through prediction tasks or ablations (Tenney et al., 2019; Dalvi et al., 2022;
Jiang et al., 2020; Shi et al., 2016; Meng et al., 2023; Madsen et al., 2022; Allen-Zhu & Li, 2024b).
Such probing is conducted at different levels. For example, Jiang et al. (2020) assess the storage of
factual knowledge through automatic prompting. Other existing works use predicting tasks to probe
the existence of specific types of linguistic information in the hidden layers (Shi et al., 2016; Tenney
et al., 2019). Meng et al. (2023) identify neurons associated with specific factual knowledge by causal
interventions. Although probing helps in locating knowledge, the overall generating mechanism of
the language model remains unexplained.

Symbolic regression. Symbolic regression is the task of learning a symbolic representation from
data. For example, physics-informed neural networks (PINNs) (Raissi et al., 2019) aim at discovering
the partial differential equations behind a given dataset. AI Feymann (Udrescu & Tegmark, 2020)
also tries to rediscover equations in physics from data using neural networks. Different from symbolic
regression, our method only relies on trained parameters and assumes no knowledge at all of the
training data.

Assessing neural networks with formal languages. Recent works focus on assessing the expres-
sive power of neural networks with their ability to recognize formal languages. Theoretically, LSTMs
have been demonstrated to be strictly more powerful than regular languages, capable of perfectly
emulating finite-state automata Merrill (2019). Regarding transformers, theoretical limitations have
derived for different restricted form of transformers on recognizing formal languages of different
circuit complexity (Hahn, 2020; Hao et al., 2022; Merrill et al., 2022; Merrill & Sabharwal, 2023).
For example, Hao et al. (2022) and Hahn (2020) have derived theoretical limitations for hard atten-
tion transformers, where attention distributions focus all probability mass on a single index. Their
findings indicate that AC0, the class of languages recognizable by constant-depth circuit families,
serves as an upper bound for the formal languages that hard-attention transformers can recognize.
Notably, the formal language parity0 falls outside AC0. Merrill & Sabharwal (2023) show that
log-precision transformers Merrill & Sabharwal (2024) are upper-bounded by uniform TC0, i.e.
they are only possible to compute formal grammars that can be simulated by a circuit in uniform
TC0. Empirically, Bhattamishra et al. (2020a) examined Transformers’ ability to recognize regular
languages and implement counter mechanisms. Liu et al. (2023) demonstrated that transformers can
learn automata with fewer layers than theoretically expected. Sennhauser & Berwick (2018) and
Bhattamishra et al. (2020b) have evaluated the potential of LSTMs to acquire context-free grammars.

In this work, we focus on probabilistic language models, i.e. neural networks trained with the
language modeling task, instead of recognition. Concurrent work by Allen-Zhu & Li (2024a) aligns
with this effort. They focus on a family of synthetic context-free languages exhibiting hierarchical
structures. By probing the trained model’s latent states quantify attention patterns, they suggest that
GPT models learn CFGs by implementing a dynamic programming-like algorithm. In comparison,
we focus on regular languages, which provide a simpler yet powerful framework for analyzing model
behavior. This approach allows us to precisely control the complexity and context dependency of
the input. By utilizing finite automata as our analytical tool, we can examine both RNN-based and
transformer-based architectures through a unified lens. Furthermore, this approach enables us to build
upon previous theoretical works, highlighting the crucial distinctions between language generation
and recognition tasks.

Finite automata extraction. The extraction of deterministic finite automata from RNNs has been
extensively studied over the past few decades. (Giles et al., 1991; Omlin & Giles, 1996; Das & Mozer,
1993; Weiss et al., 2018; Michalenko et al., 2019). Early work by Giles et al. (1991) and Omlin
& Giles (1996) focus on simple second-order RNNs. Giles et al. (1991) pioneered this field by
developing a dynamic clustering algorithm to extract production rules from trained second-order
RNNs. This method involved state clustering, transition mapping, and graph reduction to obtain
minimal DFA representations. They proposed that in some cases this approach often resulted in
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Figure 5: AC0 Circuit for recognizing mdY.

Table 5: The hyperparameters

Dataset parity0 div3 alter end0 mdY

max length 88 88 88 88 12
batch size 64 64 10 64 64

optimizer SGD
scheduler CosineAnnealingLR
learning rate 1e-3
epoch 500

extracted grammars that outperformed the original neural networks in classifying unseen strings.
Omlin & Giles (1996) further introduce techniques to extract multiple consistent DFAs from a single
network. They focused on improving rule quality and developed heuristics for selecting the most
accurate DFA representation of the learned grammar. More recently, (Weiss et al., 2018) propose
a new method using Angluin’s L∗ algorithm with the trained RNN as an oracle to extract a DFA
representing its behavior. They efficiently extracted accurate automata from complex networks,
including GRU and LSTM architectures. By applying this technique to RNNs trained to 100% train
and test accuracy on simple languages, they discover that some RNNs have not generalized to the
intended concept.

Our work builds upon this foundation by further extending the extraction process to transformer-based
models. A key distinction of our study is its focus on generative language models, whereas previous
works primarily examined RNNs trained on language recognition tasks, which result in deterministic
models. By investigating generative language models, our research complements and expands upon
this established body of work.

B REGULAR LANGUAGES AND CIRCUIT COMPLEXITY

alter can be recognized by the AC0 circuit because the language requires only local, fixed-distance
checks that can be performed in parallel. The circuit uses a NOT gate to ensure the string starts with
0, followed by a layer of AND gates that check for alternating 1s and 0s in adjacent positions. These
AND gates operate independently on different parts of the input, allowing simultaneous evaluation.
A final OR gate combines these results. This structure maintains the key properties of AC0: constant
depth (three layers including input), polynomial size (linear growth with input length), and unbounded
fan-in (at the OR gate). mdY can also be recognized with AC0 circuit since it has fixed length and
finite alphabet. We illustrate a feasible circuit in Figure 5.

C HYPER-PARAMETERS

The detailed hyper-parameters of experiments are illustrated in Table 5.

As the alphabets are simple, there is no need for tokenization and each character is considered as an
independent token.
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(a) k-means

(b) LaMFA

Figure 6: Valid rate and cross-entropy loss v.s. the number of clusters in k-means and LaMFA,
respectively. (a) The k-means performance increases with the number of clusters. (b) LaMFA
increases the generalization ability by merging the state from large clusters to ground truth clusters.

D MORE RESULTS

D.1 CLUSTERING

We perform a study on the impact of the initial number of clusters as shown in Figure 6. Figure 6a
illustrates how k influences the method only with k-means clustering, and Figure 6b demonstrates how
k influences the whole algorithm LaMFA. As can be seen, larger k usually has better performance,
while it may lead to overfitting (with large cross-entropy) as it is the case for mdY, div3 and
parity0.

We show more clustering results for the datasets div3 and end0 in Figure 7. We can see that the
estimated states (i.e. the clusters) for end0 correspond well to the ground truth. But it is not the
case for div3. This is due to the difficulty of the dataset div3, especially the fact that the language
model over-fits the dataset and get almost random OOD generalization performance. This can be
seen from the results in Tables 2 and 4.
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(a) div3

(b) end0

Figure 7: The comparison between ground truth states and LaMFA clusters, as a continuation of
Figure 3. (a) div3 result computed using LaMFA recovering from GPT-nano. (b) end0, using
LSTM. We can see that the estimated states (i.e. the clusters) for end0 correspond well to the ground
truth. But it is not the case for div3, due to the difficulty of the dataset.
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