
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Medusa: Unveil Memory Exhaustion DoS Vulnerabilities in
Protocol Implementations

Anonymous Author(s)

ABSTRACT

Web services have brought great convenience to our daily lives.
Meanwhile, they are vulnerable to Denial-of-Service (DoS) attacks.
DoS attacks launched via vulnerabilities in the services can cause
great harm. The vulnerabilities in protocol implementations are
especially important because they are the keystones of web services.
One vulnerable protocol implementation can affect all the web
services built on top of it. Compared to the vulnerabilities that cause
the target service to crash, resource exhaustion vulnerabilities are
equally if not more important. This is because such vulnerabilities
can deplete the system resources, leading to the unavailability of not
only the vulnerable service but also other services running on the
same machine. Despite the significance of this type of vulnerability,
there has been limited research in this area.

In this paper, we proposeMedusa, a dynamic analysis framework
to detect memory exhaustion vulnerabilities in protocol implemen-
tations, which are the most common type of resource exhaustion
vulnerabilities. Medusa works in two phases: exploration phase
and verification. In the exploration phase, a protocol property graph
(PPG) is constructed to embed the states with relevant properties
including memory consumption information. In the verification
phase, the PPG is used to simulate DoS attacks to verify the vulnera-
bilities. We implemented Medusa and evaluated its performance on
21 implementations of five protocols. The results demonstrate that
Medusa outperforms the state-of-the-art techniques by discovering
overall 127× maximum memory consumption. Lastly, Medusa has
discovered six 0-day vulnerabilities in six protocol implementa-
tions for three protocols. Particularly, one of the vulnerabilities was
found in Eclipse Mosquitto, which can affect thousands of services
and it has been assigned with a CVE ID.

ACM Reference Format:

Anonymous Author(s). 2023. Medusa: Unveil Memory Exhaustion DoS Vul-
nerabilities in Protocol Implementations. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION

Denial-of-Service (DoS) attacks have emerged as a prevalent form
of attacks against web services in the past two decades [48]. Ac-
cording to [26], DoS attacks can take two forms. The first form
targets to overwhelm the network bandwidth of the target service

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

with a massive amount of useless traffic, while the second form
exploits vulnerabilities present in the target service. The majority
of existing research has focused on detecting the first form of attack
by monitoring incoming traffic [3, 21, 25, 31, 36, 40]. In contrast,
less attention has been paid to DoS attacks through vulnerabilities.

Although less research effort was devoted to DoS vulnerabili-
ties, they are important subjects for studying. The reason is that
attackers can cause the same or even greater harm with less ef-
fort by exploiting vulnerabilities than by overwhelming a service
with massive traffic. Moreover, DoS vulnerabilities inside proto-
col implementations are of greater concern. This is because every
service relies on certain protocols to communicate and protocol
implementations are the necessary building blocks of web services.
Vulnerabilities in one protocol implementation can affect multiple
services, amplifying their impact. Therefore, we focus on studying
DoS vulnerabilities in protocol implementations 1.

DoS vulnerabilities can be classified into two types [44]: the first
type crashes the target service (e.g., due to memory errors) while
the second type exhausts the resource of the host machine (e.g.,
due to excessive memory consumption). Detecting the crashing
type of vulnerability has been addressed in established research
effort [12, 30, 37–39], while the resource-exhaustion type of vul-
nerability has received less attention. According to our study on
all the protocol-related resource exhaustion DoS CVEs from 2015
to 2022 (205 CVEs in total), 132 (64%) CVEs are related to memory
exhaustion. Therefore, we focus our research on studying memory
exhaustion DoS vulnerabilities.

To mitigate the risk of memory exhaustion vulnerabilities in
protocol implementations, early identification of these issues is
imperative. However, unlike memory errors, memory exhaustion
vulnerabilities do not have distinct code patterns, making them
difficult to detect through static analysis techniques. As a result,
it is necessary to use dynamic analysis techniques to capture the
behavior of excessive memory usage during the execution of the
target protocol program.

Detecting memory exhaustion DoS vulnerabilities in protocol
implementations using dynamic analysis techniques presents a
unique set of challenges. Firstly, in order to identify potential vul-
nerabilities, it is necessary to explore the memory consumption
of different protocol states. This requires a well-planned strategy
that properly schedules the exploration of different possibilities.
Secondly, excessive memory usage does not always indicate a high
risk of DoS attack. A single message may cause a protocol pro-
gram to consume significant memory, but may not necessarily be
used to launch a DoS attack due to various complex factors such as
protocol-imposed rate limitations on specific types of messages. As
such, further verification is necessary to assess the viability of DoS
attacks. Thirdly, protocols can have multiple implementations in

1In this paper, we use the terms protocol implementation and protocol program inter-
changeably.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

different programming languages, and memory exhaustion DoS vul-
nerabilities can potentially exist in all kinds of languages. To ensure
generality, programming language-agnostic analysis techniques
are required. However, these techniques limit the information that
can be utilized.

In this paper, we propose a dynamic analysis framework called
Medsua 2, to solve the challenges and unveil memory exhaustion
DoS vulnerabilities in protocol implementations. Medusa com-
prises two phases: exploration and verification. The key object con-
necting the two phases is the protocol property graph (PPG) which
embeds the protocol states and relevant properties such as memory
consumption information. During the exploration phase, Medusa
uses a state-aware fuzzer to build and refine the PPG. In return,
through querying the PPG, the fuzzer can better explore the mem-
ory consumption capability of different states. During the verifi-
cation phase, Medusa generates message sequences by querying
the PPG with restrictions and validates viable DoS attacks with
the message sequences under simulated environments. PPG can
provide guidance to the state-aware fuzzer to substantially explore
potentially vulnerable states, addressing the first challenge. The
PPG-based verification helps to validate potential DoS attacks, ad-
dressing the second challenge. The construction and usage of the
PPG do not require program instrumentation to get internal infor-
mation about the protocol implementation, addressing the third
challenge.

We implementedMedusa and evaluated its performance with ex-
tensive experiments. To evaluate the exploration ability of Medusa,
we conducted 17,640 CPU hours of experiments on 21 implementa-
tions of 5 protocols. Compared to the baseline, Medusa can discover
overall 125.7× maximum memory consumption. To evaluate the
verification ability of Medusa, we built the experimental environ-
ment and conducted simulated DoS attacks. The results show that
the DoS attacks with attack inputs generated from Medusa caused
target protocol programs to consume significantly more memory
and result in worse availability. Moreover, during the evaluation,
we discovered six 0-day memory exhaustion DoS vulnerabilities,
one of which has been assigned with a unique CVE ID.

In summary, we make the following contributions:
• Empirical Study.We conducted an empirical study on resource

exhaustion vulnerabilities in protocol implementations, which is
the first in this field.

• Protocol Property Graph. We proposed a protocol property
graph (PPG) based strategy to explore the memory consumption
of different states and verify the DoS vulnerabilities.

• Medusa Framework. We implemented Medusa as a dynamic
analysis framework and will release the source code for future
research.

• Real-world Impact. We evaluated Medusa with extensive ex-
periments and found six 0-day memory exhaustion DoS vul-
nerabilities in six protocol implementations, which can affect
thousands of web services.
This paper is coupled with a website: https://sites.google.com/

view/medusa-dos. We will release the raw experiment data and the
source code of Medusa on this website.

2Medusa is a character in the Geek mythology who can turn those who gazed into her
eyes into stones.

Memory
(64%)CPU

(16%)

Connection
(14%)

Bandwidth
(1.5%)

Disk
(1.5%)

Thread
(2%)

File Descriptor
(1%)

Figure 1: The distribution of resource exhaustion vulnerabil-

ity types in protocol implementations from 2015 to 2022

2 BACKGROUND & MOTIVATION

2.1 Resource Exhaustion Vulnerability

As defined in [4], resource exhaustion vulnerability refers to a
specific fault that causes the consumption or allocation of some re-
source in an undefined or unnecessary way, or the failure to release
it when no longer needed, eventually causing its depletion. In the
scenario of protocol implementation, resource exhaustion vulnera-
bility occurs due to improper handling of resource consumption or
allocation in specific protocol states.

2.2 Empirical Study of Resource Exhaustion

Vulnerabilities

To gain a better understanding of resource exhaustion vulnerabili-
ties in protocol implementations, we conducted an empirical study
on the Common Vulnerabilities and Exposure (CVE) [13] database
which contains a set of publicly disclosed security vulnerabilities.
Details of how we collected the data can be found in Appendix A
or on our website [2]. In total, we identified 205 memory exhaus-
tion vulnerabilities in protocol implementations from 2015 to 2022.
Fig. 1 illustrates the distribution of resource exhaustion vulnera-
bility types. Among the 205 resource exhaustion vulnerabilities,
132 (64%) are related to memory, 32 (16%) are related to CPU, 29
(14%) are related to connections and few are related to other types
(disk, thread, file descriptor, and bandwidth). The results indicate
that memory is much more vulnerable to resource exhaustion DoS
attacks compared to other types, which highlights the significance
of studying the detection of memory exhaustion vulnerability.

2.3 Motivating Example

We use CVE-2017-7651 and its regression vulnerability discovered
by Medusa as an example to discuss the motivation behind our
proposed technique. CVE-2017-7651 is a memory exhaustion vul-
nerability in Mosquitto [16], a popular C language implementation
of the MQTT protocol which is used by thousands of types of IoT
devices. Fig. 2 depicts the patch for CVE-2017-7651 (lines 4-6) and
the state transition route to trigger a new memory exhaustion vul-
nerability. The root cause of the original vulnerability was that
the length of the payload requested by unauthenticated users was
not checked during the connection phase (starting from line 3) of
the MQTT protocol. As shown in the PoC Pseudocode [9], the re-
porter of CVE-2017-7651 conducted simulated DoS attacks using
the CONNECT commands with large payloads, causing Mosquitto
program to exhaust its memory and killed by the system. To fix

2

https://sites.google.com/view/medusa-dos
https://sites.google.com/view/medusa-dos

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Medusa: Unveil Memory Exhaustion DoS Vulnerabilities in Protocol Implementations Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1 switch (mosq->in_packet.command & 0xF0) {
2
3 case CONNECT:
4 if (mosq->in_packet.remaining_length > 327699) {
5 return MOSQ_ERR_PROTOCOL;
6 }
7 break;
8
9 case PUBACK:
10 . . .
11 . . .
12 }

Patch for CVE-2017-7651

INIT

CONNECT

PUBACK

NO RES

...

States & Transitions

New bug
 path

Figure 2: The patch for CVE-2017-7651 and a new state tran-

sition route discovered by Medusa to trigger a new memory

exhaustion vulnerability.

CVE-2017-7651, a length restriction on the CONNECT command was
applied (line 4 in the patch). The developers’ intuition behind this
fixing strategy is that CONNECT command is the only dangerous
command that can be manipulated by unauthorized attackers to
conduct memory exhaustion DoS attacks. In other words, subse-
quent states (in the dashed box) can only work after the CONNECT
command is passed with authorization. Attackers without compro-
mising the CONNECT command cannot further exploit vulnerabilities
in subsequent states.

Despite the previous attempt of fixing the vulnerability, Medusa
finds another transition route from initial state to no-response
state (as indicated by the red arrow line in Fig. 2) that can result
in huge memory consumption. Since this transition does not need
to pass through the connect state, we identify it as a new vulnera-
bility. Further analysis revealed that this vulnerability is caused by
the wrong order of memory allocations. Specifically, when sending
a valid MQTT command excluding CONNECT(such as SUBSCRIBE)
with a large payload, Mosquittowill allocate memory for the entire
packet before rejecting it, thereby enabling the attacker to exhaust
Mosquitto’s memory. We promptly reported this vulnerability to
the Mosquitto team, who quickly confirmed it and assigned it
with CVE-XXX-XXX (the specific number is omitted to maintain
anonymity). The Mosquitto team assigned this vulnerability a high
(7.5) CVSS score [18] and recognized its DoS threat with the follow-
ing comment.

"I confirm that this is a regression. If a malicious client sends as
its first command a validMQTT packet that is not a CONNECT
command, Mosquitto will attempt to allocate memory for the
entire packet before rejecting it. This means it is possible for a
malicious client to cause significant memory use and a denial
of service."

—— Mosquitto team

From the example in Fig. 2, we summarize four requirements for
detecting memory exhaustion vulnerabilities in protocol implemen-
tations. RequirementI: exploring the memory consumption of

different protocol states.Without awareness of the state transi-
tion and related memory consumption, it is impossible to effectively
identify the vulnerable memory consumption on the state transition
from the initial state to the no-response state, which is crucial
in revealing the vulnerability. RequirementII: using simulated

DoS attacks to verify vulnerabilities. Almost all the cases in
our empirical study, including the motivating example, are veri-
fied by sending multiple attack packets simultaneously to replicate
the real-world attacks. RequirementIII: generality on various

Table 1: Satisfactory status of the four requirements for de-

tecting the memory exhaustion DoS in protocol implemen-

tations.

RequirementI

(Ability)

RequirementII

(Verifiability)

RequirementIII

(Generality)

RequirementIV

(Optimization)

MemLock @✓ ✗ ✗ ✗

AFLNet @✓ ✗ ✓ ✗

Medusa ✓ ✓ ✓ ✓

programming languages. Unlike memory corruption vulnerabili-
ties that mainly exist in memory-unsafe languages such as C/C++,
memory exhaustion vulnerabilities exist in almost all programming
languages. Therefore, a promising detection technique should be
program language agnostic. RequirementIV: optimizing for ex-

ploringmemory consumption. To explorememory consumption
efficiently, some optimizations (how to select and mutate inputs
to explore more memory consumption) need to be taken into con-
sideration. Especially for protocol implementations whose inputs
are sequences of messages, we can decide how to select and mutate
these messages according to the memory consumption caused by
each single message.

Existing dynamic analysis techniques do not satisfy all of the
above requirements. The most related techniques to Medusa are
algorithmic complexity and protocol fuzzing. Algorithmic com-
plexity fuzzing attempts to find the worst-case resource usage of
the entire program, MemLock [43] is a represent tool for testing
memory resource usage. Protocol fuzzing aims at fuzzing proto-
col, AFLNet [38] is a represent tool as it contains all basic main
components for fuzzing protocol. As shown in Table 1, both Mem-
Lock and AFLNet have limitations in discovering memory exhaus-
tion vulnerabilities in protocol implementations. ➊ MemLock is
not state-aware and targets general stateless programs. AFLNet
is stateful but does not obtain and explore memory consumption.
Without knowledge of the memory consumption of protocol states,
we cannot effectively explore the memory consumption of different
states and thus miss the opportunity to find the memory exhaus-
tion vulnerabilities in specific states. Therefore, both MemLock and
AFLNet do not fully meet RequirementI. ➋ Both MemLock
and AFLNet rely on the crashing of programs during the fuzzing
process to identify vulnerabilities. However, memory exhaustion
vulnerabilities may exist even if a single input does not crash the
program. Unfortunately, simulating DoS attack for each input in the
fuzzing process is not feasible as it introduces tremendous overhead,
making MemLock and AFLNet unable to discover these vulnera-
bilities and fail to meet RequirementII. ➌ MemLock needs to
instrument programs to gather memory consumption information,
but this technique only works for C/C++ programs. This limits its
scalability and makes it unable to detect memory exhaustion vulner-
abilities in protocol implementations written in other programming
languages. Thus, MemLock fails tomeet RequirementIII.➍ Both
selection and mutation components in MemLock and AFLNet do
not optimize for exploring memory consumption and thus fail to
meet RequirementIV.

These analyses motivate and inspire the design of Medusa to
meet all four requirements.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3 METHODOLOGY

Medusa introduces protocol property graph (PPG) to describe the
memory consumption behavior of protocol states. Fig. 3 shows
the overview. The overall inputs of Medusa include the protocol
implementation for testing, the initial testing seeds, and some mis-
cellaneous information. The overall outputs of Medusa are the PoC
message sequences that can trigger memory exhaustion DoS of the
target protocol implementation. Medusa works in two phases: ex-
ploration and verification. During the exploration stage, Medusa
attempts to explore different states of the protocol implementation
and measures the memory consumption incurred by each message.
Medusa stores the state transition and memory consumption infor-
mation in the PPG. With the PPG, Medusa can construct sequences
of messages and launch simulated attacks to verify potential vul-
nerabilities in the target protocol implementation.

The exploration phase contains three steps: ❶ Medusa selects a
promising message sequence from the pool as the seed. The mes-
sage sequences are evaluated with the information from the PPG. ❷
Medusa mutates the selected message sequence to create new test
inputs. ❸ Medusa feeds the test inputs to the target protocol imple-
mentation and monitors for runtime performance such as memory
consumption incurred by each message. The verification phase in-
volves two steps: ❹ Medusa builds the attack message sequences
according to certain restrictions (such as user-specified states to
avoid). ❺ With the attack message sequences, Medusa launches
attacks in a configurable simulated environment and reports the
viable DoS attack message sequences.

During the exploration phase, The PPG can guide the state-aware
fuzzer to explore memory consumption of different protocol states,
satisfyingRequirementI.❸ can obtainmemory consumption and
protocol states information and construct PPG without program
instrumentation, thus satisfying RequirementIII. ❹❺ leverage
PPG to simulate DoS attacks and validate potential memory exhaus-
tion vulnerabilities, satisfying RequirementII. ❶❷ are guided
by PPG to decide how to select and mutate inputs, satisfying
RequirementIV

3.1 Protocol Property Graph (PPG)

Protocol property graph (PPG) is the key concept of Medusa. The
definition of property graph is as follows:

Definition 1 (PPG). A PPG is a directed,edge-labeled, attributed
graph 𝐺 = (𝑉 , 𝐸, 𝜆, 𝜇) with:

• 𝑉 = 𝑉𝑠𝑡𝑎𝑡𝑒 ∪𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒

• 𝐸 = 𝐸𝑠𝑚 ∪ 𝐸𝑚𝑠

• 𝜆 = 𝜆𝑠𝑚 ∪ 𝜆𝑚𝑠

• 𝜇 = 𝜇𝑠𝑡𝑎𝑡𝑒 ∪ 𝜇𝑚𝑒𝑠𝑠𝑎𝑔𝑒

where𝑉𝑠𝑡𝑎𝑡𝑒 is a set of state nodes,𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒 is a set of message nodes,
𝐸𝑠𝑚 is a set of directed edges pointing from a node in𝑉𝑠𝑡𝑎𝑡𝑒 to a node
in 𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒 , 𝐸𝑚𝑠 is a set of directed edges pointing from a node in
𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒 to a node in𝑉𝑠𝑡𝑎𝑡𝑒 , 𝜆𝑠𝑚 is a set of labeling functions to label
edges in 𝐸𝑠𝑚 , 𝜆𝑚𝑠 is a set of labeling functions to label edges in 𝐸𝑚𝑠 ,
𝜇𝑠𝑡𝑎𝑡𝑒 is a set of functions to assign properties to nodes in 𝑉𝑠𝑡𝑎𝑡𝑒 , and
𝜇𝑚𝑒𝑠𝑠𝑎𝑔𝑒 is a set of functions to assign properties to nodes in𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒

Fig. 4 shows an example PPG for the protocol implementation of
the motivating example in Fig. 2. The PPG contains all the informa-
tion used by the exploration phase and required by the verification
phase. Medusa can use queries similar to the Cypher Query Lan-
guage [34] to interact with PPG. The queries used by Medusa are
made up of the following four clauses:
MATCH The MATCH clause is the most common clause used by almost

every query except for those which create new nodes. It is
used for finding a set of nodes and edges matching a given
graph pattern in the PPG.

WHERE The WHERE clause is used to add constraints to the pattern
used by MATCH.

CREATE The CREATE clause is used to create new nodes or edges.
SET The SET clause is used for creating or updating the proper-

ties of nodes and edges.

3.2 Exploration

During the exploration phase, Medusa updates the PPG according
to the feedback from the Runtime Monitor and reads the informa-
tion from the PPG for decision-making of the Seed Selector.

3.2.1 Runtime Monitor.
The task of the Runtime Monitor is to construct and update the
PPG during the execution of each test input. The process is shown
in Fig. 5. Every test input is a sequence of request messages, which
are sent to the target protocol implementation in order. ❶ First,
Medusa starts building the PPG with an initial state (denoted as S0
in Fig. 5). This is achieved with the following query:

CREATE (x:State, {id: S0})
where x is the variable name, which can be used for further process-
ing (but no use in this query); the parenthesis () indicates that the
object is a node; Statemeans that this node is from𝑉𝑠𝑡𝑎𝑡𝑒 ; {id:S0}
shows the properties of the node. ❷ After that, Medusa sends the
first message of the test input to the target protocol implementation
and waits for the response. ❸ Upon receiving the response, Medusa
will identify the state of the protocol based on the response content
and the user-provided specification. The identification of states in
Medusa is very similar to how it is done in AFLNet [38]. If a new
state is identified, Medusa will use the same query as how it creates
S0 to create a new node for the state. Meanwhile, it will also create
a new message node with the following query:
CREATE (x:Message, {id: M1, content: ...}, memory: 0KB,

select_num: 0, update_num: 0, score: 0)
where Message indicates that the node belongs to𝑉𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ; content
is the raw content (raw bytes) of the message; memory is the memory
consumption incurred by the message; memory is the amount of
memory consumption incurred by the message and the default
unit is KB; select_num is how many times the message has been
selected for mutation to generate new test inputs; update_num is
how many times the memory property has been updated for this
message node; score is used to describe how good the message is to
serve as the seed for generating new test inputs, which is calculated
based on the previous three properties (Section 3.2.2). Last but not
least, Medusa will create the edges connecting the new messages
and states. Assume the states are S0 and S1, and the message is M1,
the query to create the new edges is:

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Medusa: Unveil Memory Exhaustion DoS Vulnerabilities in Protocol Implementations Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Protocol
Implementation

Misc Information

Initial Seeds

Memory Exhaustion
DoS PoCs

Runtime Monitor

Message Sequence
Builder

Attack Simulator

Input OutputExploration PPG Verification

Seed Selector

Message Mutator

1

2

3

4

5

S0

M1

S1

M2

S2

M4 M5

S4

Requirement III

Requirement IV Requirement I

Requirement II

Figure 3: Overview of Medusa

M2

to

fro
m

M1
M3

fro
m

to

id : "INIT"

id : "M2"
content : "0101.."
memory : "800KB"
select_num : "8"
update_num : "9"

id : "M3"
content : "0101.."
memory : "1000KB"
select_num : "4"
update_num : "11"

id : "PUBACK"

id : "NO RES"
from

to

id : "M1"
content : "0101.."
memory : "50KB"
select_num : 13
update_num : 6

from

id : "CONNECT"

Figure 4: PPG for the motivating example

MATCH (s0:State), (s1:State), (m1:Message)
WHERE s0.id = ‘S0’ AND s1.id = ‘S1’ AND m1.id = ‘M1’
CREATE (s0)-[r1:FROM]->(m1), (m1)-[r2:TO]->(s1)

where the symbol (a)-[b]->(c) represents an edge b pointing from
node a to node c; r1 belongs to 𝐸𝑠𝑚 and r2 belongs to 𝐸𝑚𝑠 . ❹ Apart
from creating new nodes and edges, Medusa also checks the mem-
ory consumption of the target protocol implementation incurred
by the newly sent message. To get the memory consumption infor-
mation, Medusa accesses Linux’s /𝑝𝑟𝑜𝑐 Filesystem [10] which can
monitor resources at the system level without program instrumen-
tation. If the message node is newly created or the message can
cause greater memory consumption, Medusa will set the memory
property of the message. Assume the message has an id of M1 and
its incurred memory consumption is 5KB, Medusa will use the
following query to update the relevant information:

MATCH (m1:Message) WHERE m1.id = ‘M1’
SET m1.memory = ‘5KB’, m1.update_num = m1.update_num + 1

, m1.score=Score(m1)
where Score(m1) is used to calculate the evaluation score of m1,
which will be explained in Section 3.2.2. Besides, if the message
is not a new message and it incurs more memory consumption,
Medusa will also update the content property to replace the con-
tent of the old message with the content of the new one inside the
SET clause.

3.2.2 Seed Selector.
Medusa maintains a pool of seed test inputs and it generates new
test inputs by mutating the seed inputs. This helps Medusa to grad-
ually generate better and better test inputs. Given a large number
of seed inputs, it is important to decide which inputs should be pri-
oritized. Choosing the messages with high memory consumption

Medusa

Memory
Consumption

... ...

Test Input

S0

S1

SN

Message 1

Message 2

Response 1

1

Target Protocol
Implementation

2

3

4

Response N

...

Figure 5: Runtime Monitor workflow

can help to generate test inputs with high memory consumption.
However, always selecting messages with high memory consump-
tion can end up in the local optimum. Therefore in Medusa, given a
message m, three factors are used to evaluate its potential to bring
in better test inputs:

(1) Memory consumption 𝑀𝐶 (𝑚). This factor indicates the
max memory consumption on the state transition. It is in-
tuitive that mutating a message with high𝑀𝐶 (𝑚) leads to
a higher likelihood of discovering larger memory consump-
tion.

(2) Update number 𝑈𝑁 (𝑚). This factor indicates how many
times the memory consumption property of m has been
updated. The rationale is that if the memory consumption
of m is updated frequently, mutating m is more likely to
yield better results.

(3) Select number 𝑆𝑁 (𝑚). This factor indicates how many
times the message has been selected for mutation. If a mes-
sage has already been selected many times, we should avoid
using it too much in order to avoid starving other seeds.

With these three factors, the score for evaluating the potential
benefit of mutating a message m is calculated with equation 1 as
follows:

𝑆𝑐𝑜𝑟𝑒 (𝑚) = ln𝑀𝐶 (𝑚) · ln𝑈𝑁 (𝑚)
𝑆𝑁 (𝑚) + 1

(1)

Note that as discussed in Section 3.2.1, every time the memory prop-
erty is updated, the score property is also updated. Moreover, every
time a message is selected for mutation, its selected_num property
is increased by 1. With the scores calculated, Medusa selects the
message with the highest value of the score property and use it to
generate new test inputs with the following query:

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

MATCH (m: Message)
RETURN m ORDER BY m.score DESC LIMIT 1

3.2.3 Message Mutator.
After selecting the message to mutate, Medusa takes out the corre-
sponding message sequence from the test input pool and locates
the exact message. Medusa then mutates on the located message
to produce a new test input to execute. Besides the classic mutation
operators (e.g. bit flip) used in general fuzzing [30], protocol fuzzing
has a special mutation operators type called message-level muta-
tion. Message-level mutation mutate a seed at message granularity,
in Medusa, there are three message-level operators: 1) Replace.
Replace the current message with a message from another seed.
2) Insert_begin. Insert a message from another at the begin of the
current message. 3) Insert_end. Insert a message from another seed
at the end of the current message.

All three operators need to choose a message from another seed
to replace or insert. Benefit from runtime monitor described in
Section 3.2.1, Medusa can get triggered resource consumption
of each message in the seeds. The messages which trigger more
resource consumption will get higher probability to be chosen by
message mutator.

3.3 Verification

3.3.1 Message Sequence Builder.
During the verification phase, Medusa will first generate message
sequences suitable for launching DoS attacks. The generation of
the message sequences can be configured according to user require-
ments. By default, Medusa will prefer the message with the largest
memory consumption. It will use the corresponding message node
as the starting point, find all the paths to the initial state node on the
PPG, and use the messages on whichever path consumes the most
memory as the message sequence for launching attacks. Medusa
also allows users to add additional properties to the state nodes so
that when building the message sequences, the graph traversal can
avoid the states with the user-specified properties. The query to
rule out the messages on the subgraph of the paths is:

MATCH
(s1:State)-[r1:FROM]->(m:Message)-[r2:TO]->(s2:State)

WHERE NOT HAS(s1.user_property) AND NOT
HAS(s2.user_property)

RETURN m
where user_property is the user-specified property. For example,
in the motivating example (Section 2.3), the user can rule out the
Connect state in this way.

3.3.2 Attack Simulator.
Attack simulator validates whether the attack inputs generated
from the message builder can cause the DoS of test programs. The
simulating process is as following steps: 1) Setting up an experi-
mental DoS environment with the test program running in it. 2)
Creating "attackers" to send selected attack inputs to the test pro-
gram. 3) Monitoring the status of the test program under attack.
There are several parameters that can be configurable for the attack
simulating process: ➊ system memory limitation, this parameter
decides the maximum memory of the experimental environment.
➋ monitoring duration, this parameter decides the total time of
conducting the simulation. ➌ attack time, this parameter decides

the time to start attacking after the environment has been set up.
➍ attack intensity, this parameter decides how many attack
inputs sending to the test program every second.

4 IMPLEMENTATION & EVALUATION

The implementation of Medusa is comprised of three main parts:
a state-aware fuzzer for the exploration phase, a PPG, and an at-
tack simulator for verification. The state-aware fuzzer is built upon
AFLNet [38]; PPG is implemented using graphviz [23]; the attack
simulator is implemented with Python 3.8.14. Further implementa-
tion details can be found in Appendix B or on our website [2]

In the evaluation, we aim to answer the following research ques-
tions with experiments:
RQ1: How well does Medusa perform in profiling the memory
consumption during the exploration phase?
RQ2: How well does Medusa perform in simulating DoS attacks
during the verification phase?
RQ3: Can Medusa discover previously unknown memory exhaus-
tion DoS vulnerabilities in real-world protocol implementations?
RQ4:How effective is the optimization of seed selector andmessage
mutator components in the exploration phase? (Appendix E)

4.1 Experiment Setup

Evaluation Baseline Medusa’s fuzzer is built upon AFLNet. We
compared Medusa with AFLNet to evaluate its improvement for
exploring memory consumption. However, AFLNet is designed for
exploring protocol states and does not recordmemory consumption,
we had to make some adjustments to it in order to make it feasible
for comparison. Specifically, we adjusted AFLNet with the follow-
ing configurations: ➊ Using the blackbox mode of AFLNet to make
it available for protocol implementations with different program-
ming languages besides C. ➋ Recording the maximum memory
consumption on different state transitions during fuzzing process.
We call AFLNet under the above configurations AFLNet* and used
it as the baseline. AFLNet* will be released on our website [2].
Evaluation Datasets. We used 5 protocols (MQTT, FTP, DICOM,
SMTP, and RTSP) which are commonly used in other protocol
fuzzing works [1, 5, 8, 38] as our evaluation protocols. To select the
programs for each protocol, we searched for implementations in
five popular programming languages, including C, Java, JavaScript,
Python, and Go, and finally selected 21 programs as the evalua-
tion benchmark. Detailed information for these programs can be
found in Appendix C or on our website [2]. The initial seeds used
in fuzzing were obtained from ProFuzzBench [33]. Note that the
same initial seeds were used for different implementations of the
same protocol. The initial seeds and execution commands for each
program will be released on our website [2].
Evaluation Settings. We ran all fuzzing experiments for 24 hours,
to avoid bias caused by randomness [29]. We repeated each fuzzing
campaign for 5 times and appliedMann-WhitneyU test (𝑝-𝑣𝑎𝑙𝑢𝑒) [32]
and Vargha-Delaney statistic (𝐴12) [42] for statistic test.
Experiment Environment We conducted all experiments on ma-
chines with 80 cores of Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
and 188 GB RAM. We ran each fuzzing experiment in the docker
containers [15] with Ubuntu 20.04.3 LTS as the operating system.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Medusa: Unveil Memory Exhaustion DoS Vulnerabilities in Protocol Implementations Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Memory profiling results. For each attribute, the better mean value is highlighted in bold; the statistically significant

(𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05) value of 𝐴12 is marked with an asterisk

Protocol Implementation

Avg mem (KB) Max mem (KB)

AFLNet* Medusa AFLNet* Medusa
mean mean ratio 𝐴̂12 mean mean ratio 𝐴̂12

MQTT

mosquitto (C) 169.6 24054.4 141.83 ∗1.00 529.6 73381.6 138.56 ∗1.00
moquette (Java) 568.0 2941.6 5.71 ∗1.00 4175.2 62208.0 14.89 ∗1.00

aedes (JavaScript) 122.4 4830.4 39.46 ∗1.00 11491.2 57091.2 4.96 ∗1.00
hbmqtt (Python) 94.4 22537.6 238.74 ∗1.00 626.4 191334.4 305.45 ∗1.00

hmq (Go) 467.2 39271.2 84.05 ∗1.00 35816.8 269080.0 7.51 ∗1.00

FTP

proftpd (C) 3.2 733.6 229.2 ∗1.00 186.4 3759.2 20.10 ∗1.00
apache FtpServer (Java) 1077.6 6372.0 5.91 ∗1.00 6231.2 129020.0 20.70 ∗1.00

ftp-srv (JavaScript) 1367.2 25807.2 18.87 ∗1.00 16963.2 120336.0 7.09 ∗1.00
pyftpdlib (Python) 96.8 2609.6 26.95 ∗1.00 1448.8 22080.8 15.24 ∗1.00

goftp (Go) 269.6 4424.8 16.41 ∗1.00 3934.4 21601.6 5.49 ∗1.00

DICOM

dcmtk (C) 294.0 3788.8 12.86 ∗1.00 738.4 7293.6 9.87 ∗1.00
dcm4che (Java) 3807.2 34453.6 9.05 ∗1.00 5772.0 98204.8 18.59 ∗1.00

pynetdicom (Python) 472.8 13150.4 27.81 ∗1.00 970.4 50437.6 51.97 ∗1.00
go-netdicom (Go) 704.8 77448.8 109.88 ∗1.00 1461.6 157300.0 107.62 ∗1.00

SMTP

exim (C) 77.6 1201.6 15.48 ∗1.00 323.2 4877.6 15.09 ∗1.00
Haraka (JavaScript) 10.4 14920.8 1434.69 ∗1.00 50.4 80295.2 1593.15 ∗1.00
salmon (Python) 4136.8 55048.0 13.3 ∗1.00 70676.0 96088.0 1.35 ∗1.00
go-guerrilla (Go) 52.8 4512.8 85.46 ∗1.00 136.0 9851.2 72.43 ∗1.00

RTSP
live555 (C) 7.2 4652.0 646.11 ∗1.00 40.0 7742.4 193.56 ∗1.00

opencv-rtsp (Python) 45135.2 46986.4 1.04 0.68 64420.8 64575.2 1.00 ∗0.84
rtsp-simple-server (Go) 259.2 13608.8 52.50 ∗1.00 565.6 19984.8 35.33 ∗1.00

Average 2818.7 19207.3 153.11 0.98 10788.4 73644.9 125.7 0.99

4.2 Evaluation of Exploration (RQ1)

After the exploration phase, PPG profiles the memory consumption
on different protocol state transitions of programs, in this exper-
iment, we assess the PPG produced by the exploration phase to
evaluate the Medusa’s capability for profiling memory consump-
tion. Specifically, we ran Medusa and AFLNet* on programs in
the evaluation datasets, each experiment was run for 24 hours and
repeated 5 times. Then we collected two type attributes of PPG:
➊ Avg memory. This attribute indicates the average memory con-
sumption of all state transitions. ➋ Max memory. This attribute
indicates the maximum memory consumption among all state tran-
sitions. These two attributes are used to assess fuzzer’s ability for
exploring resource consumption. For each attribute, we calculated
the mean value of the results over all 5 runs and computed the ratio
of Medusa’s mean value over AFLNet*. We further calculated the
𝑝-𝑣𝑎𝑙𝑢𝑒 to measure the statistical significance of the results and
𝐴12 to measure the chance that Medusa can perform better than
AFLNet* by randomly picking one result for comparison.

Table 2 shows the results. For memory consumption exploring,
Medusa can discover up to 1593× max memory consumption than
AFLNet*. Overall, Medusa discovers significantly bigger memory
consumption than AFLNet* on almost all the programs with on av-
erage 153.11× avg memory consumption and 125.7× max memory
consumption. The superiority of Medusa on avg memory consump-
tion indicates that Medusa can outperform AFLNet* to discover
more memory consumption for on average every state transition.
From Table 2 we also observe that Medusa discover more memory
consumption on 20 programs with the𝐴12 value is 1.00 and 𝑝-𝑣𝑎𝑙𝑢𝑒
smaller than 0.05, which means that we have sufficient confidence
to claim that Medusa has overwhelming superiority compared with
AFLNet* for exploring memory consumption.

4.3 Evaluation of Verification (RQ2)

In this experiment, we evaluate the ability of Medusa in simulating
DoS attack. Specifically, we used the PPGs generated from the explo-
ration phase of experiments in Section 4.2. The experimental DoS
environment is built upon docker containers. we used the breadth-
first algorithm [45] to generate candidate traces from the initial
state to the located stated transition. From the candidate traces we
selected the trace which achieves the biggest cumulative memory
consumption along the trace. We have tried different parameter
values in the experiment and found that different parameters have
little impact on the relative trend of the experimental results. There-
fore, we adopted the following configuration for entire experiments
and result presentation: ➊ Setting the memory limitation of the
system to 4GB. ➋ Setting the monitoring duration to 60 seconds. ➌
Setting the attack time to 10 seconds after the test program starts
up. ➍ Setting three level attack intensities: 1) Low. Sending 1 attack
input per second. 2) Medium. Sending 10 attack inputs per second.
3) High. Sending 100 attack inputs per second.
Memory Consumption. Fig. 6 illustrates the memory consump-
tion of the evaluated programs under simulated DoS attacks. From
Fig. 6, we can observe that for the same attack intensity, attack in-
puts generated fromMedusa can cause more memory consumption
obviously than AFLNet* on almost all the programs. On hbmqtt,
even the low attack intensity of Medusa can significantly outper-
form the high attack intensity of AFLNet*. Moreover, attack inputs
generated from Medusa caused in total six programs (mosquitto,
hbmqtt, hmq, apache FtpServer, ftp-srv, and go-netdicom) con-
sume excessive memory (out of 4GB) and killed by the system. For
AFLNet*, it only caused ftp-srv to consume excessive memory.
We further analyze these cases in Section 4.4.

Availability. We also evaluated the availability of programs under
simulated DoS. The details can be found in Appendix D.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0

25

50

75

100

m
em

 p
er

ce
nt

ag
e

(%
)

mosquitto (C)

0

10

20

30
moquette (Java)

0

10

20

30

aedes (Js)

0

25

50

75

100
hbmqtt (Python)

0

20

40

60

hmq (Go)

5.0

5.2

5.4

proftpd (C)

0

25

50

75

apache FtpSever (Java)

0

25

50

75

100

m
em

 p
er

ce
nt

ag
e

(%
)

ftp-srv (Javascript)

0.2

0.3

0.4

0.5
pyftpdlib (Python)

0

1

2

3

goftp (Go)

0

10

20

30
dcm4che (Java)

1.2

1.4

1.6

1.8
pynetdicom (Python)

0

5

10

15

go-netdicom (Go)

0 25 50
time (s)

0.4

0.6

exim (C)

0 25 50
time (s)

2.6

2.7

2.8

m
em

 p
er

ce
nt

ag
e

(%
)

salmon (Python)

0 25 50
time (s)

2

3

Haraka (Javascript)

0 25 50
time (s)

0.2

0.3

0.4

0.5
go-guerrilla (Go)

0 25 50
time (s)

0.2

0.4

0.6
live555 (C)

0 25 50
time (s)

0.7

0.8

0.9

1.0
opencv-rtsp (Python)

0 25 50
time (s)

0.3

0.4

0.5

rtsp-simple-server (Go)

Medusa-Low
AFLNet*-Low

Medusa-Medum
AFLNet*-Medum

Medusa-High
AFLNet*-High

Figure 6: Memory consumption under simulated DoS attacks (higher is better). Y-axis stands for the percentage of consumed

memory over the limitation of the whole system (4GB in our experiments). The red vertical line is the time to start sending

attack inputs

Table 3: 0-day memory exhaustion DoS vulnerabilities found

by Medusa

Protocol Program

Programming

Language

Exhaustion Type

MQTT mosquitto C System Memory Exhaustion
MQTT hmq Go System Memory Exhaustion
MQTT hbmqtt Python System Memory Exhaustion
FTP apache Ftpserver Java Java Heap Memory Exhaustion
FTP ftp-srv JavaScript JavaScript Heap Memory Exhaustion

DICOM go-netdicom Go System Memory Exhaustion

4.4 Vulnerabilities Detection (RQ3)

In Section 4.3, we discovered several cases that can cause the pro-
grams to exhaust their memory and be killed. To test the severity
of these cases, we conducted simulated DoS attacks with different
system memory limitations (16G, 32G, and 64G) and confirmed that
these cases could indeed exhaust the system memory resources
on all of the limitation settings. We further confirmed that these
cases are memory exhaustion DoS vulnerabilities and still exist in
the latest version of programs. Finally, we found six 0-day memory
exhaustion DoS vulnerabilities, and the details are shown in Table 3.

Here we discuss the lessons we learn from the results of Table 3:
➊ Memory exhaustion DoS vulnerability is a serious threat existing
in various protocol types (MQTT, FTP, and DICOM) and program-
ming languages (C, Java, JavaScript, Python, and Go). ➋ We verified
that the vulnerabilities do not exist in all implementation of a cer-
tain protocol, which emphasizes the need to focus on testing the
specific protocol implementation instead of protocol specification.
➌ The exhaustion resource type is not limited to system memory,
on apache Ftpserver and ftp-srv, the vulnerabilities exhaust
the memory of language-internal components (Java VM [46] and
JavaScript VM [47]). This demonstrates the damage of memory ex-
haustion DoS vulnerabilities as it may be much easier to exhaust the
memory of language-internal components.➍ Themanual discovery

and repair for memory exhaustion DoS vulnerabilities in protocols
is a tedious and prone to error process as these vulnerabilities exist
in the protocol implementations rather than the specification. For
example, although CVE-2017-7651 has been patched since 2018, the
memory exhaustion DoS vulnerability still existed in Mosquitto
for 5 years. it urges the demand for testing tools to help developers
mitigate these vulnerabilities, Medusa is proposed for this.

5 RELATEDWORK

Fuzzing techniques for protocol implementations can be classified
into blackbox, whitebox, greyboxmethods according to information
we obtain from the protocol to guide the fuzzing. Blackbox fuzzers
from academia [7, 27, 28, 35] and industry [12, 19, 37, 41] treat proto-
col implementations as a blackbox and use either mutation-based or
generation-based input generation technique to test the security of
protocol implementations. They are preferred in industry since the
fuzzing techniques do not pay attention to implementation details,
which is scalable to test various protocols. Whitebox fuzzers [11]
attempts to perform program analysis and guide the generation of
input to execute different paths. Greybox fuzzers collect coverage
or states to guide the input generation for testing the protocols.
The way of identifying new code coverage and states ranges from
human code annotations [6], invariants [17], response codes [38],
to state variables [8].

6 CONCLUSION

In this paper, we propose Medusa, a dynamic analysis framework
to unveil memory exhaustion DoS vulnerabilities in protocol im-
plementations. Medusa utilizes a protocol property graph to guide
exploring memory consumption in the explore phase and simulates
DoS attacks to verify vulnerabilities in the verification phase. Our
evaluation results demonstrate that Medusa can discover signifi-
cantly more memory consumption in the exploration and verifica-
tion phase compared to the baseline. Notably, Medusa found six
0-day vulnerabilities including one CVE ID.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Medusa: Unveil Memory Exhaustion DoS Vulnerabilities in Protocol Implementations Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Anastasios Andronidis and Cristian Cadar. Snapfuzz: high-throughput fuzzing
of network applications. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 340–351, 2022.

[2] Anonymous. Medusa: Unveil memory exhaustion dos vulnerabilities in protocol
implementations, 2023. URL: https://sites.google.com/view/medusa-dos.

[3] Eirini Anthi, Lowri Williams, Amir Javed, and Peter Burnap. Hardening machine
learning denial of service (dos) defences against adversarial attacks in iot smart
home networks. Comput. Secur., 108:102352, 2021.

[4] João Antunes, Nuno Ferreira Neves, and Paulo Jorge Veríssimo. Detection and
prediction of resource-exhaustion vulnerabilities. In 2008 19th International
Symposium on Software Reliability Engineering (ISSRE), pages 87–96. IEEE, 2008.

[5] Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista. Program-aware
fuzzing for mqtt applications. In Proceedings of the 29th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pages 582–586, 2020.

[6] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. Ijon:
Exploring deep state spaces via fuzzing. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1597–1612. IEEE, 2020.

[7] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Restler: Stateful
rest api fuzzing. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 748–758. IEEE, 2019.

[8] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roychoudhury.
Stateful greybox fuzzing. In 31st USENIX Security Symposium (USENIX Security
22), pages 3255–3272, 2022.

[9] Felipe Balabanian. (cve-2017-7651) - mosquitto server shutdown attack, 2018.
URL: https://bugs.eclipse.org/bugs/show_bug.cgi?id=529754#c0.

[10] Terrehon Bowden, Jorge Nerin, Shen Feng, and Stefani Seibold. The /proc
filesystem, 2009. URL: https://docs.kernel.org/filesystems/proc.html.

[11] Chia Yuan Cho, Domagoj Babic, Pongsin Poosankam, Kevin Zhijie Chen, Ed-
ward XueJun Wu, and Dawn Song. MACE: Model-inference-assisted concolic
exploration for protocol and vulnerability discovery. In Proceedings of 20th
USENIX Security Symposium, 2011.

[12] Peach community. Peach fuzzer: Smartfuzzer that is capable of performing both
generation and mutation based fuzzing, 2023. URL: https://peachtech.gitlab.io/
peach-fuzzer-community/.

[13] MITRE corporation. Common vulnerabilities and exposures, 2023. URL: https:
//cve.mitre.org/.

[14] CWE. Common weakness enumeration, 2023. URL: https://cwe.mitre.org/index.
html.

[15] Docker. Use containers to build, share and run your applications, 2023. URL:
https://www.docker.com/resources/what-container.

[16] Eclipse. An open source mqtt broker, 2023. URL: https://mosquitto.org/.
[17] Andrea Fioraldi1 , Daniele Cono D’Elia, and Davide Balzarotti1 . The use of likely

invariants as feedback for fuzzers. 2021.
[18] FIRST. Common vulnerability scoring system version 3.1 calculator, 2023.

URL: https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:
N/S:U/C:N/I:N/A:H/RL:O.

[19] LLC Fortra. Sulley: A pure-python fully automated and unattended fuzzing
framework., 2023. URL: https://github.com/OpenRCE/sulley.

[20] giampaolo. psutil, 2023. URL: https://github.com/giampaolo/psutil.
[21] Serkan Gönen, Mehmet Ali Barişkan, Gökçe Karacayilmaz, Birkan Alhan, Er-

can Nurcan Yilmaz, Harun Artuner, and Erhan Sindiren. A novel approach to
prevention of hello flood attack in iot usingmachine learning algorithm. El-Cezeri
Fen ve Mühendislik Dergisi, 2022.

[22] Richard Gooch. Overview of the linux virtual file system, 2005. URL: https:
//www.kernel.org/doc/html/latest/filesystems/vfs.html.

[23] Graphviz. Graphviz, 2021. URL: https://graphviz.org/.
[24] Graphviz. Graphviz online, 2023. URL: https://dreampuf.github.io/

GraphvizOnline/.
[25] Saad Hikmat Haji and Siddeeq Y. Ameen. Attack and anomaly detection in

iot networks using machine learning techniques: A review. Asian Journal of
Research in Computer Science, 2021.

[26] Alefiya Hussain, John S. Heidemann, and Christos Papadopoulos. A frame-
work for classifying denial of service attacks. In Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, 2003.

[27] Rauli Kaksonen, Marko Laakso, and Ari Takanen. Software security assessment
through specification mutations and fault injection. In Communications and
Multimedia Security Issues of the New Century: IFIP TC6/TC11 Fifth Joint Working
Conference on Communications and Multimedia Security (CMS’01) May 21–22,
2001, Darmstadt, Germany, pages 173–183. Springer, 2001.

[28] Takahisa Kitagawa, Miyuki Hanaoka, and Kenji Kono. AspFuzz: A state-aware
protocol fuzzer based on application-layer protocols. In The IEEE symposium on
Computers and Communications, pages 202–208. IEEE, 2010.

[29] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. Evaluat-
ing fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 2123–2138, 2018.

[30] lcamtuf. American fuzzy lop (afl) fuzzer, 2023. URL: https://lcamtuf.coredump.
cx/afl/.

[31] Adil Hussien Mohammed, Shima Rashidi, and Yusra Ahmed Salih. Detecting
denial of service attacks in internet of things using software-defined networking
and ensemble learning. Cihan University-Erbil Scientific Journal, 2022.

[32] Nadim Nachar et al. The mann-whitney u: A test for assessing whether two
independent samples come from the same distribution. Tutorials in quantitative
Methods for Psychology, 4(1):13–20, 2008.

[33] Roberto Natella and Van-Thuan Pham. Profuzzbench: A benchmark for state-
ful protocol fuzzing. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2021.

[34] neo4j. Cypher query language, 2021. URL: https://neo4j.com/developer/cypher/.
[35] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by program

transformation. In 2018 IEEE Symposium on Security and Privacy (SP), pages
697–710. IEEE, 2018.

[36] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of network-
based defense mechanisms countering the dos and ddos problems. ACM Comput.
Surv., 39:3, 2007.

[37] Joshua Pereyda. Boofuzz: A fork and successor of the sulley fuzzing framework,
2023. URL: https://github.com/jtpereyda/boofuzz.

[38] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Aflnet: a greybox
fuzzer for network protocols. In 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pages 460–465. IEEE, 2020.

[39] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. Addresssanitizer: A fast address sanity checker. 2012.

[40] Naeem Firdous Syed, Zubair A. Baig, Ahmed Ibrahim, and Craig Valli. Denial
of service attack detection through machine learning for the iot. Journal of
Information and Telecommunication, 4:482 – 503, 2020.

[41] Inc. Synopsys. Defensics fuzz testing: Identify defects and zero-day vulnerabilities
in services and protocols, 2023. URL: https://www.synopsys.com/software-
integrity/security-testing/fuzz-testing.html.

[42] András Vargha and Harold D. Delaney. A critique and improvement of the
cl common language effect size statistics of mcgraw and wong. Journal of
Educational and Behavioral Statistics, 25(2):101–132, 2000.

[43] Cheng Wen, Haijun Wang, Yuekang Li, Shengchao Qin, Yang Liu, Zhiwu Xu,
Hongxu Chen, Xiaofei Xie, Geguang Pu, and Ting Liu. Memlock: Memory usage
guided fuzzing. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, pages 765–777, 2020.

[44] Wikipedia. Denial-of-service attack, 2023. URL: https://en.wikipedia.org/wiki/
Denial-of-service_attack.

[45] Wikipeia. Breadth-first search, 2023. URL: https://en.wikipedia.org/wiki/Breadth-
first_search.

[46] Wikipeia. Java virtual machine, 2023. URL: https://en.wikipedia.org/wiki/Java_
virtual_machine.

[47] Wikipeia. Node.js v19.5.0 documentation, 2023. URL: https://nodejs.org/api/vm.
html.

[48] Wu Zhijun, LiWenjing, Liu Liang, and YueMeng. Low-rate dos attacks, detection,
defense, and challenges: A survey. IEEE Access, 8:43920–43943, 2020.

A THE METHODS OF EMPIRICAL STUDY

Here we discuss the methods we used to conduct the empirical
study.

To identify the protocol resource exhaustion vulnerabilities from
massive vulnerability information in the database, we first auto-
matically filtered vulnerabilities with the following methods: ➊

Checking whether the type of vulnerabilities related to resource
exhaustion. To automatically decide the type of vulnerabilities, we
rely on the Common Weakness Enumeration (CWE) [14] metric.
After investing the whole CWE list, we found several CWE types
related to resource exhaustion vulnerability (CWE-400, CWE-401,
CWE-404, CWE-770, CWE-789, CWE-1050, and CWE-1325). Vulner-
abilities with at least one of the above CWE types are selected out.
In addition, we checked whether the keyword "exhaust" exists in
the description of vulnerabilities to complement some vulnerabil-
ities which are related to resource exhaustion but without CWE
type or assigned with wrong CWE type. ➋ Checking whether the
vulnerabilities exist in the protocol implementation. For this, we
checked whether the descriptions of vulnerabilities contain some
keywords related to protocol. Specifically, we used "protocol"

9

https://sites.google.com/view/medusa-dos
https://bugs.eclipse.org/bugs/show_bug.cgi?id=529754#c0
https://docs.kernel.org/filesystems/proc.html
https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://cve.mitre.org/
https://cve.mitre.org/
https://cwe.mitre.org/index.html
https://cwe.mitre.org/index.html
https://www.docker.com/resources/what-container
https://mosquitto.org/
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/RL:O
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/RL:O
https://github.com/OpenRCE/sulley
https://github.com/giampaolo/psutil
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://www.kernel.org/doc/html/latest/filesystems/vfs.html
https://graphviz.org/
https://dreampuf.github.io/GraphvizOnline/
https://dreampuf.github.io/GraphvizOnline/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://neo4j.com/developer/cypher/
https://github.com/jtpereyda/boofuzz
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Denial-of-service_attack
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Java_virtual_machine
https://nodejs.org/api/vm.html
https://nodejs.org/api/vm.html

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

and the name of several common-used protocol ("http", "mqtt",
"ftp", "dicom", "smtp", "rtsp", "ssh", "tls", and "telnet")
as keywords.

We combined and applied above two methods on CVE database
with vulnerabilities from 2015 to 2022. Finally, we collected 205
vulnerabilities which related to resource exhaustion and exist in
protocol implementations. Based on the collected vulnerabilities,
we further conducted manual analyzing to identify the type of ex-
hausted resource. The detail results and the scripts will be released
on our website [2].

B IMPLEMENTATION DETAILS OF MEDUSA

State-aware fuzzer is implemented based on AFLNet [38]. To parse
the protocol, it follows the same paradigm as AFLNet which uses
embedded C functions to parse a test input into a sequence of re-
quest messages and extract protocol state from response messages.
A new protocol can be easily supported by extending these func-
tions. PPG uses graphviz [23] to record information and output it
in file ipsm.dot which can be viewed using [24]. PPG records extra
information related to state transitions (e.g. which message triggers
the max resource consumption) and output in file champion_josn
with JSON format.

As described in 3.2.1, Runtime Monitor is implemented base on
Linux’s /𝑝𝑟𝑜𝑐 Filesystem [10]. The main body of Runtime Mon-

itor is a loop, when Medusa starts its monitor process, Runtime

Monitor continuously accesses the 𝑝𝑟𝑜𝑐 Filesystem in the loop. To
improve the efficiency of Runtime Monitor, we don’t use the wrap
library of /𝑝𝑟𝑜𝑐 Filesystem (e.g. psutil [20]), instead, we use file
operators to directly access /𝑝𝑟𝑜𝑐 Filesystem and parse the resource
consumption from the file content. Furthermore, as /𝑝𝑟𝑜𝑐 Filesys-
tem is a Linux virtual file system [22] that its content updates in
real-time every time reading it, we design the access process in the
loop carefully to avoid frequently calling file 𝑜𝑝𝑒𝑛 and 𝑐𝑙𝑜𝑠𝑒 system
calls. Specifically, we call file 𝑜𝑝𝑒𝑛 at the initialization of Runtime

Monitor, then in the loop before each time calling file 𝑟𝑒𝑎𝑑 , we call
file 𝑙𝑠𝑒𝑒𝑘 function to move the file pointer to the head of the file.
This implementation trick significantly improves the efficiency of
Runtime Monitor.

C EVALUATION BENCHMARK

The programs used in evaluation are shown in Table 4.

D AVAILABILITY

Specifically, the availability is assessed by how many requests are
processed by the program in a period of time. In this experiment, we
additionally simulated a legal user sending requests (5 requests per
second) to the program, we used throughput to represent the per-
centage of the requests that have been processed. 100% throughput
means the program processes all the requests sent by the legal user
which indicates a high availability. Fig. 7 shows the throughput of
the programs under simulated DoS. Overall, the throughput has a
negative correlation with memory consumption. The high-intensity
simulated attacks with attack inputs generated fromMedusa which
cause the maximum memory increase can also cause the maximum
decrease in throughput. This is because the attacks can lead to many

Table 4: The real-world protocol programs used in the exper-

iments.

Protocol Implementation Language Version

MQTT

mosquitto C git commit ff97fbf
moquette Java git commit 3e6043b
aedes Javascript 0.46.3
hbmqtt Python git commit 07c4c70
hmq Go git commit b2e79c3

FTP

Proftpd c git commit 0e68a6c
apache FtpServer Java 1.2.0

ftp-srv Javascript git commit 18277e9
pyftpdlib Python git commit 2784660
goftp Go git commit f64f7c2

DICOM

dcmtk C git commit c749632
dcm4che Java git commit 2f3165a

pynetdicom Python git commit 5c2989e
go-netdicom Go git commit 7caf23f

SMTP

exim C git commit a3d3e7e
Haraka Javascript git commit 3198d18
salmon Python git commit a757003

go-guerrilla Go git commit aa54b3a

RTSP
live555 C git commit bbee4ed

opencv-rtsp Python git commit 14d4d2c
rtsp-simple-server Go git commit 8f48dfa

memory-related operations, such as memory allocation, which re-
duces the overall performance of the program and increases the
time delay for serving legal users, resulting in decreased through-
put.

E ABLATION STUDY (RQ4)

To demonstrate the effectiveness of our optimization on Seed Se-

lector andMessage Mutator components, we conducted an abla-
tion study by disabling optimization on these two components of
Medusa and used the original strategies in AFLNet as compar-
isons. Specifically, we obtained three variants of Medusa and ran
the additional fuzzing experiments as in Section 4.2 for them.

Fig. 8 shows the maximum memory consumption discovered by
Medusa and it’s three variants over all experiments. The results
show that our optimization on both Seed Selector and Message

Mutator contribute to Medusa for exploring memory consumption.
This can be concluded from three observations on Fig. 8: ➀ The
integral Medusa which enables the optimization on both Seed

Selector and Message Mutator achieves the overall best result (the
average median value for Medusa is 72197.14). ➁ The variant of
Medusa (Medusa-DB) which disables the optimization on both
Seed Selector andMessage Mutator gets the overall worst result
(the average median value for Medusa-DB is 64272.47). ➂ For
disabling the optimization on Seed Selector (Medusa-DS) and on
Message Mutator (Medusa-DM) separately, although they have
small differences from each other, they both achieve better results
compared with Medusa-DB (the average median value for Medusa-
DS and Medusa-DM is 69768.00 and 68072.19, which outperform
Medusa-DB by 9% and 6% respectively).

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Medusa: Unveil Memory Exhaustion DoS Vulnerabilities in Protocol Implementations Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

0

25

50

75

100

th
ro

ug
hp

ut
 (%

)
mosquitto (C)

60

70

80

90

100
moquette (Java)

0

25

50

75

100
aedes (Js)

0

25

50

75

100
hbmqtt (Python)

0

25

50

75

100
hmq (Go)

0

25

50

75

100
proftpd (C)

0

25

50

75

100
apache FtpSever (Java)

0

25

50

75

100

th
ro

ug
hp

ut
 (%

)

ftp-srv (Javascript)

0

25

50

75

100
pyftpdlib (Python)

40

60

80

100
goftp (Go)

0

25

50

75

100
dcm4che (Java)

0

25

50

75

100
pynetdicom (Python)

0

25

50

75

100
go-netdicom (Go)

0 25 50
time (s)

0

25

50

75

100
exim (C)

0 25 50
time (s)

60

70

80

90

100

th
ro

ug
hp

ut
 (%

)

salmon (Python)

0 25 50
time (s)

0

25

50

75

100
Haraka (Javascript)

0 25 50
time (s)

95.0

97.5

100.0

102.5

105.0
go-guerrilla (Go)

0 25 50
time (s)

0

25

50

75

100
live555 (C)

0 25 50
time (s)

80

85

90

95

100
opencv-rtsp (Python)

0 25 50
time (s)

85

90

95

100
rtsp-simple-server (Go)

Medusa-Low
AFLNet*-Low

Medusa-Medum
AFLNet*-Medum

Medusa-High
AFLNet*-High

Figure 7: Availability under simulated DoS attacks (lower is better). The red vertical line is the time to start sending attack

inputs

0

50000

100000

150000

M
ax

 m
em

 (K
B)

mosquitto (C)

40000

50000

60000

moquette (Java)

56800

57000

57200

aedes (Js)

100000

150000

200000

hbmqtt (Python)

220000

240000

260000

hmq (Go)

3725

3750

3775

3800

proftpd (C)

120000

130000

apache FtpSever (Java)

60000
80000

100000
120000
140000

M
ax

 m
em

 (K
B)

ftp-srv (Javascript)

16000
18000
20000
22000
24000

pyftpdlib (Python)

17500

20000

22500

25000

27500
goftp (Go)

7150

7200

7250

7300

7350
dcmtk (C)

80000

100000

120000

140000
dcm4che (Java)

46000

48000

50000

52000

pynetdicom (Python)

120000

140000

160000

go-netdicom (Go)

80000
85000
90000
95000

100000

M
ax

 m
em

 (K
B)

salmon (Python)

4850

4860

4870

4880

4890
exim (C)

80000

80500

Haraka (Javascript)

9800

9850

9900

go-guerrilla (Go)

7600

7700

7800
live555 (C)

64200

64400

64600

64800

opencv-rtsp (Python)

19000

19500

20000

20500

rtsp-simple-server (Go)

Medusa Medusa-DS Medusa-DM Medusa-DB

Figure 8: Maximum memory consumption discovered after disabling resource-aware components (higher is better). DS =

disabling Seed Selector; DM = disablingMessage Mutator; DB = disabling both Seed Selector andMessage Mutator

11

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Resource Exhaustion Vulnerability
	2.2 Empirical Study of Resource Exhaustion Vulnerabilities
	2.3 Motivating Example

	3 Methodology
	3.1 Protocol Property Graph (PPG)
	3.2 Exploration
	3.3 Verification

	4 Implementation & Evaluation
	4.1 Experiment Setup
	4.2 Evaluation of Exploration (RQ1)
	4.3 Evaluation of Verification (RQ2)
	4.4 Vulnerabilities Detection (RQ3)

	5 Related Work
	6 Conclusion
	References
	A The methods of empirical study
	B Implementation details of Medusa
	C Evaluation Benchmark
	D Availability
	E Ablation Study (RQ4)

