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Abstract
This paper revisits Gaussian Mixture Copula
Model (GMCM), a more expressive alternative to
the widely used Gaussian Mixture Model (GMM),
with the goal to make its parameter estimation
tractable. Both the Expectation Maximization and
the direct Likelihood Maximization frameworks
for GMCM have to grapple with a likelihood func-
tion that lacks a closed-form. This has led to a few
approximation schemes that alleviate the prob-
lem, nonetheless leaving the issue still unresolved.
Additionally, past works have alluded to an addi-
tional challenge of parameter non-identifiability,
but none has offered a rigorous treatment and a
commensurate solution framework to overcome
the same. This work offers solutions to each of
these issues in an attempt to help GMCM realize
its full potential. The source of non-identifiability
is not only proven but also suitable priors are pro-
posed that eliminate the problem. Additionally,
an efficient numerical framework is proposed to
evaluate the intractable likelihood function, while
also providing its analytical derivatives. Finally,
a view of GMCM as a series of bijective map-
pings from a base distribution is presented, which
paves the way to synthesize GMCM using mod-
ern, probabilistic programming languages (PPLs).
The main claims of this work are supported by
empirical evidence gathered on synthetic and real-
world datasets.

1. Introduction

Modeling multivariate data is of fundamental interest, in sev-
eral domains, to solve myriad of practical problems. From a
probabilistic viewpoint, it amounts to defining a generative
process that best explains the observed data when seen as
random variables. Copulas provide a unique framework to
model multivariate data that allows for complete control on
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the marginal behaviors of the random variables while being
able to separately capture the dependencies between them.
See (Durante & Sempi, 2010) and references therein for a
survey on this subject. This decoupling induced by a copula
can be especially significant when the true data-generating
process imposes strict constraints over the marginal distri-
butions of some or all random variables. Ideally, any effort
to model such data should adhere to these constraints. How-
ever, in the pursuit of finding a joint model of the random
variables, one typically ends up with inconsistent marginal
models. Given the ability of copulas to overcome such in-
consistencies, they have been applied in many scientific
fields though particularly in finance (Genest et al., 2009;
Cherubini et al., 2004), reliability analysis (Rychlik, 2010)
and molecular biology (Bilgrau et al., 2012; Li et al., 2011;
Kim et al., 2008; Ma & Wang, 2012). There have also been
attempts to find synergies between copula theory and ma-
chine learning to build high-fidelity data-driven models (see
Elidan, 2013, for a survey on the applications of copulas in
machine learning approaches).

The focus of this paper is on the multivariate modeling
of continuous random variables, exhibiting multimodal be-
havior in their joint (and/or marginal) distribution. Gaus-
sian Mixture Models (GMMs) (Bilmes, 1997) have been
prolifically used to model such datasets, thanks to their
simplicity and an efficient Expectation-Maximization (EM)
algorithm for parameter estimation. However, the assump-
tion of jointly normally distributed components is frequently
violated in real-world applications, with unintended prac-
tical ramifications. The Gaussian Mixture Copula Model
(GMCM) (Tewari et al., 2011; Bilgrau et al., 2016; Bhat-
tacharya & Rajan, 2014; Kasa & Rajan, 2018) offers a more
expressive alternative to GMM while keeping the same pa-
rameterization to capture multimodal dependence structure.
Figure 1 illustrates the expressivity endowed by the GMCM
via a synthetic two-dimensional dataset with 100 samples
(Figure 1a) that appears to have a bimodal distribution with
non-Gaussian modes. The best-fit GMCM and a GMM are
obtained on this dataset, wherein the optimal number of
components is determined via the widely used Bayesian
Information Criterion (BIC). A quick look at the density
contours (Figure 1b-1c) and the generated random samples
(Figure 1d-1e), suggests that the GMCM is a more faithful
model of the underlying data, with a noticeable tighter fit.
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The GMM, on the other hand, can be seen to diffuse into
regions with no data support, even with an extra mixing
component.

Figure 1. (a) A 2-dimensional dataset with 100 samples, (b-c) con-
tours of best-fit GMCM (with 2 components) and GMM (with 3
components), (d-e) 100 random samples generated from the two
fitted distributions. A tighter fit and a closer resemblance of the
random samples to the training dataset suggest the GMCM to be a
superior generative model of the data than the GMM.

Despite its superior expressivity, the estimation of GMCM
parameters remains a challenge primarily due to three rea-
sons that we briefly mention here and later explained. First,
GMCMs suffer from an inherent issue of parameter non-
identifiability. Second, its likelihood function does not admit
a closed analytical form, and thus not amenable to the EM
framework for parameter estimation. Third, concomitant
to the second reason, even direct likelihood maximization
(via gradient-based methods) becomes hard due to the lack
of analytical gradients (numerical gradients are computa-
tionally expensive). The main contributions of this paper
address each of these issues (not in the same order) i.e. 1)
additional conditions are specified that provably mitigate
the non-identifiability of GMCM, 2) a correct formulation
of EM algorithm for GMCM is presented, 3) a numerical
scheme is proposed to approximate GMCM’s likelihood
function while providing analytical gradient for the same,
and 4) a view of GMCM as a series of bijective mappings
is presented that makes it amenable to modern probabilistic
programming frameworks and leverage their built-in auto-

matic differentiation capabilities.

The plan of this paper is as follows. Sections 1.1 presents a
short literature review on multivariate copula construction.
Section 2 describes the GMCM framework and highlights
the challenges with the estimation of its parameters (Section
2.1). A view of GMCM as a series of bijective mappings
is presented in Section 3, wherein a numerical scheme is
also proposed to obtain an intractable mapping (Section 3.1).
The source of non-identifiability of GMCM is discussed in
section 4 and a solution is proposed. A correct derivation of
EM algorithm for GMCM is presented in Section 5. Results
on synthetic datasets are included in section 6 to corroborate
the claims, before concluding in section 7 with remarks on
a few future research directions.

1.1. Multivariate Copula Construction

The literature on copulas has been dominated by bivari-
ate copula models with a rich set of parametric families to
choose from (Nelsen, 1999b). Although the idea of higher
dimensional copula construction is not new (see Genest.
et al., 1995; Joe, 1993; Kojadinovic & Yan, 2010), the litera-
ture on it is relatively recent. For instance, Bedford & Cooke
(2002); Kurowicka & Joe (2010); Czado (2010) proposed
synthesis of multivariate copula from bivariate copulas by
assuming a tree-structured dependency between the ran-
dom variables. This idea was extended to directed acyclic
graphs (see Elidan, 2010; Hanea et al., 2006), giving rise to
Copula Bayesian Networks. In high-dimensional settings,
the recovery of a sparse inverse covariance structure of a
Gaussian copula was studied by Liu et al. (2009) yielding
non-paranormal models.

Copula-based construction to capture multi-modality — a
frequently observed trait in real-world data—was first ad-
dressed by Tewari et al. (2011) with the proposal of GMCM.
Bilgrau et al. (2016) furthered this work by noting certain
challenges with the parameter estimation of GMCM and
proposed practical solutions for the same. This was cou-
pled with an improved implementation of the model as an
open-source package (Bilgrau et al., 2017) in R. Rajan &
Bhattacharya (2016) extended GMCM to construct flexible
generative models for mixed (continuous and discrete) data-
types. Kasa et al. (2019) addressed the scalability of GMCM
estimation in high-dimensional settings that are common in
gene-expression datasets. The role of automatic differentia-
tion, to obtain gradients of GMCM’s intractable likelihood
function, was explored by Kasa & Rajan (2022). Never-
theless, these works only partly addressed the fundamental
issues of GMCM pertaining to parameter non-identifiability
and the intractability of its likelihood function (and its gra-
dient), thereby motivating this work.

Recently, there have been some interesting developments in
the area of model-based clustering using copulas (Kosmidis
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& Karlis, 2016; Mazo, 2017; Marbac et al., 2017; Rey &
Roth, 2012). The motivation there is to overcome the re-
strictive normality assumption by cleverly using copulas,
from known parametric families, to capture the dependence
in each mixing component. For instance, the Gaussian Cop-
ula Mixture Model (GCMM) (Marbac et al., 2017) employs
a Gaussian copula for modeling the component-wise de-
pendencies. Although with very similar motivations (and
names), the two lines of work (GMCM and GCMM) are
fundamentally different, as the goal in GMCM is to seek a
single copula distribution to capture the entire multimodal
dependence structure.

Another related (albeit rather remotely) line of work pertains
to deep generative models a.k.a normalizing flows (NFs),
which has garnered significant attention in the Machine
Learning community (see Kobyzev et al., 2021, for a com-
prehensive review on NFs). The core idea behind NFs is to
transform a simple base distribution, such as an isotropic
Gaussian, via bijective mappings that are carefully crafted
using deep neural networks. Endowed with such mappings,
one can compose highly expressive generative models for
continuous data, resulting in best-in-class performances for
the task of multivariate density estimation. The similari-
ties and dissimilarities are drawn between GMCM and the
NF-based models.

1.2. Notation

Lowercase letters are used for scalars, lowercase boldface
letters for vectors, uppercase letters for matrices, and Greek
letters for model parameters or functions. Unless otherwise
stated, vectors are column vectors. Subscripts are used to
denote an element of a vector or a matrix. For example,
xi and Xij denote the ith and the (i, j)th elements of a
vector x and a matrix X , respectively. Likewise, Xi: (or
X:i) represents the ith row (or column) of a matrix X . Sub-
scripts are also used to indicate dimension-specific functions.
For instance, the marginal distribution, induced by a joint
distribution Ψ, along the jth dimension is denoted as Ψj .
Superscripts are reserved to indicate parameter association.
For example, Θi denotes parameters associated with some
entity i. Table 2 in appendix A lists frequently appearing
symbols in the paper for quick reference.

2. Gaussian Mixture Copula Model

Definition 2.1. A m-component Gaussian Mixture Copula
(GMC) distribution, parameterized by Θ = {µl,Σl, αl}ml=1,
defines a joint distribution of a vector u, whose con-
stituent elements are uniformly distributed, i.e. uj ∼
Uniform(0,1), j ∈ {1, 2, · · · d}. The GMC density func-
tion is given by Equation (1).

ζ(u; Θ) =

 ψ
(
Ψ−1(u); Θ

)
d∏

r=1
ψr

(
Ψ−1

r (ur) ;Θr
)
 (1)

The symbol ψ(·; Θ) denotes the joint density function of
a GMM parameterized with Θ = {µl,Σl, αl}ml=1, where
µl ∈ Rd, Σl ∈ Sd+ and αl ∈ R+s.t.

∑
αl = 1 denote the

mean vector, the covariance matrix and the mixing propor-
tion of the lth component, respectively. The marginal den-
sities induced by the GMM are denoted by ψr(·; Θr), with
Θr ⊂ Θ being the subset of parameters corresponding to the
rth dimension. Also, Ψr(·)

(
and Ψ−1

r (·)
)

is the cumulative
distribution function (and its inverse) of the GMM along
the rth margin, and Ψ−1(u) = [Ψ−1

1 (u1), · · · ,Ψ−1
d (ud)].

This definition directly follows from the inversion method
of constructing copulas from any multivariate distribution
(in this case, a Gaussian Mixture distribution) with contin-
uous margins (see Nelsen, 1999a, chapter 3). Since all
the elements of a sample u ∈ [0, 1]d from GMC distribu-
tion are uniformly distributed, one can transform those via
arbitrary univariate quantile functions F−1

j (uj ;λj) (j ∈
{1, 2, · · · d}), with their respective dimension specific pa-
rameters λjs. This feature allows one to model the marginal
and the joint behavior of a multivariate dataset indepen-
dently (a hallmark of any copula-based model construction).

2.1. MLE challenges in GMCM

Maximum Likelihood Estimation (MLE) in GMCM
amounts to estimating both the copula parameters (Θ in Defi-
nition 2.1) and the marginal parameters (λjs) in conjunction.
Nevertheless, a computationally efficient and consistent es-
timator proposed by Joe & Xu (1996), where the marginal
distributions are learned first followed by the estimation of
copula parameters, is quite pervasive in practice. Along the
same lines, this paper also assumes the marginal distribu-
tions to be arbitrary but known and tackles the much harder
problem of estimating the GMC parameters by maximizing
the log-likelihood function ℓζ(Θ|U) given by Equation (2),

ℓζ(Θ|U) =

n∑
i=1

log [ζ(U:i; Θ)] , (2)

where the function ζ(·) is the GMC density function given
by Equation (1). Assuming that from a training dataset
X ∈ Rd×n the marginal distributions have been learned,
the matrixU ∈ [0, 1]d×n can then formed after transforming
the datasetX via the learned marginal distribution functions
i.e., Uj: = Fj(Xj:;λj), j ∈ {1, 2, · · · , d}. Being a continu-
ous and smooth function, ℓζ(Θ|U) can be maximized using
any gradient-based algorithm, however, the task is com-
putationally expensive. The primary culprit is the inverse
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function Ψ−1 appearing in the expression of ζ(u; Θ), which
doesn’t admit a closed analytical form. To further elaborate,
let’s look at the cumulative distribution function (Equation
3) of a univariatem-component Gaussian mixture, along the
rth dimension (note that Θr = {αl,µl

r,Σ
l
rr}ml=1). It is easy

to verify that the corresponding inverse, zr = Ψ−1
r (ur),

cannot be written explicitly, thus necessitating a numerical
solution for the same.

ur = Ψr(zr; Θ
r) =

1

2

m∑
l=1

αl

[
1 + erf

(
zr − µl

r√
2Σl

rr

)]
(3)

Bilgrau et al. (2016) proposed an efficient inversion scheme
based on linear interpolation on a sufficiently sized grid and
exploiting the fact that Ψr(zr) is monotonic. Furthermore,
they used an empirical approximation of the error function,
erf(·), in Equation 3. Although, these measures alleviate
some issues, obtaining Ψ−1

r (ur) remains the bottleneck in
the evaluation of the likelihood function in Equation (2).
The overall cost to evaluate this function for n, d ≫ m
turns out to be O(mdg + nd log g), where g is the grid
size used for interpolation. The first term is due to the cost
involved in evaluating (3) on g grid-points for d dimensions.
The second term is the cost of linear interpolation of d,
n-dimensional vectors.

Obtaining the partial derivatives of (2), for gradient-based
MLE, w.r.t Θr is even more challenging. In addition to
the fact that the likelihood function lacks a closed form,
it comprises logarithms of summands with exponential
terms in both numerator and denominator, thus, making
the derivation of analytical derivatives nontrivial. As a re-
sult, prior works (Tewari et al., 2011; Bilgrau et al., 2016)
relied on finite difference (FD) approximation of the gra-
dient of the GMCM log-likelihood function. Although
effective for small problems, this scheme scales poorly
with problem dimensions. To make this point clear, let
us first understand the computational complexity of FD
gradient approximation. Since the GMC distribution has
O(md+md2) parameters, the complexity of FD approxima-
tion becomes O(md2Cℓ(Θ|U)) (for d ≫ m), with Cℓ(Θ|U)

being the cost to evaluate the function in (2) (details of
which are provided in the previous paragraph). Therefore,
the overall complexity of FD gradient-based MLE scales as
O(m2d3g + nmd3 log g). The grid size, g, dependent com-
plexity, and the possibility of low-quality gradients because
of extensive approximations, call for improvements in GMC
parameter estimation. This paper does that in three ways; 1)
by proposing a numerical scheme to evaluate Ψ−1

r (ur; Θ
r)

while providing analytical partial derivatives for the same,
2) by deriving a correct formulation of the EM algorithm
for GMCM, which eluded previous attempts at it, and 3) by
presenting a view of GMCM that involves bijective trans-
formations of a base distribution, which paves the way for
GMCM to benefit from modern probabilistic programming

languages (PPLs).

3. GMCM as a transformed distribution

As noted earlier, there has been a recent surge in approaches
to compose joint distributions by transforming a simple
base distribution (e.g., isotropic Gaussian) through a series
of bijective transformations, a.k.a Normalizing Flows or
NFs Kobyzev et al. (2021). As long as the transformations
(both the forward and the inverse) and the determinant of
the corresponding Jacobian matrices are well-defined, one
can trivially chain any arbitrary set of bijections to the base
distribution to yield highly expressive joint distributions.
The likelihood function evaluation is done by invoking the
change of variable formula (Mood et al., 1973, Chapter V.5),
and the gradient of the same is obtained via automatic dif-
ferentiation. Modern PPL languages, such as TensorFlow-
Probability (Dillon et al., 2017) and Pyro (Bingham et al.,
2019) offer succinct and convenient APIs to construct such
transformed distributions, which is undoubtedly a boon for
communities of researchers and practitioners alike.

GMCM can also be synthesized as a transformed distri-
bution using the aforementioned PPL constructs. This is
illustrated via a synthetic 2-D example in Figure 3, wherein
the base distribution is a 2-component GMM (Figure 3a).
The base distribution is then transformed via two bijective
mappings; the first (Figure 3b) comprises marginal distribu-
tion functions of the base GMM distribution, Ψr(·), and the
second, the quantile functions, F−1

r (·), of desired marginal
distributions (Figure 3c). Hence, the generative process
induced by GMCM can be specified as follows,

z ∈ Rd ∼ GMM(Θ)

u ∈ [0, 1]d = [Ψ1(z1; Θ
1),Ψ2(z1; Θ

2), · · · ,Ψd(zd; Θ
d)]

(4a)

x ∈ Vd = [F−1
1 (u1), F

−1
2 (u2), · · · , F−1

d (ud)]. (4b)

Note that the vector space Vd is formed by the support of the
marginal distribution functions F1, F2, · · · , Fd i.e. Vd ≡
supp(F1)× supp(F2) · · · × supp(Fd). The aforementioned
generative process is also depicted in Figure 2 along with
the propagated density function in the transformed space
X . It is not too hard to verify that this joint density can
be further written as the product of GMC density function
(Equation (1)) and the separately learned marginal densities
fr(xr).

p(x; Θ) = ζ(u; Θ) ·
d∏

r=1

fr(xr), (5)

While conceptually similar, there are a few notable differ-
ences between GMCM and the NF-based distributions. First,
in GMCM the base distribution encodes the parameters of
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Figure 2. Illustration of the transformations involved in a GMCM.
Samples z from the base distribution (a GMM) are transformed
via two dimension-wise bijective mappings. The first corresponds
to the marginal CDFs (of the joint GMM) along each dimension,
while the latter comprises quantiles of a priori learned marginal
CDFs. The joint density in the transformed space X can be ob-
tained by inverting a sample to the base space Z and invoking the
change of variable formula as shown in the bottom portion of the
figure. The bracketed expressions correspond to the determinants
of the Jacobians of the two transformations. The aforementioned
transformations are implemented, in the contributed code (Tewari,
2023), using the Bijector class available in the TensorFlow proba-
bility package.

interests (i.e., those that induce a dependency structure),
while in NFs, those reside within the bijective mappings.
Second, the bijections in GMCM are dimension-wise in-
dependent with separate parameters. In NF-based distribu-
tions, the bijections intricately couple different dimensions.
Third, by virtue of the second point and the fact that the
base distribution (GMM) is marginalizable, GMCM is also
marginalizable. The latter is a significant advantage over
non-marginalizable NF-based distributions, wherein some
flexibility is sacrificed in favor of expressivity (see Gilboa
et al., 2021, for a detailed discussion on this subject). Note
that the goal here is to compare and contrast GMCM with
the other state-of-the-art multivariate models, and not to
prescribe one over the other. Putting it differently, GMCM
can be another multivariate modeling tool in the repertoire
of data modelers, which offers the simplicity and flexibility
(marginalization) of GMMs while being more expressive.

3.1. A numerical scheme to compute GMM quantiles

Section 2.1 emphasized the need for a method to compute a
univariate GMM’s quantile, Ψ−1

r (ur; Θ
r), that does better

than the linear scaling of previously proposed interpolation-
based methods. Here, a computationally efficient alternative
is proposed where the desired inversion is sought as the
root of the expression ur −Ψr(zr; Θ

r), thus opening the
door to a rich set of root-finding algorithms such as the
Secant method. Since, the forward function Ψr(zr; Θ

r)

Figure 3. Illustration of the transformations induced by a GMCM.
The left panel shows the density contours of a 2-component GMM
with parameters α = {0.45, 0.55}, µ = {[2 5], [7 3]} and
Σ = {[1.5 −1.3;−1.3 3], [3 1.2; 1.2 1]}. The middle panel
shows the contours under the transformation by the marginal dis-
tribution functions [Equation (3)]. The right panel shows the
transformation by the quantile functions of Lognormal(0, 0.5)
and Beta(10, 2) distributions along x and y dimensions, respec-
tively. Note that x ∈ R+ × [0, 1] owing to the Lognormal and
Beta marginals.

is twice continuously differentiable and the root sought is
a simple root, the convergence of the Secant method is
near quadratic (Dı́ez, 2003). Therefore, employing a root-
finding algorithm to obtain the inverse would need far less
number of function evaluations than an interpolation-based
inversion. Chandrupatla’s algorithm (Chandrupatla, 1997)
further offers an improvement over the Secant method for
functions that are flatter around the root; a highly likely
behavior of GMM CDFs, Ψr(zr; Θ

r), when the mixing
components are well separated. Therefore, the contributed
GMCM code (Tewari, 2023) employs the parallel imple-
mentation of Chandrupatla’s algorithm via the TensorFlow
Probability package.

Efficient computation of GMM quantiles (Ψ−1
r ), however,

only partly solves the problem. The partial derivatives
of Ψ−1

r (·; Θr) are also needed with respect to Θr =
{αl, u

l
r, σ

l
r}ml=1. Interestingly, these partial derivatives can

be obtained analytically despite the quantile function lack-
ing a closed form. Appendix D provides the derivation
of the aforementioned partial derivatives. PPLs, such as
TensorFlow-Probability, allow one to easily embed such cus-
tom derivatives so as to allow autodiff to use the same when
backpropagating gradients through expression graphs. One
may argue the need for analytical derivatives of Ψ−1

r (·; Θr)
at all, when PPLs, in principle, can autodiff through itera-
tive, numerical routines such as the secant method. While
the argument is correct, autodiff through such routines can
easily produce “...large expression graphs, which can lead
to floating point precision errors, excessive memory usage,
and slow computation.” (Margossian, 2018).

Putting it all together (efficient quantile computation and
analytical partial derivatives), roughly two orders of mag-
nitude speedup is observed in GMCM likelihood gradient
computation over the finite-difference (FD) method. This is
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shown in Figure 4 which plots the CPU times to obtain the
FD and analytical gradients on synthetic datasets of differ-
ent dimensions (d ∈ {10, 30, 50, 70, 90, 110}) and batches
sizes (n ∈ 1, 10, 100).

Figure 4. Plots (log-log scale) of the CPU time vs. data dimension
for the analytical and the FD gradient computations of the GMC
likelihood function (Equation (2)). The effect of batch size (n =
1, 10, 100) on CPU times is also shown. The dashed lines are the
robust linear fits corresponding to the batch size of n = 10. The
cubic complexity with data dimensions is apparent for both the
approaches from the slopes of the linear fits, which is in line with
the discussion on the computation complexity in Section 2.1.

4. Identifiability of GMCM

Another issue that plagues GMCM is that of non-
identifiability. Identifiability is a key property that deter-
mines if a generative model’s true parameters can be learned
asymptotically with the number of samples. Finite mixture
models are known to suffer from the issue of parameter
non-identifiability since the likelihood is invariant under a
permutation of component labels (Stephens, 2000). This
is commonly known as label switching problem. How-
ever, GMCM suffers from another form of parameter non-
identifiability as stated in the theorem below.

Theorem 4.1. Let U be a dataset generated by a m-
component Gaussian Mixture Copula distribution with true
parameters set Θ∗ = {µl∗,Σl∗, αl∗}ml=1. Denote the
log-likelihood of the observed data, with respect to the
true model, as ℓζ(Θ∗|U). Define another parameter set
Θ = {Aµl∗ + b, ATΣl∗A, αl∗}ml=1, where A is any diago-
nal positive definite matrix and b a real-valued vector. Then,
ℓζ(Θ|U) = ℓζ(Θ

∗|U).

Refer to Appendix B.1 for the proof. A practical reper-
cussion of this result is that the true parameters of a GMC
distribution can never be uniquely identified −even after
addressing the label switching problem− because the likeli-

hood function has infinitely many maximizers. Readers can
refer to White (1982) for a detailed exposition on the subject
of identifiability in parametric models. Bilgrau et al. (2016)
noted this form of non-identifiability in GMCM, although
did not prove it. They proposed an ad hoc solution that
involved enforcing the first component to have zero mean
and unit variance along each dimension. Nevertheless, as
noted in their paper, the non-identifiability issue persisted
under certain conditions. Here an alternative solution, for-
malized in Theorem 4.2, is proposed that renders GMCM
identifiable up to the permutation of component labels.

Theorem 4.2. Denote g ∈ Rd and h ∈ Rd
+ as any real-

valued vectors; the latter being strictly positive. A m-
component, d-dimensional Gaussian Mixture Copula distri-
bution parametrized by Θ = {µl,Σl, αl}ml=1 is identifiable,
up to the permutation of component labels, if the following
two conditions are met for the specified g and h.

m∑
l=1

αl µl
r = gr , ∀r ∈ {1, 2, · · · , d} (6)

m∑
l=1

[
αl
(
Σl

rr + (µl
r)

2
) ]

− g2
r = hr, ∀r ∈ {1, 2, · · · , d}

(7)

The proof is given in Appendix B.2. The choice of g and
h is rather arbitrary. For convenience, the former can be
set as 0d (vector of all zeros) and the latter 1d (vector of all
ones). During the parameter estimation, these constraints
can be specified in the form of suitable priors, e.g. Gaussian
priors as shown in Equations (8) and (9), resulting in a
well-defined and unique Maximum A Posteriori (MAP)
solution. The strength of these priors can be controlled
by the parameter σ (larger values lead to weaker priors).
During experimentation, a value of σ = 0.01 worked well in
balancing the trade-off between these priors and the GMCM
likelihood.

N
( m∑
l=1

αl µl
r gr, σ

)
, (8)

N
( m∑
l=1

[
αl
(
Σl

rr + (µl
r)

2
) ]

− g2
r hr, σ

)
, (9)

∀r ∈ {1, 2, · · · , d}

5. The EM algorithm for GMCM

The EM algorithm has garnered popularity for MLE in Gaus-
sian mixture models given that it 1) automatically satisfies
the probabilistic constraints and positive definiteness of co-
variance matrices, 2) doesn’t require explicit gradients, and
3) dispenses with the learning rate needed for gradient-based
approaches (Xu & Jordan, 1996). The underpinning of EM
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is a two-step process, the Expectation (E)-step that finds a
lower bound of the incomplete data log-likelihood function
(e.g., in Equation (2)), and the Maximization (M)-Step opti-
mizes this lower bound (either partially or fully) to arrive at
the next iterate. A repeated application of the E and M steps
ensures a monotonic increase of the data log-likelihood until
local convergence is achieved. Readers may refer to Bilmes
(1997) and Salakhutdinov et al. (2003) for detailed treat-
ments on the EM algorithm for GMMs. Although the EM
algorithm for GMCMs would follow the same general con-
struct, the E and the M steps are considerably harder than
those for GMM. The previous attempts at it (Tewari et al.,
2011; Bhattacharya & Rajan, 2014) do not, systematically,
derive and maximize the true lower bound of the incom-
plete data log-likelihood. Instead, certain assumptions are
made that allow tweaking of the GMM’s EM algorithm for
learning GMCM’s parameters. As a result, both of these al-
gorithms need additional checks, at each iteration, to ensure
a monotonically increasing likelihood function. They are
referred as pseudo-EM (PEM) algorithms for later bench-
marking experiments. In summary, a provably correct EM
algorithm has remained elusive for GMCM, and this paper
closes that gap.

5.1. E-Step

The ensuing derivation closely follows the exposition in
Bilmes (1997), which presents the EM algorithm for GMM
in great detail. Assuming access to y, a n-dimensional
vector of latent variables that co-occurs with the observed
data U , the complete data log-likelihood function can be
written as,

ℓcomp(Θ|U,y) =
n∑

i=1

log

 αyiϕ (Z:i; Θ
yi)

d∏
r=1

ψr (Zri; Θr)

 . (10)

The latent variable yi denotes the index of the Gaussian
component from which the dependence of the ith data sam-
ple U:i is derived. The function ϕ(·) is the multivariate
Gaussian density, Θyi and Θr represent the parameters as-
sociated with the component yi and the dimension r, respec-
tively. Also, Z:i and Zri are used to denote Ψ−1 (U:i) and
Ψ−1

r (Uri), respectively. Note that the denominator does not
depend on the latent variable yi, since the marginal densi-
ties, ψr(·) are not component specific. The E-step involves
the derivation of the expected value of the complete data
log-likelihood (Equation 10) with respect to the posterior
distribution of the latent variables given the data and the cur-
rent parameter estimates, say Θ̂. This posterior distribution

in this case is P (y|U, Θ̂) =
n∏

j=1

P
(
yj |U:j , Θ̂

)
. Following

some tedious but straightforward manipulations (refer to
Appendix C for details), the expectation of complete data

log-likelihood, Q(Θ, Θ̂), can be written as,

Q(Θ, Θ̂) =

n∑
i=1

m∑
yi=1

(
log(αyi)− log(|Σyi |)

2

)
Giyi

−
n∑

i=1

m∑
yi=1

(
Z̄T
:i (Σ

yi)−1Z̄:i

2

)
Giyi

−
n∑

i=1

d∑
r=1

log (ψr(Zri; Θ
r)) , (11)

where Z̄:i = Z:i−µyi is the mean adjusted vector and Giyi

is given by Equation(15). It should be noted that, unlike the
GMM, the E-step in GMCM does not completely remove
the logarithm over a sum of exponential terms (see in the
third term of Equation 11). Thus, the maximization of (11)
does not yield, unlike the case of GMM, closed-form up-
dates for the model parameters Θ; thereby necessitating a
gradient-based M-step. Therefore, it can be argued that the
EM algorithm does not enjoy the same benefits for GMCMs
—as it does for GMMs—over direct likelihood maximiza-
tion. Nevertheless, the accurately derived E-step can still be
maximized (or partially maximized) with a gradient-based
M-step while guaranteeing a monotonically increasing in-
complete data log-likelihood function (unlike the PEM al-
gorithms proposed in previous works). When the M-step
is carried out partially, it would result in a generalized-EM
(GEM) algorithm. Section 6 compares the proposed GEM
with the aforementioned PEM algorithms.

6. Experimental Results

This section provides empirical evidence to support the
claims made in this paper using synthetic and real-world
datasets. The GMCM is coded up in Python using the
TensorFlow-Probability package1. The experiments aim to
convey three key messages, 1) GMCM becomes identifiable
in accord with the statement of Theorem 4.2, 2) the pro-
posed EM algorithm outperforms the previously published
PEM algorithms, and 3) density estimation via GMCM is
comparable with the state-of-the-art models on UCI bench-
mark datasets. For other real-world applications, readers
may refer to (Bilgrau et al., 2012; Wang et al., 2014; Yu
et al., 2013; Bayestehtashk & Shafran, 2015), where GM-
CMs are used for tasks such as prediction, classification,
anomaly detection, dependence characterization, etc.

For the first experiment, a 3-dimensional synthetic dataset
is generated by randomly instantiating an arbitrary 2-
component GMC distribution (ground truth). One thou-
sand random samples are generated from this distribution to
yield a matrix U ∈ [0 1]3×1000, which serves as the training
dataset to learn a GMC distribution via direct likelihood

1Code used in this analysis is available here (Tewari, 2023).
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maximization. The maximization is carried out using the
Adam optimizer (Kingma & Ba, 2017) with the default
learning rate of 1E−3. The emphasis here is on the ability
to recover the parameters of the true data-generating GMC
distribution. Figure 5 shows the evolution of the parameters
for the two cases; unregularized (without the identifiability
priors as given by Equations (8) and (9)) and regularized
(with identifiability priors). Starting from the same initial
point, the plots show the evolution of the iterates until nu-
merical convergence (up to 2000 iterations). The green
squares show the true GMC parameters. The divergence
of iterates from the ground truth is quite apparent for the
unregularized case. On the contrary, the iterates converge
to the true parameter values for regularized MLE. Although
the results are shown only for the mean parameters {µl}3l=1,
the same holds true for other GMC parameters e.g. covari-
ance parameters. Bear in mind that the identifiability priors
do not impose any restrictive assumption on the generative
process of the data. They are merely making an ill-posed
problem (with multiple equivalent solutions), well-posed
(with a unique global solution) (see Theorem (4.2)).

Figure 5. The manifestation of identifiability in GMC distribution
is shown empirically. Both plots show the evolution of the mean
parameters (µi), from the same initial point until numerical con-
vergence (2000 iterations), with and without regularization priors
given by Equations (8) and (9). The true values of the parameters
are shown by green squares.

The second experiment compares the performance of the
proposed generalized EM algorithm with the two pseudo-

EM algorithms published in Bhattacharya & Rajan (2014)
and Tewari et al. (2011), referred to here as PEM1 and
PEM2, respectively. The key performance indicator here
is the log-likelihood value attained at the convergence of
these algorithms. To ensure an exhaustive comparison, 100
datasets are generated by following the same procedure as
in experiment 1. For each dataset, the GMC parameters are
learned by the three algorithms with identical initialization.
Figure 6(a) plots the log-likelihood vs. iteration, from the
three algorithms, for one such dataset. GEM can be seen
to converge to a higher log-likelihood value compared to
PEM1 and PEM2. This observation is quite consistent over
other datasets. Figure 6(b) summaries the results over all
the datasets by showing the box-plots of the log-likelihood

ratios, log
(

L(ΘGEM |U)
L(ΘPEM1 |U)

)
and log

(
L(ΘGEM |U)
L(ΘPEM2 |U)

)
, of the

converged models. A significantly positive median and the
quantile values confirm the superior performance of GEM
over PEM1 and PEM2.

Figure 6. (a) log-likelihood vs. iteration for the three EM algo-
rithms on a simulated dataset (b) Box-plots of converged log-

likelihood ratios, log
(

L(ΘGEM |U)
L(ΘPEM1 |U)

)
and log

(
L(ΘGEM |U)
L(ΘPEM2 |U)

)
,

by repeating this experiment on 100 such simulated datasets.

Finally, GMCM is learned on several density estimation
benchmarks from the UCI repository, after following the
pre-processing step described in (Papamakarios et al., 2017).
The test log-likelihoods of GMCM with several other
marginalizable and non-marginalizable density models are
presented in Table 6. In order to have the same complexity,
the mixture models (GMCM and GMM) were instantiated
with the 40 mixing components. This number was ascer-
tained by a grid search over {10,20,30,40,50} and tracking
the likelihood of validation datasets. The test log-likelihood
numbers for the other models are lifted from other bench-
mark studies (Papamakarios et al., 2017; Gilboa et al., 2021).
The performance of GMCM is found to be comparable (and
some time better e.g., on Miniboone) to its marginalizable
counterparts. However, the non-marginalizable variants
clearly have superior performance, but at the cost of losing
the ability to marginalize. Nevertheless, the goal here is not
to prescribe one modeling framework over the other (that
choice is largely application dependent), but rather to estab-
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Table 1. Average test log-likelihood achieved by different density
estimation models on UCI benchmark datasets. The models are
grouped as non-marginalizable (top panel) and marginalizable
(bottom panel). The best-performing model for each group and
dataset is shown in bold. Error bars correspond to two standard
deviations. The references for the methods in the top panel can be
found in Gilboa et al. (2021).

NON-MARG. POWER GAS HEPMASS MINIBOONE

KINGMA 2018 0.17 ± .01 8.15 ± .40 -18.92 ± .08 -11.35 ± .07
GRATHWOHL 2019 0.46 ± .01 8.59 ± .12 -14.92 ± .08 -10.43 ± .04
HUANG 2018 0.62 ± .01 11.96 ± .33 -15.08 ± .40 -8.86 ± .15
OLIVA 2018 0.60 ± .01 12.06 ± .02 -13.78 ± .02 -11.01 ± .48
DE CAO 2019 0.61 ± .01 12.06 ± .09 -14.71 ± .38 -8.95 ± .07
BIGDELI 2020 0.97 ± .01 9.73 ± 1.14 -11.3 ± .16 -6.94 ± 1.81
GILBOA 2021 1.78 ± .12 8.43 ± .04 -18.0 ± 0.91 -18.6 ± .47
MARG. POWER GAS HEPMASS MINIBOONE

GAUSSIAN -7.74 ± .02 -3.58 ± .75 -27.93 ± .02 -37.24 ± 1.07
GMM -0.26 ± .11 5.84 ± 1.13 -23.88 ± .28 -20.91 ± 1.26
GMCM 0.14 ± .06 6.13 ± .14 -22.23 ± .18 -16.41 ± .78
GILBOA 2021 0.57 ± .01 8.92 ± .11 -20.08 ± .06 -29.01 ± .06

lish GMCM as a useful addition to data modelers’ repertoire
of tools. Moreover, average log-likelihood is only one of
the metrics for model evaluation and need not imply good
performance on the task at hand (Theis et al., 2015).

7. Discussion

This paper addresses a few outstanding issues with the
parameter estimation of the GMCM. These issues have
withheld its use as a mainstream data modeling tool, de-
spite its superior expressivity than the closely related and
widely used GMM. The first one is that of parameter
non-identifiability which has been well-acknowledged but
loosely addressed in previous works. The proposed iden-
tifiability priors mitigate this issue in a principled manner.
The second issue pertains to the intractability of GMCM’s
likelihood. While this inherent issue persists, a superior nu-
merical scheme and the associated analytical partial deriva-
tives, presented in this paper, go a long way to alleviate
the issue. Lastly, the paper also presents a provable correct
generalized-EM algorithm for GMCM. Previous attempts
at it, proposed parameter update rules that do not maximize
the true lower bound of the GMCM log-likelihood. As a
result, additional checks and corrections were needed to en-
sure a monotonically increasing log-likelihood during EM
updates. The paper also argues that the GMCM does not
enjoy the same benefits, as the GMM, from the EM algo-
rithm, thus prescribes direct likelihood maximization for
parameter estimation.

An interesting unexplored aspect pertains to the Bayesian
parameter estimation of GMCM. Previously, the non-
identifiability of GMCM would have caused performance
issues in posterior approximations via both sampling or
variational inference methods. How well the proposed iden-

tifiability priors (Equations (8) and (9)) improve the perfor-
mance of posterior approximation methods remains to be
seen. Another direction would be to investigate GMCM un-
der the conditioning operation. Although GMCM is closed
under marginalization, it need not be under conditioning.
The latter would be a useful property; e.g. when GMCM is
intended to be used for regression applications. A remain-
ing direction would be to induce sparsity in the precision
matrices of the Gaussian components. This would bring sig-
nificant benefits in settings when data is scarce, and there’s
a significant risk of over-training. Finally, the applicability
of GMCM for multimodal posterior approximation, arising
in a myriad of ill-posed inverse problems (Franck & Kout-
sourelakis, 2015; Tewari et al., 2022; Zhang & Curtis, 2021;
Tewari & Paiva, 2022), could be worth exploring.
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A. Glossary of frequently used symbols

Table 2. Symbols and descriptions
Symbol Description
d data dimensions
m number of components in the mixture model
n number of data samples
Θ = {µl,Σl, αl}ml=1 parameter of m-component, d-dimensional GMM
Θr = {µl

r,Σ
l
rr, α

l}ml=1 parameters of marginal GMM along the rth dimension (Θr ⊂ Θ)
fr arbitrary univariate density function
Fr, F

−1
r the distribution and the quantile function corresponding to fr

F vector function defined as F = [F1, F2, · · · , Fd]
ψ,Ψ joint density and distribution function of GMM in Rd

ψr,Ψr density and distribution function of the of the GMM along the rth dimension
Ψ−1

r quantile function corresponding to Ψr

Ψ−1 vector function defined as Ψ−1 = [Ψ−1
1 ,Ψ−1

2 , · · · ,Ψ−1
d ]

x ∈ Vd real valued vector whose distribution is sought
u ∈ [0, 1]d = F (x) vector of uniformly distributed random variables
z ∈ Rd = Ψ−1(u) vector with quantile values of GMM marginals
X ∈ Vd×n matrix of n, x vectors arranged columnwise
U ∈ [0, 1]d×n matrix of n, u vectors arranged columnwise
Z ∈ Rd×n matrix of n, z vectors arranged columnwise
y n-dimensional vector such that yi ∈ {1, 2, · · · ,m}

B. Proofs

B.1. Theorem 4.1

Proof: Let z ∈ Rd is drawn from a m-component Gaussian mixture distribution with parameters Θ∗ = {µl∗,Σl∗, αl∗}ml=1.
Define strictly increasing transformations i.e. wr = arzr + br, with ar ∈ R+ and br ∈ R. Then w = [w1,w2, . . .wd] has
a Gaussian mixture distribution with parameters Θ = {Aµl∗ + b, ATΣl∗A, αl∗}ml=1, where A = diag([a1, a2, · · · ad]) and
b = [b1, b2, · · · bd].

The vector u ∈ [0, 1]d, such that ur = Ψr(zr; Θ
∗r); r = 1, 2, · · · , d, has the joint density function (see definition 2 of

GMC distribution) given by equation (12).

ζ(u; Θ∗) =

 ψ (z; Θ∗)
d∏

r=1
ψr (zr; Θr∗)

 (12)

Likewise, the density function of v ∈ [0, 1]d such that vr = Ψr(wr; Θ
r); r = 1, 2, · · · , d has the density function given by

equation (13).

ζ(v; Θ) =

 ψ (w; Θ)
d∏

r=1
ψr (wr; Θr)

 (13)

However, since cumulative distribution function values remain invariant under strictly increasing transformations, we have
u ≡ v. This means u and v have the same generative distribution, or equivalently ζ(u; Θ∗) = ζ(u; Θ). Therefore, the
corresponding likelihood functions, defined on a dataset with n samples (U ∈ [0, 1]d×n), are equal for the two parameter
configurations Θ∗ and Θ i.e. ℓζ(Θ|U) = ℓζ(Θ

∗|U). This completes the proof.
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B.2. Theorem 4.2

Proof: The proof is straightforward in the light that the LHS expression in Equations (6) and (7) correspond to the mean and
the variance of the marginals of a GMM, respectively. Affixing the vectors g and h to the pre-specified values, therefore,
prohibits the transformations that cause non-identifiability (refer to Theorem 4.1). Intuitively, by fixing the margins of the
GMM (as we only seek the dependence structure it encodes), we eliminate different parameter configurations that encode
the same dependence structure. Conversely, any parameter update that abides by the constraints specified in Theorem 4.2,
would result in non-increasing transformations, thus mitigating the non-identifiability noted in Theorem 4.1.

C. Derivation of E-step

Let’s denote the posterior distribution on the latent variables, given the current iteration Θ̂, as P (y|U, Θ̂) =
n∏

j=1

P
(
yj |U:j , Θ̂

)
. The expectation of the complete data log-likelihood in Equation (10), with respect to P (y|U, Θ̂),

can be written as

Q(Θ, Θ̂) =

m∑
y1=1

m∑
y2=1

. . .

m∑
yn=1

( n∑
i=1

Hiyi

)
n∏

j=1

Gjyj

 where, (14)

Hiyi = log

 αyi

ϕ(Z:i; Θ
yi)

d∏
r=1

ψr (Zri; Θr)

 , and Gjyj = P
(
yj |U:j , Θ̂

)

The (j, l)th element of the matrix G denotes the posterior probability of the lth component given the jth sample and the
current parameter estimate Θ̂, and is computed as

Gjl = P
(
yj = l|U:j , Θ̂

)
=

αlϕ
(
Ψ−1(U:j); Θ̂

l
)

∑m
i=1 α

iϕ
(
Ψ−1(U:j); Θ̂i

) . (15)

The expression in 14 can be expanded to obtain,

Q(Θ, Θ̂) =
m∑

y1=1

H1y1G1y1

n∏
j=1,j ̸=1

m∑
yj=1

Gjyj

+

m∑
2=1

H2y2G2y2)

n∏
j=1,j ̸=2

m∑
yj=1

Gjyj + . . .

. . .+

m∑
yn=1

HnynGnyn

n∏
j=1,j ̸=n

n∑
yj=1

Gjyj (16)

Given that
m∑

yj=1

Gjyj = 1, for all j ∈ {1, . . . , n}, the above equation simplifies as.

Q(Θ, Θ̂) =

n∑
i=1

m∑
yi=1

HiyiGiyi . (17)

Thereafter, it is easy to establish 1-to-1 correspondence between Equations (17) and (11) by expanding the term Hiyi .

14



On the Estimation of Gaussian Mixture Copula Models

D. Partial derivatives of Ψ−1
r (·)

Let’s say that zr = Ψ−1
r (u). Even though Ψ−1

r (·) does not have a closed-form, its partial derivatives can be obtained
analytically via its forward function Ψr(·), and by invoking Euler’s chain rule, as shown in Equation (18).

dzr
dθ

= −

(
dΨr(zr)

dθ

)
z(

dΨr(zr)
dzr

)
θ

(18)

The expression in the denominator is identical for all the partial derivatives and is simply the density functionof the univariate
GMM, i.e

∂ (Ψr(zr))

∂zr
= ψr(zr). (19)

The partial derivatives of the numerator w.r.t θ ∈ {αk, µk,Σk} can be derived, as follows, by applying of matrix calculus
identities.

Derivative of zr w.r.t to αk

∂ (Ψr(zr))

∂αk
=

1

2

[
1 + erf

(
zr − µk,r√

2Σr,k

)]
(20)

Derivative of zr w.r.t to µk

∂ (Ψr(zr))

∂µk
= − αk√

2πΣr,k

exp

(
− (zr − µk,r)

2

2Σr,k

)
(21)

Derivative of zr w.r.t to Σk

∂ (Ψr(zr))

∂Σk
= −

m∑
l=1

αl√
2πΣr,l

exp

(
− (zr − µr,l)

2

2Σr,l

)
× (zr − µr,l)

2Σr,l
× ∂ (Σr,l)

∂Σk
(22)

15


