
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MARGINAL FLOW: A FLEXIBLE AND EFFICIENT
FRAMEWORK FOR DENSITY ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Current density modeling approaches suffer from at least one of the following
shortcomings: expensive training, slow inference, approximate likelihood, mode
collapse or architectural constraints like bijective mappings. We propose a simple
yet powerful framework that overcomes these limitations altogether. We define
our model qθ(x) through a parametric distribution q(x|w) with latent parameters
w. Instead of directly optimizing the latent variables w, our idea is to marginalize
them out by sampling them from a learnable distribution qθ(w), hence the name
Marginal Flow. In order to evaluate the learned density qθ(x) or to sample from it,
we only need to draw samples from qθ(w), which makes both operations efficient.
The proposed model allows for exact density evaluation and is orders of magni-
tude faster than competing models both at training and inference. Furthermore,
Marginal Flow is a flexible framework: it does not impose any restrictions on the
neural network architecture, it enables learning distributions on lower-dimensional
manifolds (either known or to be learned), it can be trained efficiently with any
objective (e.g. forward and reverse KL divergence), and it easily handles multi-
modal targets. We evaluate Marginal Flow extensively on various tasks including
synthetic datasets, simulation-based inference, distributions on positive definite
matrices and manifold learning in latent spaces of images.

1 INTRODUCTION

Density estimation models are ubiquitous in machine learning and have been used for a wide range
of purposes. Their overarching characteristic is to provide an approximation to some probability
distribution. The most popular use case is probabilistic modeling of data with the goal of generat-
ing new instances. The underlying assumption is that there exists an unknown generative process
that generated the data in the first place. Successful applications include generation of images,
e.g. Rombach et al. (2022), text-to-audio, e.g. Liu et al. (2023), and text-to-video, e.g. Singer et al.
(2023). Other popular applications of deep generative models include protein structure prediction,
e.g. Abramson et al. (2024), and drug discovery, e.g. Zeng et al. (2022).

Rather than focusing on generating new samples, another interesting use case of density estimation
models lies in modeling and reasoning about the probability distribution itself, which has relevant
applications in the sciences. Common settings include computation of high-dimensional integrals
and intractable likelihoods or posteriors. This is maybe best exemplified by Bayesian inference,
e.g. Rezende & Mohamed (2015). Applications include cosmology, e.g. Alsing et al. (2018), neu-
rosciences, e.g. Goncalves et al. (2020), simulation-based inference, e.g. Cranmer et al. (2020), and
many more. Learning probability distributions on manifolds is also a challenging problem that can
be addressed with density estimation models, e.g. Gemici et al. (2016); Chen & Lipman (2024).

The two fundamental operations that characterize a density estimation model are sampling from
the learned distribution and evaluating its probability density. Most models show a trade-off in
efficiency between the two operations, which have their own specific challenges. On the one hand,
evaluating the probability density often requires restricting the learned transformations to bijections
that are carefully designed to avoid computing expensive Jacobian determinants, as in the case of
Normalizing Flows (NF) (Kobyzev et al., 2020). Alternatively, the true density can be bounded like
in VAEs (Kingma & Welling, 2014; Rezende et al., 2014) and afterwards estimated (Burda et al.,
2015), which is still very expensive. Therefore, most generative models rely on surrogate objectives

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Marginal Flow with other deep generative models: GANs, VAEs, Energy-
Based models (EB), Flow Matching (FM), Normalizing Flow (NF), and Free-form Flows (FFF).
The Table is inspired by Bond-Taylor et al. (2021).

Feature GANs VAEs EB FM NF FFF Ours
Efficient exact likelihood ✗ ✗ ✗ ✗ ✓ ✗ ✓
Efficient (single-step) sampling ✓ ✓ ✗ ✗ ✓ ✓ ✓
Efficient training ✗ ✓ (✓) (✓) ✗ (✓) ✓
Free-form Jacobian ✓ ✗ ✓ ✓ ✗ ✓ ✓
Lower dim. base distr. (manifold) ✓ ✓ ✗ ✗ ✗ ✓ ✓

that do not require the evaluation of the probability densities, while still allowing for high-fidelity
sample generation. This is the case for Energy-Based (EB) models (Swersky et al., 2011), Diffusion
models (Sohl-Dickstein et al., 2015) and Flow Matching (FM) (Lipman et al., 2023). On the other
hand, sampling often requires multi-step processes that transform samples from a simple distribution
into samples from the learned distribution, e.g. Flow Matching and Diffusion models. The trade-
off between efficient log-likelihood evaluation and efficient sampling is clear in NF, which can be
efficient only at either sampling or evaluating the density. Which of the two operations is more
efficient also determines which objective function can be used for training.

In many applications it is beneficial to learn a density on a lower-dimensional space. For instance,
real data is often assumed to live on a lower-dimensional manifold (Fefferman et al., 2016). Most
models, like Diffusion, FM and NF, cannot account for a change in the dimensionality while others
like GANs (Goodfellow et al., 2014) or Free-form Flows (Draxler et al., 2024) can, but suffer from
other disadvantages like approximate likelihood and unstable training.

Contribution. We propose a novel density estimation framework that alleviates altogether the
common shortcomings of current approaches. We define our model through a parametric distri-
bution q(x|w) with latent parameters w. Instead of directly optimizing the latent variables w,
we marginalize them out by sampling w from a learnable distribution qθ(w). As we do not need
to evaluate qθ(w) at any point, but only to sample from it, we are free to generate samples in a
very flexible and efficient way. To generate w, we feed-forward samples from a base distribution
of choice through an unconstrained learnable neural network. Overall, the proposed approach al-
lows for efficient exact density evaluation and efficient sampling. Furthermore, it does not pose any
restrictions (e.g. bijectivity) on the neural network and allows for learning a lower-dimensional man-
ifold alongside the density. In Table 1, we provide a high-level comparison between popular density
estimation models and Marginal Flow. Overall, our contributions can be summarized as follows:

• We introduce a novel density estimation framework called Marginal Flow.
• We demonstrate the flexibility of the framework: it allows for learning lower-dimensional

manifolds, it can easily handle multi-modal distributions, and can be tailored to the data
with the choice of the parametric distribution q(x|w).

• We show empirically that Marginal Flow is orders of magnitude faster than competing
models both at training and inference.

• Lastly, we showcase Marginal Flow on extensive experiments with synthetic data (trained
via log-likelihood and reverse KL divergence), simulation-based inference, distributions
over positive-definite matrices, and finally on MNIST digits and the JAFFE faces dataset.

2 MARGINAL FLOW

2.1 MODEL DEFINITION

Marginalization Let q(x|w) with x ∈ Rd be a family of distributions parametrized by w ∈ Rp

and assume that, for given w, it is easy to evaluate the density of q(x|w) to sample from it. We can
compute q(x) by marginalizing out w over some q(w):

q(x) =

∫
q(x|w)q(w)dw = Ew∼q(w) [q(x|w)] . (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In our model, we let q(x|w) be a distribution of choice parametrized by w and we let q(w) be
freely learnable: q(w) → qθ(w). The resulting marginal q(x) is universal for many families of
distributions q(x|w), e.g. if q(x|w) is a kernel (Micchelli et al., 2006). We will often assume
q(x|w) = N (x|µ = w,Σ = diag(σ1, . . . , σd)), for which p = d, and learnable variances (along-
side θ). However, we show that other choices of q(x|w) can be beneficial, depending on the setting.

Definition. Motivated by the marginalization in Eq. 1, we define our model as follows:

qθ(x) :=
1

Nc

Nc∑
i=1

q(x|wθ,i) where wθ,i ∼ qθ(w) . (2)

The density qθ(x) can be exactly evaluated and efficiently sampled from. Nc is the number of
parameters drawn from qθ(w) and is not required to be fixed. In fact, the parameters wθ,i are not
fixed themselves but rather resampled from qθ(w) at each iteration, which effectively renders the
marginalization in Eq. 1. As we will argue in the next paragraph, there is a crucial difference with
respect to directly optimizing a finite set of mixtures {wi}Nc

i=1. Another important aspect is that we
do not need to evaluate qθ(w) but only to sample from it. Therefore, we can construct samples in
a very flexible way and in a single step: we first sample from a distribution of choice pbase(z) with
z ∈ Rm and then transform them via a learnable mapping to the space of latent parameters w ∈ Rp.
Relevantly, to do so we can use an unconstrained learnable function fθ : z ∈ Rm 7→ w ∈ Rp:

wθ,i := fθ(zi) with zi ∼ pbase(z) . (3)
The resulting samples wθ,i := fθ(zi) will be samples from some (learnable) distribution qθ(w). The
neural network fθ(z) is thus the trainable part of the model. In our experiments, a small MLP with
3-5 layers and 256 neurons was enough. Unlike most density estimation models, Marginal Flow is
efficient both at sampling and at evaluating the probability density, as we will see in Section 2.2.
Furthermore, in contrast to competing models, we can learn a density with support on a lower-
dimensional manifold by simply choosing a base distribution with support in Rm with m < d.

Motivation for marginalization. In order to understand the importance of the marginalization
aspect, consider the case where we have a finite number of wi and, instead of integrating them
out, we optimize them. Without marginalization, the model reduces to a simple mixture model
optimized over a fixed set of mixture components {wi}Nc

i=1, e.g. a Gaussian Mixture Model (GMM)
if q(x|w) = N (x|µ = w,Σ = σ1). In this case, learning a target distribution amounts to placing
the Nc Gaussians in an optimal way. The expressiveness and scalability of the model are then
fundamentally limited by the number of mixtures Nc. Instead of optimizing over fixed {wi}Nc

i=1, our
approach relies on the marginalization of w, sampled from qθ(w). We optimize the parameters θ of
the neural network fθ(z), and we resample w ∼ qθ(w) at each iteration. The resampling induces an
approximation to the marginal distribution in Eq. 1, rather than just a finite mixture. As illustrated in
Figure 1, even with the same nominal number of mixtures (e.g. 10), only the marginalized model is
able to learn a smooth density. As such, the modeling capacity is not directly linked to Nc anymore.
The marginalization prevents the collapse to a GMM and spreads qθ(w) to cover the entire target.

Ground Truth Marginal FlowGMM

1.0

0.8

0.6

0.4

0.2

0.0

Optimization Marginalization

learn resample from learnable
Learnt manifold

Figure 1: Motivation for marginalization: learned distribution and samples when optimizing directly
the parameters wi compared to resampling them from a learnable qθ(w), as in Marginal Flow.

2.2 EFFICIENT EVALUATION AND SAMPLING

Sampling the parameters wi Figure 2 (left). In order to evaluate the modeled density qθ(x)
or to sample from it, we first need to sample wi, which parametrize q(x|wi). This is done ef-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

sampling with
replacement

Figure 2: Marginal flow model diagram. Evaluating the modeled density qθ(x) (center) and sam-
pling from qθ(x) (right) requires to first sample the parameters wi (left).

ficiently by feed-forwarding samples {zi}Nc
i=1 from a base distribution of choice: wi = fθ(zi)

with zi ∼ pbase(z). With the sampled {wi}Nc
i=1, our model in Eq. 2 resembles a mixture model

with Nc components. Note, however, that the {wi}Nc
i=1 are not fixed but sampled again for each

evaluation or sampling of qθ(x). The neural network fθ is unconstrained. Evaluation: Figure 2
(center). In order to evaluate the density qθ(x) at a given point x, we use the definition in Eq. 2.
Given the sampled parameters {wi}Nc

i=1, we only need to evaluate each q(x|wi) on x, which is
chosen to have a simple closed-form density function. Note that, in contrast to other density esti-
mation models, the evaluation of the density does not require inverting fθ(zi), computing detJfθ
or solving an ODE. Sampling from qθ(x): Figure 2 (right). Sampling as in Eq. 2 is also effi-
cient, just like sampling from a mixture model. Given the sampled parameters {wi}Nc

i=1, we first
need to sample a component wj and then sample from the associated distribution q(x|wj), with
j ∈ {1, . . . , Nc}. To draw N samples, we sample N indices with replacement from {1, . . . , Nc}.

102 103 104 105

d

10 3

10 2

10 1

100

R
u
n
ti
m

e
(s

)

Sampling
Ours
NF
FM
FFF

102 103 104 105

d

Evaluation

OOM Error

Figure 3: Runtime for sampling (left) and ex-
act density evaluation (right) of 100 points.

Empirical runtime. We now empirically mea-
sure runtime for sampling and evaluating the ex-
act density and compare against competing mod-
els. Note that only Marginal Flow and Normaliz-
ing Flow (NF) provide exact density by construc-
tion. As shown in Figure 3, Marginal flow is or-
ders of magnitude faster than competing methods
in terms of both sampling and density evaluation,
where FM is Flow Matching and FFF is Free-form
Flows. Sampling is as efficient as in FFF, since both
only require drawing from a base distribution and
passing the samples through a neural network. For
further details, see the Appendix in Section A.3.1.

2.3 FLEXIBILITY OF MARGINAL FLOW

Lower-dimensional latent distribution. Most density estimation models, like Flow Matching
and Normalizing Flows, learn mappings that preserve the dimensionality and cannot learn densities
on lower-dimensional manifolds. Some work tries to overcome this issue either by resorting on
approximations (Brehmer & Cranmer, 2020) or by restricting the transformations (Khorashadizadeh
et al., 2023; Negri et al., 2025). In contrast, with our model in Eq. 2, we have the freedom of choosing
the dimensionality of the base distribution, i.e. pbase(z) with support in Rm with m < d. Also in
this case we can evaluate qθ(x) exactly and learn the manifold alongside the density. In Figure 4 we
showcase Marginal Flow and competing models on a density defined on a (unknown) 1D manifold.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Marginal Flow Free-form Flow Normalizing Flow Flow MatchingTraining samples

Learnable manifold (1D) No manifold available

Figure 4: Toy example of density defined on (unknown) 1D manifold. (Left) Training data consists
of 1500 points. (center) Marginal Flow perfectly learns the density and discovers the correct mani-
fold. Free-form Flow learns an incorrect manifold and is not able to embed the density in 2D space.
(right) Flow Matching and Normalizing Flow learn the density but cannot account for a manifold.

Conditional distribution. As wo do not have any requirements on the neural network fθ(z),
Marginal Flow can be readily extended to model conditional distributions. The conditioning vari-
ables could be appended to the input fθ(z) → fθ(z; c) or one could use a hypernetwork that takes
c as input and returns the neural network parameters fθ(z) → fθ(c)(z). Furthermore, the base
distribution can also be conditioned on c: pbase(z) → pbase(z; c).

Multi-modal targets. Marginal Flow can naturally account for multi-modal targets thanks to the
unconstrained neural network fθ(z). Most generative models, like Normalizing Flows and Flow
Matching, learn (directly or indirectly) a bijection between a base distribution and the target distri-
bution. However, bijections struggle to learn new modalities and have limited expressiveness (Liao
& He, 2021). Even with a multi-model base distribution, bijections will still struggle to match the
modalities in the target with those of the base distribution. Furthermore, many density estimation
models suffer from mode collapse during training (He et al., 2019; Kossale et al., 2022). In Figure 5
we showcase how easily Marginal Flow can learn multi-modal targets compared to other models.

Marginal Flow Free-form FlowNormalizing FlowFlow MatchingTraining samplesGround truth

Figure 5: Toy example of multi-modal density learned by log-likelihood on 150 data points. For
a fair comparison, all models use a uniform base distribution. Note that Marginal Flow is not a
mixture model (for which this task would be trivial) since wi are always resampled (see Figure 1).

Training objectives. Density estimation models are usually trained through an objective that re-
quires sampling, evaluating the (exact) density or both. However, current approaches are efficient
only at either one or the other. For instance, models trained on data via forward KL divergence (i.e.
log-likelihood) require efficient density evaluation while models trained on unnormalized targets via
reverse KL divergence require efficient sampling. However, one could wish to use both objectives to
combine information from observations and unnormalized targets or to mitigate the mean-seeking
(mode-seeking) behavior of the forward (reverse) KL divergence. Since Marginal Flow is efficient
both at sampling and evaluation, it can be trained efficiently with most objectives; see Appendix A.2.

Extension to other mixtures. The proposed model in Eq. 2 leaves complete freedom in the choice
of q(x|w), as long as it can be parametrized by some w. In most experiments we employ a Gaus-
sian with learnable variances, i.e. q(x|w) = N (x|µ = w,Σ = diag(σ1, . . . , σd)). However, other
choices are possible depending on the application. For instance, when modeling distributions on the
probabilistic simplex, we can use the Dirichlet distribution. We can model distributions on symmet-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ric positive-definite matrices by choosing q(x|w) to be a Wishart, which we showcase in Section 4.3.
Relevantly, the choice of q(x|w) does not affect the structure of the proposed framework.

3 RELATED WORK

One of the earliest attempts to use deep learning for generative modeling are Energy-based (EB)
models (Swersky et al., 2011). Instead of modeling a normalized density, EB models learn the
negative log-probability. Despite their flexibility, computing the exact density and sampling from the
model is generally expensive (Song & Kingma, 2021). Closely related are diffusion models (Sohl-
Dickstein et al., 2015), which learn how to reverse a fixed noising process by estimating at each step
the gradient of the log-density. Diffusion models can produce high-quality samples (Rombach et al.,
2022; Liu et al., 2023), but still require multi-step sampling and do not provide the exact density.

Another approach is to model the observed density with unobserved latent variables. VAEs (Kingma
& Welling, 2014; Rezende et al., 2014) encode data into a latent space and are trained via a lower
bound on the log-likelihood. In contrast to EB models, VAEs can be sampled in a single step.
However, VAEs have limited expressiveness and suffer from posterior collapse (He et al., 2019).
Another latent variable model – GANs (Goodfellow et al., 2014) – consists of a generator that creates
samples from a latent distribution and a discriminator trained to distinguish generated samples from
real ones. GANs can generate high-fidelity images (Karras et al., 2019) but are unstable and suffer
from mode collapse (Kossale et al., 2022). Neither GANs nor VAEs provide the exact likelihood.

Normalizing Flows (NFs) (Papamakarios et al., 2021) provide a principled way to compute the exact
density. NFs transform a base distribution through bijections and account for the probability change
via the Jacobian determinant, which is expensive to compute. Thanks to their exact density, NF have
been applied for posterior approximations (Rezende & Mohamed, 2015). Additional limitations
of NFs arise from the limited expressivity of bijective layers (Liao & He, 2021). Efficiency could
be obtained using approximate bijections and by approximating the Jacobian determinant (Draxler
et al., 2024), which however precludes sound statistical understanding and evaluation of the exact
log-likelihood. Lipman et al. (2023) proposed to learn instead a velocity field that transforms the
base distribution into the target. While this approach scales to high-dimensions, it cannot handle
lower-dimensional base distributions and still requires expensive ODE solvers to compute the exact
density. For a comprehensive review on generative models we refer to Bond-Taylor et al. (2021).

4 EXPERIMENTS

First, we show on synthetic data that Marginal Flow can learn complex distributions both via log-
likelihood and reverse KL divergence training. We also show that it converges more quickly than
competing models. Second, we showcase how Marginal Flow can learn complex conditional dis-
tributions and achieve state-of-the-art results for simulation-based inference. Third, we show that
Marginal Flow can be easily adapted to learn distributions on positive-definite matrices by simply
changing the parametric form of q(x|w). Lastly, we showcase applications in computer vision as
well: we learn densities on lower-dimensional manifolds on MNIST and on the JAFFE face dataset.

4.1 SYNTHETIC DATASETS

Log-likelihood training. As illustrative examples, we picked 4 common synthetic datasets (Two
moons, Pinwheel, Swiss Roll and Checkerboard) and 1 additional multi-modal distribution (Mix-
ture of Gaussians). We train Marginal Flow by maximizing the log-likelihood, which is reported
explicitly in the Appendix 6. In Figure 6 we showcase that Marginal Flow can perfectly learn all
densities without needing any fine-tuning. Next, we study the ability of Marginal Flow to learn den-
sities when a limited number of observations is available. In particular, we compare against Flow
Matching, Normalizing Flow and Free-form Flows with an increasing number of training points
{100, 200, 500, 1000}. For a fair comparison we used a comparable amount of parameters in each
model. In the Appendix in Figure 13, we show the learned densities, which are particularly accurate
for Marginal Flow, already in few-sample regimes. In Figure 7 we showcase the test log-likelihood
during training for all models and datasets when train on 1000 points. Marginal Flow converges
orders of magnitude quicker than competing models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GT Marginal Flow GT Marginal Flow GT Marginal Flow GT Marginal Flow

Mixture of Gaussians Swiss Roll Pinwheel Checkerboard

Figure 6: Marginal Flow trained via log-likelihood on 2D synthetic datasets. We show 10’000
samples from the true distribution and from Marginal Flow.

runtime (s)

te
st

 lo
g-

li
ke

li
ho

od

Mixture of Gaussians

100 101 102 103

0

1

2
Ours

NF

FM

FFF

Two Moons

100 101 102 103

Checkerboard

100 101 102 103

Pinwheel

100 101 102 103

Swiss Roll

100 101 102 103

Figure 7: Test log-likelihood of Marginal Flow and other models during training with 1000 points.

Reverse KL divergence training We additionally show that Marginal Flow can be trained in the
reverse KL direction as well, namely without observations and only guided by the (unnormalized)
density of the target distribution. This type of training requires an efficient computation of the exact
log-likelihood, which is possible only for Normalizing Flow. Some attempts to make Flow Matching
work in this direction have been made but remain limited (Tong et al., 2024). We tried with a
score-matching objective but it led to unstable training. We trained Marginal Flow and Normalizing
Flow with a reverse KL objective and compared the learned densities in terms of test KL. Marginal
Flow achieved superior or comparable performance with Normalizing Flow, see Figure 8 (left), and
showed better density reconstruction quality, see Figure 8 (right). Note that we do not use the
Checkerboard dataset because its density is constant and has gradients equal to zero everywhere.

Two moons Pinwheel Swiss roll

R
ev

er
se

 K
L

Marginal Flow

Normalizing Flow

MoG

10-1

10-0

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

M
ix

tu
re

 o
f G

au
ss

ia
ns

P
in

w
he

el

Ground Truth Normalizing FlowMarginal Flow

Figure 8: Marginal Flow vs Normalizing Flows trained by reverse KL divergence on synthetic distri-
butions. During training only the probability density is queried (no observations). (left) Test reverse
KL with 95% confidence intervals error bars. (right) comparison of learned density distributions.

4.2 SIMULATION-BASED INFERENCE

As argued in Section 2.3, with the proposed framework we can easily learn conditional distributions
as well. We showcase Marginal Flow on complex conditional distributions by training it on the
Simulation-Based Inference (SBI) benchmark (Lueckmann et al., 2021). SBI data consists of tuples
{xi, θi}i, where θi are parameters sampled from a prior p(θ) and xi are samples from a simulator
p(x|θi) parameterized by θi. Given tuples of observations {xi, θi}i, the goal is to learn the posterior
p(θ|xj) of a new xj . Evaluation is performed in terms of Classifier 2-Sample Tests (C2ST) on a
held-out test set. Due to space constraints we report results in the Appendix in Figure 14. Marginal
Flow achieves state-of-the-art results and proves to be particularly effective in low data regimes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.3 WISHART MIXTURE DISTRIBUTION

One interesting aspect of Marginal Flow is that the parametric family q(x|w) in Eq. 2 can be ad-
justed depending on the application and on the noise assumption. Consider the case of learning a
Wishart mixture distributions (Haff et al., 2011; Cappozzo & Casa, 2025): observations consist of
sample covariances, which lie on the cone of positive-definite (p.d.) matrices. One design choice
would be to use a Gaussian assumption in q(x|w) and then transform the samples into positive
definite matrices through bijective layers as in Negri et al. (2023). Alternatively, one could directly
choose q(x|w) to be Wishart distributions. We showcase this second option, and, in particular, we
parametrize the scale matrices of Wishart via wi, in addition to a parametrized global ν. We consider
a target distribution t(x) where the generating parameters live on a 1D manifold:

t(x) = W(x; ν,Σ(λ)) s.t. Σ(λ) ∈ M ∀λ ∈ [0, 1] . (4)

We showcase training using both the reverse and forward KL divergence (log-likelihood). Our goal
is to approximate t(x) while reconstructing the manifold M. We showcase two settings. (i) A low-
dimensional setting with 10 × 10 matrices using the reverse KL and we compare to Normalizing
Flows (NFs) parameterizing the Cholesky factor. (ii) A high-dimensional setting with 100 × 100
matrices using the forward KL, which was computationally prohibitive for NFs. In Figure 9 we
show test KL divergence in the low-dim setting and plot the manifold reconstruction using a PCA
projection to 2D. Marginal Flow perfectly recovers the manifold in both training directions and
approximates t(x) better than NFs. For more details on the target manifold M see Appendix A.4.2.

Wishart mixtures (10×10) High-dim. Wishart mixtures (100×100)

0 10 20

5

0

5

10

20 10
PC1

P
C

2

Marginal Flow
Target manifold

0 4 8

2

0

2

PC1

P
C

2

4

Marginal Flow
Normalizing Flow

Target manifold

10 1

100

101
for. KL
rev. KL

sym. KL

Marginal Flow Norm. Flow

±0.0088

±0.82

Figure 9: (left) 10 × 10 Wishart mixtures (d = 55) on manifold trained via reverse KL. Test KL
divergences in the bar plot show accurate fit with Marginal Flow and underfitting with NF. Unlike
NF, we can also learn the manifold. (right) Reconstructed manifold for 100× 100 Wishart mixtures
(d = 5050) trained via forward KL (log-likelihood). NF cannot be trained in such a high-dim setting.

4.4 MANIFOLDS IN IMAGE LATENT-SPACES

Most modern image generative models rely on non-trivial latent spaces, e.g. Rombach et al. (2022),
which can still be relatively high-dimensional and show non-Euclidean behavior (Shao et al., 2018).
It would then be relevant to traverse such latent spaces on a lower-dimensional manifold. Marginal
Flow is well-suited for this task since it allows for learning a lower-dimensional manifold along-
side the density. We showcase this on MNIST digits (LeCun et al., 1998) and the JAFFE face
dataset (Lyons et al., 1998). The JAFFE dataset contains 214 face images of ten Japanese women
mimicking certain emotions. Each image is associated with a score quantifying the emotions, e.g.
“happiness” or “surprise”. Note that learning a manifold with such little data is very challenging.

In both settings, we first train a VAE without conditional information to encode images into a latent
space (20- and 10-dimensional, respectively). Then, we train a single Marginal Flow in the latent
space to learn a low-dimensional manifold conditioned on the digit label (or emotion score). The
exact loss function is reported in the Appendix in Eq. 8. In particular, we use a 1-dim uniform
base distribution pbase = U([−1, 1]). We learn conditional manifolds via the network fθ(z; c),
with z ∈ [−1, 1] and c the class label (or scores). In Figure 10, we explore the 1-dim manifold
conditioned on each label of MNIST. Results show similarities across digits in the learned manifold:
some sections look approximately bold, bold italic and normal font, with smooth transitions in
between them. For JAFFE, the manifold smoothly interpolates the different faces (horizontally) at
fixed emotion levels, as shown in Figure 11. We observe disentanglement of faces and emotions, as
faces tend to align within columns. Some inconsistencies are probably the result of the extremely
low-data regime. For further visualizations, see the Appendix, Figure 15 and 16.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Bold Bold italic Normal

Figure 10: Each row shows the 1-dim manifold conditioned on the label learned by Marginal Flow
on MNIST (in a 20-dim VAE latent space). We observe disentanglement of digits and writing style.

neutral

more
happiness

more
surprise

learned 1-dimensional manifold

Figure 11: By traversing the conditional manifold, Marginal Flow smoothly interpolates between
faces and levels of emotions on the JAFFE dataset. While the conditioning value is kept fixed in
each row, columns correspond to the same point on the learned manifold in the latent space.

5 CONCLUSIONS

In this work we introduced a flexible and efficient density estimation framework called Marginal
Flow. We showed empirically that Marginal Flow is orders of magnitude faster than competing
methods in terms of runtime, both at sampling and exact density evaluation. Unlike most density
estimation models, Marginal Flow provides exact density evaluation by construction. Marginal
Flow is also a very flexible framework: it allows for learning lower-dimensional manifolds, it can
easily handle multi-modal distributions, and it can be easily tailored to the data with the choice
of the parametrized distribution q(x|w). Experimentally, we showcase Marginal Flow on several
datasets and various tasks. First, we showed that Marginal Flow can perfectly reconstruct synthetic
datasets both when trained via log-likelihood and via reverse KL divergence. Additionally, Marginal
Flow converges orders of magnitude faster than competing models. Then, we showed that it can
achieve state-of-the-art results on the Simulation-based Inference benchmark. We also showed that
we can easily adapt Marginal Flow to learn distributions on positive definite matrices by choosing
the Wishart distribution as the parametrized family q(x|w). Lastly, we applied Marginal Flow to
learn a (conditional) manifold alongside the density for MNIST digits and the JAFFE face dataset.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY

We made an effort to make every aspect of the model and of the experiments reproducible. In par-
ticular, as part of the submission we provide code with a PyTorch implementation of the model
and code for reproducing figures and experiments. Furthermore, in Appendix A.1 we discuss imple-
mentation details of Marginal Flow concerning sampling, log density evaluation and neural network
architecture. Finally, in Appendix A.3 we provide detailed description of the experiments conducted
including data pre-processing for real-world experiments.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493–500, 2024.

Justin Alsing, Benjamin Wandelt, and Stephen Feeney. Massive optimal data compression and
density estimation for scalable, likelihood-free inference in cosmology. Monthly Notices of the
Royal Astronomical Society, 477(3):2874–2885, 03 2018. ISSN 0035-8711.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik Jacobsen.
Invertible residual networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 573–582. PMLR, 09–15 Jun 2019.

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris Willcocks. Deep generative modelling: A
comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PP, 09 2021.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estima-
tion. Advances in neural information processing systems, 33:442–453, 2020.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Andrea Cappozzo and Alessandro Casa. Model-based clustering for covariance matrices via penal-
ized wishart mixture models. Computational Statistics & Data Analysis, pp. 108232, 2025.

Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020. doi: 10.1073/
pnas.1912789117.

Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, and Ullrich Köthe. Free-
form flows: Make any architecture a normalizing flow. In Proceedings of The 27th International
Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research,
pp. 2197–2205. PMLR, 02–04 May 2024.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Mevlana C. Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on riemannian
manifolds, 2016.

Pedro J Goncalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Ocal,
Giacomo Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels,
David S Greenberg, and Jakob H Macke. Training deep neural density estimators to identify
mechanistic models of neural dynamics. eLife, pp. e56261, sep 2020. ISSN 2050-084X.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Leonard R Haff, Peter T Kim, J-Y Koo, and D St P Richards. Minimax estimation for mixtures of
wishart distributions. The Annals of Statistics, 2011.

Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging inference
networks and posterior collapse in variational autoencoders. In ICLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

L Jeff Hong and Sandeep Juneja. Estimating the mean of a non-linear function of conditional
expectation. In Proceedings of the 2009 Winter Simulation Conference (WSC), pp. 1223–1236.
IEEE, 2009.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401–4410, 2019.

AmirEhsan Khorashadizadeh, Konik Kothari, Leonardo Salsi, Ali Aghababaei Harandi, Maarten
de Hoop, and Ivan Dokmanić. Conditional injective flows for bayesian imaging. IEEE Transac-
tions on Computational Imaging, 9:224–237, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 2014.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220
(4598):671–680, 1983. doi: 10.1126/science.220.4598.671.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43
(11):3964–3979, 2020.

Youssef Kossale, Mohammed Airaj, and Aziz Darouichi. Mode collapse in generative adversarial
networks: An overview. In ICOA, pp. 1–6, 2022. doi: 10.1109/ICOA55659.2022.9934291.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Huadong Liao and Jiawei He. Jacobian determinant of normalizing flows, 2021.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In Pro-
ceedings of the 40th International Conference on Machine Learning, Proceedings of Machine
Learning Research, pp. 21450–21474. PMLR, 23–29 Jul 2023.

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Bench-
marking simulation-based inference. In Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, pp. 343–351.
PMLR, 13–15 Apr 2021.

M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Coding facial expressions with gabor wavelets.
In Proceedings Third IEEE International Conference on Automatic Face and Gesture Recogni-
tion, pp. 200–205, 1998.

Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal of Machine
Learning Research, 7(12), 2006.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Marcello Massimo Negri, Fabricio Arend Torres, and Volker Roth. Conditional matrix flows for
gaussian graphical models. Advances in Neural Information Processing Systems, 36:25095–
25111, 2023.

Marcello Massimo Negri, Jonathan Aellen, and Volker Roth. Injective flows for star-like manifolds.
In The Thirteenth International Conference on Learning Representations, 2025.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1–64, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Bowen Tang,
Yunjing Li, Michael Fang, Jing Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530–1538. PMLR, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st International Con-
ference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp.
1278–1286. PMLR, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry of deep generative
models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 315–323, 2018.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
Text-to-video generation without text-video data. In The Eleventh International Conference on
Learning Representations, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Yang Song and Diederik P. Kingma. How to train your energy-based models, 2021.

Kevin Swersky, Marc’Aurelio Ranzato, David Buchman, Nando D Freitas, and Benjamin M Mar-
lin. On autoencoders and score matching for energy based models. In Proceedings of the 28th
international conference on machine learning (ICML-11), pp. 1201–1208, 2011.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow
matching, 2024.

Xiangxiang Zeng, Fei Wang, Yuan Luo, Seung-gu Kang, Jian Tang, Felice C Lightstone, Evandro F
Fang, Wendy Cornell, Ruth Nussinov, and Feixiong Cheng. Deep generative molecular design
reshapes drug discovery. Cell Reports Medicine, 3(12), 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We provide our implementation of Marginal Flow in PyTorch (Paszke et al., 2019) as part of the
supplementary material. Here we discuss the main high-level aspects of such an implementation.

Density evaluation and sampling. Once we sample the parameters w, Marginal Flow consists
of a Mixture of distributions q(x|w) parameterized by the sampled w. The parameters w are then
resampled each time we evaluate the density qθ(x) or sample from qθ(x), with qθ(x) being defined
in Eq. 2. Within PyTorch one can define the parametric family q(x|w) by simply choosing a
distribution of choice from torch.distributions. For all distributions, PyTorch provides
efficient evaluation of the density and efficient sampling, which can be automatically extended to
mixtures of distributions. In most of our experiments we used a Gaussian family, i.e. q(x|w) =
N (x|µ = w,Σ = diag(σ1, . . . , σd)). In such a case, one can evaluate the log-density even more
efficiently and does not need to rely on torch.distributions. In particular, we need to
evaluate N points over a mixture with Nc components. This requires computing the distance of
each point to each mixture component and then summing the contributions. With torch.cdist
this operation can be done extremely efficiently.

Neural network architecture. A key aspect of the proposed Marginal Flow is that it leaves com-
plete freedom in the choice of the neural network architecture. In particular, for all our experiments,
it was sufficient to we use very simple MLP architectures with 3 to 5 layers and 128 to 256 hid-
den units. We also employed skip connections. The specific settings used in each experiment can
be found in the code provided in the supplementary. For conditional experiments we used a slight
modification of the mentioned MLP structure. In particular, we simply appended the condition-
ing variable(s) to the input. In order to extract high-frequency signals from the (low-dimensional)
conditioning variables, we used Fourier features (Tancik et al., 2020)

A.2 OBJECTIVE FUNCTIONS

Marginal Flow provides efficient exact density evaluation and efficient sampling. Consequently, it
can be trained efficiently using most objective functions. Among the most popular ones are the
forward KL divergence (log-likelihood) and the reverse KL divergence. The former is the most
commonly used one in deep generative models and is employed to learn the distribution of some
given data D = {xj}Nj=1. The latter is most commonly used when only an unnormalized target
distribution t(x) is known. Below we report the definitions of both objectives and their analytical
expression when Marginal Flow is used, i.e. Eq. 2.

Forward KL (log-likelihood) Assume we are given a dataset of observations D = {xj}Nj=1
and the goal is to estimate the unknown distribution that generated the dataset. The underlying
assumption is xj ∼ p(x), with p(x) being unknown. The most common approach is to minimize
the forward KL divergence, which is proportional to the negative log-likelihood:

L(θ) = KL(p(x)||qθ(x)) =
∫

p(x) log
p(x)

qθ(x)
dx = −Ex∼p(x)[log qθ(x)] + const . (5)

Given the data points {xj}Nj=1, we can approximate the above expression with the following Monte
Carlo estimate:

L(θ) ≈ − 1

N

N∑
j=1

log qθ(xj) = − 1

N

N∑
j=1

log
1

Nc

Nc∑
i=1

q(xj |wi) with wi ∼ qθ(w) . (6)

In the last equality we used Marginal Flow as variational family qθ(x), i.e. Eq. 2. Recall that qθ(w)
is not modeled explicitly. Instead, we construct samples wi by transforming samples from a base
distribution pbase(z) with a learnable function fθ : z ∈ Rm 7→ w ∈ Rd:

wi := fθ(zi) with zi ∼ pbase(z) . (7)

When using a conditional model, the modeled density depends on the conditioning parameter as
well: qθ(x) → qθ(x; c). One straightforward way to model conditional density with Marginal

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Flow is to condition the neural network on c, i.e. fθ(z) → fθ(z; c) or, more explicitly, fθ(c)(z).
Assume we are given pairs of observations and conditioning information {xj , cj}Nj=1. Then, the
loss function in Eq. 6 reads as:

L(θ) ≈ − 1

N

N∑
j=1

log qθ(xj ; cj) =− 1

N

N∑
j=1

log
1

Nc

Nc∑
i=1

q(xj |wcj ,i)

where wcj ,i = fθ(zi; cj) with zi ∼ pbase(z) .

(8)

Reverse KL In variational inference settings we are commonly given an unnormalized target dis-
tribution t(x) ∝ p(x) and we would like to (i) approximate it and (ii) draw samples from it. This is
often the case in Bayesian inference: given a likelihood p(D|Θ) and a prior p(Θ), we would like to
perform variational inference on the posterior p(Θ|D) ∝ p(D|Θ)p(Θ), which we can evaluate only
up to a constant. We now detail how to train the proposed model to approximate the target distribu-
tion p(x), which corresponds to p(Θ|D) in the previous Bayesian posterior inference example. The
most common distance measure in variational inference is the reverse Kullback-Leibler divergence,
which is defined as

L(θ) = KL(qθ(x)||p(x)) =
∫

qθ(x) log
qθ(x)

p(x)
dx = Ex∼qθ(x)

[
log

qθ(x)

p(x)

]
. (9)

Usually, we do not have access to the normalized p(x) but only to some unnormalized target t(x),
i.e. p(x) = t(x)/N . However, the reverse KL divergences are proportional up to a constant, which
is precisely the normalization constant N :

KL(qθ(x)||p(x)) = KL(qθ(x)||t(x)) + logN . (10)

In practice, the reverse KL divergence is approximated in Monte Carlo fashion by drawing N sam-
ples from the variational distribution {xj}Nj=1 with xj ∼ qθ(x), which gives the following objective:

L(θ) ≈ 1

N

N∑
j=1

log
qθ(xj)

t(xj)
=

1

N

N∑
j=1

log
1
Nc

∑Nc

i=1 q(xj |wi)

t(xj)
with wi ∼ qθ(w) . (11)

In the last equality we plugged in the proposed model in Eq. 2 as variational family qθ(x). Note
that, as opposed to the forward KL divergence setting (log-likelihood), in the reverse KL setting we
need to draw samples from the model xj ∼ qθ(x).

A.3 EXPERIMENTAL DETAILS

A.3.1 RUNTIME COMPARISON

In Figure 3 we have shown a runtime comparison for the two main operations of density estimation
models: sampling and evaluation of the log-probability. In particular, we measure the runtime for
generating 100 samples and for evaluating the log-probability of 100 points. We repeat this oper-
ation 10 times per dimension and report the average and 95% confidence intervals. We compare
against competing models: Marginal Flow, Flow Matching. Normalizing Flow and Free-form Flow.
Marginal Flow and Normalizing Flow naturally provide access to the exact log-likelihood, while
Flow Matching does not require it during training, and Free-form Flow uses an approximation. In
both cases computing the exact density is computationally expensive. In order to make a fair com-
parison, we defined all models to have a similar (and small) number of trainable parameters, around
100k. In particular, for all models (except Normalizing Flows) we employed a simple MLP with
3 layers and 128 neurons each. For Normalizing Flow, which requires bijections, we use 3 cou-
pling layers with splines. Among the many choices of bijective layers, we chose the most efficient
ones in terms of runtime, even though such layers are sometimes unstable during training. We ran
all runtime experiments on the same consumer-grade A100 GPU with 40 GB of memory. Results
show that Marginal Flow is orders of magnitude faster than competing models. In the common
log-likelihood training setting, this is relevant both for training (where one needs to repeatedly eval-
uate the log density) and for inference (in order to generate new samples). Furthermore, results in
Figure 7 suggest that Marginal Flow also has better convergence rates.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 SYNTHETIC EXPERIMENTS

In order to make the comparison among models fair, we made sure to use a comparable amount of
parameters. In particular, in all models except Normalizing Flows we used an MLP with 5 layers
and 256 neurons. For Normalizing Flow, we used 5 layers of invertible Resnet (Behrmann et al.,
2019), which are more expressive (but more computationally expensive) than coupling layers with
splines.

Forward KL divergence training (log-likelihood). In the log-likelihood settings, we trained for
5000 epochs and selected the best model on the validation set. In synthetic datasets we could always
use full-batch training. We trained over different numbers of data points, i.e. {100, 200, 500,
1000}, and set Nc to half of the number of training points in each setting. We did not perform any
hyperparameter tuning on Marginal Flow. We report additional results with log-likelihood training
in Figure 13.

Reverse KL divergence training. In the reverse KL divergence setting we do not have observa-
tions, and we need to sample from the modeled densities. This training setting is only viable for
Marginal Flow and Normalizing Flow. In both cases we drew 10’000 samples per iteration. Fur-
thermore, during training we used simulated annealing (Kirkpatrick et al., 1983) to explore the full
support of the target distribution. In particular, we introduce an artificial temperature Ti for the
target distribution in Eq. 10:

p∗i (x) = p(x)1/Ti , (12)
where Ti is the temperature at the i-th training iteration. The temperature Ti is slowly annealed
during training from the initial T0 = 5 to TN = 1. Note that p∗i (x) = p(x) for Ti = 1, which is
the true target. If the initial temperature is high enough, p∗i will likely be very flat, allowing for a
better exploration of the support of the distribution. In order to account for the slow annealing of
the temperature, we trained for 10’000 iterations. We report a visualization of the density learned
by Marginal Flow and Normalizing Flow for all studied densities in Figure 12. Note that we do not
train the models on the Checkerboard dataset because the true density is constant everywhere and
the gradient is thus zero everywhere.

Swiss Roll Two Moons Mixture of Gaussians Pinwheel

G
ro

un
d

T
ru

th
M

ar
gi

na
l F

lo
w

N
or

m
al

iz
in

g
F

lo
w

Figure 12: Marginal Flow is trained by reverse KL divergence on 4 synthetic datasets. We evaluate
the learned density and compare it with Normalizing Flows.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Marginal Flow Normalizing Flow Free-form Flow Flow MatchingTraining samples

10
0

20
0

50
0

10
00

Marginal Flow Normalizing Flow Free-form Flow Flow MatchingTraining samples

10
0

20
0

50
0

10
00

Marginal Flow Normalizing Flow Free-form Flow Flow MatchingTraining samples

Marginal Flow Normalizing Flow Free-form Flow Flow MatchingTraining samples

10
0

20
0

50
0

10
00

10
0

20
0

50
0

10
00

Two Moons Swiss Roll

Checkerboard Pinwheel

Mixture of Gaussians

Marginal Flow Normalizing Flow Free-form Flow Flow MatchingTraining samples

10
0

20
0

50
0

10
00

Figure 13: Marginal Flow is trained by forward KL divergence (log-likelihood) on 5 synthetic
datasets with increasing number of training points {100, 200, 500, 1000}. We compare Marginal
Flow with Normalizing Flow, Free-form Flow, Flow Matching. Results show that Marginal Flow
learns the correct density with fewer samples compared to competing models

A.4.1 SBI BENCHMARK

In the Simulation-Based Inference benchmark, each setting is provided with three sets of observa-
tions with 1000, 10’000, 100’000 points. For each dataset we train Marginal Flow for 2000, 1000
and 250 epochs, respectively. In all cases we trained a Marginal Flow with an MLP with 4 layers
and 256 neurons each and Nc = 2048. We selected the best model on the validation set and did not
perform any other hyperparameter tuning.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.5

0.6

0.7

0.8

0.9

1.0

C
2

S
T

Number of Simulations
103 104 105

gaussian_linear_uniform

103 104 105

two_moons

103 104 105

gaussian_linear

103 104 105

bernoulli_glm_raw

103 104 105

FFF

FM

NSF
ours

slcp_distractors

103 104 105

gaussian_mixture

103 104 105

slcp

bernoulli_glm

103 104 105

0.5

0.6

0.7

0.8

0.9

1.0

C
2

S
T

Figure 14: Simulation-based inference benchmark: we show average and standard deviation over 10
different test observations. We compare our method against Free-form Flows (FFF), Flow Matching
(FM), and Normalizing Flows (NSF). Benchmark results are taken from Draxler et al. (2024).

A.4.2 WISHART MIXTURE EXPERIMENT

Bijection mapping to p.d. matrices. Marginal Flow and Normalizing Flow employ the same
mapping to positive definite (p.d.) matrices. A vector x is reshaped to a lower triangular matrix
L. Afterwards, the diagonals are transformed to be positive, leading to L+. Finally, if the full
covariance matrix is required, then L+(L+)T is computed. The change in Jacobian determinant of
each step can be computed efficiently (Negri et al., 2023).

Target manifold. We show again the target distribution from Eq. 4 for convenience:

t(x) = W(x; ν,Σ(λ)) s.t. Σ(λ) ∈ M ∀λ ∈ [0, 1] . (13)

The manifold M is a straightforward interpolation between covariance matrices with a random
structure. Given the covariance matrices Σ1,Σ2,Σ3 ∼ W(ν̃, I), the manifold is defined as:

M =
{
Σ(λ) | λ ∈ [0, 1]

}
with Σ(λ) =

λΣ1 + (1− λ)Σ2 + γ(λ)Σ3

1 + γ(λ)
, (14)

where γ(λ) = 4
5 exp

(
−(6λ− 3)2

)
.

For more information on the training setup, we refer the readers to the code.

A.4.3 MANIFOLDS IN IMAGE LATENT SPACES

MNIST We use the standard implementation and data provided by scikit-learn (Pedregosa et al.,
2011) with standard train and validation split. A convolutional residual (He et al., 2016) variational
autoencoder (Rezende et al., 2014; Kingma & Welling, 2014) architecture with batch norm (Ioffe
& Szegedy, 2015) compresses the pixel space into a 20-dimensional latent space. It is trained for
approximately 7000 epochs. The resulting VAE gives – to the human eye – perfect reconstructions;
one might consider 20 dimensions even too many to describe the space that MNIST digits live
in. As a result, it is the Marginal Flow’s task to find conditional lower-dimensional manifolds that
describe the 20-dimensional latent space well. In our experiments, we fit both a 1- (Figure 10) and
a 2-dimensional manifold (Figure 15) with a uniform base distribution pbase = U([−1, 1])d with
d = {1, 2}. The label information is one-hot encoded. We train Marginal Flow with Nc0256 for
300 epochs. The neural network fθ(z) has 3 layers with 256 neurons each.

JAFFE We use 64 × 64 px crops to the face area. We split the data into 80% training and 20%
validation set. The convolutional residual variational autoencoder compresses the images into a 10-
dimensional space. After training for about 9000 epochs, there is no visible reconstruction error.
The values for happiness, sadness, surprise, anger, disgust and fear are continuous float values and
are provided to the Marginal Flow as conditioning parameter c. For a neutral facial expression, we
set all values to the minimum value found in the dataset (around 1.1). For a medium level of an
emotion, we set that value to 3.0 while leaving all other emotions at minimum value. The same goes

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 15: Marginal Flow trained with 2-dim base distribution on 20-dim MNIST latent space. We
show the learned 2-dim manifold conditioned on the class label.

neutral

more
sadness

more
anger

learned 1-dimensional manifold

neutral

more
disgust

more
fear

Figure 16: The JAFFE dataset provides images and labels for the emotions happiness, and surprise
(see main text), and further sadness, anger, disgust, and fear. Here, we show results images for
generating images with conditioning for the latter four emotions.

for a high level of that emotion with the value being 4.8, the maximum found in the dataset. We
train the Marginal Flow with Nc = 128 for 300 epochs. The neural network fθ(z) has 3 layers with
256 neurons each.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.5 VARIANCE AND BIAS OF KL-ESTIMATOR

We consider the marginal in Eq. 1 with the parametrization proposed for our model in Eq. 2, which
we rewrite with an explicit dependency on z:

qθ(x) = Ez∼pbase

[
q(x | fθ(z))

]
=

∫
q(x | fθ(z)) pbase(z) dz, (15)

with z ∈ Rm, x ∈ Rd and m < d. We assume the data to be generated from a lower-dimensional
manifold (of intrinsic dimension m). For illustrative purposes, we consider the reverse KL diver-
gence:

L(θ) = KL(qθ ∥ p) = Ex∼qθ

[
logEz∼pbase

[
q(x | fθ(z))

]
− log p(x)

]
. (16)

In practice, we approximate both the expectation over x and the inner expectation defining qθ(x) via
Monte Carlo. Given i.i.d. outer samples x1, . . . ,xN ∼ qθ and i.i.d. inner samples z1, . . . ,zNc

∼
pbase, we form the nested Monte Carlo approximation:

L̂N,Nc
(θ) :=

1

N

N∑
j=1

log
q̂θ,Nc(xj)

p(xj)
with q̂θ,Nc

(x) :=
1

Nc

Nc∑
i=1

q
(
x | fθ(zi)

)
. (17)

Theorem A.1 (Hong & Juneja (2009) Adapted). Consider a generic nested expectation I =
Ex

[
h(µ(x))

]
with µ(x) = Ez

[
y(x, z) | x

]
, and the nested Monte Carlo estimator

ÎN,Nc
=

1

N

N∑
j=1

h
(
µ̂Nc

(xj)
)
, µ̂Nc

(xj) =
1

Nc

Nc∑
i=1

y(xj , zi),

where xj are i.i.d. outer samples and zi are i.i.d. inner samples. If h(·) is three times differentiable
and the inner estimator is sufficiently regular, then:

Bias(ÎN,Nc
) =

1

2Nc
Ex [h′′ (µ(x))Varz(y(x, z) | x)] +O

(
1

N2
c

)
, (18)

Var(ÎN,Nc) =
Varx (h(µ(x)))

N
+

1

NNc
Ex

[
(h′ (µ(x)))2Varz(y(x, z) | x)

]
+O

(
1

NN2
c

)
.

(19)

Lemma A.2. The Monte Carlo estimate of the KL divergence L̂N,Nc
(θ) is characterized by:

Bias(L̂N,Nc
) = − 1

2Nc
Ex∼qθ

[
Varz

(
q(x|fθ(z))

)
q2θ(x)

]
+O

(
1

N2
c

)
, (20)

Var(L̂N,Nc
) =

Vdata

N
+

1

NNc
Ex∼qθ

[
Varz

(
q(x|fθ(z))

)
q2θ(x)

]
+O

(
1

NN2
c

)
, (21)

where Vdata = Varx∼qθ

(
log qθ(x)− log p(x)

)
.

Proof. We apply Theorem A.1 with h(t) = log(t). The derivatives are h′(t) = 1/t and h′′(t) =
−1/t2. Crucially, we observe that (h′(t))2 = 1/t2 and |h′′(t)| = 1/t2. Therefore, the coefficient
for the bias term and the coefficient for the secondary variance term are identical in magnitude:

1
µ(x)2Var(y|x). Substituting µ(x) = qθ(x) yields the result.

A.6 SCALING WITH DIMENSIONALITY

We investigate the behavior of the bias and variance of the nested Monte Carlo estimator L̂N,Nc
as

a function of the ambient data dimension d and the intrinsic manifold dimension m, where m ≪ d.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Theorem A.3 (Dimensionality Dependence). Under Assumptions 1, 2, and 3, the bias and the
variance inflation due to the nested estimator depend exclusively on the intrinsic dimension m and
are independent of the ambient dimension d. While the intrinsic data variance Vdata scales linearly
with d, the Monte Carlo penalty term does not. Specifically, assuming for tractability that the latent
posterior is centered at the prior mean (z∗ = 0), we have:

Bias(L̂N,Nc) = − γ

2Nc
+O

(
1

N2
c

)
, (22)

Var(L̂N,Nc
) =

Vdata

N
+

γ

NNc
+O

(
1

NN2
c

)
, (23)

where γ =
(

(1+σ−2)2

1+2σ−2

)m/2

− 1 is a constant depending only on m and σ.

Proof. We analyze the Squared Coefficient of Variation, defined as CV2 = Ez[L(z)2]
(Ez[L(z)])2 − 1, where

L(z) = q(x | fθ(z)) is the conditional likelihood. Using Assumptions 2 and 3, and the property
J⊤J = Im, the likelihood factorizes into a component orthogonal to the manifold and a component
parallel to it:

L(z) =
e−∥x⊥∥2/2σ2

(2πσ2)d/2︸ ︷︷ ︸
Corth(x⊥,d)

· e−∥z−z∗∥2/2σ2︸ ︷︷ ︸
Kpar(z,z∗)

. (24)

The term Corth encapsulates all dependencies on the ambient dimension d (via the normalization
constant) and the reconstruction error ∥x⊥∥. Since Corth is constant with respect to z, it cancels out
in the ratio of expectations:

Ez[L(z)
2]

(Ez[L(z)])2
=

C2
orthEz[Kpar(z, z

∗)2]

C2
orth(Ez[Kpar(z, z∗)])2

=
Ez[Kpar(z, z

∗)2]

(Ez[Kpar(z, z∗)])2
. (25)

This ratio now depends solely on m-dimensional quantities. For the explicit calculation of γ, we
consider the case where the optimal code lies at the prior mean, z∗ = 0. We compute the expecta-
tions against the prior p(z) = N (0, Im):

Ez[Kpar] ∝
∫

e−
1
2∥z∥

2

e−
1

2σ2 ∥z∥2

dz =

∫
e−

1
2 (1+σ−2)∥z∥2

dz ∝ (1 + σ−2)−m/2, (26)

Ez[K
2
par] ∝

∫
e−

1
2∥z∥

2
(
e−

1
2σ2 ∥z∥2

)2

dz =

∫
e−

1
2 (1+2σ−2)∥z∥2

dz ∝ (1 + 2σ−2)−m/2. (27)

Substituting the normalization constants (1 + σ−2)m/2 and (1 + 2σ−2)m/2 appropriately into the
ratio yields γ = (1+σ−2)m

(1+2σ−2)m/2 − 1. Remark on z∗ ̸= 0: If the code is not centered (z∗ ̸= 0), the
convolution of the Gaussian prior and likelihood induces a shift term depending on ∥z∗∥. However,
this term remains strictly a function of the intrinsic geometry (z ∈ Rm) and does not re-introduce
any dependence on the ambient dimension d. Thus, the independence from d holds generally.

A.7 EMPIRICAL VALIDATION

We perform a simulation to verify the results for a target distribution on a manifold. For this, the
true analytical reverse KL is required. As such, we use a simple target multivariate distribution.
Consider two independent random variables:

X = X1 +X2, X1 ∼ N (0, σ2
1Id), X2 = µ+Az, z ∼ N (0, σ2

2Im), (28)

While X1 is a simple isotropic Gaussian, X2 is a linear mapping of another Gaussian with dimension
m < d, using A ∈ Rd×m and the mean µ ∈ Rd. With these two independent variables, we can
conclude

E[X] = µ, Var[X] = σ2
1Id + σ2

2AAT . (29)
Alternatively, this means X ∼ N (µ,C) where C = σ2

1Id + σ2
2AAT . As such, we can express the

distribution of X directly as a multivariate normal or an integral over a subspace described by µ and
A:

N (µ,C) =

∫
N (x;µ+Az, σ2

1Id)N (z; 0, σ2
2Ir)dz =

∫
q(x | w)q(w)dw. (30)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The variance of the KL-estimator

The bias of the KL-estimator

 = 1000 = 200 = 10

Figure 17: The variance and bias of the Monte Carlo estimator L̂N,Nc
of the reverse KL divergence

for a target distribution with a manifold structure. For each value, 500 simulations are performed.

Intuitively, this formulation allows us to circumvent the training procedure by knowing the true
manifold q(w). Avoiding any training error results in L = 0. With this, we can verify our theoretical
results for the bias and variance of L̂. The integral over the subspace is used as q(w), and the
multivariate normal corresponds to the target p. To showcase the manifold hypothesis, we use the
extreme case r = 1, leading to a rank-1 update to the covariance of the isotropic X1. Figure 17
shows the variance and bias for various dimensions d. The variance and bias behave as predicted in
Equation 23 and even show no dependence on d.

21

	Introduction
	Marginal Flow
	Model definition
	Efficient evaluation and sampling
	Flexibility of Marginal Flow

	Related work
	Experiments
	Synthetic datasets
	Simulation-based inference
	Wishart mixture distribution
	Manifolds in image latent-spaces

	Conclusions
	Appendix
	Implementation details
	Objective functions
	Experimental details
	Runtime comparison

	Synthetic experiments
	SBI benchmark
	Wishart mixture experiment
	Manifolds in image latent spaces

	Variance and bias of KL-estimator
	Scaling with dimensionality
	Empirical validation

