Under review as a conference paper at ICLR 2026

MARGINAL FLOW: A FLEXIBLE AND EFFICIENT
FRAMEWORK FOR DENSITY ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Current density modeling approaches suffer from at least one of the following
shortcomings: expensive training, slow inference, approximate likelihood, mode
collapse or architectural constraints like bijective mappings. We propose a simple
yet powerful framework that overcomes these limitations altogether. We define
our model gy () through a parametric distribution ¢(z|w) with latent parameters
w. Instead of directly optimizing the latent variables w, our idea is to marginalize
them out by sampling them from a learnable distribution gs(w), hence the name
Marginal Flow. In order to evaluate the learned density gg(x) or to sample from it,
we only need to draw samples from gy (w), which makes both operations efficient.
The proposed model allows for exact density evaluation and is orders of magni-
tude faster than competing models both at training and inference. Furthermore,
Marginal Flow is a flexible framework: it does not impose any restrictions on the
neural network architecture, it enables learning distributions on lower-dimensional
manifolds (either known or to be learned), it can be trained efficiently with any
objective (e.g. forward and reverse KL divergence), and it easily handles multi-
modal targets. We evaluate Marginal Flow extensively on various tasks including
synthetic datasets, simulation-based inference, distributions on positive definite
matrices and manifold learning in latent spaces of images.

1 INTRODUCTION

Density estimation models are ubiquitous in machine learning and have been used for a wide range
of purposes. Their overarching characteristic is to provide an approximation to some probability
distribution. The most popular use case is probabilistic modeling of data with the goal of generat-
ing new instances. The underlying assumption is that there exists an unknown generative process
that generated the data in the first place. Successful applications include generation of images,
e.g.[Rombach et al.|(2022), text-to-audio, e.g. Liu et al.| (2023), and text-to-video, e.g.[Singer et al.
(2023). Other popular applications of deep generative models include protein structure prediction,
e.g.|Abramson et al.[(2024])), and drug discovery, e.g.|/Zeng et al.| (2022).

Rather than focusing on generating new samples, another interesting use case of density estimation
models lies in modeling and reasoning about the probability distribution itself, which has relevant
applications in the sciences. Common settings include computation of high-dimensional integrals
and intractable likelihoods or posteriors. This is maybe best exemplified by Bayesian inference,
e.g. Rezende & Mohamed| (2015). Applications include cosmology, e.g. |Alsing et al.| (2018)), neu-
rosciences, e.g.|Goncalves et al.|(2020), simulation-based inference, e.g.|Cranmer et al.|(2020), and
many more. Learning probability distributions on manifolds is also a challenging problem that can
be addressed with density estimation models, e.g.|Gemici et al.[(2016);|Chen & Lipman|(2024).

The two fundamental operations that characterize a density estimation model are sampling from
the learned distribution and evaluating its probability density. Most models show a trade-off in
efficiency between the two operations, which have their own specific challenges. On the one hand,
evaluating the probability density often requires restricting the learned transformations to bijections
that are carefully designed to avoid computing expensive Jacobian determinants, as in the case of
Normalizing Flows (NF) (Kobyzev et al.,[2020). Alternatively, the true density can be bounded like
in VAEs (Kingma & Welling, 2014} Rezende et al., [2014) and afterwards estimated (Burda et al.,
2013)), which is still very expensive. Therefore, most generative models rely on surrogate objectives

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Marginal Flow with other deep generative models: GANs, VAEs, Energy-
Based models (EB), Flow Matching (FM), Normalizing Flow (NF), and Free-form Flows (FFF).
The Table is inspired by [Bond-Taylor et al.|(2021]).

Feature GANs VAEs EB FM NF FFF Ours
Efficient exact likelihood X X X X X

Efficient (single-step) sampling X X

Efficient training X V)) X)
Free-form Jacobian X X

Lower dim. base distr. (manifold) X X X

that do not require the evaluation of the probability densities, while still allowing for high-fidelity
sample generation. This is the case for Energy-Based (EB) models (Swersky et al.l[2011), Diffusion
models (Sohl-Dickstein et al.,|2015)) and Flow Matching (FM) (Lipman et al.,|2023). On the other
hand, sampling often requires multi-step processes that transform samples from a simple distribution
into samples from the learned distribution, e.g. Flow Matching and Diffusion models. The trade-
off between efficient log-likelihood evaluation and efficient sampling is clear in NF, which can be
efficient only at either sampling or evaluating the density. Which of the two operations is more
efficient also determines which objective function can be used for training.

In many applications it is beneficial to learn a density on a lower-dimensional space. For instance,
real data is often assumed to live on a lower-dimensional manifold (Fefferman et al., 2016). Most
models, like Diffusion, FM and NF, cannot account for a change in the dimensionality while others
like GANs (Goodfellow et al.| [2014) or Free-form Flows (Draxler et al., [2024)) can, but suffer from
other disadvantages like approximate likelihood and unstable training.

Contribution. We propose a novel density estimation framework that alleviates altogether the
common shortcomings of current approaches. We define our model through a parametric distri-
bution g(x|w) with latent parameters w. Instead of directly optimizing the latent variables w,
we marginalize them out by sampling w from a learnable distribution gp(w). As we do not need
to evaluate gg(w) at any point, but only to sample from it, we are free to generate samples in a
very flexible and efficient way. To generate w, we feed-forward samples from a base distribution
of choice through an unconstrained learnable neural network. Overall, the proposed approach al-
lows for efficient exact density evaluation and efficient sampling. Furthermore, it does not pose any
restrictions (e.g. bijectivity) on the neural network and allows for learning a lower-dimensional man-
ifold alongside the density. In Table[I] we provide a high-level comparison between popular density
estimation models and Marginal Flow. Overall, our contributions can be summarized as follows:

* We introduce a novel density estimation framework called Marginal Flow.

* We demonstrate the flexibility of the framework: it allows for learning lower-dimensional
manifolds, it can easily handle multi-modal distributions, and can be tailored to the data
with the choice of the parametric distribution g(x|w).

* We show empirically that Marginal Flow is orders of magnitude faster than competing
models both at training and inference.

* Lastly, we showcase Marginal Flow on extensive experiments with synthetic data (trained
via log-likelihood and reverse KL divergence), simulation-based inference, distributions
over positive-definite matrices, and finally on MNIST digits and the JAFFE faces dataset.

2 MARGINAL FLOW

2.1 MODEL DEFINITION

Marginalization Let ¢(x|w) with x € R be a family of distributions parametrized by w € RP
and assume that, for given w, it is easy to evaluate the density of ¢(x|w) to sample from it. We can
compute ¢(x) by marginalizing out w over some g(w):

g(e) = / ¢(]w)q(w)dw = Enpgu) [a(lw)] - (1)

Under review as a conference paper at ICLR 2026

In our model, we let g(x|w) be a distribution of choice parametrized by w and we let g(w) be
freely learnable: g(w) — ¢o(w). The resulting marginal g(«) is universal for many families of
distributions ¢(x|w), e.g. if g(x|w) is a kernel (Micchelli et al., [2006). We will often assume
q(zlw) = N(z|p = w, X = diag(oy,...,04)), for which p = d, and learnable variances (along-
side #). However, we show that other choices of ¢(x|w) can be beneficial, depending on the setting.

Definition. We define our model as the Monte Carlo approximation of the integral in Eq.

1 X
qo(x) = N Zq(m|w9¢) where wy,; ~ go(w) . 2)

The density ggp(x) can be exactly evaluated and efficiently sampled from. N, is the number of
parameters drawn from gp(w) and is not required to be fixed. In fact, the parameters wy ; are not
fixed themselves but rather resampled from gg(w) at each iteration, which effectively renders the
marginalization in Eq.[I] As we will argue in the next paragraph, there is a crucial difference with
respect to directly optimizing a finite set of mixtures {'wz}i\[:c1 Another important aspect is that we
do not need to evaluate go(w) but only to sample from it. Therefore, we can construct samples in
a very flexible way and in a single step: we first sample from a distribution of choice ppase(z) with
z € R™ and then transform them via a learnable mapping to the space of latent parameters w € RP.
Relevantly, to do so we can use an unconstrained learnable function fy : z € R™ — w € RP:

wy ;= fo(zi) with 2, ~ ppase(2) - 3)
The resulting samples wyg ; := fo(2;) will be samples from some (learnable) distribution go (w). The
neural network fy(w) is thus the trainable part of the model. In our experiments, a small MLP with
3-5 layers and 256 neurons was enough. Unlike most density estimation models, Marginal Flow is
efficient both at sampling and at evaluating the probability density, as we will see in Section
Furthermore, in contrast to competing models, we can learn a density with support on a lower-
dimensional manifold by simply choosing a base distribution with support in R™ with m < d.

Motivation for marginalization. In order to understand the importance of the marginalization
aspect, consider the case where we have a finite number of w, and, instead of integrating them
out, we optimize them. Without marginalization, the model reduces to a simple mixture model
optimized over a fixed set of mixture components {w; } iV:Cl, e.g. a Gaussian Mixture Model (GMM)
if g(x|lw) = N(z|p = w, X = ol). In this case, learning a target distribution amounts to placing
the N. Gaussians in an optimal way. The expressiveness and scalability of the model are then
fundamentally limited by the number of mixtures N,. Instead of optimizing over fixed {w;} Y, our
approach relies on the marginalization of w, sampled from gy (w). We optimize the parameters 6 of
the neural network fy(2), and we resample w ~ gg(w) at each iteration. The resampling induces an
approximation to the marginal distribution in Eq.|l| rather than just a finite mixture. As illustrated in
Figure[T] even with the same nominal number of mixtures (e.g. 10), only the marginalized model is
able to learn a smooth density. As such, the modeling capacity is not directly linked to /N, anymore.
The marginalization prevents the collapse to a GMM and spreads ¢ (w) to cover the entire target.

1 & Optimization Marginalization

(l? €T 'UJ
; el learn {w;}{%, resample w from learnable gp(w
. . ’ . i

Ground Truth Marginal Flow

Figure 1: Motivation for marginalization: learned distribution and samples when optimizing directly
the parameters w,; compared to resampling them from a learnable gy (w), as in Marginal Flow.

2.2 EFFICIENT EVALUATION AND SAMPLING

Sampling the parameters w; Figure 2| (leff). In order to evaluate the modeled density gg(x)
or to sample from it, we first need to sample w;, which parametrize ¢(x|w;). This is done ef-

Under review as a conference paper at ICLR 2026

Sampling w; for g(z|w;) Evaluate gy(z) Sample from gy(z)

sampling with
repl acement

q(z|wr) 2 | 9(lwr)

j| a(elwn)

q(+ [wr,)

Tk

@ Q@

, d .
Zi ™~ pbase(z) z€R™ z€R = a(- o)

1 &

O random node <> deterministic node a(z) = N, ; q(efws) ey ™ N {0 NG
Figure 2: Marginal flow model diagram. Evaluating the modeled density gg(x) (center) and sam-
pling from gy () (right) requires to first sample the parameters w; (left).

ficiently by feed-forwarding samples {z;}*, from a base distribution of choice: w; = fo(z;)
with 2; ~ prase(2). With the sampled {w;}**,, our model in Eq. [2| resembles a mixture model

with N. components. Note, however, that the {w;}, are not fixed but sampled again for each
evaluation or sampling of go(x). The neural network fy is unconstrained. Evaluation: Figure
(center). In order to evaluate the density go(x) at a given point x, we use the definition in Eq.
Given the sampled parameters {w; }*;, we only need to evaluate each g(x|w;) on x, which is
chosen to have a simple closed-form density function. Note that, in contrast to other density esti-
mation models, the evaluation of the density does not require inverting fy(z;), computing det J,
or solving an ODE. Sampling from ¢y (x): Figure [2{ (right). Sampling as in Eq. [2| is also effi-
cient, just like sampling from a mixture model. Given the sampled parameters {wq}f\];l we first
need to sample a component w; and then sample from the associated distribution g(x|w;), with
je{l,...,N.}. Todraw N samples, we sample N indices with replacement from {1,..., N.}.

. Sampling Evaluation
Empirical runtime. We now empirically mea- W 7] T S—
sure runtime for sampling and evaluating the ex- = ¢ |] xoomeror - x
act density and compare against competing mod- 10t | == et ,.w"' P
els. Note that only Marginal Flow and Normaliz- ﬁ/ g 8 ,I'
ing Flow (NF) provide exact density by construc- £ o ek e
tion. As shown in Figure (3] Marginal flow is or- é S

ders of magnitude faster than competing methods *
in terms of both sampling and density evaluation, s R
where FM is Flow Matching and FFF is Free-form —
Flows. Sampling is as efficient as in FFF, since both or 10 d 100 100 10t a0 d ot 108
only require drawing from a base distribution and

passing the samples through a neural network. For Figure 3: Runtime for sampling (/eft) and ex-
further details, see the Appendix in Section act density evaluation (right) of 100 points.

._.
2
5

2.3 FLEXIBILITY OF MARGINAL FLOW

Lower-dimensional latent distribution. Most density estimation models, like Flow Matching
and Normalizing Flows, learn mappings that preserve the dimensionality and cannot learn densities
on lower-dimensional manifolds. Some work tries to overcome this issue either by resorting on
approximations (Brehmer & Cranmer}|2020) or by restricting the transformations (Khorashadizadeh
et al.,|2023;|Negri et al.,|2025)). In contrast, with our model in Eq.|2} we have the freedom of choosing
the dimensionality of the base distribution, i.e. ppase(2) with support in R™ with m < d. Also in
this case we can evaluate gy () exactly and learn the manifold alongside the density. In FigureE]we
showcase Marginal Flow and competing models on a density defined on a (unknown) 1D manifold.

Under review as a conference paper at ICLR 2026

Training samples Marginal Flow Free-form Flow Normalizing Flow Flow Matching

learnt manifold

Learnable manifold (1D) No manifold available

Figure 4: Toy example of density defined on (unknown) 1D manifold. (Left) Training data consists
of 1500 points. (center) Marginal Flow perfectly learns the density and discovers the correct mani-
fold. Free-form Flow learns an incorrect manifold and is not able to embed the density in 2D space.
(right) Flow Matching and Normalizing Flow learn the density but cannot account for a manifold.

Conditional distribution. As wo do not have any requirements on the neural network fy(z),
Marginal Flow can be readily extended to model conditional distributions. The conditioning vari-
ables could be appended to the input fp(z) — fo(z;c) or one could use a hypernetwork that takes
c as input and returns the neural network parameters fy(z) — fy(e)(2). Furthermore, the base
distribution can also be conditioned on ¢: ppase(2) — Poase(Z; €)-

Multi-modal targets. Marginal Flow can naturally account for multi-modal targets thanks to the
unconstrained neural network fy(z). Most generative models, like Normalizing Flows and Flow
Matching, learn (directly or indirectly) a bijection between a base distribution and the target distri-
bution. However, bijections struggle to learn new modalities and have limited expressiveness (Liao|
2021). Even with a multi-model base distribution, bijections will still struggle to match the
modalities in the target with those of the base distribution. Furthermore, many density estimation
models suffer from mode collapse during training (He et al.| 2019; Kossale et al | [2022). In Figure 3]
we showcase how easily Marginal Flow can learn multi-modal targets compared to other models.

Ground truth Training samples Marginal Flow Flow Matching Normalizing Flow Free-form Flow

‘ 1:'.';-. ¥

% - -
* K. ¥ »s 2 f

S Gl g g LR ¥

@

Figure 5: Toy example of multi-modal density learned by log-likelihood on 150 data points. For
a fair comparison, all models use a uniform base distribution. Note that Marginal Flow is not a
mixture model (for which this task would be trivial) since w; are always resampled (see Figure E[)

Training objectives. Density estimation models are usually trained through an objective that re-
quires sampling, evaluating the (exact) density or both. However, current approaches are efficient
only at either one or the other. For instance, models trained on data via forward KL divergence (i.e.
log-likelihood) require efficient density evaluation while models trained on unnormalized targets via
reverse KL divergence require efficient sampling. However, one could wish to use both objectives to
combine information from observations and unnormalized targets or to mitigate the mean-seeking
(mode-seeking) behavior of the forward (reverse) KL divergence. Since Marginal Flow is efficient
both at sampling and evaluation, it can be trained efficiently with most objectives; see Appendix[A2}

Extension to other mixtures. The proposed model in Eq.[2|leaves complete freedom in the choice
of g(x|w), as long as it can be parametrized by some w. In most experiments we employ a Gaus-
sian with learnable variances, i.e. ¢(x|w) = N (z|p = w, ¥ = diag(oy,...,04)). However, other
choices are possible depending on the application. For instance, when modeling distributions on the
probabilistic simplex, we can use the Dirichlet distribution. We can model distributions on symmet-

Under review as a conference paper at ICLR 2026

ric positive-definite matrices by choosing ¢(|w) to be a Wishart, which we showcase in Section4.3]
Relevantly, the choice of g(a|w) does not affect the structure of the proposed framework.

3 RELATED WORK

One of the earliest attempts to use deep learning for generative modeling are Energy-based (EB)
models (Swersky et al.l [2011). Instead of modeling a normalized density, EB models learn the
negative log-probability. Despite their flexibility, computing the exact density and sampling from the
model is generally expensive (Song & Kingmal 2021). Closely related are diffusion models (Sohl-
Dickstein et al., |2015)), which learn how to reverse a fixed noising process by estimating at each step
the gradient of the log-density. Diffusion models can produce high-quality samples (Rombach et al.,
2022; Liu et al., 2023)), but still require multi-step sampling and do not provide the exact density.

Another approach is to model the observed density with unobserved latent variables. VAEs (Kingma
& Welling} [2014; |[Rezende et al.| |2014) encode data into a latent space and are trained via a lower
bound on the log-likelihood. In contrast to EB models, VAEs can be sampled in a single step.
However, VAEs have limited expressiveness and suffer from posterior collapse (He et al., 2019).
Another latent variable model — GANs (Goodfellow et al.,[2014)) — consists of a generator that creates
samples from a latent distribution and a discriminator trained to distinguish generated samples from
real ones. GANs can generate high-fidelity images (Karras et al., 2019) but are unstable and suffer
from mode collapse (Kossale et al.|[2022). Neither GANs nor VAEs provide the exact likelihood.

Normalizing Flows (NFs) (Papamakarios et al.,|2021)) provide a principled way to compute the exact
density. NFs transform a base distribution through bijections and account for the probability change
via the Jacobian determinant, which is expensive to compute. Thanks to their exact density, NF have
been applied for posterior approximations (Rezende & Mohamed, 2015). Additional limitations
of NFs arise from the limited expressivity of bijective layers (Liao & Hel [2021). Efficiency could
be obtained using approximate bijections and by approximating the Jacobian determinant (Draxler
et al., 2024), which however precludes sound statistical understanding and evaluation of the exact
log-likelihood. Lipman et al.| (2023)) proposed to learn instead a velocity field that transforms the
base distribution into the target. While this approach scales to high-dimensions, it cannot handle
lower-dimensional base distributions and still requires expensive ODE solvers to compute the exact
density. For a comprehensive review on generative models we refer to Bond-Taylor et al.|(2021)).

4 EXPERIMENTS

First, we show on synthetic data that Marginal Flow can learn complex distributions both via log-
likelihood and reverse KL divergence training. We also show that it converges more quickly than
competing models. Second, we showcase how Marginal Flow can learn complex conditional dis-
tributions and achieve state-of-the-art results for simulation-based inference. Third, we show that
Marginal Flow can be easily adapted to learn distributions on positive-definite matrices by simply
changing the parametric form of g(x|w). Lastly, we showcase applications in computer vision as
well: we learn densities on lower-dimensional manifolds on MNIST and on the JAFFE face dataset.

4.1 SYNTHETIC DATASETS

Log-likelihood training. As illustrative examples, we picked 4 common synthetic datasets (Two
moons, Pinwheel, Swiss Roll and Checkerboard) and 1 additional multi-modal distribution (Mix-
ture of Gaussians). We train Marginal Flow by maximizing the log-likelihood, which is reported
explicitly in the Appendix [] In Figure [6] we showcase that Marginal Flow can perfectly learn all
densities without needing any fine-tuning. Next, we study the ability of Marginal Flow to learn den-
sities when a limited number of observations is available. In particular, we compare against Flow
Matching, Normalizing Flow and Free-form Flows with an increasing number of training points
{100, 200, 500, 1000}. For a fair comparison we used a comparable amount of parameters in each
model. In the Appendix in Figure|13| we show the learned densities, which are particularly accurate
for Marginal Flow, already in few-sample regimes. In Figure[/| we showcase the test log-likelihood
during training for all models and datasets when train on 1000 points. Marginal Flow converges
orders of magnitude quicker than competing models.

Under review as a conference paper at ICLR 2026

GT Marginal Flow GT Marginal Flow GT Marginal Flow GT Marginal Flow
* P j ({ b &
.o P Ay g NI S :
Mixture of Gaussians Swiss Roll Pinwheel Checkerboard

Figure 6: Marginal Flow trained via log-likelihood on 2D synthetic datasets. We show 10’000
samples from the true distribution and from Marginal Flow.

Mixture of Gaussians Two Moons Checkerboard Pinwheel Swiss Roll

m—Ours
s NF
— FM
— FFF

~

test log-likelihood

o

100100102 10° 10° 10t 102 10° 100100107 10° 10° 100102 10° 100100102 10°
runtime (s)

Figure 7: Test log-likelihood of Marginal Flow and other models during training with 1000 points.

Reverse KL divergence training We additionally show that Marginal Flow can be trained in the
reverse KL direction as well, namely without observations and only guided by the (unnormalized)
density of the target distribution. This type of training requires an efficient computation of the exact
log-likelihood, which is possible only for Normalizing Flow. Some attempts to make Flow Matching
work in this direction have been made but remain limited (Tong et all, 2024). We tried with a
score-matching objective but it led to unstable training. We trained Marginal Flow and Normalizing
Flow with a reverse KL objective and compared the learned densities in terms of test KL. Marginal
Flow achieved superior or comparable performance with Normalizing Flow, see Figure §] (left), and
showed better density reconstruction quality, see Figure [§] (righr). Note that we do not use the
Checkerboard dataset because its density is constant and has gradients equal to zero everywhere.

Ground Truth Marginal Flow Normalizing Flow

BN Marginal Flow
= Normalizing Flow

08

06

Reverse KL
Density

00

MoG Two moons Pinwheel Swiss roll

Figure 8: Marginal Flow vs Normalizing Flows trained by reverse KL divergence on synthetic distri-
butions. During training only the probability density is queried (no observations). (left) Test reverse
KL with 95% confidence intervals error bars. (right) comparison of learned density distributions.

4.2 SIMULATION-BASED INFERENCE

As argued in Section [2.3] with the proposed framework we can easily learn conditional distributions
as well. We showcase Marginal Flow on complex conditional distributions by training it on the
Simulation-Based Inference (SBI) benchmark (Cueckmann et al., 202T). SBI data consists of tuples
{®x;,0;};, where 0; are parameters sampled from a prior p(#) and x; are samples from a simulator
p(x|0;) parameterized by 6;. Given tuples of observations {x;, 0; }, the goal is to learn the posterior
p(f|x;) of a new x;. Evaluation is performed in terms of Classifier 2-Sample Tests (C2ST) on a
held-out test set. Due to space constraints we report results in the Appendix in Figure[T4] Marginal
Flow achieves state-of-the-art results and proves to be particularly effective in low data regimes.

Under review as a conference paper at ICLR 2026

4.3 WISHART MIXTURE DISTRIBUTION

One interesting aspect of Marginal Flow is that the parametric family ¢(x|w) in Eq.|2| can be ad-
justed depending on the application and on the noise assumption. Consider the case of learning a
Wishart mixture distributions (Haff et al.l [2011; |(Cappozzo & Casal [2025): observations consist of
sample covariances, which lie on the cone of positive-definite (p.d.) matrices. One design choice
would be to use a Gaussian assumption in ¢(x|w) and then transform the samples into positive
definite matrices through bijective layers as in |Negri et al.| (2023). Alternatively, one could directly
choose g(x|w) to be Wishart distributions. We showcase this second option, and, in particular, we
parametrize the scale matrices of Wishart via w;, in addition to a parametrized global v. We consider
a target distribution ¢(x) where the generating parameters live on a 1D manifold:

t(x) = W(z;v, £(N) st B(A)eM VYAe[0,1]. 4)

We showcase training using both the reverse and forward KL divergence (log-likelihood). Our goal
is to approximate ¢(a) while reconstructing the manifold M. We showcase two settings. (i) A low-
dimensional setting with 10 x 10 matrices using the reverse KL and we compare to Normalizing
Flows (NFs) parameterizing the Cholesky factor. (ii) A high-dimensional setting with 100 x 100
matrices using the forward KL, which was computationally prohibitive for NFs. In Figure [0 we
show test KL divergence in the low-dim setting and plot the manifold reconstruction using a PCA
projection to 2D. Marginal Flow perfectly recovers the manifold in both training directions and
approximates t(x) better than NFs. For more details on the target manifold M see Appendix

Wishart mixtures (10x10) High-dim. Wishart mixtures (100x100)

Marginal Flow Marginal Flow

—— Target manifold 10 / —— Target manifold
« Normalizing Flow

° \ ¥
- =20 -10 0 10 20
Marginal Flow ~ Norm. Flow 4 o pCi 4 8 P

Figure 9: (left) 10 x 10 Wishart mixture on manifold trained via reverse KL. Test KL divergences
in the bar plot show accurate fit with Marginal Flow and underfitting with Normalizing Flows (NF).
Unlike NF, we can also learn the manifold. (right) Reconstructed manifold for 100 x 100 Wishart
mixtures trained via forward KL (log-likelihood). NF cannot be trained in such high-dim setting.

4.4 MANIFOLDS IN IMAGE LATENT-SPACES

Most modern image generative models rely on non-trivial latent spaces, e.g. Rombach et al.|(2022),
which can still be relatively high-dimensional and show non-Euclidean behavior (Shao et al.|[2018).
It would then be relevant to traverse such latent spaces on a lower-dimensional manifold. Marginal
Flow is well-suited for this task since it allows for learning a lower-dimensional manifold along-
side the density. We showcase this on MNIST digits (LeCun et al., |1998)) and the JAFFE face
dataset (Lyons et al.l |1998). The JAFFE dataset contains 214 face images of ten Japanese women
mimicking certain emotions. Each image is associated with a score quantifying the emotions, e.g.
“happiness” or “surprise”. Note that learning a manifold with such little data is very challenging.

In both settings, we first train a VAE without conditional information to encode images into a latent
space (20- and 10-dimensional, respectively). Then, we train a single Marginal Flow in the latent
space to learn a low-dimensional manifold conditioned on the digit label (or emotion score). The
exact loss function is reported in the Appendix in Eq.[§] In particular, we use a 1-dim uniform
base distribution ppase = U([—1,1]). We learn conditional manifolds via the network fy(z;c),
with z € [—1,1] and c the class label (or scores). In Figure we explore the 1-dim manifold
conditioned on each label of MNIST. Results show similarities across digits in the learned manifold:
some sections look approximately bold, bold italic and normal font, with smooth transitions in
between them. For JAFFE, the manifold smoothly interpolates the different faces (horizontally) at
fixed emotion levels, as shown in Figure@ We observe disentanglement of faces and emotions, as
faces tend to align within columns. Some inconsistencies are probably the result of the extremely
low-data regime. For further visualizations, see the Appendix, Figure|15|and

Under review as a conference paper at ICLR 2026

' Bold { Bold italic i Nommal
000000000000000000000000:0000000000000006
113 T I LA AN NN 11 /i/ /777777777 7 T 1l I
2222222222222222332222RRKAA3333ad222222212
33
44444 dddHHHHNHHAS Y9444 444499994 444444
S56656665655656666655555555555556555565568 5555
CLCbb6GLlbbbbbbbbbb66666CCC6606666b0Lb0LLLEGG
3377777771111 11177777777777717117727777777
99988882 E88BBB B8 8888888995533 9959888P,F¢E
99999999:9999921499999999799999999999.9994q

Figure 10: Each row shows the 1-dim manifold conditioned on the label learned by Marginal Flow
on MNIST (in a 20-dim VAE latent space). We observe disentanglement of digits and writing style.

more
happiness

neutral

more
surprise

44— learned 1-dimensional manifold ——

Figure 11: By traversing the conditional manifold, Marginal Flow smoothly interpolates between
faces and levels of emotions on the JAFFE dataset. While the conditioning value is kept fixed in
each row, columns correspond to the same point on the learned manifold in the latent space.

5 CONCLUSIONS

In this work we introduced a flexible and efficient density estimation framework called Marginal
Flow. We showed empirically that Marginal Flow is orders of magnitude faster than competing
methods in terms of runtime, both at sampling and exact density evaluation. Unlike most density
estimation models, Marginal Flow provides exact density evaluation by construction. Marginal
Flow is also a very flexible framework: it allows for learning lower-dimensional manifolds, it can
easily handle multi-modal distributions, and it can be easily tailored to the data with the choice
of the parametrized distribution g(x|w). Experimentally, we showcase Marginal Flow on several
datasets and various tasks. First, we showed that Marginal Flow can perfectly reconstruct synthetic
datasets both when trained via log-likelihood and via reverse KL divergence. Additionally, Marginal
Flow converges orders of magnitude faster than competing models. Then, we showed that it can
achieve state-of-the-art results on the Simulation-based Inference benchmark. We also showed that
we can easily adapt Marginal Flow to learn distributions on positive definite matrices by choosing
the Wishart distribution as the parametrized family g(x|w). Lastly, we applied Marginal Flow to
learn a (conditional) manifold alongside the density for MNIST digits and the JAFFE face dataset.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY

We made an effort to make every aspect of the model and of the experiments reproducible. In par-
ticular, as part of the submission we provide code with a PyTorch implementation of the model
and code for reproducing figures and experiments. Furthermore, in Appendix [A.T|we discuss imple-
mentation details of Marginal Flow concerning sampling, log density evaluation and neural network
architecture. Finally, in Appendix we provide detailed description of the experiments conducted
including data pre-processing for real-world experiments.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, 630(8016):493-500, 2024.

Justin Alsing, Benjamin Wandelt, and Stephen Feeney. Massive optimal data compression and
density estimation for scalable, likelihood-free inference in cosmology. Monthly Notices of the
Royal Astronomical Society, 477(3):2874-2885, 03 2018. ISSN 0035-8711.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik Jacobsen.
Invertible residual networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceed-
ings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 573-582. PMLR, 09—15 Jun 2019.

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris Willcocks. Deep generative modelling: A
comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PP, 09 2021.

Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estima-
tion. Advances in neural information processing systems, 33:442-453, 2020.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519, 2015.

Andrea Cappozzo and Alessandro Casa. Model-based clustering for covariance matrices via penal-
ized wishart mixture models. Computational Statistics & Data Analysis, pp. 108232, 2025.

Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055-30062, 2020. doi: 10.1073/
pnas.1912789117.

Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, and Ullrich Kothe. Free-
form flows: Make any architecture a normalizing flow. In Proceedings of The 27th International
Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research,
pp. 2197-2205. PMLR, 02-04 May 2024.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983-1049, 2016.

Mevlana C. Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on riemannian
manifolds, 2016.

Pedro J Goncalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Ocal,
Giacomo Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels,
David S Greenberg, and Jakob H Macke. Training deep neural density estimators to identify
mechanistic models of neural dynamics. eLife, pp. €56261, sep 2020. ISSN 2050-084X.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

10

Under review as a conference paper at ICLR 2026

Leonard R Haff, Peter T Kim, J-Y Koo, and D St P Richards. Minimax estimation for mixtures of
wishart distributions. The Annals of Statistics, 2011.

Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging inference
networks and posterior collapse in variational autoencoders. In ICLR, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

770-778, 2016.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448—456.
pmlr, 2015.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401-4410, 2019.

AmirEhsan Khorashadizadeh, Konik Kothari, Leonardo Salsi, Ali Aghababaei Harandi, Maarten
de Hoop, and Ivan Dokmani¢. Conditional injective flows for bayesian imaging. IEEE Transac-
tions on Computational Imaging, 9:224-237, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 2014.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220
(4598):671-680, 1983. doi: 10.1126/science.220.4598.671.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
review of current methods. IEEE transactions on pattern analysis and machine intelligence, 43

(11):3964-3979, 2020.

Youssef Kossale, Mohammed Airaj, and Aziz Darouichi. Mode collapse in generative adversarial
networks: An overview. In ICOA, pp. 1-6, 2022. doi: 10.1109/ICOA55659.2022.9934291.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Huadong Liao and Jiawei He. Jacobian determinant of normalizing flows, 2021.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In Pro-
ceedings of the 40th International Conference on Machine Learning, Proceedings of Machine
Learning Research, pp. 21450-21474. PMLR, 23-29 Jul 2023.

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Bench-
marking simulation-based inference. In Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, Proceedings of Machine Learning Research, pp. 343-351.
PMLR, 13-15 Apr 2021.

M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Coding facial expressions with gabor wavelets.
In Proceedings Third IEEE International Conference on Automatic Face and Gesture Recogni-
tion, pp. 200-205, 1998.

Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal of Machine
Learning Research, 7(12), 2006.

Marcello Massimo Negri, Fabricio Arend Torres, and Volker Roth. Conditional matrix flows for
gaussian graphical models. Advances in Neural Information Processing Systems, 36:25095—
25111, 2023.

11

Under review as a conference paper at ICLR 2026

Marcello Massimo Negri, Jonathan Aellen, and Volker Roth. Injective flows for star-like manifolds.
In The Thirteenth International Conference on Learning Representations, 2025.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
shminarayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1-64, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Bowen Tang,
Yunjing Li, Michael Fang, Jing Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32,
pp- 8024-8035. Curran Associates, Inc., 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pp. 1530-1538. PMLR, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st International Con-
ference on Machine Learning, volume 32 of Proceedings of Machine Learning Research, pp.
1278-1286. PMLR, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry of deep generative
models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 315-323, 2018.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
Text-to-video generation without text-video data. In The Eleventh International Conference on
Learning Representations, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256-2265. pmir, 2015.

Yang Song and Diederik P. Kingma. How to train your energy-based models, 2021.

Kevin Swersky, Marc’ Aurelio Ranzato, David Buchman, Nando D Freitas, and Benjamin M Mar-
lin. On autoencoders and score matching for energy based models. In Proceedings of the 28th
international conference on machine learning (ICML-11), pp. 1201-1208, 2011.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn

high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537-7547, 2020.

Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schrodinger bridges via score and flow
matching, 2024.

Xiangxiang Zeng, Fei Wang, Yuan Luo, Seung-gu Kang, Jian Tang, Felice C Lightstone, Evandro F
Fang, Wendy Cornell, Ruth Nussinov, and Feixiong Cheng. Deep generative molecular design
reshapes drug discovery. Cell Reports Medicine, 3(12), 2022.

12

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We provide our implementation of Marginal Flow in PyTorch (Paszke et al., |2019) as part of the
supplementary material. Here we discuss the main high-level aspects of such an implementation.

Density evaluation and sampling. Once we sample the parameters w, Marginal Flow consists
of a Mixture of distributions g(x|w) parameterized by the sampled w. The parameters w are then
resampled each time we evaluate the density gg(x) or sample from gy (), with gg(x) being defined
in Eq.[2l Within PyTorch one can define the parametric family ¢(x|w) by simply choosing a
distribution of choice from torch.distributions. For all distributions, PyTorch provides
efficient evaluation of the density and efficient sampling, which can be automatically extended to
mixtures of distributions. In most of our experiments we used a Gaussian family, i.e. ¢(x|w) =
N(z|p = w, X = diag(oy,...,04)). In such a case, one can evaluate the log-density even more
efficiently and does not need to rely on torch.distributions. In particular, we need to
evaluate N points over a mixture with /N, components. This requires computing the distance of
each point to each mixture component and then summing the contributions. With torch.cdist
this operation can be done extremely efficiently.

Neural network architecture. A key aspect of the proposed Marginal Flow is that it leaves com-
plete freedom in the choice of the neural network architecture. In particular, for all our experiments,
it was sufficient to we use very simple MLP architectures with 3 to 5 layers and 128 to 256 hid-
den units. We also employed skip connections. The specific settings used in each experiment can
be found in the code provided in the supplementary. For conditional experiments we used a slight
modification of the mentioned MLP structure. In particular, we simply appended the condition-
ing variable(s) to the input. In order to extract high-frequency signals from the (low-dimensional)
conditioning variables, we used Fourier features (Tancik et al., 2020)

A.2 OBIJECTIVE FUNCTIONS

Marginal Flow provides efficient exact density evaluation and efficient sampling. Consequently, it
can be trained efficiently using most objective functions. Among the most popular ones are the
forward KL divergence (log-likelihood) and the reverse KL divergence. The former is the most
commonly used one in deep generative models and is employed to learn the distribution of some
given data D = {x; }jvzl The latter is most commonly used when only an unnormalized target
distribution t(x) is known. Below we report the definitions of both objectives and their analytical
expression when Marginal Flow is used, i.e. Eq.[2]

Forward KL (log-likelihood) Assume we are given a dataset of observations D = {x; }jvzl
and the goal is to estimate the unknown distribution that generated the dataset. The underlying
assumption is ; ~ p(x), with p(x) being unknown. The most common approach is to minimize
the forward KL divergence, which is proportional to the negative log-likelihood:

L(0) = KL(p(x)||go(z)) = / p(x)log g@d

Given the data points {x, } §-V:1, we can approximate the above expression with the following Monte
Carlo estimate:

x = —Egp(a)[log go(x)] + const . (5)

1 Qe

——Zlogqa () Zlog—qujlwl) with w; ~ go(w). (6)

€ =1

In the last equality we used Marginal Flow as variational family gy (), i.e. Eq.[2l Recall that gg(w)
is not modeled explicitly. Instead, we construct samples w; by transforming samples from a base
distribution ppas.(2) with a learnable function fy : z € R™ s w € R%:

w; = fo(2;) with Z; ~ Pbase(2) - 7

When using a conditional model, the modeled density depends on the conditioning parameter as
well: gg(x) — qo(x;c¢). One straightforward way to model conditional density with Marginal

13

Under review as a conference paper at ICLR 2026

Flow is to condition the neural network on ¢, i.e. fp(z) — fo(2;c) or, more explicitly, fo(e)(2)-

Assume we are given pairs of observations and conditioning information {x;, cj} . Then, the
loss function in Eq. [6|reads as:

L) =~ —— Zlogqe (xj;¢5) Zlog Zq (xj|we; i) ®

] 1
Where We, ;= fg(zq;;cj) with 2z; ~ Phase(2) -

Reverse KL In variational inference settings we are commonly given an unnormalized target dis-
tribution #(x) o p(x) and we would like to (i) approximate it and (ii) draw samples from it. This is
often the case in Bayesian inference: given a likelihood p(D|©) and a prior p(©), we would like to
perform variational inference on the posterior p(©|D) o p(D|O)p(©), which we can evaluate only
up to a constant. We now detail how to train the proposed model to approximate the target distribu-
tion p(a), which corresponds to p(©|D) in the previous Bayesian posterior inference example. The
most common distance measure in variational inference is the reverse Kullback-Leibler divergence,
which is defined as

£(6) = KL(g () |p(x)) = / go() log

go(x) qe(-’ﬂ)] . ©)

p(x) p(z)

Usually, we do not have access to the normalized p(x) but only to some unnormalized target ¢(x),
i.e. p(x) = t(x)/N. However, the reverse KL divergences are proportional up to a constant, which
is precisely the normalization constant N\

KL(go()|p(x)) = KL(g(z)|[t(z)) + log N . (10)

In practice, the reverse KL divergence is approximated in Monte Carlo fashion by drawing N sam-
ples from the variational distribution {; } §V21 with z; ~ gg(), which gives the following objective:

N
1 qo(x z 1q(:cj\wz) .

~ — 1 log Ne h o~ . 11

0) N;ﬂ og t(wj =N E @) with w; ~ gp(w) (11

In the last equality we plugged in the proposed model in Eq. [2| as variational family ¢y (x). Note
that, as opposed to the forward KL divergence setting (log-likelihood), in the reverse KL setting we
need to draw samples from the model x; ~ gq ().

dx = Egprgy(a) [log

A.3 EXPERIMENTAL DETAILS

A.3.1 RUNTIME COMPARISON

In Figure [3|we have shown a runtime comparison for the two main operations of density estimation
models: sampling and evaluation of the log-probability. In particular, we measure the runtime for
generating 100 samples and for evaluating the log-probability of 100 points. We repeat this oper-
ation 10 times per dimension and report the average and 95% confidence intervals. We compare
against competing models: Marginal Flow, Flow Matching. Normalizing Flow and Free-form Flow.
Marginal Flow and Normalizing Flow naturally provide access to the exact log-likelihood, while
Flow Matching does not require it during training, and Free-form Flow uses an approximation. In
both cases computing the exact density is computationally expensive. In order to make a fair com-
parison, we defined all models to have a similar (and small) number of trainable parameters, around
100k. In particular, for all models (except Normalizing Flows) we employed a simple MLP with
3 layers and 128 neurons each. For Normalizing Flow, which requires bijections, we use 3 cou-
pling layers with splines. Among the many choices of bijective layers, we chose the most efficient
ones in terms of runtime, even though such layers are sometimes unstable during training. We ran
all runtime experiments on the same consumer-grade A100 GPU with 40 GB of memory. Results
show that Marginal Flow is orders of magnitude faster than competing models. In the common
log-likelihood training setting, this is relevant both for training (where one needs to repeatedly eval-
uate the log density) and for inference (in order to generate new samples). Furthermore, results in
Figure[7|suggest that Marginal Flow also has better convergence rates.

14

Under review as a conference paper at ICLR 2026

A.4 SYNTHETIC EXPERIMENTS

In order to make the comparison among models fair, we made sure to use a comparable amount of
parameters. In particular, in all models except Normalizing Flows we used an MLP with 5 layers
and 256 neurons. For Normalizing Flow, we used 5 layers of invertible Resnet (Behrmann et al.,
2019), which are more expressive (but more computationally expensive) than coupling layers with
splines.

Forward KL divergence training (log-likelihood). In the log-likelihood settings, we trained for
5000 epochs and selected the best model on the validation set. In synthetic datasets we could always
use full-batch training. We trained over different numbers of data points, i.e. {100, 200, 500,
1000}, and set N, to half of the number of training points in each setting. We did not perform any
hyperparameter tuning on Marginal Flow. We report additional results with log-likelihood training

in Figure[T3]

Reverse KL divergence training. In the reverse KL divergence setting we do not have observa-
tions, and we need to sample from the modeled densities. This training setting is only viable for
Marginal Flow and Normalizing Flow. In both cases we drew 10’000 samples per iteration. Fur-
thermore, during training we used simulated annealing (Kirkpatrick et al., [1983) to explore the full
support of the target distribution. In particular, we introduce an artificial temperature 7; for the
target distribution in Eq.[T0}

i (x) = p(ax)"/ T (12)
where 7} is the temperature at the ¢-th training iteration. The temperature 7; is slowly annealed
during training from the initial 7y = 5 to Ty = 1. Note that p}(x) = p(zx) for T; = 1, which is
the true target. If the initial temperature is high enough, p; will likely be very flat, allowing for a
better exploration of the support of the distribution. In order to account for the slow annealing of
the temperature, we trained for 10’000 iterations. We report a visualization of the density learned
by Marginal Flow and Normalizing Flow for all studied densities in Figure T2} Note that we do not
train the models on the Checkerboard dataset because the true density is constant everywhere and
the gradient is thus zero everywhere.

Swiss Roll Two Moons Mixture of Gaussians Pinwheel

Marginal Flow Ground Truth

Normalizing Flow

Figure 12: Marginal Flow is trained by reverse KL divergence on 4 synthetic datasets. We evaluate
the learned density and compare it with Normalizing Flows.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
81
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Two Moons Swiss Roll

s) N R s
LR R R A

Training samples Marginal Flow Normalizing Flow Free-form Flow Flow Matching Training samples Marginal Flow Normalizing Flow Free-form Flow Flow Matching

e 2t AR E AR 4
Rat-dbdk - REEE A AL
s W 5 5 & &

Training samples Marginal Flow Normalizing Flow Free-form Flow Flow Matching Training samples Marginal Flow Normalizing Flow Free-form Flow Flow Matching

Mixture of Gaussians

100

4, | 41
|4
|

b T Jia
"

h

1000

sde | tale | g
B B q

*® @ »

Training samples Marginal Flow Normalizing Flow Free-form Flow Flow Matching

Figure 13: Marginal Flow is trained by forward KL divergence (log-likelihood) on 5 synthetic
datasets with increasing number of training points {100, 200, 500, 1000}. We compare Marginal
Flow with Normalizing Flow, Free-form Flow, Flow Matching. Results show that Marginal Flow
learns the correct density with fewer samples compared to competing models

A.4.1 SBIBENCHMARK

In the Simulation-Based Inference benchmark, each setting is provided with three sets of observa-
tions with 1000, 10’000, 100’000 points. For each dataset we train Marginal Flow for 2000, 1000
and 250 epochs, respectively. In all cases we trained a Marginal Flow with an MLP with 4 layers
and 256 neurons each and N, = 2048. We selected the best model on the validation set and did not
perform any other hyperparameter tuning.

16

Under review as a conference paper at ICLR 2026

two_moons gaussian_mixture bernoulli_glm bernoulli_glm_raw
1.0 -
0.9 -
E 08 -
007~
0.6 -
0.5
105 10° 105 108 105 108
gaussian_linear gaussian_linear_uniform slcp slcp_distractors

1.0 - -

09 - - fﬁ'ﬁ
E 0.8 - -
©07- - - —#— FFF —— NSF

0.6 - - - FM —k— ours

0.5 . .

103 104 10° 103 104 105 103 104 105 1()3 104 10°
Number of Simulations

Figure 14: Simulation-based inference benchmark: we show average and standard deviation over 10
different test observations. We compare our method against Free-form Flows (FFF), Flow Matching
(FM), and Normalizing Flows (NSF). Benchmark results are taken from |Draxler et al.| (2024)).

A.4.2 WISHART MIXTURE EXPERIMENT

Bijection mapping to p.d. matrices. Marginal Flow and Normalizing Flow employ the same
mapping to positive definite (p.d.) matrices. A vector «x is reshaped to a lower triangular matrix
L. Afterwards, the diagonals are transformed to be positive, leading to LT. Finally, if the full
covariance matrix is required, then L*(L*)T is computed. The change in Jacobian determinant of
each step can be computed efficiently (Negri et al., [2023).

Target manifold. We show again the target distribution from Eq. 4] for convenience:

t(x) = W(z;v,2(N\) st. Z(A)eM Vielo1]. (13)

The manifold M is a straightforward interpolation between covariance matrices with a random
structure. Given the covariance matrices X1, X9, 33 ~ W(7, I), the manifold is defined as:

)\21 + (1 —)\)22 + 7(/\)23
14+~(N) ’

M= {Z(A) X e o, 1]} with $(\) = (14)

where 7(A) = 2 exp (—(6A — 3)?).

For more information on the training setup, we refer the readers to the code.

A.4.3 MANIFOLDS IN IMAGE LATENT SPACES

MNIST We use the standard implementation and data provided by scikit-learn (Pedregosa et al.,
2011) with standard train and validation split. A convolutional residual (He et al.|[2016) variational
autoencoder (Rezende et al.l [2014; [Kingma & Welling|, 2014)) architecture with batch norm (loffe
& Szegedyl |2015) compresses the pixel space into a 20-dimensional latent space. It is trained for
approximately 7000 epochs. The resulting VAE gives — to the human eye — perfect reconstructions;
one might consider 20 dimensions even too many to describe the space that MNIST digits live
in. As a result, it is the Marginal Flow’s task to find conditional lower-dimensional manifolds that
describe the 20-dimensional latent space well. In our experiments, we fit both a 1- (Figure @D and
a 2-dimensional manifold (Figure |15) with a uniform base distribution pyue = U([—1,1])* with
d = {1,2}. The label information is one-hot encoded. We train Marginal Flow with N.0256 for
300 epochs. The neural network fy(z) has 3 layers with 256 neurons each.

JAFFE We use 64 x 64 px crops to the face area. We split the data into 80% training and 20%
validation set. The convolutional residual variational autoencoder compresses the images into a 10-
dimensional space. After training for about 9000 epochs, there is no visible reconstruction error.
The values for happiness, sadness, surprise, anger, disgust and fear are continuous float values and
are provided to the Marginal Flow as conditioning parameter c. For a neutral facial expression, we
set all values to the minimum value found in the dataset (around 1.1). For a medium level of an
emotion, we set that value to 3.0 while leaving all other emotions at minimum value. The same goes

17

Under review as a conference paper at ICLR 2026

00000000 (1111 /7] 1] |22aaRk222 (33333333 YY44d4444
000000000, (171777171 2222222 33333333 (44444444
000OOOOO0| (177771111 22222222 33333333 |¥4YY4%444
000LOLOOO0O| |1 /7771111 22223322 |33333333| (44444444
Coo0O000O0O0 (L /7)1 V L]]|22223222| 33333333 44444444
O00000O0O0 (VI 1 1V VL[] 2222333222 33333333 Y4 4yyyyy
000000CO0CO [V LI 1 11111 |2223a2a22 [33333333 yy4y4qyyqgy
00000000 1 1111111 222222332 33333333 444449444
§5555555 [6bb6b66cCGl 7777777 (88888288 99999799
§55855555 666é6é6ctb 77777771 F 8828888288 99999799
§55555555| (666666060 77777777 (98888888 (19999999249
§555556565/ |66bbbbbbl |77777777 ($£858888 999999919
§55556656| |6bblblbb6C (77777177 |995398%88¢ 999999949
55555566 bblbbb6tc 177777777 38888888 49999999
555555655/ |[bbbbbb6é 77777777 88888888 99999999
55555555/ bb666b66é 99777777 1898888888 999999919
Figure 15: Marginal Flow trained with 2-dim base distribution on 20-dim MNIST latent space. We

show the learned 2-dim manifold conditioned on the class label.

more
disgust

T

@&&@@&a&&

- - = = i

neutral

more
fear

more
sadness

neutral

more
anger

44— learned 1-dimensional manifold —p

Figure 16: The JAFFE dataset provides images and labels for the emotions happiness, and surprise
(see main text), and further sadness, anger, disgust, and fear. Here, we show results images for
generating images with conditioning for the latter four emotions.

for a high level of that emotion with the value being 4.8, the maximum found in the dataset. We
train the Marginal Flow with N, = 128 for 300 epochs. The neural network fy(z) has 3 layers with
256 neurons each.

18

	Introduction
	Marginal Flow
	Model definition
	Efficient evaluation and sampling
	Flexibility of Marginal Flow

	Related work
	Experiments
	Synthetic datasets
	Simulation-based inference
	Wishart mixture distribution
	Manifolds in image latent-spaces

	Conclusions
	Appendix
	Implementation details
	Objective functions
	Experimental details
	Runtime comparison

	Synthetic experiments
	SBI benchmark
	Wishart mixture experiment
	Manifolds in image latent spaces

