

000 MARGINAL FLOW: A FLEXIBLE AND EFFICIENT 001 FRAMEWORK FOR DENSITY ESTIMATION 002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 ABSTRACT 008

009 Current density modeling approaches suffer from at least one of the following
010 shortcomings: expensive training, slow inference, approximate likelihood, mode
011 collapse or architectural constraints like bijective mappings. We propose a simple
012 yet powerful framework that overcomes these limitations altogether. We define
013 our model $q_\theta(\mathbf{x})$ through a parametric distribution $q(\mathbf{x}|\mathbf{w})$ with latent parameters
014 \mathbf{w} . Instead of directly optimizing the latent variables \mathbf{w} , our idea is to marginalize
015 them out by sampling them from a learnable distribution $q_\theta(\mathbf{w})$, hence the name
016 Marginal Flow. In order to evaluate the learned density $q_\theta(\mathbf{x})$ or to sample from it,
017 we only need to draw samples from $q_\theta(\mathbf{w})$, which makes both operations efficient.
018 The proposed model allows for exact density evaluation and is orders of magni-
019 tude faster than competing models both at training and inference. Furthermore,
020 Marginal Flow is a flexible framework: it does not impose any restrictions on the
021 neural network architecture, it enables learning distributions on lower-dimensional
022 manifolds (either known or to be learned), it can be trained efficiently with any
023 objective (e.g. forward and reverse KL divergence), and it easily handles multi-
024 modal targets. We evaluate Marginal Flow extensively on various tasks including
025 synthetic datasets, simulation-based inference, distributions on positive definite
026 matrices and manifold learning in latent spaces of images.
027

028 1 INTRODUCTION 029

030 Density estimation models are ubiquitous in machine learning and have been used for a wide range
031 of purposes. Their overarching characteristic is to provide an approximation to some probability
032 distribution. The most popular use case is probabilistic modeling of data with the goal of generat-
033 ing new instances. The underlying assumption is that there exists an unknown generative process
034 that generated the data in the first place. Successful applications include generation of images,
035 e.g. Rombach et al. (2022), text-to-audio, e.g. Liu et al. (2023), and text-to-video, e.g. Singer et al.
036 (2023). Other popular applications of deep generative models include protein structure prediction,
037 e.g. Abramson et al. (2024), and drug discovery, e.g. Zeng et al. (2022).
038

039 Rather than focusing on generating new samples, another interesting use case of density estimation
040 models lies in modeling and reasoning about the probability distribution itself, which has relevant
041 applications in the sciences. Common settings include computation of high-dimensional integrals
042 and intractable likelihoods or posteriors. This is maybe best exemplified by Bayesian inference,
043 e.g. Rezende & Mohamed (2015). Applications include cosmology, e.g. Alsing et al. (2018), neu-
044 rosciences, e.g. Goncalves et al. (2020), simulation-based inference, e.g. Cranmer et al. (2020), and
045 many more. Learning probability distributions on manifolds is also a challenging problem that can
046 be addressed with density estimation models, e.g. Gemici et al. (2016); Chen & Lipman (2024).
047

048 The two fundamental operations that characterize a density estimation model are sampling from
049 the learned distribution and evaluating its probability density. Most models show a trade-off in
050 efficiency between the two operations, which have their own specific challenges. On the one hand,
051 evaluating the probability density often requires restricting the learned transformations to bijections
052 that are carefully designed to avoid computing expensive Jacobian determinants, as in the case of
053 Normalizing Flows (NF) (Kobyzev et al., 2020). Alternatively, the true density can be bounded like
in VAEs (Kingma & Welling, 2014; Rezende et al., 2014) and afterwards estimated (Burda et al.,
2015), which is still very expensive. Therefore, most generative models rely on surrogate objectives

054
 055 Table 1: Comparison of Marginal Flow with other deep generative models: GANs, VAEs, Energy-
 056 Based models (EB), Flow Matching (FM), Normalizing Flow (NF), and Free-form Flows (FFF).
 057 The Table is inspired by Bond-Taylor et al. (2021).

058 Feature	059 GANs	060 VAEs	061 EB	062 FM	063 NF	FFF	Ours
Efficient exact likelihood	✗	✗	✗	✗	✓	✗	✓
Efficient (single-step) sampling	✓	✓	✗	✗	✓	✓	✓
Efficient training	✗	✓	(✓)	(✓)	✗	(✓)	✓
Free-form Jacobian	✓	✗	✓	✓	✗	✓	✓
Lower dim. base distr. (manifold)	✓	✓	✗	✗	✗	✓	✓

064
 065 that do not require the evaluation of the probability densities, while still allowing for high-fidelity
 066 sample generation. This is the case for Energy-Based (EB) models (Swersky et al., 2011), Diffusion
 067 models (Sohl-Dickstein et al., 2015) and Flow Matching (FM) (Lipman et al., 2023). On the other
 068 hand, sampling often requires multi-step processes that transform samples from a simple distribution
 069 into samples from the learned distribution, e.g. Flow Matching and Diffusion models. The trade-
 070 off between efficient log-likelihood evaluation and efficient sampling is clear in NF, which can be
 071 efficient only at either sampling or evaluating the density. Which of the two operations is more
 072 efficient also determines which objective function can be used for training.

073 In many applications it is beneficial to learn a density on a lower-dimensional space. For instance,
 074 real data is often assumed to live on a lower-dimensional manifold (Fefferman et al., 2016). Most
 075 models, like Diffusion, FM and NF, cannot account for a change in the dimensionality while others
 076 like GANs (Goodfellow et al., 2014) or Free-form Flows (Draxler et al., 2024) can, but suffer from
 077 other disadvantages like approximate likelihood and unstable training.

078 **Contribution.** We propose a novel density estimation framework that alleviates altogether the
 079 common shortcomings of current approaches. We define our model through a parametric distri-
 080 bution $q(\mathbf{x}|\mathbf{w})$ with latent parameters \mathbf{w} . Instead of directly optimizing the latent variables \mathbf{w} ,
 081 we marginalize them out by sampling \mathbf{w} from a learnable distribution $q_\theta(\mathbf{w})$. As we do not need
 082 to evaluate $q_\theta(\mathbf{w})$ at any point, but only to sample from it, we are free to generate samples in a
 083 very flexible and efficient way. To generate \mathbf{w} , we feed-forward samples from a base distribution
 084 of choice through an unconstrained learnable neural network. Overall, the proposed approach al-
 085 lows for efficient exact density evaluation and efficient sampling. Furthermore, it does not pose any
 086 restrictions (e.g. bijectivity) on the neural network and allows for learning a lower-dimensional man-
 087 ifold alongside the density. In Table 1, we provide a high-level comparison between popular density
 088 estimation models and Marginal Flow. Overall, our contributions can be summarized as follows:

- 089 • We introduce a novel density estimation framework called Marginal Flow.
- 090 • We demonstrate the flexibility of the framework: it allows for learning lower-dimensional
 091 manifolds, it can easily handle multi-modal distributions, and can be tailored to the data
 092 with the choice of the parametric distribution $q(\mathbf{x}|\mathbf{w})$.
- 093 • We show empirically that Marginal Flow is orders of magnitude faster than competing
 094 models both at training and inference.
- 095 • Lastly, we showcase Marginal Flow on extensive experiments with synthetic data (trained
 096 via log-likelihood and reverse KL divergence), simulation-based inference, distributions
 097 over positive-definite matrices, and finally on MNIST digits and the JAFFE faces dataset.

100 2 MARGINAL FLOW

101 2.1 MODEL DEFINITION

102 **Marginalization** Let $q(\mathbf{x}|\mathbf{w})$ with $\mathbf{x} \in \mathbb{R}^d$ be a family of distributions parametrized by $\mathbf{w} \in \mathbb{R}^p$
 103 and assume that, for given \mathbf{w} , it is easy to evaluate the density of $q(\mathbf{x}|\mathbf{w})$ to sample from it. We can
 104 compute $q(\mathbf{x})$ by marginalizing out \mathbf{w} over some $q(\mathbf{w})$:

$$105 q(\mathbf{x}) = \int q(\mathbf{x}|\mathbf{w})q(\mathbf{w})d\mathbf{w} = \mathbb{E}_{\mathbf{w} \sim q(\mathbf{w})} [q(\mathbf{x}|\mathbf{w})] . \quad (1)$$

In our model, we let $q(\mathbf{x}|\mathbf{w})$ be a distribution of choice parametrized by \mathbf{w} and we let $q(\mathbf{w})$ be freely learnable: $q(\mathbf{w}) \rightarrow q_\theta(\mathbf{w})$. The resulting marginal $q(\mathbf{x})$ is universal for many families of distributions $q(\mathbf{x}|\mathbf{w})$, e.g. if $q(\mathbf{x}|\mathbf{w})$ is a kernel (Micchelli et al., 2006). We will often assume $q(\mathbf{x}|\mathbf{w}) = \mathcal{N}(\mathbf{x}|\mu = \mathbf{w}, \Sigma = \text{diag}(\sigma_1, \dots, \sigma_d))$, for which $p = d$, and learnable variances (alongside θ). However, we show that other choices of $q(\mathbf{x}|\mathbf{w})$ can be beneficial, depending on the setting.

Definition. Motivated by the marginalization in Eq. 1, we define our model as follows:

$$q_\theta(\mathbf{x}) := \frac{1}{N_c} \sum_{i=1}^{N_c} q(\mathbf{x}|\mathbf{w}_{\theta,i}) \quad \text{where} \quad \mathbf{w}_{\theta,i} \sim q_\theta(\mathbf{w}). \quad (2)$$

The density $q_\theta(\mathbf{x})$ can be exactly evaluated and efficiently sampled from. N_c is the number of parameters drawn from $q_\theta(\mathbf{w})$ and is not required to be fixed. In fact, the parameters $\mathbf{w}_{\theta,i}$ are not fixed themselves but rather *resampled* from $q_\theta(\mathbf{w})$ at each iteration, which effectively renders the marginalization in Eq. 1. As we will argue in the next paragraph, there is a crucial difference with respect to directly optimizing a finite set of mixtures $\{\mathbf{w}_i\}_{i=1}^{N_c}$. Another important aspect is that we do not need to evaluate $q_\theta(\mathbf{w})$ but only to sample from it. Therefore, we can construct samples in a very flexible way and in a single step: we first sample from a distribution of choice $p_{\text{base}}(\mathbf{z})$ with $\mathbf{z} \in \mathbb{R}^m$ and then transform them via a learnable mapping to the space of latent parameters $\mathbf{w} \in \mathbb{R}^p$. Relevantly, to do so we can use an unconstrained learnable function $f_\theta : \mathbf{z} \in \mathbb{R}^m \mapsto \mathbf{w} \in \mathbb{R}^p$:

$$\mathbf{w}_{\theta,i} := f_\theta(\mathbf{z}_i) \quad \text{with} \quad \mathbf{z}_i \sim p_{\text{base}}(\mathbf{z}). \quad (3)$$

The resulting samples $\mathbf{w}_{\theta,i} := f_\theta(\mathbf{z}_i)$ will be samples from some (learnable) distribution $q_\theta(\mathbf{w})$. The neural network $f_\theta(\mathbf{z})$ is thus the trainable part of the model. In our experiments, a small MLP with 3-5 layers and 256 neurons was enough. Unlike most density estimation models, Marginal Flow is efficient both at sampling and at evaluating the probability density, as we will see in Section 2.2. Furthermore, in contrast to competing models, we can learn a density with support on a lower-dimensional manifold by simply choosing a base distribution with support in \mathbb{R}^m with $m < d$.

Motivation for marginalization. In order to understand the importance of the marginalization aspect, consider the case where we have a finite number of \mathbf{w}_i and, instead of integrating them out, we optimize them. Without marginalization, the model reduces to a simple mixture model optimized over a fixed set of mixture components $\{\mathbf{w}_i\}_{i=1}^{N_c}$, e.g. a Gaussian Mixture Model (GMM) if $q(\mathbf{x}|\mathbf{w}) = \mathcal{N}(\mathbf{x}|\mu = \mathbf{w}, \Sigma = \sigma \mathbf{I})$. In this case, learning a target distribution amounts to placing the N_c Gaussians in an optimal way. The expressiveness and scalability of the model are then fundamentally limited by the number of mixtures N_c . Instead of optimizing over fixed $\{\mathbf{w}_i\}_{i=1}^{N_c}$, our approach relies on the marginalization of \mathbf{w} , sampled from $q_\theta(\mathbf{w})$. We optimize the parameters θ of the neural network $f_\theta(\mathbf{z})$, and we resample $\mathbf{w} \sim q_\theta(\mathbf{w})$ at each iteration. *The resampling induces an approximation to the marginal distribution in Eq. 1, rather than just a finite mixture.* As illustrated in Figure 1, even with the same nominal number of mixtures (e.g. 10), only the marginalized model is able to learn a smooth density. As such, the modeling capacity is not directly linked to N_c anymore. The marginalization prevents the collapse to a GMM and spreads $q_\theta(\mathbf{w})$ to cover the entire target.

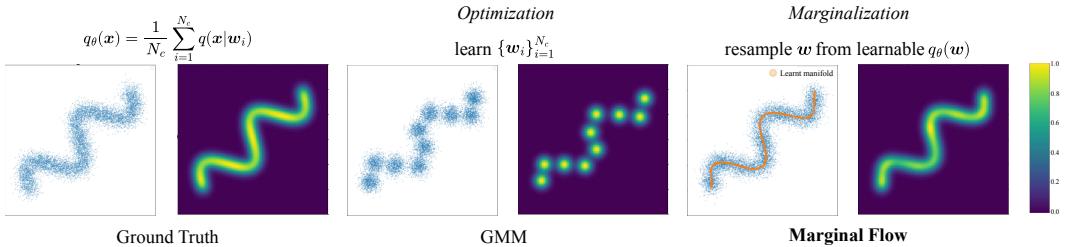


Figure 1: Motivation for marginalization: learned distribution and samples when optimizing directly the parameters \mathbf{w}_i compared to resampling them from a learnable $q_\theta(\mathbf{w})$, as in Marginal Flow.

2.2 EFFICIENT EVALUATION AND SAMPLING

Sampling the parameters \mathbf{w} ; Figure 2 (left). In order to evaluate the modeled density $q_\theta(\mathbf{x})$ or to sample from it, we first need to sample \mathbf{w}_i , which parametrize $q(\mathbf{x}|\mathbf{w}_i)$. This is done ef-

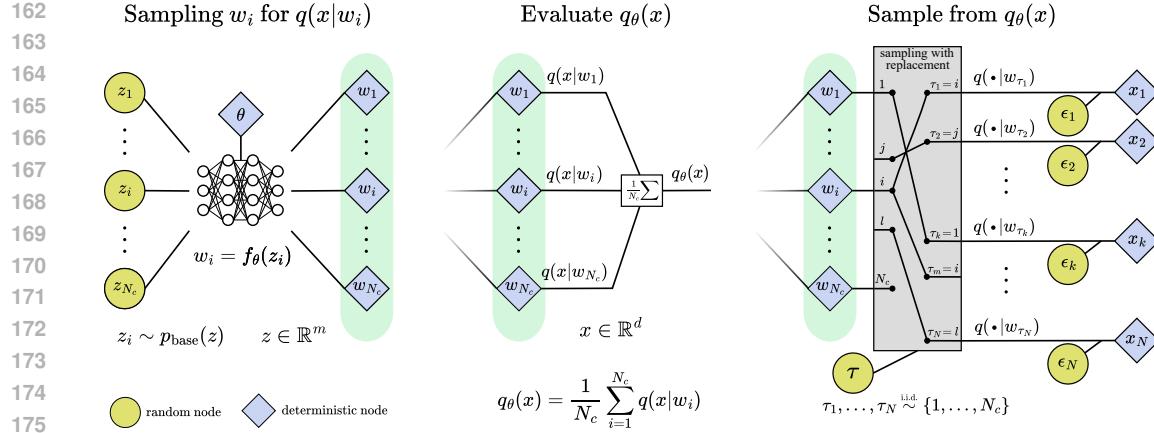


Figure 2: Marginal flow model diagram. Evaluating the modeled density $q_\theta(\mathbf{x})$ (center) and sampling from $q_\theta(\mathbf{x})$ (right) requires to first sample the parameters \mathbf{w}_i (left).

ficiently by feed-forwarding samples $\{\mathbf{z}_i\}_{i=1}^{N_c}$ from a base distribution of choice: $\mathbf{w}_i = f_\theta(\mathbf{z}_i)$ with $\mathbf{z}_i \sim p_{\text{base}}(\mathbf{z})$. With the sampled $\{\mathbf{w}_i\}_{i=1}^{N_c}$, our model in Eq. 2 resembles a mixture model with N_c components. Note, however, that the $\{\mathbf{w}_i\}_{i=1}^{N_c}$ are not fixed but sampled again for each evaluation or sampling of $q_\theta(\mathbf{x})$. The neural network f_θ is unconstrained. **Evaluation: Figure 2 (center).** In order to evaluate the density $q_\theta(\mathbf{x})$ at a given point \mathbf{x} , we use the definition in Eq. 2. Given the sampled parameters $\{\mathbf{w}_i\}_{i=1}^{N_c}$, we only need to evaluate each $q(\mathbf{x}|\mathbf{w}_i)$ on \mathbf{x} , which is chosen to have a simple closed-form density function. Note that, in contrast to other density estimation models, the evaluation of the density does not require inverting $f_\theta(\mathbf{z}_i)$, computing $\det \mathcal{J}_{f_\theta}$ or solving an ODE. **Sampling from $q_\theta(\mathbf{x})$: Figure 2 (right).** Sampling as in Eq. 2 is also efficient, just like sampling from a mixture model. Given the sampled parameters $\{\mathbf{w}_i\}_{i=1}^{N_c}$, we first need to sample a component \mathbf{w}_j and then sample from the associated distribution $q(\mathbf{x}|\mathbf{w}_j)$, with $j \in \{1, \dots, N_c\}$. To draw N samples, we sample N indices with replacement from $\{1, \dots, N_c\}$.

Empirical runtime. We now empirically measure runtime for sampling and evaluating the exact density and compare against competing models. Note that only Marginal Flow and Normalizing Flow (NF) provide exact density by construction. As shown in Figure 3, Marginal flow is orders of magnitude faster than competing methods in terms of both sampling and density evaluation, where FM is Flow Matching and FFF is Free-form Flows. Sampling is as efficient as in FFF, since both only require drawing from a base distribution and passing the samples through a neural network. For further details, see the Appendix in Section A.3.1.

2.3 FLEXIBILITY OF MARGINAL FLOW

Lower-dimensional latent distribution. Most density estimation models, like Flow Matching and Normalizing Flows, learn mappings that preserve the dimensionality and cannot learn densities on lower-dimensional manifolds. Some work tries to overcome this issue either by resorting on approximations (Brehmer & Cranmer, 2020) or by restricting the transformations (Khorashadizadeh et al., 2023; Negri et al., 2025). In contrast, with our model in Eq. 2, we have the freedom of choosing the dimensionality of the base distribution, i.e. $p_{\text{base}}(\mathbf{z})$ with support in \mathbb{R}^m with $m < d$. Also in this case we can evaluate $q_\theta(\mathbf{x})$ exactly and learn the manifold alongside the density. In Figure 4 we showcase Marginal Flow and competing models on a density defined on a (unknown) 1D manifold.

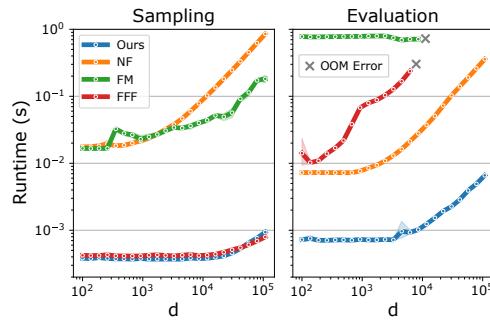


Figure 3: Runtime for sampling (left) and exact density evaluation (right) of 100 points.

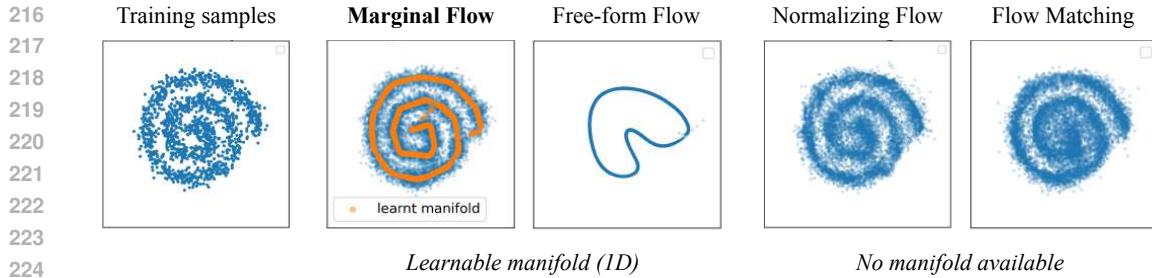


Figure 4: Toy example of density defined on (unknown) 1D manifold. (Left) Training data consists of 1500 points. (center) Marginal Flow perfectly learns the density and discovers the correct manifold. Free-form Flow learns an incorrect manifold and is not able to embed the density in 2D space. (right) Flow Matching and Normalizing Flow learn the density but cannot account for a manifold.

Conditional distribution. As we do not have any requirements on the neural network $f_\theta(z)$, Marginal Flow can be readily extended to model conditional distributions. The conditioning variables could be appended to the input $f_\theta(z) \rightarrow f_\theta(z; c)$ or one could use a hypernetwork that takes c as input and returns the neural network parameters $f_\theta(z) \rightarrow f_{\theta(c)}(z)$. Furthermore, the base distribution can also be conditioned on c : $p_{\text{base}}(z) \rightarrow p_{\text{base}}(z; c)$.

Multi-modal targets. Marginal Flow can naturally account for multi-modal targets thanks to the unconstrained neural network $f_\theta(z)$. Most generative models, like Normalizing Flows and Flow Matching, learn (directly or indirectly) a bijection between a base distribution and the target distribution. However, bijections struggle to learn new modalities and have limited expressiveness (Liao & He, 2021). Even with a multi-modal base distribution, bijections will still struggle to match the modalities in the target with those of the base distribution. Furthermore, many density estimation models suffer from mode collapse during training (He et al., 2019; Kossale et al., 2022). In Figure 5 we showcase how easily Marginal Flow can learn multi-modal targets compared to other models.

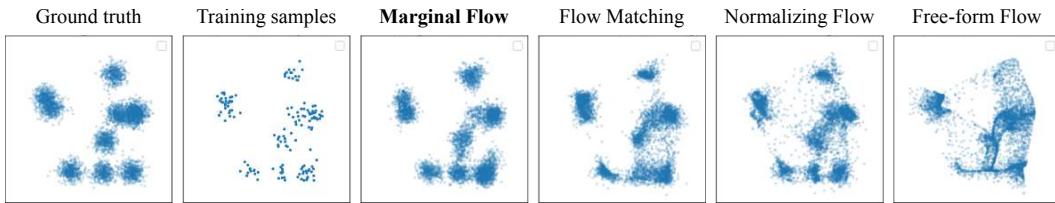


Figure 5: Toy example of multi-modal density learned by log-likelihood on 150 data points. For a fair comparison, all models use a uniform base distribution. Note that Marginal Flow is not a mixture model (for which this task would be trivial) since w_i are always resampled (see Figure 1).

Training objectives. Density estimation models are usually trained through an objective that requires sampling, evaluating the (exact) density or both. However, current approaches are efficient only at either one or the other. For instance, models trained on data via forward KL divergence (i.e. log-likelihood) require efficient density evaluation while models trained on unnormalized targets via reverse KL divergence require efficient sampling. However, one could wish to use both objectives to combine information from observations and unnormalized targets or to mitigate the mean-seeking (mode-seeking) behavior of the forward (reverse) KL divergence. Since Marginal Flow is efficient both at sampling and evaluation, it can be trained efficiently with most objectives; see Appendix A.2.

Extension to other mixtures. The proposed model in Eq. 2 leaves complete freedom in the choice of $q(x|w)$, as long as it can be parametrized by some w . In most experiments we employ a Gaussian with learnable variances, i.e. $q(x|w) = \mathcal{N}(x|\mu = w, \Sigma = \text{diag}(\sigma_1, \dots, \sigma_d))$. However, other choices are possible depending on the application. For instance, when modeling distributions on the probabilistic simplex, we can use the Dirichlet distribution. We can model distributions on symmet-

270 ric positive-definite matrices by choosing $q(\mathbf{x}|\mathbf{w})$ to be a Wishart, which we showcase in Section 4.3.
 271 Relevantly, the choice of $q(\mathbf{x}|\mathbf{w})$ does not affect the structure of the proposed framework.
 272

273 3 RELATED WORK

276 One of the earliest attempts to use deep learning for generative modeling are Energy-based (EB)
 277 models (Swersky et al., 2011). Instead of modeling a normalized density, EB models learn the
 278 negative log-probability. Despite their flexibility, computing the exact density and sampling from the
 279 model is generally expensive (Song & Kingma, 2021). Closely related are diffusion models (Sohl-
 280 Dickstein et al., 2015), which learn how to reverse a fixed noising process by estimating at each step
 281 the gradient of the log-density. Diffusion models can produce high-quality samples (Rombach et al.,
 282 2022; Liu et al., 2023), but still require multi-step sampling and do not provide the exact density.
 283

284 Another approach is to model the observed density with unobserved latent variables. VAEs (Kingma
 285 & Welling, 2014; Rezende et al., 2014) encode data into a latent space and are trained via a lower
 286 bound on the log-likelihood. In contrast to EB models, VAEs can be sampled in a single step.
 287 However, VAEs have limited expressiveness and suffer from posterior collapse (He et al., 2019).
 288 Another latent variable model – GANs (Goodfellow et al., 2014) – consists of a generator that creates
 289 samples from a latent distribution and a discriminator trained to distinguish generated samples from
 290 real ones. GANs can generate high-fidelity images (Karras et al., 2019) but are unstable and suffer
 291 from mode collapse (Kossale et al., 2022). Neither GANs nor VAEs provide the exact likelihood.
 292

293 Normalizing Flows (NFs) (Papamakarios et al., 2021) provide a principled way to compute the exact
 294 density. NFs transform a base distribution through bijections and account for the probability change
 295 via the Jacobian determinant, which is expensive to compute. Thanks to their exact density, NF have
 296 been applied for posterior approximations (Rezende & Mohamed, 2015). Additional limitations
 297 of NFs arise from the limited expressivity of bijective layers (Liao & He, 2021). Efficiency could
 298 be obtained using approximate bijections and by approximating the Jacobian determinant (Draxler
 299 et al., 2024), which however precludes sound statistical understanding and evaluation of the exact
 300 log-likelihood. Lipman et al. (2023) proposed to learn instead a velocity field that transforms the
 301 base distribution into the target. While this approach scales to high-dimensions, it cannot handle
 302 lower-dimensional base distributions and still requires expensive ODE solvers to compute the exact
 303 density. For a comprehensive review on generative models we refer to Bond-Taylor et al. (2021).
 304

305 4 EXPERIMENTS

306 First, we show on synthetic data that Marginal Flow can learn complex distributions both via log-
 307 likelihood and reverse KL divergence training. We also show that it converges more quickly than
 308 competing models. Second, we showcase how Marginal Flow can learn complex conditional dis-
 309 tributions and achieve state-of-the-art results for simulation-based inference. Third, we show that
 310 Marginal Flow can be easily adapted to learn distributions on positive-definite matrices by simply
 311 changing the parametric form of $q(\mathbf{x}|\mathbf{w})$. Lastly, we showcase applications in computer vision as
 312 well: we learn densities on lower-dimensional manifolds on MNIST and on the JAFFE face dataset.
 313

314 4.1 SYNTHETIC DATASETS

315 **Log-likelihood training.** As illustrative examples, we picked 4 common synthetic datasets (*Two*
 316 *moons*, *Pinwheel*, *Swiss Roll* and *Checkerboard*) and 1 additional multi-modal distribution (*Mix-*
 317 *ture of Gaussians*). We train Marginal Flow by maximizing the log-likelihood, which is reported
 318 explicitly in the Appendix 6. In Figure 6 we showcase that Marginal Flow can perfectly learn all
 319 densities without needing any fine-tuning. Next, we study the ability of Marginal Flow to learn den-
 320 sities when a limited number of observations is available. In particular, we compare against Flow
 321 Matching, Normalizing Flow and Free-form Flows with an increasing number of training points
 322 $\{100, 200, 500, 1000\}$. For a fair comparison we used a comparable amount of parameters in each
 323 model. In the Appendix in Figure 13, we show the learned densities, which are particularly accurate
 324 for Marginal Flow, already in few-sample regimes. In Figure 7 we showcase the test log-likelihood
 325 during training for all models and datasets when train on 1000 points. Marginal Flow converges
 326 orders of magnitude quicker than competing models.
 327

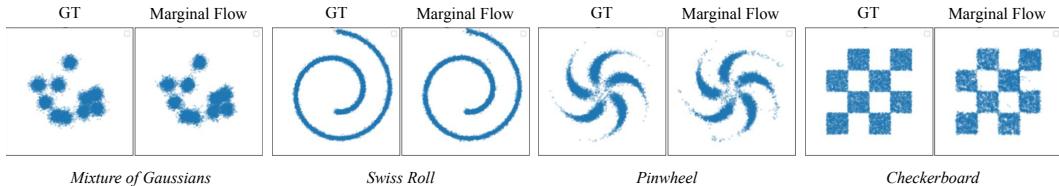


Figure 6: Marginal Flow trained via log-likelihood on 2D synthetic datasets. We show 10'000 samples from the true distribution and from Marginal Flow.

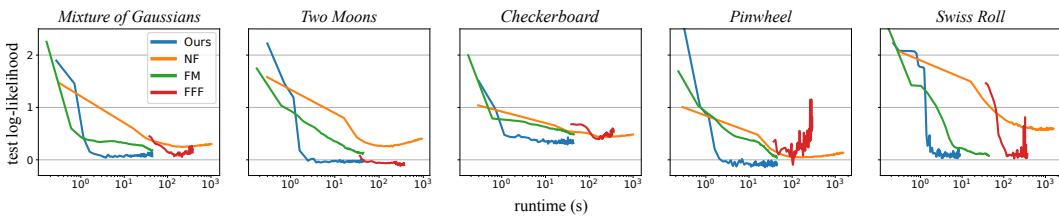


Figure 7: Test log-likelihood of Marginal Flow and other models during training with 1000 points.

Reverse KL divergence training We additionally show that Marginal Flow can be trained in the reverse KL direction as well, namely without observations and only guided by the (unnormalized) density of the target distribution. This type of training requires an efficient computation of the exact log-likelihood, which is possible only for Normalizing Flow. Some attempts to make Flow Matching work in this direction have been made but remain limited (Tong et al., 2024). We tried with a score-matching objective but it led to unstable training. We trained Marginal Flow and Normalizing Flow with a reverse KL objective and compared the learned densities in terms of test KL. Marginal Flow achieved superior or comparable performance with Normalizing Flow, see Figure 8 (left), and showed better density reconstruction quality, see Figure 8 (right). Note that we do not use the *Checkerboard* dataset because its density is constant and has gradients equal to zero everywhere.

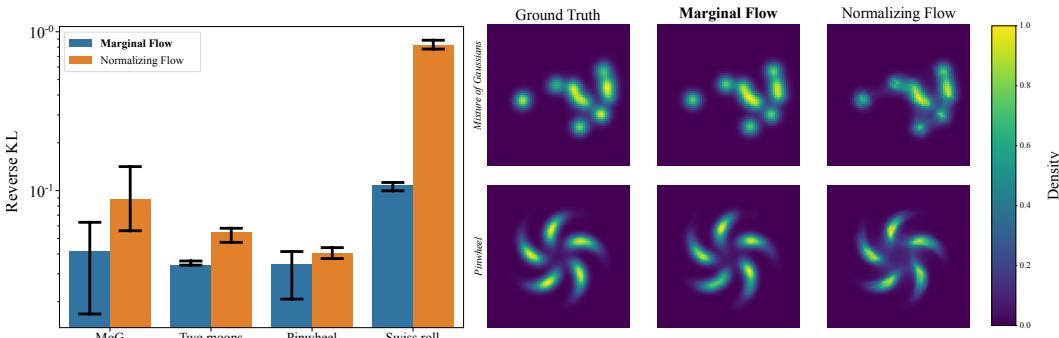


Figure 8: Marginal Flow vs Normalizing Flows trained by reverse KL divergence on synthetic distributions. During training only the probability density is queried (no observations). (left) Test reverse KL with 95% confidence intervals error bars. (right) comparison of learned density distributions.

4.2 SIMULATION-BASED INFERENCE

As argued in Section 2.3, with the proposed framework we can easily learn conditional distributions as well. We showcase Marginal Flow on complex conditional distributions by training it on the Simulation-Based Inference (SBI) benchmark (Lueckmann et al., 2021). SBI data consists of tuples $\{\mathbf{x}_i, \theta_i\}_i$, where θ_i are parameters sampled from a prior $p(\theta)$ and \mathbf{x}_i are samples from a simulator $p(\mathbf{x}|\theta_i)$ parameterized by θ_i . Given tuples of observations $\{\mathbf{x}_i, \theta_i\}_i$, the goal is to learn the posterior $p(\theta|\mathbf{x}_j)$ of a new \mathbf{x}_j . Evaluation is performed in terms of Classifier 2-Sample Tests (C2ST) on a held-out test set. Due to space constraints we report results in the Appendix in Figure 14. Marginal Flow achieves state-of-the-art results and proves to be particularly effective in low data regimes.

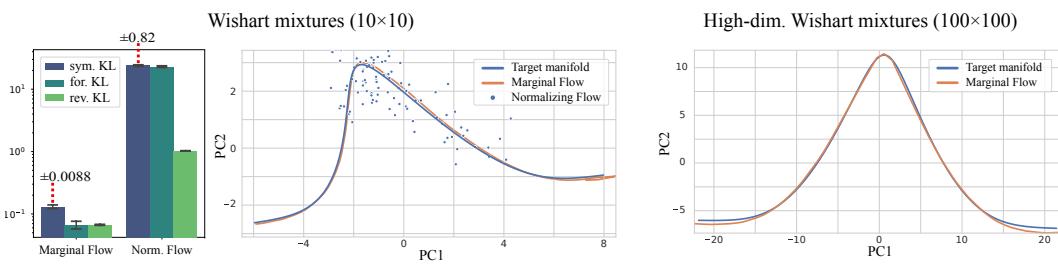
378
379

4.3 WISHART MIXTURE DISTRIBUTION

380 One interesting aspect of Marginal Flow is that the parametric family $q(\mathbf{x}|\mathbf{w})$ in Eq. 2 can be ad-
 381 justed depending on the application and on the noise assumption. Consider the case of learning a
 382 Wishart mixture distributions (Haff et al., 2011; Cappozzo & Casa, 2025): observations consist of
 383 sample covariances, which lie on the cone of positive-definite (p.d.) matrices. One design choice
 384 would be to use a Gaussian assumption in $q(\mathbf{x}|\mathbf{w})$ and then transform the samples into positive
 385 definite matrices through bijective layers as in Negri et al. (2023). Alternatively, one could directly
 386 choose $q(\mathbf{x}|\mathbf{w})$ to be Wishart distributions. We showcase this second option, and, in particular, we
 387 parametrize the scale matrices of Wishart via \mathbf{w}_i , in addition to a parametrized global ν . We consider
 388 a target distribution $t(\mathbf{x})$ where the generating parameters live on a 1D manifold:
 389

$$t(\mathbf{x}) = \mathcal{W}(\mathbf{x}; \nu, \Sigma(\lambda)) \quad \text{s.t.} \quad \Sigma(\lambda) \in \mathcal{M} \quad \forall \lambda \in [0, 1]. \quad (4)$$

390 We showcase training using both the reverse and forward KL divergence (log-likelihood). Our goal
 391 is to approximate $t(\mathbf{x})$ while reconstructing the manifold \mathcal{M} . We showcase two settings. (i) A low-
 392 dimensional setting with 10×10 matrices using the reverse KL and we compare to Normalizing
 393 Flows (NFs) parameterizing the Cholesky factor. (ii) A high-dimensional setting with 100×100
 394 matrices using the forward KL, which was computationally prohibitive for NFs. In Figure 9 we
 395 show test KL divergence in the low-dim setting and plot the manifold reconstruction using a PCA
 396 projection to 2D. Marginal Flow perfectly recovers the manifold in both training directions and
 397 approximates $t(\mathbf{x})$ better than NFs. For more details on the target manifold \mathcal{M} see Appendix A.4.2.
 398



407 Figure 9: (left) 10×10 Wishart mixtures ($d = 55$) on manifold trained via reverse KL. Test KL
 408 divergences in the bar plot show accurate fit with Marginal Flow and underfitting with NF. Unlike
 409 NF, we can also learn the manifold. (right) Reconstructed manifold for 100×100 Wishart mixtures
 410 ($d = 5050$) trained via forward KL (log-likelihood). NF cannot be trained in such a high-dim setting.
 411

4.4 MANIFOLDS IN IMAGE LATENT-SPACES

412 Most modern image generative models rely on non-trivial latent spaces, e.g. Rombach et al. (2022),
 413 which can still be relatively high-dimensional and show non-Euclidean behavior (Shao et al., 2018).
 414 It would then be relevant to traverse such latent spaces on a lower-dimensional manifold. Marginal
 415 Flow is well-suited for this task since it allows for learning a lower-dimensional manifold along-
 416 side the density. We showcase this on MNIST digits (LeCun et al., 1998) and the JAFFE face
 417 dataset (Lyons et al., 1998). The JAFFE dataset contains 214 face images of ten Japanese women
 418 mimicking certain emotions. Each image is associated with a score quantifying the emotions, e.g.
 419 “happiness” or “surprise”. Note that learning a manifold with such little data is very challenging.
 420

421 In both settings, we first train a VAE without conditional information to encode images into a latent
 422 space (20- and 10-dimensional, respectively). Then, we train a single Marginal Flow in the latent
 423 space to learn a low-dimensional manifold conditioned on the digit label (or emotion score). The
 424 exact loss function is reported in the Appendix in Eq. 8. In particular, we use a 1-dim uniform
 425 base distribution $p_{\text{base}} = \mathcal{U}([-1, 1])$. We learn conditional manifolds via the network $f_{\theta}(\mathbf{z}; c)$,
 426 with $\mathbf{z} \in [-1, 1]$ and c the class label (or scores). In Figure 10, we explore the 1-dim manifold
 427 conditioned on each label of MNIST. Results show similarities across digits in the learned manifold:
 428 some sections look approximately **bold**, **bold italic** and normal font, with smooth transitions in
 429 between them. For JAFFE, the manifold smoothly interpolates the different faces (horizontally) at
 430 fixed emotion levels, as shown in Figure 11. We observe disentanglement of faces and emotions, as
 431 faces tend to align within columns. Some inconsistencies are probably the result of the extremely
 432 low-data regime. For further visualizations, see the Appendix, Figure 15 and 16.

486 REPRODUCIBILITY
487

488 We made an effort to make every aspect of the model and of the experiments reproducible. In par-
489 ticular, as part of the submission we provide code with a PyTorch implementation of the model
490 and code for reproducing figures and experiments. Furthermore, in Appendix A.1 we discuss imple-
491 mentation details of Marginal Flow concerning sampling, log density evaluation and neural network
492 architecture. Finally, in Appendix A.3 we provide detailed description of the experiments conducted
493 including data pre-processing for real-world experiments.

494
495 REFERENCES
496

497 Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
498 Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
499 prediction of biomolecular interactions with alphafold 3. *Nature*, 630(8016):493–500, 2024.

500 Justin Alsing, Benjamin Wandelt, and Stephen Feeney. Massive optimal data compression and
501 density estimation for scalable, likelihood-free inference in cosmology. *Monthly Notices of the*
502 *Royal Astronomical Society*, 477(3):2874–2885, 03 2018. ISSN 0035-8711.

503 Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik Jacobsen.
504 Invertible residual networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceed-
505 ings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of*
506 *Machine Learning Research*, pp. 573–582. PMLR, 09–15 Jun 2019.

507 Sam Bond-Taylor, Adam Leach, Yang Long, and Chris Willcocks. Deep generative modelling: A
508 comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models.
509 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PP, 09 2021.

510 Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density estima-
511 tion. *Advances in neural information processing systems*, 33:442–453, 2020.

512 Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. *arXiv
513 preprint arXiv:1509.00519*, 2015.

514 Andrea Cappozzo and Alessandro Casa. Model-based clustering for covariance matrices via penal-
515 ized wishart mixture models. *Computational Statistics & Data Analysis*, pp. 108232, 2025.

516 Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In *The Twelfth Inter-
517 national Conference on Learning Representations*, 2024.

518 Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
519 *Proceedings of the National Academy of Sciences*, 117(48):30055–30062, 2020. doi: 10.1073/
520 pnas.1912789117.

521 Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, and Ullrich Köthe. Free-
522 form flows: Make any architecture a normalizing flow. In *Proceedings of The 27th Interna-
523 tional Conference on Artificial Intelligence and Statistics*, Proceedings of Machine Learning Research,
524 pp. 2197–2205. PMLR, 02–04 May 2024.

525 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
526 *Journal of the American Mathematical Society*, 29(4):983–1049, 2016.

527 Mevlana C. Gemici, Danilo Rezende, and Shakir Mohamed. Normalizing flows on riemannian
528 manifolds, 2016.

529 Pedro J Goncalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Ocal,
530 Giacomo Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels,
531 David S Greenberg, and Jakob H Macke. Training deep neural density estimators to identify
532 mechanistic models of neural dynamics. *eLife*, pp. e56261, sep 2020. ISSN 2050-084X.

533 Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
534 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information
535 processing systems*, 27, 2014.

540 Leonard R Haff, Peter T Kim, J-Y Koo, and D St P Richards. Minimax estimation for mixtures of
 541 wishart distributions. *The Annals of Statistics*, 2011.

542

543 Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging inference
 544 networks and posterior collapse in variational autoencoders. In *ICLR*, 2019.

545

546 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 547 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 548 770–778, 2016.

549

550 L Jeff Hong and Sandeep Juneja. Estimating the mean of a non-linear function of conditional
 551 expectation. In *Proceedings of the 2009 Winter Simulation Conference (WSC)*, pp. 1223–1236.
 552 IEEE, 2009.

553

554 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 555 reducing internal covariate shift. In *International conference on machine learning*, pp. 448–456.
 556 pmlr, 2015.

557

558 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 559 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 560 recognition*, pp. 4401–4410, 2019.

561

562 AmirEhsan Khorashadizadeh, Konik Kothari, Leonardo Salsi, Ali Aghababaei Harandi, Maarten
 563 de Hoop, and Ivan Dokmanić. Conditional injective flows for bayesian imaging. *IEEE Transac-
 564 tions on Computational Imaging*, 9:224–237, 2023.

565

566 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 2014.

567

568 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. *Science*, 220
 569 (4598):671–680, 1983. doi: 10.1126/science.220.4598.671.

570

571 Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduction and
 572 review of current methods. *IEEE transactions on pattern analysis and machine intelligence*, 43
 573 (11):3964–3979, 2020.

574

575 Youssef Kossale, Mohammed Airaj, and Aziz Darouichi. Mode collapse in generative adversarial
 576 networks: An overview. In *ICOA*, pp. 1–6, 2022. doi: 10.1109/ICOA55659.2022.9934291.

577

578 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 579 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

580

581 Huadong Liao and Jiawei He. Jacobian determinant of normalizing flows, 2021.

582

583 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 584 matching for generative modeling. In *The Eleventh International Conference on Learning Repre-
 585 sentations*, 2023.

586

587 Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
 588 Mark D Plumley. AudioLDM: Text-to-audio generation with latent diffusion models. In *Pro-
 589 ceedings of the 40th International Conference on Machine Learning*, Proceedings of Machine
 590 Learning Research, pp. 21450–21474. PMLR, 23–29 Jul 2023.

591

592 Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Bench-
 593 marking simulation-based inference. In *Proceedings of The 24th International Conference on
 594 Artificial Intelligence and Statistics*, Proceedings of Machine Learning Research, pp. 343–351.
 595 PMLR, 13–15 Apr 2021.

596

597 M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba. Coding facial expressions with gabor wavelets.
 598 In *Proceedings Third IEEE International Conference on Automatic Face and Gesture Recog-
 599 nition*, pp. 200–205, 1998.

600

601 Charles A Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. *Journal of Machine
 602 Learning Research*, 7(12), 2006.

594 Marcello Massimo Negri, Fabricio Arend Torres, and Volker Roth. Conditional matrix flows for
 595 gaussian graphical models. *Advances in Neural Information Processing Systems*, 36:25095–
 596 25111, 2023.

597 Marcello Massimo Negri, Jonathan Aellen, and Volker Roth. Injective flows for star-like manifolds.
 598 In *The Thirteenth International Conference on Learning Representations*, 2025.

600 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lak-
 601 shminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of Machine
 602 Learning Research*, 22(57):1–64, 2021.

603 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 604 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
 605 ward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Bowen Tang,
 606 Yunjing Li, Michael Fang, Jing Bai, and Soumith Chintala. Pytorch: An imperative style, high-
 607 performance deep learning library. In *Advances in Neural Information Processing Systems* 32,
 608 pp. 8024–8035. Curran Associates, Inc., 2019.

609 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 610 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 611 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 612 12:2825–2830, 2011.

613 Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In *Inter-
 614 national conference on machine learning*, pp. 1530–1538. PMLR, 2015.

615 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
 616 approximate inference in deep generative models. In *Proceedings of the 31st International Con-
 617 ference on Machine Learning*, volume 32 of *Proceedings of Machine Learning Research*, pp.
 618 1278–1286. PMLR, 2014.

619 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 620 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 621 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

622 Hang Shao, Abhishek Kumar, and P Thomas Fletcher. The riemannian geometry of deep generative
 623 models. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
 624 Workshops*, pp. 315–323, 2018.

625 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 626 Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
 627 Text-to-video generation without text-video data. In *The Eleventh International Conference on
 628 Learning Representations*, 2023.

629 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 630 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 631 ing*, pp. 2256–2265. pmlr, 2015.

632 Yang Song and Diederik P. Kingma. How to train your energy-based models, 2021.

633 Kevin Swersky, Marc’Aurelio Ranzato, David Buchman, Nando D Freitas, and Benjamin M Mar-
 634 lin. On autoencoders and score matching for energy based models. In *Proceedings of the 28th
 635 international conference on machine learning (ICML-11)*, pp. 1201–1208, 2011.

636 Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
 637 Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
 638 high frequency functions in low dimensional domains. *Advances in neural information processing
 639 systems*, 33:7537–7547, 2020.

640 Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
 641 Huguet, Guy Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow
 642 matching, 2024.

643 Xiangxiang Zeng, Fei Wang, Yuan Luo, Seung-gu Kang, Jian Tang, Felice C Lightstone, Evandro F
 644 Fang, Wendy Cornell, Ruth Nussinov, and Feixiong Cheng. Deep generative molecular design
 645 reshapes drug discovery. *Cell Reports Medicine*, 3(12), 2022.

648 **A APPENDIX**649 **A.1 IMPLEMENTATION DETAILS**650 We provide our implementation of Marginal Flow in PyTorch (Paszke et al., 2019) as part of the
651 supplementary material. Here we discuss the main high-level aspects of such an implementation.652 **Density evaluation and sampling.** Once we sample the parameters \mathbf{w} , Marginal Flow consists
653 of a Mixture of distributions $q(\mathbf{x}|\mathbf{w})$ parameterized by the sampled \mathbf{w} . The parameters \mathbf{w} are then
654 resampled each time we evaluate the density $q_\theta(\mathbf{x})$ or sample from $q_\theta(\mathbf{x})$, with $q_\theta(\mathbf{x})$ being defined
655 in Eq. 2. Within PyTorch one can define the parametric family $q(\mathbf{x}|\mathbf{w})$ by simply choosing a
656 distribution of choice from `torch.distributions`. For all distributions, PyTorch provides
657 efficient evaluation of the density and efficient sampling, which can be automatically extended to
658 mixtures of distributions. In most of our experiments we used a Gaussian family, i.e. $q(\mathbf{x}|\mathbf{w}) =$
659 $\mathcal{N}(\mathbf{x}|\mu = \mathbf{w}, \Sigma = \text{diag}(\sigma_1, \dots, \sigma_d))$. In such a case, one can evaluate the log-density even more
660 efficiently and does not need to rely on `torch.distributions`. In particular, we need to
661 evaluate N points over a mixture with N_c components. This requires computing the distance of
662 each point to each mixture component and then summing the contributions. With `torch.cdist`
663 this operation can be done extremely efficiently.664 **Neural network architecture.** A key aspect of the proposed Marginal Flow is that it leaves complete
665 freedom in the choice of the neural network architecture. In particular, for all our experiments,
666 it was sufficient to we use very simple MLP architectures with 3 to 5 layers and 128 to 256 hidden
667 units. We also employed skip connections. The specific settings used in each experiment can
668 be found in the code provided in the supplementary. For conditional experiments we used a slight
669 modification of the mentioned MLP structure. In particular, we simply appended the conditioning
670 variable(s) to the input. In order to extract high-frequency signals from the (low-dimensional)
671 conditioning variables, we used Fourier features (Tancik et al., 2020)672 **A.2 OBJECTIVE FUNCTIONS**673 Marginal Flow provides efficient exact density evaluation and efficient sampling. Consequently, it
674 can be trained efficiently using most objective functions. Among the most popular ones are the
675 forward KL divergence (log-likelihood) and the reverse KL divergence. The former is the most
676 commonly used one in deep generative models and is employed to learn the distribution of some
677 given data $\mathcal{D} = \{\mathbf{x}_j\}_{j=1}^N$. The latter is most commonly used when only an unnormalized target
678 distribution $t(\mathbf{x})$ is known. Below we report the definitions of both objectives and their analytical
679 expression when Marginal Flow is used, i.e. Eq. 2.680 **Forward KL (log-likelihood)** Assume we are given a dataset of observations $\mathcal{D} = \{\mathbf{x}_j\}_{j=1}^N$
681 and the goal is to estimate the unknown distribution that generated the dataset. The underlying
682 assumption is $\mathbf{x}_j \sim p(\mathbf{x})$, with $p(\mathbf{x})$ being unknown. The most common approach is to minimize
683 the forward KL divergence, which is proportional to the negative log-likelihood:

684
$$\mathcal{L}(\theta) = \text{KL}(p(\mathbf{x}) \parallel q_\theta(\mathbf{x})) = \int p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q_\theta(\mathbf{x})} d\mathbf{x} = -\mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} [\log q_\theta(\mathbf{x})] + \text{const.} \quad (5)$$

685 Given the data points $\{\mathbf{x}_j\}_{j=1}^N$, we can approximate the above expression with the following Monte
686 Carlo estimate:

687
$$\mathcal{L}(\theta) \approx -\frac{1}{N} \sum_{j=1}^N \log q_\theta(\mathbf{x}_j) = -\frac{1}{N} \sum_{j=1}^N \log \frac{1}{N_c} \sum_{i=1}^{N_c} q(\mathbf{x}_j | \mathbf{w}_i) \quad \text{with } \mathbf{w}_i \sim q_\theta(\mathbf{w}). \quad (6)$$

688 In the last equality we used Marginal Flow as variational family $q_\theta(\mathbf{x})$, i.e. Eq. 2. Recall that $q_\theta(\mathbf{w})$
689 is not modeled explicitly. Instead, we construct samples \mathbf{w}_i by transforming samples from a base
690 distribution $p_{\text{base}}(\mathbf{z})$ with a learnable function $f_\theta : \mathbf{z} \in \mathbb{R}^m \mapsto \mathbf{w} \in \mathbb{R}^d$:

691
$$\mathbf{w}_i := f_\theta(\mathbf{z}_i) \quad \text{with} \quad \mathbf{z}_i \sim p_{\text{base}}(\mathbf{z}). \quad (7)$$

692 When using a conditional model, the modeled density depends on the conditioning parameter as
693 well: $q_\theta(\mathbf{x}) \rightarrow q_\theta(\mathbf{x}; \mathbf{c})$. One straightforward way to model conditional density with Marginal

702 Flow is to condition the neural network on \mathbf{c} , i.e. $f_\theta(\mathbf{z}) \rightarrow f_\theta(\mathbf{z}; \mathbf{c})$ or, more explicitly, $f_{\theta(\mathbf{c})}(\mathbf{z})$.
 703 Assume we are given pairs of observations and conditioning information $\{\mathbf{x}_j, \mathbf{c}_j\}_{j=1}^N$. Then, the
 704 loss function in Eq. 6 reads as:
 705

$$706 \quad \mathcal{L}(\theta) \approx -\frac{1}{N} \sum_{j=1}^N \log q_\theta(\mathbf{x}_j; \mathbf{c}_j) = -\frac{1}{N} \sum_{j=1}^N \log \frac{1}{N_c} \sum_{i=1}^{N_c} q(\mathbf{x}_j | \mathbf{w}_{\mathbf{c}_j, i}) \quad (8)$$

709 \quad \text{where } \mathbf{w}_{\mathbf{c}_j, i} = f_\theta(\mathbf{z}_i; \mathbf{c}_j) \quad \text{with } \mathbf{z}_i \sim p_{\text{base}}(\mathbf{z}) .

711 **Reverse KL** In variational inference settings we are commonly given an unnormalized target dis-
 712 tribution $t(\mathbf{x}) \propto p(\mathbf{x})$ and we would like to (i) approximate it and (ii) draw samples from it. This is
 713 often the case in Bayesian inference: given a likelihood $p(\mathcal{D}|\Theta)$ and a prior $p(\Theta)$, we would like to
 714 perform variational inference on the posterior $p(\Theta|\mathcal{D}) \propto p(\mathcal{D}|\Theta)p(\Theta)$, which we can evaluate only
 715 up to a constant. We now detail how to train the proposed model to approximate the target distribu-
 716 tion $p(\mathbf{x})$, which corresponds to $p(\Theta|\mathcal{D})$ in the previous Bayesian posterior inference example. The
 717 most common distance measure in variational inference is the reverse Kullback-Leibler divergence,
 718 which is defined as

$$719 \quad \mathcal{L}(\theta) = \text{KL}(q_\theta(\mathbf{x}) || p(\mathbf{x})) = \int q_\theta(\mathbf{x}) \log \frac{q_\theta(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x} = \mathbb{E}_{\mathbf{x} \sim q_\theta(\mathbf{x})} \left[\log \frac{q_\theta(\mathbf{x})}{p(\mathbf{x})} \right] . \quad (9)$$

721 Usually, we do not have access to the normalized $p(\mathbf{x})$ but only to some unnormalized target $t(\mathbf{x})$,
 722 i.e. $p(\mathbf{x}) = t(\mathbf{x})/\mathcal{N}$. However, the reverse KL divergences are proportional up to a constant, which
 723 is precisely the normalization constant \mathcal{N} :

$$724 \quad \text{KL}(q_\theta(\mathbf{x}) || p(\mathbf{x})) = \text{KL}(q_\theta(\mathbf{x}) || t(\mathbf{x})) + \log \mathcal{N} . \quad (10)$$

726 In practice, the reverse KL divergence is approximated in Monte Carlo fashion by drawing N sam-
 727 ples from the variational distribution $\{\mathbf{x}_j\}_{j=1}^N$ with $\mathbf{x}_j \sim q_\theta(\mathbf{x})$, which gives the following objective:

$$729 \quad \mathcal{L}(\theta) \approx \frac{1}{N} \sum_{j=1}^N \log \frac{q_\theta(\mathbf{x}_j)}{t(\mathbf{x}_j)} = \frac{1}{N} \sum_{j=1}^N \log \frac{\frac{1}{N_c} \sum_{i=1}^{N_c} q(\mathbf{x}_j | \mathbf{w}_i)}{t(\mathbf{x}_j)} \quad \text{with } \mathbf{w}_i \sim q_\theta(\mathbf{w}) . \quad (11)$$

732 In the last equality we plugged in the proposed model in Eq. 2 as variational family $q_\theta(\mathbf{x})$. Note
 733 that, as opposed to the forward KL divergence setting (log-likelihood), in the reverse KL setting we
 734 need to draw samples from the model $\mathbf{x}_j \sim q_\theta(\mathbf{x})$.

736 A.3 EXPERIMENTAL DETAILS

738 A.3.1 RUNTIME COMPARISON

739 In Figure 3 we have shown a runtime comparison for the two main operations of density estimation
 740 models: sampling and evaluation of the log-probability. In particular, we measure the runtime for
 741 generating 100 samples and for evaluating the log-probability of 100 points. We repeat this oper-
 742 ation 10 times per dimension and report the average and 95% confidence intervals. We compare
 743 against competing models: Marginal Flow, Flow Matching, Normalizing Flow and Free-form Flow.
 744 Marginal Flow and Normalizing Flow naturally provide access to the exact log-likelihood, while
 745 Flow Matching does not require it during training, and Free-form Flow uses an approximation. In
 746 both cases computing the exact density is computationally expensive. In order to make a fair com-
 747 parison, we defined all models to have a similar (and small) number of trainable parameters, around
 748 100k. In particular, for all models (except Normalizing Flows) we employed a simple MLP with
 749 3 layers and 128 neurons each. For Normalizing Flow, which requires bijections, we use 3 cou-
 750 pling layers with splines. Among the many choices of bijective layers, we chose the most efficient
 751 ones in terms of runtime, even though such layers are sometimes unstable during training. We ran
 752 all runtime experiments on the same consumer-grade A100 GPU with 40 GB of memory. Results
 753 show that Marginal Flow is orders of magnitude faster than competing models. In the common
 754 log-likelihood training setting, this is relevant both for training (where one needs to repeatedly eval-
 755 uate the log density) and for inference (in order to generate new samples). Furthermore, results in
 Figure 7 suggest that Marginal Flow also has better convergence rates.

756 A.4 SYNTHETIC EXPERIMENTS
757

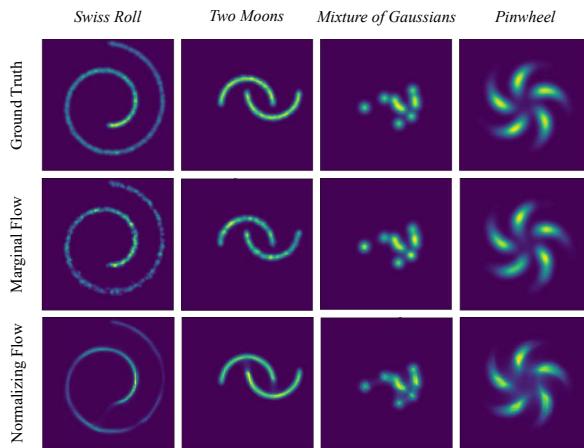
758 In order to make the comparison among models fair, we made sure to use a comparable amount of
759 parameters. In particular, in all models except Normalizing Flows we used an MLP with 5 layers
760 and 256 neurons. For Normalizing Flow, we used 5 layers of invertible Resnet (Behrmann et al.,
761 2019), which are more expressive (but more computationally expensive) than coupling layers with
762 splines.

763 **Forward KL divergence training (log-likelihood).** In the log-likelihood settings, we trained for
764 5000 epochs and selected the best model on the validation set. In synthetic datasets we could always
765 use full-batch training. We trained over different numbers of data points, i.e. $\{100, 200, 500,$
766 $1000\}$, and set N_c to half of the number of training points in each setting. We did not perform any
767 hyperparameter tuning on Marginal Flow. We report additional results with log-likelihood training
768 in Figure 13.

769 **Reverse KL divergence training.** In the reverse KL divergence setting we do not have observa-
770 tions, and we need to sample from the modeled densities. This training setting is only viable for
771 Marginal Flow and Normalizing Flow. In both cases we drew 10'000 samples per iteration. Fur-
772 thermore, during training we used simulated annealing (Kirkpatrick et al., 1983) to explore the full
773 support of the target distribution. In particular, we introduce an artificial temperature T_i for the
774 target distribution in Eq. 10:

$$775 \quad p_i^*(\mathbf{x}) = p(\mathbf{x})^{1/T_i}, \quad (12)$$

776 where T_i is the temperature at the i -th training iteration. The temperature T_i is slowly annealed
777 during training from the initial $T_0 = 5$ to $T_N = 1$. Note that $p_i^*(\mathbf{x}) = p(\mathbf{x})$ for $T_i = 1$, which is
778 the true target. If the initial temperature is high enough, p_i^* will likely be very flat, allowing for a
779 better exploration of the support of the distribution. In order to account for the slow annealing of
780 the temperature, we trained for 10'000 iterations. We report a visualization of the density learned
781 by Marginal Flow and Normalizing Flow for all studied densities in Figure 12. Note that we do not
782 train the models on the *Checkerboard* dataset because the true density is constant everywhere and
783 the gradient is thus zero everywhere.



800 Figure 12: Marginal Flow is trained by reverse KL divergence on 4 synthetic datasets. We evaluate
801 the learned density and compare it with Normalizing Flows.

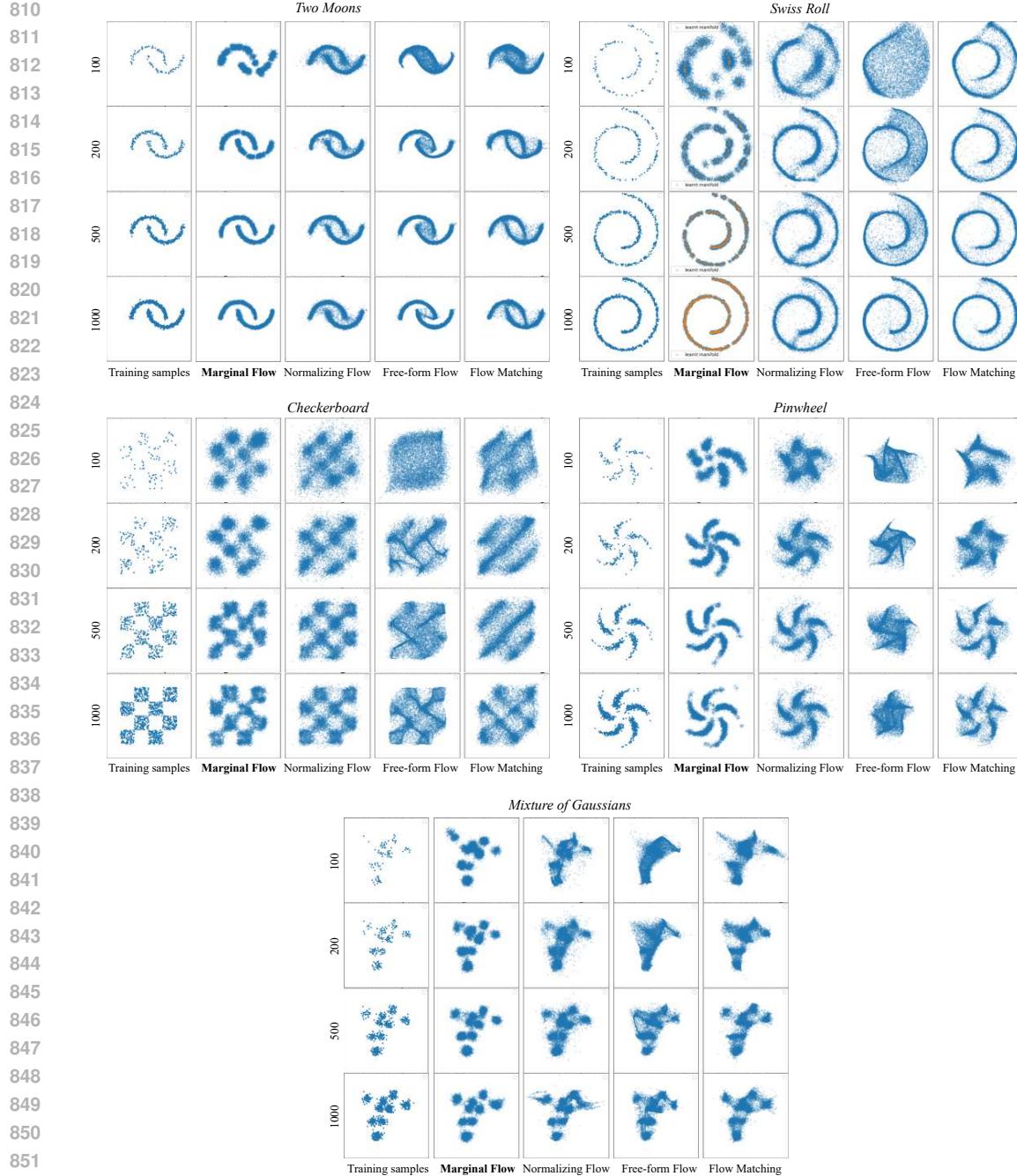


Figure 13: Marginal Flow is trained by forward KL divergence (log-likelihood) on 5 synthetic datasets with increasing number of training points $\{100, 200, 500, 1000\}$. We compare Marginal Flow with Normalizing Flow, Free-form Flow, Flow Matching. Results show that Marginal Flow learns the correct density with fewer samples compared to competing models

A.4.1 SBI BENCHMARK

In the Simulation-Based Inference benchmark, each setting is provided with three sets of observations with 1000, 10'000, 100'000 points. For each dataset we train Marginal Flow for 2000, 1000 and 250 epochs, respectively. In all cases we trained a Marginal Flow with an MLP with 4 layers and 256 neurons each and $N_c = 2048$. We selected the best model on the validation set and did not perform any other hyperparameter tuning.

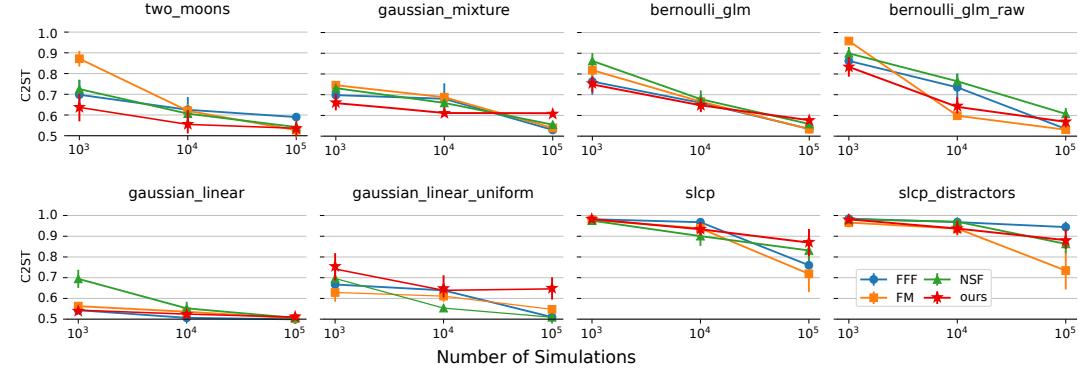


Figure 14: Simulation-based inference benchmark: we show average and standard deviation over 10 different test observations. We compare our method against Free-form Flows (FFF), Flow Matching (FM), and Normalizing Flows (NSF). Benchmark results are taken from Draxler et al. (2024).

A.4.2 WISHART MIXTURE EXPERIMENT

Bijection mapping to p.d. matrices. Marginal Flow and Normalizing Flow employ the same mapping to positive definite (p.d.) matrices. A vector \mathbf{x} is reshaped to a lower triangular matrix L . Afterwards, the diagonals are transformed to be positive, leading to L^+ . Finally, if the full covariance matrix is required, then $L^+(L^+)^T$ is computed. The change in Jacobian determinant of each step can be computed efficiently (Negri et al., 2023).

Target manifold. We show again the target distribution from Eq. 4 for convenience:

$$t(\mathbf{x}) = \mathcal{W}(\mathbf{x}; \nu, \Sigma(\lambda)) \quad \text{s.t.} \quad \Sigma(\lambda) \in \mathcal{M} \quad \forall \lambda \in [0, 1]. \quad (13)$$

The manifold \mathcal{M} is a straightforward interpolation between covariance matrices with a random structure. Given the covariance matrices $\Sigma_1, \Sigma_2, \Sigma_3 \sim \mathcal{W}(\tilde{\nu}, I)$, the manifold is defined as:

$$\mathcal{M} = \left\{ \Sigma(\lambda) \mid \lambda \in [0, 1] \right\} \quad \text{with} \quad \Sigma(\lambda) = \frac{\lambda \Sigma_1 + (1 - \lambda) \Sigma_2 + \gamma(\lambda) \Sigma_3}{1 + \gamma(\lambda)}, \quad (14)$$

where $\gamma(\lambda) = \frac{4}{5} \exp(-(6\lambda - 3)^2)$.

For more information on the training setup, we refer the readers to the code.

A.4.3 MANIFOLDS IN IMAGE LATENT SPACES

MNIST We use the standard implementation and data provided by scikit-learn (Pedregosa et al., 2011) with standard train and validation split. A convolutional residual (He et al., 2016) variational autoencoder (Rezende et al., 2014; Kingma & Welling, 2014) architecture with batch norm (Ioffe & Szegedy, 2015) compresses the pixel space into a 20-dimensional latent space. It is trained for approximately 7000 epochs. The resulting VAE gives – to the human eye – perfect reconstructions; one might consider 20 dimensions even too many to describe the space that MNIST digits live in. As a result, it is the Marginal Flow’s task to find conditional lower-dimensional manifolds that describe the 20-dimensional latent space well. In our experiments, we fit both a 1- (Figure 10) and a 2-dimensional manifold (Figure 15) with a uniform base distribution $p_{\text{base}} = \mathcal{U}([-1, 1])^d$ with $d = \{1, 2\}$. The label information is one-hot encoded. We train Marginal Flow with $N_c 0256$ for 300 epochs. The neural network $f_\theta(\mathbf{z})$ has 3 layers with 256 neurons each.

JAFFE We use 64×64 px crops to the face area. We split the data into 80% training and 20% validation set. The convolutional residual variational autoencoder compresses the images into a 10-dimensional space. After training for about 9000 epochs, there is no visible reconstruction error. The values for happiness, sadness, surprise, anger, disgust and fear are continuous float values and are provided to the Marginal Flow as conditioning parameter c . For a neutral facial expression, we set all values to the minimum value found in the dataset (around 1.1). For a medium level of an emotion, we set that value to 3.0 while leaving all other emotions at minimum value. The same goes

918	0000000000	1111111111	222222222222	333333333333	4444444444
919	0000000000	1111111111	222222222222	333333333333	4444444444
920	0000000000	1111111111	222222222222	333333333333	4444444444
921	0000000000	1111111111	222222222222	333333333333	4444444444
922	0000000000	1111111111	222222222222	333333333333	4444444444
923	0000000000	1111111111	222222222222	333333333333	4444444444
924	0000000000	1111111111	222222222222	333333333333	4444444444
925	5555555555	6666666666	7777777777	8888888888	9999999999
926	5555555555	6666666666	7777777777	8888888888	9999999999
927	5555555555	6666666666	7777777777	8888888888	9999999999
928	5555555555	6666666666	7777777777	8888888888	9999999999
929	5555555555	6666666666	7777777777	8888888888	9999999999
930	5555555555	6666666666	7777777777	8888888888	9999999999
931	5555555555	6666666666	7777777777	8888888888	9999999999

Figure 15: Marginal Flow trained with 2-dim base distribution on 20-dim MNIST latent space. We show the learned 2-dim manifold conditioned on the class label.

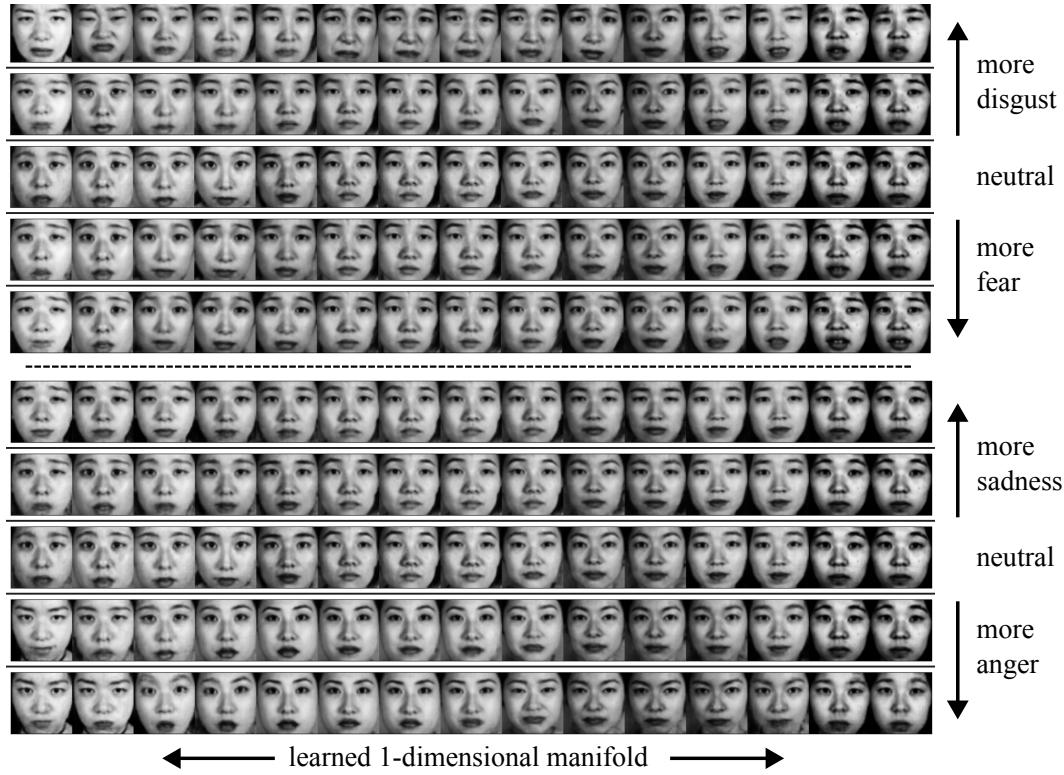


Figure 16: The JAFFE dataset provides images and labels for the emotions happiness, and surprise (see main text), and further sadness, anger, disgust, and fear. Here, we show results images for generating images with conditioning for the latter four emotions.

for a high level of that emotion with the value being 4.8, the maximum found in the dataset. We train the Marginal Flow with $N_c = 128$ for 300 epochs. The neural network $f_\theta(z)$ has 3 layers with 256 neurons each.

967
968
969
970
971

972

973

974

A.5 VARIANCE AND BIAS OF KL-ESTIMATOR

975

976

We consider the marginal in Eq. 1 with the parametrization proposed for our model in Eq. 2, which we rewrite with an explicit dependency on \mathbf{z} :

978

979

980

with $\mathbf{z} \in \mathbb{R}^m$, $\mathbf{x} \in \mathbb{R}^d$ and $m < d$. We assume the data to be generated from a lower-dimensional manifold (of intrinsic dimension m). For illustrative purposes, we consider the reverse KL divergence:

984

985

$$\mathcal{L}(\theta) = \text{KL}(q_\theta \parallel p) = \mathbb{E}_{\mathbf{x} \sim q_\theta} [\log \mathbb{E}_{\mathbf{z} \sim p_{\text{base}}} [q(\mathbf{x} \mid f_\theta(\mathbf{z}))] - \log p(\mathbf{x})]. \quad (16)$$

986

987

988

In practice, we approximate both the expectation over \mathbf{x} and the inner expectation defining $q_\theta(\mathbf{x})$ via Monte Carlo. Given i.i.d. outer samples $\mathbf{x}_1, \dots, \mathbf{x}_N \sim q_\theta$ and i.i.d. inner samples $\mathbf{z}_1, \dots, \mathbf{z}_{N_c} \sim p_{\text{base}}$, we form the nested Monte Carlo approximation:

989

990

991

992

$$\widehat{\mathcal{L}}_{N,N_c}(\theta) := \frac{1}{N} \sum_{j=1}^N \log \frac{\widehat{q}_{\theta,N_c}(\mathbf{x}_j)}{p(\mathbf{x}_j)} \quad \text{with} \quad \widehat{q}_{\theta,N_c}(\mathbf{x}) := \frac{1}{N_c} \sum_{i=1}^{N_c} q(\mathbf{x} \mid f_\theta(\mathbf{z}_i)). \quad (17)$$

993

Theorem A.1 (Hong & Juneja (2009) Adapted). *Consider a generic nested expectation $I = \mathbb{E}_{\mathbf{x}}[h(\mu(\mathbf{x}))]$ with $\mu(\mathbf{x}) = \mathbb{E}_{\mathbf{z}}[y(\mathbf{x}, \mathbf{z}) \mid \mathbf{x}]$, and the nested Monte Carlo estimator*

994

995

996

997

998

$$\widehat{I}_{N,N_c} = \frac{1}{N} \sum_{j=1}^N h(\widehat{\mu}_{N_c}(\mathbf{x}_j)), \quad \widehat{\mu}_{N_c}(\mathbf{x}_j) = \frac{1}{N_c} \sum_{i=1}^{N_c} y(\mathbf{x}_j, \mathbf{z}_i),$$

999

1000

where \mathbf{x}_j are i.i.d. outer samples and \mathbf{z}_i are i.i.d. inner samples. If $h(\cdot)$ is three times differentiable and the inner estimator is sufficiently regular, then:

1001

1002

1003

1004

1005

1006

1007

$$\text{Bias}(\widehat{I}_{N,N_c}) = \frac{1}{2N_c} \mathbb{E}_{\mathbf{x}} [h''(\mu(\mathbf{x})) \text{Var}_{\mathbf{z}}(y(\mathbf{x}, \mathbf{z}) \mid \mathbf{x})] + \mathcal{O}\left(\frac{1}{N_c^2}\right), \quad (18)$$

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

Lemma A.2. *The Monte Carlo estimate of the KL divergence $\widehat{\mathcal{L}}_{N,N_c}(\theta)$ is characterized by:*

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1026
 1027 **Theorem A.3** (Dimensionality Dependence). *Under Assumptions 1, 2, and 3, the bias and the*
 1028 *variance inflation due to the nested estimator depend exclusively on the intrinsic dimension m and*
 1029 *are independent of the ambient dimension d . While the intrinsic data variance V_{data} scales linearly*
 1030 *with d , the Monte Carlo penalty term does not. Specifically, assuming for tractability that the latent*
 1031 *posterior is centered at the prior mean ($\mathbf{z}^* = 0$), we have:*

$$\text{Bias}(\widehat{\mathcal{L}}_{N,N_c}) = -\frac{\gamma}{2N_c} + \mathcal{O}\left(\frac{1}{N_c^2}\right), \quad (22)$$

$$\text{Var}(\widehat{\mathcal{L}}_{N,N_c}) = \frac{V_{\text{data}}}{N} + \frac{\gamma}{NN_c} + \mathcal{O}\left(\frac{1}{NN_c^2}\right), \quad (23)$$

1036 where $\gamma = \left(\frac{(1+\sigma^{-2})^2}{1+2\sigma^{-2}}\right)^{m/2} - 1$ is a constant depending only on m and σ .
 1037

1039 *Proof.* We analyze the Squared Coefficient of Variation, defined as $\text{CV}^2 = \frac{\mathbb{E}_{\mathbf{z}}[L(\mathbf{z})^2]}{(\mathbb{E}_{\mathbf{z}}[L(\mathbf{z})])^2} - 1$, where
 1040 $L(\mathbf{z}) = q(\mathbf{x} \mid f_{\theta}(\mathbf{z}))$ is the conditional likelihood. Using Assumptions 2 and 3, and the property
 1041 $J^{\top} J = I_m$, the likelihood factorizes into a component orthogonal to the manifold and a component
 1042 parallel to it:

$$L(\mathbf{z}) = \underbrace{\frac{e^{-\|\mathbf{x}_{\perp}\|^2/2\sigma^2}}{(2\pi\sigma^2)^{d/2}}}_{C_{\text{orth}}(\mathbf{x}_{\perp}, d)} \cdot \underbrace{e^{-\|\mathbf{z}-\mathbf{z}^*\|^2/2\sigma^2}}_{K_{\text{par}}(\mathbf{z}, \mathbf{z}^*)}. \quad (24)$$

1043 The term C_{orth} encapsulates all dependencies on the ambient dimension d (via the normalization
 1044 constant) and the reconstruction error $\|\mathbf{x}_{\perp}\|$. Since C_{orth} is constant with respect to \mathbf{z} , it cancels out
 1045 in the ratio of expectations:

$$\frac{\mathbb{E}_{\mathbf{z}}[L(\mathbf{z})^2]}{(\mathbb{E}_{\mathbf{z}}[L(\mathbf{z})])^2} = \frac{C_{\text{orth}}^2 \mathbb{E}_{\mathbf{z}}[K_{\text{par}}(\mathbf{z}, \mathbf{z}^*)^2]}{C_{\text{orth}}^2 (\mathbb{E}_{\mathbf{z}}[K_{\text{par}}(\mathbf{z}, \mathbf{z}^*)])^2} = \frac{\mathbb{E}_{\mathbf{z}}[K_{\text{par}}(\mathbf{z}, \mathbf{z}^*)^2]}{(\mathbb{E}_{\mathbf{z}}[K_{\text{par}}(\mathbf{z}, \mathbf{z}^*)])^2}. \quad (25)$$

1046 This ratio now depends solely on m -dimensional quantities. For the explicit calculation of γ , we
 1047 consider the case where the optimal code lies at the prior mean, $\mathbf{z}^* = 0$. We compute the expecta-
 1048 tions against the prior $p(\mathbf{z}) = \mathcal{N}(0, I_m)$:

$$\mathbb{E}_{\mathbf{z}}[K_{\text{par}}] \propto \int e^{-\frac{1}{2}\|\mathbf{z}\|^2} e^{-\frac{1}{2\sigma^2}\|\mathbf{z}\|^2} d\mathbf{z} = \int e^{-\frac{1}{2}(1+\sigma^{-2})\|\mathbf{z}\|^2} d\mathbf{z} \propto (1+\sigma^{-2})^{-m/2}, \quad (26)$$

$$\mathbb{E}_{\mathbf{z}}[K_{\text{par}}^2] \propto \int e^{-\frac{1}{2}\|\mathbf{z}\|^2} \left(e^{-\frac{1}{2\sigma^2}\|\mathbf{z}\|^2}\right)^2 d\mathbf{z} = \int e^{-\frac{1}{2}(1+2\sigma^{-2})\|\mathbf{z}\|^2} d\mathbf{z} \propto (1+2\sigma^{-2})^{-m/2}. \quad (27)$$

1049 Substituting the normalization constants $(1+\sigma^{-2})^{-m/2}$ and $(1+2\sigma^{-2})^{-m/2}$ appropriately into the
 1050 ratio yields $\gamma = \frac{(1+\sigma^{-2})^m}{(1+2\sigma^{-2})^{m/2}} - 1$. *Remark on $\mathbf{z}^* \neq 0$:* If the code is not centered ($\mathbf{z}^* \neq 0$), the
 1051 convolution of the Gaussian prior and likelihood induces a shift term depending on $\|\mathbf{z}^*\|$. However,
 1052 this term remains strictly a function of the intrinsic geometry ($\mathbf{z} \in \mathbb{R}^m$) and does not re-introduce
 1053 any dependence on the ambient dimension d . Thus, the independence from d holds generally. \square

A.7 EMPIRICAL VALIDATION

1060 We perform a simulation to verify the results for a target distribution on a manifold. For this, the
 1061 true analytical reverse KL is required. As such, we use a simple target multivariate distribution.
 1062 Consider two independent random variables:

$$X = X_1 + X_2, \quad X_1 \sim \mathcal{N}(0, \sigma_1^2 I_d), \quad X_2 = \mu + Az, \quad z \sim \mathcal{N}(0, \sigma_2^2 I_m), \quad (28)$$

1063 While X_1 is a simple isotropic Gaussian, X_2 is a linear mapping of another Gaussian with dimension
 1064 $m < d$, using $A \in \mathbb{R}^{d \times m}$ and the mean $\mu \in \mathbb{R}^d$. With these two independent variables, we can
 1065 conclude

$$\mathbb{E}[X] = \mu, \quad \text{Var}[X] = \sigma_1^2 I_d + \sigma_2^2 A A^T. \quad (29)$$

1066 Alternatively, this means $X \sim \mathcal{N}(\mu, C)$ where $C = \sigma_1^2 I_d + \sigma_2^2 A A^T$. As such, we can express the
 1067 distribution of X directly as a multivariate normal or an integral over a subspace described by μ and
 1068 A :

$$\mathcal{N}(\mu, C) = \int \mathcal{N}(x; \mu + Az, \sigma_1^2 I_d) \mathcal{N}(z; 0, \sigma_2^2 I_m) dz = \int q(x \mid w) q(w) dw. \quad (30)$$

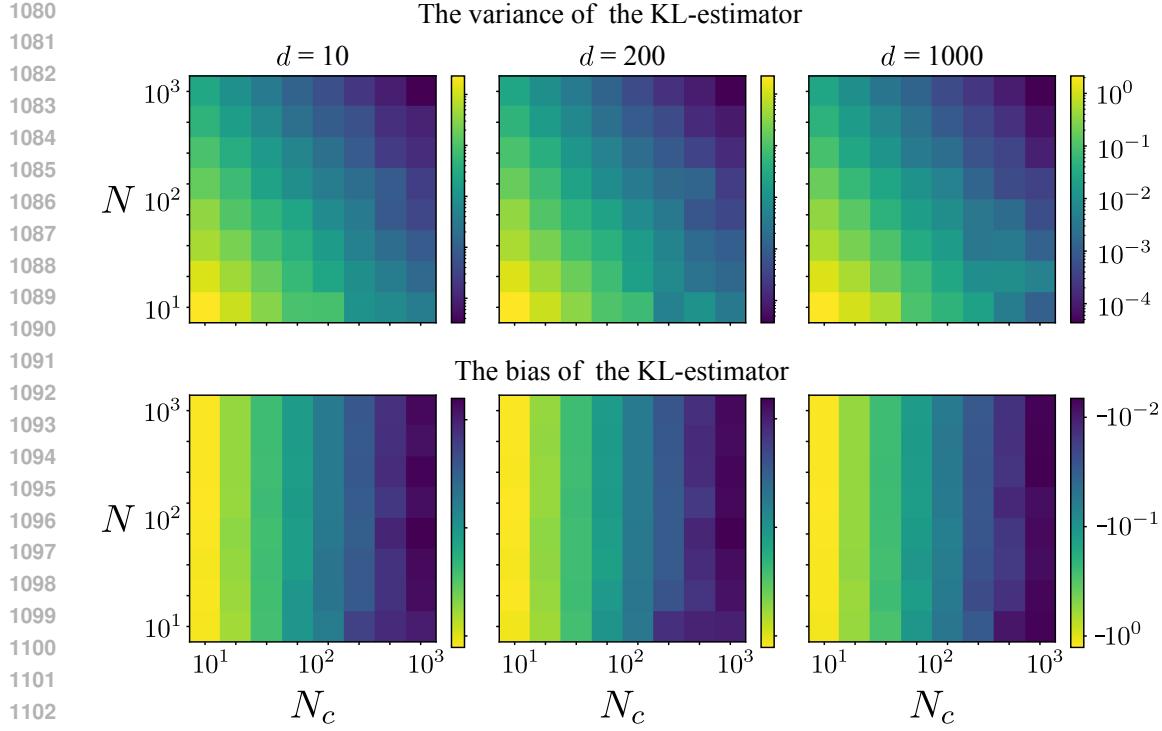


Figure 17: The variance and bias of the Monte Carlo estimator $\widehat{\mathcal{L}}_{N, N_c}$ of the reverse KL divergence for a target distribution with a manifold structure. For each value, 500 simulations are performed.

Intuitively, this formulation allows us to circumvent the training procedure by knowing the true manifold $q(w)$. Avoiding any training error results in $\mathcal{L} = 0$. With this, we can verify our theoretical results for the bias and variance of $\widehat{\mathcal{L}}$. The integral over the subspace is used as $q(w)$, and the multivariate normal corresponds to the target p . To showcase the manifold hypothesis, we use the extreme case $r = 1$, leading to a rank-1 update to the covariance of the isotropic X_1 . Figure 17 shows the variance and bias for various dimensions d . The variance and bias behave as predicted in Equation 23 and even show no dependence on d .