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Abstract

Gradient boosting takes linear combinations of weak base learners. Therefore,
absent privacy constraints (when we can exactly optimize over the base models)
it is not effective when run over base learner classes that are closed under linear
combinations (e.g. linear models). As a result, gradient boosting is typically
implemented with tree base learners (e.g., XGBoost), and this has become the state
of the art approach in tabular data analysis. Prior work on private gradient boosting
focused on taking the state of the art algorithm in the non-private regime—boosting
on trees—and making it differentially private. Surprisingly, we find that when we
use differentially private learners, gradient boosting over trees is not as effective
as gradient boosting over linear learners. In this paper, we propose differentially
private gradient-boosted linear models as a private classification method for tabular
data. We empirically demonstrate that, under strict privacy constraints, it yields
higher F1 scores than the private versions of gradient-boosted trees on five real-
world binary classification problems. This work adds to the growing picture that the
most effective learning methods under differential privacy may be quite different
from the most effective learning methods without privacy.

1 Introduction

Gradient boosting is an approach to learn an additive model such that the sum of many weak base
learners approximates the final output [1]. This is achieved by iteratively fitting the next base learner
to the gradient of the loss evaluated at the current prediction. Algorithm 1 outlines gradient boosting
in a general form, which can be parameterized by any choice of loss function L and base learner
b(x). Classification and regression trees (CARTs) are one of the most popular choices for the base
learner because of its effectiveness on tabular data and deployment-ready tree-based data structures
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in systems. Existing packages, including XGBoost [2], LightGBM [3], and CatBoost [4], drastically
improved the usability of gradient boosting among tools for tabular data analysis.

Algorithm 1 Gradient Boosting (iterations T , loss L, base learner b(x; θ))

Data input: covariates x1, · · · , xn and labels y1, · · · , yn.
Initialize f(x) = 0
for t ∈ [T ] do

Compute θt = argminθ
∑n

i=1 L(yi, f(xi) + b(xi; θ))
Update f(x)← f(x) + ft(x), where ft(x) = b(x; θt)

end for
return f(x) =

∑T
t=1 ft(x)

There has been an increasing demand for privacy-preserving machine learning tools, which naturally
triggered a wave of efforts to develop a private version of the gradient boosting algorithm. Differential
privacy (DP, Definition 1.1) is one of the most prevalent definitions of privacy, and was adopted to
make gradient boosting algorithms private in recent works [5, 6, 7]. DP ensures that, for a randomized
algorithm, when two neighboring datasets that differ in one data point are fed into an algorithm, the
two outputs are indistinguishable, within some probability margin defined using ϵ and δ ∈ [0, 1).
Definition 1.1 (Differential Privacy [8]). A randomized algorithm M with domain D is (ϵ, δ)-
differentially private for all S ⊆ Range(M) and for all pairs of neighboring databases D,D′ ∈ D,

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ, (1)

where the probability space is over the randomness of the mechanismM.

As an extension of this idea, a single-parameter family of privacy notion (Gaussian differential privacy,
GDP) was later proposed [9]. We first define the trade-off function T (P,Q) and use it to define GDP.
Definition 1.2 (Trade-off function, Definition 2.1 of [9]). For any two probability distributions P
and Q on the same space, the trade-off function T (P,Q) : [0, 1]→ [0, 1] is defined as

T (P,Q)(α) = inf
ϕ
{1− EQ[ϕ] : EP [ϕ] ≤ α}

Definition 1.3 (Gaussian Differential Privacy, Definition 2.6 of [9]). A mechanismM is said to
satisfy µ-Gaussian Differential Privacy (µ-GDP) if it is Gµ-DP. That is,

T (M(D),M(D′)) ≥ Gµ

for all neighboring datasets D and D′, where Gµ = T (N (0, 1),N (µ, 1)).

µ-GDP means that determining whether an individual’s data is present in the dataset from one draw
is at least as difficult as telling apart the two normal distributions N (0, 1) and N (µ, 1). µ-GDP can
be converted to (ϵ, δ)-DP and vice versa.
Corollary 1.1 (Conversion between GDP and DP, Corollary 2.13 of [9]). A mechanism is µ-GDP if
and only if it is (ϵ, δ(ϵ))-DP for all ϵ ≥ 0, where

δ(ϵ) = Φ(− ϵ

µ
+

µ

2
)− eϵΦ(− ϵ

µ
− µ

2
).

Theorem 1.2 (Gaussian Mechanism, Theorem 2.7 from of [9]). Define a randomized algorithm GM
that operates on a statistic θ as GM(x, µ) = θ(x) + η, where η ∼ N (0, sens(θ)2/µ2) and sens is
the l2-sensitivity of the statistics θ. Then, GM is µ-GDP.

Most attempts focused on making gradient boosting private on tree base learners. For example,
[5] proposed DPBoost, privatizing gradient-boosted regression trees by finding splits using the
exponential mechanism and computing numeric values at leaves using the Laplace mechanism. In a
similar fashion, DP-XGBoost was suggested by additionally privatizing the quantile sketching step of
XGBoost [6]. DPBoost and DP-XGBoost suffered from low accuracy under strict privacy constraints,
as they had to consume privacy budget not only in leaf value computation but also in split finding step
(quantile sketching in DP-XGBoost). DP-EBM overcame this by restricting each tree to use only one
feature and randomly selecting split points (hence no privacy budget is consumed in split finding) [7].
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It showed improved performance compared to DPBoost. However, DP-EBM takes a much longer
time to learn a model since it requires learning many more trees.

Absent privacy, gradient boosting on linear models does not improve performance, since linear models
are closed under linear combinations, and the base learner can already exactly optimize over this
class. But with differential privacy, it is no longer possible to exactly optimize over the base class, so
gradient boosting has the potential to give improvements. Moreover, there are private linear learners
that make very efficient use of the privacy budget. We adopt a state of the art approach to privately
learn linear models, AdaSSP [10], which adds noise to the sufficient statistics for a linear model.

2 Differentially Private Gradient Boosting with Linear Models

The flexibility of gradient boosting arises from two choices that we make: (i) a loss function and (ii)
a class of base learners. We experiment on three types of loss functions (squared, logistic, and hinge)
and fix the base learner class to a private ridge regressor (via AdaSSP). In this section, we describe
the loss functions and its gradients (subsection 2.1) and the private base learner class (subsection 2.2).

2.1 Loss Functions and Gradients

For binary classification problems, we have a dataset D of n data points, composed of covariates
xi ∈ Rp and labels yi ∈ {−1, 1} (or yi ∈ {0, 1} for logistic loss), ∀i ∈ [n]. The final model f(x)
takes the covariates xi as an input and outputs the score si, which can be translated later to output
binary prediction ŷ = 1(si > 0) ∗ 2− 1 (or ŷ = 1(si > 0) for yi ∈ {0, 1} case).

Let L be the loss function, T be the number of boosting rounds, ft be the model learned at iteration
t ∈ [T ]. At t-th round of boosting iteration, the goal of Algorithm 1 is to obtain

θt = argmin
θ

N∑
i=1

L(yi,
t−1∑
k=1

fk(xi) + b(xi; θ)). (2)

The ft(x) = b(x; θt) can be approximated by steepest gradient descent, where the gradient is taken
with respect to the score prediction si and evaluated at current score si :=

∑t−1
k=1 fk(xi). The

components of the negative gradient at t can be written as

gi,t := −
∂L(yi, si)

∂si

∣∣∣∣
si=

∑t−1
k=1 fk(xi)

. (3)

Table. 1 lists the three loss functions we experiment in this paper, and their negative gradients. Note
that the squared loss is unbounded, hence we clip the gradient to fall between (−z, z) for some z ∈ R
(further explained in the next section).

Table 1: Loss functions and gradients, where σ(x) = 1
(1+e−x) and 1(·) is the indicator function.

L(yi, si) g(si) = −∂L(yi, si)/∂si
Squared 1

2 (yi − si)
2 yi − si

Logistic −yi ln(σ(si))− (1− yi) ln(1− σ(si)) yi − σ(si)
Hinge max(0, 1− yisi) 1(1− yisi > 0)yi

2.2 Private Ridge Regressor as a Base Learner

With the negative gradients gi,t computed as in eq. (3), we fit the next base learner ft(x) to those
gradients by minimizing empirical risk with a ridge regularizer. As we fixed the base learner class to
linear models, we may express ft(x) = θ⊤t x, and the new model is obtained by

θt = argmin
θ

n∑
i=1

(θ⊤xi − gi,t)
2 + λ||θ||22, (4)
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where λ ∈ R is a hyperparameter for ridge regularizer. Note that the objective to be minimized in
this step is different from the loss function we chose when computing gradients. Let X ∈ Rn×p be
the matrix with xi’s in each row and gt ∈ Rn be a vector containing all sample’s gradient at t (i.e.,
gi,t). Absent privacy, the above minimization yields

θt = (X⊤X + λI)−1X⊤gt. (5)

Using the squared loss function, we can analytically show that θt = 0 ∀t > 1 when λ = 0, and they
are close to zero with small λ values. This affirms why gradient boosting was not applied on linear
base learners under no privacy constraints.

To meet the privacy constraints, we adopt AdaSSP to privately learn this ridge regressor θt (Algorithm
2 of [10]). Let X and Y be the domain of our data covariates and labels, respectively. We define the
bound on data domain ||X || = supx∈X ||x|| and ||Y|| = supy∈Y |y|. Given the privacy budget ϵ, δ
to guarantee (ϵ, δ)-DP, and bounds on the data ||X || and ||Y|| for xi and gi,t, respectively, AdaSSP
calibrates (ϵ, δ)-DP to µ-GDP with an appropriate µ, and adds calibrated Gaussian noise to three
sufficient statistics: 1) X⊤X , 2) X⊤gt, and 3) λ. The detailed description of AdaSSP algorithm for
learning one ridge regressor is deferred to Appendix A.2.

Let X̂⊤X = GM(X⊤X,µ1), X̂⊤gt = GM(X⊤gt, µ2), λ̂ = GM(λ, µ3) be the private release of
sufficient statistics from a single instantiation of AdaSSP to learn θt and GM is defined in Theorem
1.2. The final model θ̂∗ can be expressed as

θ̂⋆ =

T∑
t=1

θ̂t = (X̂⊤X + λ̂I)−1
T∑

t=1

X̂⊤gt (6)

where the initial gi,1 = yi. Notice that, for a boosted model, we may call GM(X⊤X,µ1) and
GM(λ, µ3) just once and only repeat the second part GM(X⊤gt, µ2) for T rounds, instead of
straightforwardly repeating Algorithm 3 for T rounds.

Finally, we suggest BoostedAdaSSP (Algorithm 2), a differentially private gradient boosting algorithm
with linear base learners. Algorithm 2 assumes binary classification tasks, and can be generalized to
any choice of loss function L. In the second line inside the for loop, we clip the computed gradient
to enforce gi,t ∈ [−||Y||, ||Y||], if it is not naturally satisfied. The final output θ defines the score
predictor f(x) = θ⊤x, where the score above 0 means a positive label(+1) and below 0 means a
negative label (−1 or 0).

Algorithm 2 BoostedAdaSSP (Data X, y, Privacy parameter ϵ, δ, Split ratio a, b, c, Bound on
||X ||, ||Y||)

Initialize θ = 0
Find µ such that µ-GDP satisfies (ϵ, δ)-DP. # Corollary 1.1
Calibrate µ1, µ2, µ3 such that µ1 : µ2 : µ3 = a : b : c and µ =

√
µ2
1 + µ2

2 + µ2
3.

X̂⊤X = GM(X⊤X,µ1) and λ̂ = GM(λ, µ3) # instantiate AdaSSP (part 1 & 3)
Γ = (X̂⊤X + λ̂I)−1

for t ∈ [T ] do
s = Xθ # current score prediction
gt = −∇sL(y, s) # compute gradient, clip as needed
θt = ΓX̂⊤gt, where X̂⊤gt = GM(X⊤gt,

µ2√
T
) # instantiate AdaSSP (part 2)

θ = θ + θt # update model
end for
return θ
*GM(X,µ) denotes a Gaussian mechanism to guarantee µ-GDP for private release of a statistic
X , and uses the bounds ||X || to compute the sensitivity internally.

Corollary 2.1 (Composition of GDP, Corollary 3.3 of [9]). The n-fold composition of µi-GDP
mechanisms is

√
µ2
1 + · · ·+ µ2

n-GDP.
Theorem 2.2. When ||X || = supx∈X ||x|| and ||Y|| = supy∈Y ||y||, Algorithm 2 satisfies µ-GDP
and (ϵ, δ)-DP.
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Proof. From Corollary 2.1,

√
µ2
1 + T

(
µ2/
√
T
)2

+ µ2
3 =

√
µ2
1 + µ2

2 + µ2
3 = µ. The conversion of

GDP to DP follows from Corollary 1.1.

3 Experiments

Algorithm 2 was experimented on five real-world datasets from Kaggle and LIBSVM (details can be
found in Appendix A.1) with three choices of loss functions (squared, logistic and hinge), varying
number of iterations, and varying choices of epsilon from 0.01 to 10. The privacy parameter δ = 10−6

for all experiments. Lastly, a non-private version was also computed for comparison. The performance
of a model is measured by F1 score and AUROC. Note that AUROC may report a good value (close to
1) even when most of the minority class is misclassified. See Appendix A.1 to check how imbalanced
each dataset is.

To compare the performance of BoostedAdaSSP against a tree-based private gradient boosting
algorithm, we choose DP-EBM [7] which reported the best performance among others[5, 6], and
DP-XGBoost [6].

At each boosting round, DP-EBM learns separate trees on individual features, and split points are
chosen completely at random (this allows more efficient privacy budgeting). We experimented
DP-EBM with four choices of the maximum number of leaves {1, 10, 100, 1000}. Setting this value
to either 100 or 1000 led to similar performance in terms of F1 score, but having fewer splits ran
faster, , hence we report results with the number of leaves as 100 in the main paper and defer other
results to Appendix A.3. Privacy Accounting this DP-EBM is also through Gaussian DP, which
makes it a valuable competitor to ours.

DP-XGBoost [6] learns a differentially private tree each round, and it directly add calibrated noises to
aggregate statistics in the XGBoost to make it differentially private. The algorithm uses subsampling
to increase the privacy budget per boosting round, and it uses the Approximate DP for privacy
accounting. DP-XGBoost may not be a direct comparison to our approach since it doesn’t use the
same privacy accounting approach as ours, but it is an attempt to make gradient boosting algorithms
with trees differentially privacy, so we include their results here. In our experiments, only the sampling
ratio is tuned using a pre-defined set of values {20%, 50%, 80%}, and setting the subsampling ratio
to 80% yielded the best performance.

3.1 Boosted Linear Models Under Non-Private Regime

Figure 1 shows the training loss of non private gradient boosting, each line corresponding to the
choice of loss functions (squared, logistic, and hinge). For the squared loss(green line), we see
virtually no improvement over boosting rounds, as mentioned previously in Section 2.2. On the other
hand, we observe a decrease in training loss for logistic and hinge losses, when additional boosting
rounds are introduced. This is because the gradient of these loss functions are non-linear with respect
to the score predictions (whereas it is linear for squared loss).

Figure 1: Training loss versus number of rounds without privacy constraints. As expected,
gradient boosting with the squared loss using a linear model doesn’t provide any performance
improvement after the first round, however, due to the nonlinearity of the logistic and hinge loss, even
with a linear model as the base learner in gradient oosting, more boosting rounds leads more lower
training loss.

3.2 BoostedAdaSSP (linear base learner) vs. DP-EBM (tree base learner)

Figure 2a and Figure 2b show the performance of private gradient boosting measured by F1 score
and AUROC score, respectively. Each line corresponds to BoostedAdaSSP with three choices of loss
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(a) Average F1 score on test sets of the five datasets vs. Epsilon

(b) Average AUROC score on test sets of the five datasets vs. Epsilon

Figure 2: Averaged scores vs. Epsilon. On average, our BoostedAdaSSP with squared loss provides
higher F1 score than other approaches do, and it also gives comparable AUROC score as our
closest competitor — DP-EBM — does. DP-XGBoost, due to its inefficient privacy accounting,
underperforms in most cases.

functions and DP-EBM with 100 leaves per tree (red). We observe the improved performance as ϵ
increases (δ = 10−6 is fixed for all experiments) for most cases. This aligns with our expectation that
larger privacy budget ϵ allows less noise to be introduced, leading to a better performance. However,
F1 score of DP-EBM in less than or equal to 100 rounds of boosting behaves counter-intuitively.
Since the AUROC score follows our expectation, we may construe this as DP-EBM with small rounds
of boosting results in a model that misclassifies majority of the minority class, to the point that the
privacy noise sometimes helps correctly classifying the minority labels.

There was no loss functions that outperformed others in all cases—rather, the best-performing loss
function (for BoostedAdaSSP) depends on the dataset (detailed results on individual datasets are
deferred to Appendix A.5.) Overall, BoostedAdaSSP provides higher F1 scores at most values of
total boosting rounds, however, DP-EBM provides slightly better AUROC scores. (Note that the
datasets we experiment are mostly imbalanced.)

3.3 Effect of Boosting Under Privacy Constraints

Figure 3a and Figure 3b show the performance(y-axis) over boosting rounds(x-axis) at four different
privacy levels. The F1 score of BoostedAdaSSP and DP-EBM both improve as the number of
boosting rounds increases. DP-EBM requires significantly more number of boosting rounds to yield
comparable F1 score to BoostedAdaSSP. To run 1000 rounds of boosting, DP-EBM takes about 60.9
seconds to finish, and BoostedAdaSSP takes only about 4.5 seconds. Overall, we conclude that,
restricting the number of boosting rounds to be small (i.e., when we want to limit the time budget),
there exists a BoostedAdaSSP with some loss function that is preferrable to DP-EBM for all epsilon
values, when we evaluate the performance based on F1 scores.

Additionally for BoostedAdaSSP with squared loss, we compare the ratio between the test set F1
score of a non-boosted model (i.e., with 1 iteration) versus with some rounds of iterations (10, 100,
1000 are plotted). Figure 4 shows that the effect of boosting (measured by the ratio) diminishes as ϵ
goes to infinity as well as when ϵ goes to zero. This can be explained by conjecturing ϵ = ∞ and
ϵ = 0 cases. As the privacy budget ϵ goes to infinity, our BoostedAdaSSP gradually reduces the
amount of noise added to the output, and it eventually becomes similar to the non-private regime.
Therefore, we may expect no effect of boosting, the same as in non-private case (see Figure 1). As
the privacy budget ϵ approaches to 0, we eventually enter the high-privacy regime where the privacy
noise dominates the signal. In this case, it is difficult to expect any learning algorithms, let alone
additional boosting rounds, to learn anything.

As a result, we observe a bell curve shape in the Figure 4, which implies that there exists a sweet spot
in terms of the privacy budget ϵ where the boosting has the maximum impact. However, the sweet
spot observed here doesn’t necessarily indicates the best F1 score. Same observations are shown in
Figure 9 for logistic loss and Figure 10 for hinge loss.
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(a) Average F1 score on test sets of the five datasets vs. # Rounds

(b) Average AUROC score on test sets of the five datasets vs. # Rounds

Figure 3: Averaged scores vs. Epsilon. At the high privacy regime (small ϵ value), increasing the
number of boosting rounds results in higher F1 score for our approaches with all three loss funcstion
and DP-EBM, however, it doesn’t improve the AUROC score. The improvement vanishes when we
move to the low privacy regime (large ϵ value). At the same privacy level, DP-XGBoost gives worse
performance when more boosting rounds are added.

Figure 4: Effect of DP in gradient boosting with mean squared loss. It is interesting that the effect
of boosting is maximized at a certain privacy level, and the maximum point differs on individual
tasks. Thus, it implies that, at the high privacy regime, it might worth running gradient boosting with
more rounds for higher performance, but it is not the case in the low privacy regime since the base
learner is still linear.

4 Conclusion and Future Work

We proposed a differentially private gradient boosting algorithm using linear base learners by adopting
AdaSSP to privately train linear models. In each boosting round, the linear model is privately
trained to approximate the gradient of loss function at the current score prediction. Without privacy,
gradient boosting of a linear model is expected to be the same (OLS) or similar to (ERM with small
regularization) a single linear model learned in one-shot. Hence, in practice, gradient boosting
is primarily focused on learning with tree base models. However, in the high-privacy regime,
BoostedAdaSSP provides a higher F1 score than the state of the art tree-based differentially private
gradient boosting algorithm (DP-EBM). BoostedAdaSSP also converges to good performance level
with fewer boosting rounds than DP-EBM at a fixed privacy level.

Although the results presented in this paper already seem promising, there are a few ways to further
improve the algorithm. One direction could be introducing more hyperparameters to the algorithm.
For example, we may introduce a step size η to the last step inside the for loop of Algorithm 2. When
a weak base learner θt is added to the final model θ, we may multiply θt by η, as we do in gradient
descent algorithms (that being said, Algorithm 2 can be seen as using η = 1). Also, we may attempt
to clip the gradients more aggressively for squared loss and logistic loss as we iterate over boosting
rounds, so that we can add less noise when instantiating the second part of AdaSSP.
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A Appendix

A.1 Datasets

We describe the five datasets used in our evaluation.

Table 2: Datasets used in experiments
Name # features (p) # train samples (n) # test samples % of positive samples in train set

cod-rna 8 271617 271617 33.33%
adult 123 32561 16281 24.08%
creditcard 30 227845 56962 0.17%
telco 46 5634 1409 26.53%
cardio 19 56000 14000 49.96%

Table 3: Data sources
Name Link

cod-rna https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#cod-rna
adult https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
creditcard https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
telco https://www.kaggle.com/datasets/blastchar/telco-customer-churn
cardio https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset

A.2 AdaSSP algorithm to learn a single ridge regressor

Let .̂ denote private versions of the corresponding statistics. Then, AdaSSP privately releases the
sufficient statistics of ridge regressor as follows.

Algorithm 3 Private Ridge regression via AdaSSP(data X, y, calibration ratio a, b, c , Privacy
parameter ϵ, δ, Bound on ||X ||, ||Y||)

Find µ such that µ-GDP satisfies (ϵ, δ)-DP. # Corollary 1.1
Calibrate µ1, µ2, µ3 such that µ1 : µ2 : µ3 = a : b : c and µ =

√
µ2
1 + µ2

2 + µ2
3.

X̂⊤X = GM(X⊤X,µ1)

X̂⊤gt = GM(X⊤gt, µ2) # gt resides within ||Y||
λ̂ = GM(λ, µ3)
*GM(X,µ) denotes a Gaussian mechanism to guarantee µ-GDP for private release of a statistic
X , and uses the bounds ||X || to compute the sensitivity internally.

Algorithm 3 instantiates three Gaussian mechanisms with µ1, µ2, and µ3 to privately release each
sufficient statistic. Hence the composition

θ̂t = (X̂⊤X + λ̂I)−1X̂⊤gt (7)

is (ϵ, δ)-DP. Detailed proof is available in Theorem 3 of [10].
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A.3 DP-EBM

Each line corresponds to DP-EBM with 1, 10, 100 and 1000 maximum number of leaves per tree. It
is easy to see that the performance of DP-EBM plateaus when the maximum number of leaves is 100,
and the performance doesn’t improve after that.

We would also like to point out that, the reason that there are missing dots in these plots is due to the
fact that the privacy budget allocation in DP-EBM fails to find a solution, and it usually occurs in the
high privacy regime.

(a) F1 Score on the test set.

(b) AUROC on the test set

Figure 5: DP-EBM with varying number of leaves per tree.
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A.4 non-private F1, AUROC

In terms of the performance of these non-private boosted linear models on the test set, Fig. 6a and
Fig. 6b show F1 scores and AUROC scores, respectively. Apart from the Cardiovascular dataset,
increasing the number of rounds improves the F1 score on the test set for logistic and hinge losses
only.

(a) F1 Score on the test set.

(b) AUROC on the test set

Figure 6: Performance on Non-private Boosted Linear Models on the test set of individual datasets.

11



A.5 F1 scores and AUROC scores on the test set of individual datasets

Our main paper presented the averaged F1 score and AUROC score on the test set, and here we
present details results on individual datasets. Specifically, the progress of the performance on each
dataset is plotted against the privacy level (ϵ value).

(a) F1 scores on all datasets

(b) AUROC scores on all datasets

Figure 7: Comparisons among BoostedAdaSSP, DP-EBM and DP-XGBoost

12



A.6 Effect of Boosting

Here, the progress of the performance on each dataset is plotted against the number of boosting
rounds at certain privacy levels (ϵ values).

(a) The Effect of Boosting on various methods measured by the F1 score on the test set.

(b) The Effect of Boosting on various methods measured by the AUROC score on the test set

Figure 8: The Effect of Boosting
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A.7 Effect of Differential Privacy

Figure 9: Effect of DP gradient boosting with logistic loss

Figure 10: Effect of DP gradient boosting with hinge loss
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