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Abstract

This article studies a one hidden layer neural
network with generalized Dropout (α-Dropout),
where the dropped out features are replaced with
an arbitrary value α. Specifically, under a large
dimensional data and network regime, we pro-
vide the generalization performances for this net-
work on a binary classification problem. We no-
tably demonstrate that a careful choice of α 6= 0
can drastically improve the generalization perfor-
mances of the classifier.

1. Introduction
Many practical datasets contain samples with missing fea-
tures which impair the behavior of machine learning models.
Improperly handling these missing values results in biased
predictions. While various imputation techniques exist in
the literature, such as imputation of the global mean, the
simplest is zero imputation, by which the missing features
are simply replaced by zeros. Neural networks have been
notably shown to be affected when trained on zero-imputed
data (Hazan et al., 2015; Śmieja et al., 2018; Yi et al., 2019).

In neural networks, zero imputation can be seen as applying
a Dropout (Srivastava et al., 2014) operation to the input data
features, or equivalently as applying a binary mask entry-
wise to the data. The Dropout operation is commonly used
as a regularization technique applied to certain hidden layers
of a neural network during its training phase. However, since
zero imputation is known to alter the behavior of neural
networks (Yi et al., 2019), the Dropout operation must result
in the same deleterious effects. Dropping features with other
values than zero may thus improve the Dropout in neural
networks and mitigate the effects of zero imputation (Wager
et al., 2013; Srinivas & Babu, 2016).
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To prove and quantify the benefits of a α-Dropout approach,
this article studies a one hidden layer neural network with α-
Dropout, i.e., in which the missing or dropped features are
replaced by a fixed real value α. Training only the output
layer, the network (sometimes referred to as an extreme
learning machine (Huang et al., 2006)) reduces to a ridge-
regression classifier learnt on α-imputed data. Specifically,
under the instrumental, yet instructive, setting of a network
trained on a set of n data samples of p-dimensional features
(or equivalently p neurons) distributed in two classes, we
retrieve the exact generalization performance when both
p and n grow large. A major outcome of our study is the
identification of the optimal value of α which maximizes
the generalization performances of the classifier.

Notation: Ber(ε) for Bernoulli law with parameter ε. �
stands for the Hadamard product with [A�B]ij = AijBij .
u�x is the vector with entries uxi . Diag(u) stands for the
diagonal matrix with diagonal entries ui.

2. Model and Problem Statement
Let the training data d1, . . . ,dn ∈ Rq be independent
vectors drawn from two distinct distribution classes C1
and C2 of respective cardinality n1 and n2 (and we de-
note n = n1 + n2). We suppose the di’s pass through
a first (fixed) random neural network layer with Lipschitz
activation σ : Rq → Rp in such a way that σ(di) is a
concentrated random vector (Louart & Couillet, 2018b).
This random projection is then followed by a random α-
Dropout, i.e., entries of the feature vector σ(di) are dropped
uniformly at random and replaced by some fixed value
α ∈ R. Letting µ ∈ Rp, we further suppose for simplic-
ity of exposition that for di ∈ Ca, E[σ(di)] = (−1)aµ and
E[σ(di)σ(di)

ᵀ] = Ip+µµᵀ.1 Overall, after the α-Dropout
layer, the feature vector x̃i ∈ Ca may thus be written

x̃i = ((−1)aµ+ zi)� bi + α (1p − bi) , (1)

for a ∈ {1, 2}, where µ ∈ Rp, zi is a concentrated random
vector with zero mean and identity covariance, and bi is a
random binary mask vector with i.i.d. entries bij ∼ Ber(ε).
That is, features are discarded with an average dropout rate

1In the same vein as (Seddik et al., 2020), this assumption
could be largely relaxed but simplifies the interpretation of our
results.
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ε, as performed in the classical Dropout procedure in neural
networks (Srivastava et al., 2014).

The model equation 1 thus describes a single hidden layer
network with α-Dropout (dropped features are replaced by
α) applied to a two-class mixture of concentrated random
vectors of mean (−1)aµ for di in class Ca and isotropic
covariance. As shown in (Louart & Couillet, 2018b; Sed-
dik et al., 2020), from a random matrix perspective, the
asymptotic performance of the neural network under study
is strictly equivalent to that of features x̃i modelled as in
equation 1 but with zi ∼ N (0, Ip), an assumption we will
make from now on.

In a matrix form, the training features X̃ = [x̃1, . . . , x̃n] ∈
Mp,n can be compactly written

X̃ = Bε � (Z + µyᵀ) + α (1p1
ᵀ
n −Bε) , (2)

where Z has i.i.d. N (0, 1) entries , [Bε]ij ∼ Ber(ε) and
y ∈ Rn stands for the vector of class labels with yi = −1
for x̃i ∈ C1 and yj = 1 for x̃j ∈ C2.

For reasons that will be clarified in the next section, we
shall consider in the rest of the paper the standardized2 data
matrixX ≡ X̃Pn√

ε+α2ε(1−ε)
, with Pn = In − 1

n1n1ᵀ
n, i.e.,

X =
(Bε � (Z + µyᵀ))Pn + αBεPn√

ε+ α2ε(1− ε)
. (3)

Under the features data model in equation 3, we aim in the
following to study the generalization performance of a (fully
connected) linear layer applied to the features xi’s which
is thus equivalent to optimizing (with an `2 regularization
term)

E(w) =
1

n
‖y −Xᵀw‖2 + γ‖w‖2, (4)

the solution of which is explicitly given by, for z ∈ C \ R−

w =
1

n
Q(γ)Xy, Q(z) ≡

(
1

n
XXᵀ + zIp

)−1
. (5)

The associated (hard) decision function for a new datum
feature vector x ∈ Ca, for a ∈ {1, 2}, then reads

g(x) ≡ xᵀw =
1

n
xᵀQ(γ)Xy

C1
≶
C2

0. (6)

The model in equation 3 coupled with the ridge loss function
in equation 4 is that of an extreme learning machine trained
with α-Dropout through the random matrixBε.

2Centring by the empirical mean and dividing by the standard
deviation

√
ε+ α2ε(1− ε) as in batch normalization layers (Ioffe

& Szegedy, 2015).

In mathematical terms, studying the generalization perfor-
mance under a large dimensional network regime consists
in studying the statistical behavior of the resolvent matrix
Q(z) defined in equation 5. The main technicality precisely
arises from the unconventional presence of the matrix Bε

in the model.

Elaborating on recent tools from random matrix theory, the
next section derives a deterministic equivalent (Hachem
et al., 2007) ofQ(z) which is the basic technical ingredient
for the further analysis, as a function of α and ε, of the
network generalization performance.

3. Main Results
This section establishes the asymptotic performance and
the practical relevance of the α-Dropout neural network
under study. Technical preliminaries on the statistical be-
havior ofQ(z) are first established before delving into the
core analysis and main practical results of the article (in
Section 3.2).

3.1. Deterministic Equivalent and Limiting Spectrum

Our main technical result provides a deterministic equiv-
alent Q̄(z) for the resolvent Q(z), that is a deterministic
matrix such that, for all A ∈ Rp×p and a, b ∈ Rp of
bounded (spectral and Euclidean, respectively) norms, with
probability one,

1

p
TrA

(
Q(z)− Q̄(z)

)
→ 0, aᵀ

(
Q(z)− Q̄(z)

)
b→ 0.

We will denote in shortQ(z)↔ Q̄(z). A large dimensional
assumption will provide the existence of Q̄(z) according to
the following dimensional growth conditions:

Assumption 3.1 (Growth rate). As n→∞,

1. q/n→ r ∈ (0,∞) and p/n→ c ∈ (0,∞);

2. For a ∈ {1, 2}, nan → ca ∈ (0, 1);

3. ‖µ‖ = O(1).

Under the model equation 3 and from (Hachem et al., 2007),
we have:

Proposition 3.2. Under Assumption 3.1,

Q(z)↔ Q̄(z) ≡ Dz −
ε

1+α2(1−ε)Dzµµ
ᵀDz

1 + cq(z) + ε
1+α2(1−ε)µ

ᵀDzµ
,

where Dz ≡ q(z) Diag

{
1+cq(z)

1+cq(z)+
(1−ε)q(z)
1+α2(1−ε)

µ2
i

}p
i=1

, and

q(z) is given by

q(z) ≡
c− z − 1 +

√
(c− z − 1)2 + 4 z c

2 z c
.
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Proposition 3.2 shows that the deterministic equivalent Q̄(z)
involves two terms: a diagonal matrix Dz (describing the
noise part of the data model) and an informative scaled
rank-1 matrix DzµµᵀDz . We see through the expression
of Q̄(z) that the informative term is linked to the noise
term (through Dz) if ε 6= 1, and for small values of ε or
equivalently large values of α the “energy” of the informa-
tive term is transferred to the noise term which will result
in a poor classification accuracy on the train set, still we
will subsequently see that for a fixed value of ε, there ex-
ists a value of α which will provide optimal classification
rates on the test set. We will next use the property that
aᵀQ(z)b ' aᵀQ̄(z)b for all large n, p and deterministic
bounded vectors a, b, to exploit Q̄(z) as a proxy for the per-
formance analysis (which is precisely related to a bilinear
form onQ(z)) of the α-Dropout neural network.

Further, let us introduce the following quantities which will
be used subsequently. First, we have under Assumption 3.1,
the statistics of the feature vector xi, for xi ∈ Ca, are:

ma ≡ E [xi] = (−1)a
√

ε

1 + α2(1− ε)
µ,

Cε ≡ E [xix
ᵀ
i ] = Ip +

ε

1 + α2(1− ε)
µµᵀ

+
1− ε

1 + α2(1− ε)

(
Diag(µ�2 + 2αµ)− α2

p
1p1

ᵀ
p

)
.

We will also need the quantity δ(z) ≡ 1
n Tr

(
CεQ̄(z)

)
.

3.2. Generalization Performance of α-Dropout

The generalization performance of the classifier relates to
misclassification errors

P (g(x) > 0 |x ∈ C1) , P (g(x) < 0 |x ∈ C2)

where g(·) is the decision function previously defined in
equation 6.

Since the Dropout is deactivated at inference time, the statis-
tics of x correspond to the setting where ε = 1, and thus

E[x] = (−1)aµ, C1 = E[xxᵀ] = Ip + µµᵀ.

Further, define the following quantities which shall be used
subsequently

η(A) ≡
(1 + δ(γ)) 1

n Tr
(
CεQ̄(γ)AQ̄(γ)

)
(1 + δ(γ))2 − 1

n Tr
(
CεQ̄(γ)CεQ̄(γ)

) ,
∆(A) ≡ Q̄(γ)

(
A+

η(A)

1 + δ(γ)
Cε

)
Q̄(γ).

By Lyapunov’s central limit theorem (Billingsley, 2008), the
decision function has the following Gaussian approximation
as n→∞.

Theorem 3.3 (Gaussian Approximation of g(x)). Under
Assumption 3.1, for x ∈ Ca with a ∈ {1, 2},

ν−
1
2 (g(x)−ma)

D−→ N (0, 1)

where

ma ≡ (−1)a
√

ε

1 + α2(1− ε)
µᵀQ̄(γ)µ

1 + δ(γ)

ν ≡ 1

(1 + δ(γ))2

(
η(C1) +

ε

1 + α2(1− ε)

×
[
µᵀ
(
∆(C1)− Q̄(γ)

)
µ− 2 η(C1)µᵀQ̄(γ)µ

1 + δ(γ)

])
.

In a nutshell, Theorem 3.3 states that the one hidden layer
network classifier with α-Dropout is asymptotically equiva-
lent to the thresholding of two monovariate Gaussian ran-
dom variables, the means and variances of which depend
on µ,Cε and the parameters α and ε. As such, we have the
corresponding (asymptotic) classification errors:
Corollary 3.4 (Generalization Performance of α-Dropout).
Under the setting of Theorem 3.3, for a ∈ {1, 2}, with
probability one

P ((−1)a g(x) < 0 |x ∈ Ca)−Q
(
ma√
ν

)
→ 0

with Q(x) = 1√
2π

∫∞
x
e−u

2/2du the Gaussian tail function.

Corollary 3.4 can therefore be exploited to find the optimal
value of α∗ which minimizes the test misclassification error,
since Q′(x) < 0 the optimal value α∗ satisfies the equation
1
ma

∂ma
∂α = 1√

ν
∂
√
ν

∂α which can be solved numerically.

3.3. Training Performance of α-Dropout

It is instructive to compare the generalization versus training
performances of the network classifier with α-Dropout. Fol-
lowing similar arguments as in (Louart & Couillet, 2018b),
the central limit argument of the previous section also holds
for g(x) with x ∈ Ca taken from the training setX .
Theorem 3.5 (Training performance of α-Dropout). Under
Assumption 3.1, for x ∈ Ca with a ∈ {1, 2} a column ofX ,
with probability one,

P ((−1)a g(x) < 0 |x ∈ Ca)−Q

(
m̄a√
ν̄ − m̄2

a

)
→ 0

where

m̄a ≡
δ(γ)

1 + δ(γ)
+

(−1)aε

1 + α2(1− ε)
µᵀQ̄(γ)µ

(1 + δ(γ))2

ν̄ ≡
(

δ(γ)

1 + δ(γ)

)2

+
η(Cε)

(1 + δ(γ))4
+

ε

1 + α2(1− ε)

× µᵀ

(
δ(γ)Q̄(γ)

(1 + δ(γ))3
+

∆(Cε)

(1 + δ(γ))4
− 2 η(Cε)Q̄

(1 + δ(γ))5

)
µ.
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Figure 1: Histogram of the decision function g(x) when
applied to the training data (a) and test data (b). The
curves represent the Gaussian approximations as per The-
orem 3.3 and Theorem 3.5 for test and training data re-
spectively. We used the parameters µ = 5·u

‖u‖ with u =

[10, 10,−10,−10,v] where v ∼ N (0, Ip−4) , p = 125,
n1 = n2 = 1000, γ = 1 · 10−2, ε = 0.25 and α = 2.

4. Simulations
4.1. Gaussian Approximations of the Decision Function

We complete this article by simulations to validate our the-
oretical findings. Figure 1 depicts histograms showing the
distribution of g(x) for both (a) training and (b) test data.
As we can see, these distributions are well approximated by
monovariate Gaussians as per Theorem 3.3 and Theorem 3.5.
Since the α-Dropout removes features at random from the
training data, the misclassification error happens to be larger
on the training set compared to the test set. Notably, the
difference between the training and test error arises theo-
retically from the term κ ≡

√
ε

1+α2(1−ε) as m̄a ≈ κma,

therefore, for small values of ε the training error is larger
than the test error, which shows the regularization effect of
the Dropout.

4.2. Training and Test Performances

Figure 2 depicts the theoretical (a) training (through Theo-
rem 3.5) and (b) test (through Corollary 3.4) misclassifica-
tion errors, for different values of ε and in terms of α, and
their simulated counterparts. We can notice from these plots
that the training error increases with α and is minimal for
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Figure 2: (a) Training and (b) Test misclassification errors
as per Theorem 3.5 and Corollary 3.4 respectively. We
used the parameters µ = 4 · [ 1√

4
, 1√

4
,− 1√

4
,− 1√

4
,0ᵀ
p−4]ᵀ,

p = 125, n1 = n2 = 1000 and γ = 1 · 10−2. Simulations
are obtained through 100 Monte-Carlo runs of independent
realizations of the matrixX as in equation 3.

α = 0. In contrast, the test misclassifaction error is convex
in terms of α and therefore the lowest generalization error
corresponds to an optimal value α 6= 0. We also remark
that the optimal value of α increases in terms of ε which is
counterintuitive since we excpect and α near to 0 for large
values of ε, but actually, the test misclassification error in
terms of α gets more and more flatter as ε increases.

5. Conclusion and Discussion
Leveraging on random matrix theory, we have analyzed the
effect of the α-Dropout layer on a one layer neural network,
which allowed us to have a deeper understanding of the
impact of this layer. We have notably exhibited an optimal
Dropout operation (dropping our features with some α 6= 0)
in terms of the generalization error of the studied classifier.
Although, our analysis was presented on a simple binary
classification task, it can be straightforwardly generalized
to a more realistic data model as the mixture of k-class
model (Louart & Couillet, 2018a; Seddik et al., 2020). Un-
der a k-class model it may be beneficial to consider an α`
per class C` as the classes may be constructed with different
statistics. Following the same approach one can derive the
test misclassification error as per Corollary 3.4 in terms of
scalar quantities involving the data statistics, and therefore
exploit the formulas to find the optimal values of α`’s.
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A. Proofs
Lemma A.1 (Woodbury Identity).

(A+ uuᵀ)
−1

= A−1 − A
−1uuᵀA−1

1 + uᵀA−1u
(7)

A.1. Statistics of xi in equation 3.1

Statistics of xi in equation 3.1. Let x = b � (z + µ) + αPb. Denote E[Pb] = E[b − 1
p

∑n
i=1 bi1p] = 0, we have

E[b� (z + µ)] = b� µ and E[bbᵀ] = ε1p1
ᵀ
p + (1− ε)Ip ≡ Cb. Therefore,

E[αPb(αPb)ᵀ] = α2PCbP
ᵀ

E[b� (z + µ)(b� (z + µ))ᵀ] = Cb � (Ip + µµᵀ)

E[b� (z + µ)(αPb)T ] = αDiag(µ)CbP

Hence,

E[xxᵀ] = Cb � (Ip + µµᵀ) + αDiag(µ)CbP + αPCb Diag(µ) + α2PCbP
ᵀ

Since ‖µ‖ = O(1), as in Assumption 3.1, we have

Cb � (Ip + µµᵀ) = εIp + (1− ε)Ip + εµµᵀ + (1− ε) Diag(µ�2) = Ip + εµµᵀ + (1− ε) Diag(µ�2)

Diag(µ)CbP = (1− ε) Diag(µ)P = (1− ε) Diag(µ)− 1− ε
p
µ1ᵀ

p = (1− ε) Diag(µ) +O‖·‖(p−
1
2 )

PCbP = (1− ε)P

Thus

E [xxᵀ] = (1 + α2(1− ε))Ip + εµµᵀ − α2(1− ε)
p

1p1
ᵀ
p + (1− ε) Diag(µ�2) + 2α(1− ε) Diag(µ) +O‖·‖(p−

1
2 )

Therefore,

ma ≡ E [xi] = (−1)a
√

ε

1 + α2(1− ε)
µ (8)

Cε ≡ E [xix
ᵀ
i ] = Ip +

ε

1 + α2(1− ε)
µµᵀ 1− ε

1 + α2(1− ε)
(
Diag(µ�2) + 2αDiag(µ)

)
(9)

− α2(1− ε)
p(1 + α2(1− ε))

1p1
ᵀ
p +O‖·‖(p−

1
2 ). (10)

A.2. Proof of Proposition 3.2

Proof of Proposition 3.2. LetA = P (Bε�(µyᵀ))√
ε+α2ε(1−ε)

, form (Hachem et al., 2007), a deterministic equivalent ofQ(z) is given

by

Q̄(z) ≡
(
q−1(z) +

1

1 + cq(z)

1

n
E[AAᵀ]

)−1
with q(z) ≡ 1 + cq(z)

1 + z(1 + cq(z))

And by Assumption 3.1 (‖µ‖ = O(1)), we have

1

n
E[AAᵀ] =

ε

1 + α2(1− ε)
µµᵀ +

1− ε
1 + α2(1− ε)

Diag(µ�2) +O‖·‖(n−
1
2 )

= aµµᵀ + bDiag(µ�2) +O‖·‖(p−
1
2 )
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Therefore, by Lemma A.1, we have (we denote r(z) = 1
1+cq(z) )

Q̄(z) =
(
q−1Ip + br(z) Diag(µ�2) + ar(z)µµᵀ

)−1
=
(
q−1Ip + br(z) Diag(µ�2)

)−1︸ ︷︷ ︸
Dz

− ar(z)DzµµᵀDz
1 + ar(z)µᵀDzµ

Finally solving the second order equation q(z) = 1+cq(z)
1+z(1+cq(z)) in q(z) completes the proof.

A.3. Proof of Theorem 3.3

Proof of Theorem 3.3. For clarity, we simply write Q(z) = Q and δ(z) = δ removing the dependence on z, and let the
resolventQ−i which isQ without the i-th datum xi defined as

Q−i =

(
1

n
XXᵀ − 1

n
xix

ᵀ
i + zIp

)−1
(11)

And let

m ≡
√

ε

1 + α2(1− ε)
µ (12)

Estimation of E[g(x)] Using the identityQxi = Q−ixi
1+ 1

nxiQ−ixi
, we have for x ∈ Ca

E [xᵀw] =
1

n
E [xᵀQXy] =

1

n

n∑
i=1

yi E [xᵀQxi] =
1

n

n∑
i=1

yi E
[

xᵀQ−ixi

1 + 1
nx

ᵀ
iQ−ixi

]

=
1

n

n∑
i=1

yi E
[
xᵀQ−ixi

1 + δ

]
+O

(
1√
n

)
= (−1)a

µᵀQ̄m

1 + δ
+O

(
1√
n

)

Estimation of E[g(x)2]

E
[
(xᵀw)2

]
=

1

n2
E [yᵀXᵀQxxᵀQXy] =

1

n2
E [yᵀXᵀQC1QXy]

=
1

n2

n∑
i,j=1

yiyj E [xᵀ
iQC1Qxj ] =

1

n2

n∑
i=1

y2i E [xᵀ
iQC1Qxi] +

1

n2

∑
i6=j

yiyj E [xᵀ
iQC1Qxj ]

=
1

n2

n∑
i=1

y2i E
[
xᵀ
iQ−iC1Q−ixi

(1 + δ)2

]
+

1

n2

∑
i 6=j

yiyj E
[
xᵀ
iQ−iC1Q−jxj

(1 + δ)2

]
+O

(
1√
n

)

=
1

n

Tr (C E [Q−iC1Q−i])

(1 + δ)2
+

1

n2

∑
i 6=j

yiyj E
[
xᵀ
iQ−iC1Q−jxj

(1 + δ)2

]
+O

(
1√
n

)

And using the identityQ = Q−i −
Q−i

1
nxix

ᵀ
iQ−i

1+ 1
nx

ᵀ
iQ−ixi

, the second term develops as

1

n2

∑
i 6=j

yiyj E
[
xᵀ
iQ−iC1Q−jxj

(1 + δ)2

]

=
1

n2

∑
i 6=j

yiyj E
[
xᵀ
iQ−ijC1Q−jixj

(1 + δ)2

]
− 1

n3

∑
i 6=j

yiyj E
[
xᵀ
iQ−ijC1Q−jixix

ᵀ
iQ−jixj

(1 + δ)3

]

− 1

n3

∑
i6=j

yiyj E

[
xᵀ
iQ−jixjx

ᵀ
jQ−ijC1Q−jixj

(1 + δ)3

]
+

1

n4

∑
i 6=j

yiyj E

[
xᵀ
iQ−ijxjx

ᵀ
jQ−ijC1Q−jixix

ᵀ
iQ−ijxj

(1 + δ)4

]
+O

(
1√
n

)

=
mᵀ E[Q−ijC1Q−ji]m

(1 + δ)2
− 2 Tr(E[CQC1Q))

n(1 + δ)3
mᵀQ̄m+

1

n2(1 + δ)4
(mᵀQ̄m)2mᵀE[QC1Q]m+O

(
1√
n

)
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where the term E [QAQ] is handled by

η(A) ≡ 1

n
Tr (Cε E [QAQ]) =

(1 + δ) 1
n Tr

(
CεQ̄AQ̄

)
(1 + δ)2 − 1

n Tr
(
CεQ̄CεQ̄

)
∆(A) ≡ E [QAQ] = Q̄AQ̄+

η(A)

1 + δ
Q̄CεQ̄

Putting all together yields to

E
[
(xᵀw)2

]
=

η(C1)

(1 + δ)2
+
mᵀ∆(C1)m

(1 + δ)2
− 2η(C1)mᵀQ̄m

(1 + δ)3
+O

(
1

n2

)

A.4. Proof of Theorem 3.5

Proof of Theorem 3.5. Using the previous notations and matrix identities, for xi ∈ Ca a sample from the training setX , we
have:

Estimation of E[g(xi)]

E[xᵀ
iw] =

1

n
E[xᵀ

iQXy] =
1

n

n∑
j=1

yj E[xᵀ
iQxj ]

=
1

n
E
[

xᵀ
iQ−ixi

1 + 1
nx

ᵀ
iQ−ixi

]
+

1

n

∑
j 6=i

yj E
[
xᵀ
iQ−jixj
(1 + δ)2

]
+O

(
1√
n

)

=
δ

1 + δ
+ (−1)a

mᵀQ̄m

(1 + δ)2
+O

(
1√
n

)
Estimation of E[g(xi)

2]

E
[
(xᵀ
iw)2

]
=

1

n2
E [yᵀXᵀQxix

ᵀ
iQXy] =

1

n2
E
[
yᵀXᵀQ−ixix

ᵀ
iQ−iXy

(1 + δ)2

]
+O

(
1√
n

)
=

1

n2

n∑
j,k=1

yjyk E

[
xᵀ
jQ−ixix

ᵀ
iQ−ixk

(1 + δ)2

]
+O

(
1√
n

)

=
1

n2

n∑
j=1

y2j E

[
xᵀ
jQ−ixix

ᵀ
iQ−ixj

(1 + δ)2

]
+

1

n2

∑
j 6=k

yjyk E

[
xᵀ
jQ−ixix

ᵀ
iQ−ixk

(1 + δ)2

]
+O

(
1√
n

)

=
1

n2
E
[

(xᵀ
iQ−ixi)

2

(1 + δ)2

]
+

1

n2

∑
j 6=i

y2j E

[
xᵀ
jQ−ixix

ᵀ
iQ−ixj

(1 + δ)2

]
+

1

n2

∑
j 6=i

yjyi E

[
xᵀ
jQ−ixix

ᵀ
iQ−ixi

(1 + δ)2

]

+
1

n2

∑
i 6=j 6=k

yjyk E

[
xᵀ
jQ−ixix

ᵀ
iQ−ixk

(1 + δ)2

]
+O

(
1√
n

)

=

(
δ

1 + δ

)2

+
1

n2

∑
j 6=i

E

[
xᵀ
jQ−ijxix

ᵀ
iQ−ijxj

(1 + δ)4

]
+

1

n2

∑
j 6=i

yjyi E

[
xᵀ
jQ−ijxix

ᵀ
iQ−ixi

(1 + δ)3

]

+
1

n2

∑
i 6=j 6=k

yjyk E

[
xᵀ
jQ−ijxix

ᵀ
iQ−ikxk

(1 + δ)4

]
+O

(
1√
n

)

=

(
δ

1 + δ

)2

+
1
n Tr (Cε E[Q−ijCεQ−ij ])

(1 + δ)4
+
δmᵀQ̄m

(1 + δ)3

+
1

n2

∑
i 6=j 6=k

yjyk
E
[
xᵀ
jQ−ijCεQ−ikxk

]
(1 + δ)4

+O
(

1√
n

)
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where we have previously estimated the term 1
n2

∑
i 6=j 6=k yjyk E[xᵀ

jQ−ijCεQ−ikxk] as

1

n2

∑
i6=j 6=k

yjyk E[xᵀ
jQ−ijCεQ−ikxk] = mᵀ E[Q−ijkCεQ−ijk]m− 2 Tr(E[CεQCεQ))

n(1 + δ)
mᵀQ̄m+O

(
1√
n

)
Hence, putting all together we get

E[g(xi)
2] =

(
δ

1 + δ

)2

+
η(Cε)

(1 + δ)4
+
δmᵀQ̄m

(1 + δ)3
+
mᵀ∆(Cε)m

(1 + δ)4
− 2ηmᵀQ̄m

(1 + δ)5
+O

(
1√
n

)
=

(
δ

1 + δ

)2

+
η(Cε)

(1 + δ)4
+mᵀ

(
δQ̄

(1 + δ)3
+

∆(Cε)

(1 + δ)4
− 2η(Cε)Q̄

(1 + δ)5

)
m+O

(
1√
n

)
and the CLT is obtained with similar arguments than (Louart & Couillet, 2018b).


